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ABSTRACT 
Few-layer two-dimensional (2D) materials usually have different (meta)-stable stacking patterns, which have distinct electronic and optical 
properties. Inspired by optical tweezers, we show that a laser with selected frequency can modify the generalized stacking-fault energy 
landscape of bilayer hexagonal boron nitride (BBN), by coupling to the slip-dependent dielectric response. Consequently, BBN can be 
reversibly and barrier-freely switched between its stacking patterns in a controllable way. We simulate the dynamics of the stacking transition 
with a simplified equation of motion and demonstrate that it happens at picosecond timescale. When one layer of BBN has a nearly-free 
surface boundary condition, BBN can be locked in its metastable stacking modes for a long time. Such a fast, reversible and non-volatile 
transition makes BBN a potential media for data storage and optical phase mask.  
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Electronic and optical properties of few-layer two-dimensional (2D) 
materials (e.g., graphene [1–5], hexagonal boron nitride (h-BN) [6–8], 
transition metal dichalcogenides [9–11] and their heterostructures 
[12–16]) are strongly affected by their stacking patterns. Some 
exotic properties are present only for certain stacking modes [17, 18]. 
For instance, trilayer graphene in ABA (Bernal) stacking is semi- 
metallic irrespective of external field; while the semi-metallic ABC 
(rhombohedral) stacking opens a sizable band gap upon applying a 
gate voltage [1–5]. It is thus highly desirable to be able to change the 
stacking mode dynamically in a controllable way.  

Here, we focus on a robust air-stable 2D material, h-BN, which is 
an insulator with a wide band gap around 6 eV [6, 19]. Geometrically 
speaking, the bilayer h-BN (BBN) has five different high symmetry 
stacking configurations. Among them, AAʹ (eclipsed with B over N 
and N over B), AʹB (staggered with N over N) and ABʹ (staggered 
with B over B) differ only by a translational sliding u along the 
armchair direction (Fig. 1). Using first-principles density functional 
theory (DFT) calculations (see section 4 Methods), we theoretically 
and computationally demonstrate that the relative stability of these 
stacking patterns can be effectively tuned by applying a linearly 
polarized laser (LPL) pulse with selected near-band-edge-transition 
frequency. Stacking pattern change corresponds to a slippage of the 
top layer h-BN with respect to the bottom layer. Since the two 
layers are coupled by weak van der Waals (vdW) interactions, have 
a small total mass, and are almost unconstrained to the surrounding 
by long-range elasticity in both z and x, y directions (compared to 
martensitic transformations inside three-dimensional (3D) materials), 
this stacking change can occur very fast (within picoseconds). 
Furthermore, such a stacking mode change does not involve any 
primary bond breaking or reforming, guaranteeing the reversibility. 

If BBN has a nearly-free surface boundary to remove tensile strain 
induced by stacking incommensurability, it can be locked in its 
metastable stacking modes for a long time, making the switching 
non-volatile.  

We use a non-dimensionalized displacement parameter u (mod 1) 
to denote these patterns. The AAʹ configuration is defined as u = 0,  
and the AʹB and ABʹ configurations are u = 1/3 and u = 2/3, 
respectively. Note that the other two high symmetry stacking modes, 
AA (eclipsed with B over B and N over N) and AB (staggered) need 
a π/3 rotation along the c axis and will be discussed elsewhere.  

We begin our discussions with the generalized stacking fault (GSF) 
[20, 21] energy landscape along the sliding path calculated by DFT 
[22, 23] with semi-empirical long-range interaction corrections (see 
section 4 Methods). As shown in Fig. 2(a), AAʹ is the ground state 
with lowest energy and is set as the energy reference. The metastable 
ABʹ has an energy of 2.1 meV per unit cell (each unit cell contains 4 
atoms) higher than that of AAʹ. Between AAʹ and ABʹ, there are 
two barriers on two opposite directions. On the direction that 
directly links AAʹ to ABʹ, the AʹB stacking serves as the transition 
saddle-point, 17 meV per unit cell higher in energy than that of AAʹ. 
On the opposite direction, there is another barrier at u ≈ 0.8 (denoted 
as saddle-point barrier (SD)), which is 3.0 meV (0.9 meV) per unit 
cell higher in energy than that of AAʹ (ABʹ). These results are 
consistent with experimental observations that AAʹ stacking is more 
often seen than the ABʹ stacking in clean samples [8, 24].  

With external laser illumination, it is possible to tune the relative 
stability of these high symmetry stacking modes and switch them 
in a reversible and reduced-energy-barrier (even barrier-free) way. 
In the following, we will analyze the effect of an LPL with in-plane 
polarization. In this paper, we do not treat the case of out-of-plane  
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electric field (gate voltage). Under an electric field E alternating with 
frequency ω, the free energy per unit cell can be written as [25] 

( ) ( )( ) 10
0| , ( | 0) ( ) ,

2
Vu ω u V u u ω= = - ⋅ - ⋅ ⋅ E E E P E E

  (1) 

where 0( )uP is the intrinsic static polarization density, and (1)( , )u ω  
is the real part of dielectric function of a BBN unit cell with displacement 
u. V is the volume of the unit cell. The mechanical work contribution 
(due to transformation strain) is zero with a slightly pre-buckled, 
freely suspended boundary condition. At zero temperature, ( | 0)u = E  
is equivalent to the stacking energy per unit cell as shown in Fig. 2(a). 
The second term, which is the first order response to electric field, 
averages to be zero when the oscillation frequency ω of the electric 
field is much greater than the phonon vibrational frequency (usually 
a few THz). The third term is the second order response to the 
electric field. The dielectric function ( , )u ω  should combine the 
contributions from both ion and electron subsystem. However, the 
ion subsystem is too sluggish to follow an ultraviolet laser’s electric 
field, so only the contribution from electron subsystem [ ( , )u ω =  

electron( , )]u ω is considered in this work. One notable feature of 
( , )u ω  is that it depends on both the displacement u and the laser 

frequency ω: the structure determines the dielectric response. 
Therefore, by careful selection of ω, it is possible to modify GSF 
energy landscape ( | , )u ωE , and effectively tune the relative 
stability of different stacking configurations.   

We calculate (1)( , )u ω  with DFT (see section 4 Methods and the 
Electronic Supplementary Material (ESM)). Since we consider an LPL 
polarized in the x direction, the only contribution to the total free 
energy is the xx  term. (1)( , )xx u ω  for ω from 4.0 to 6.5 eV is plotted 
in Fig. 2(b). We can see that in this frequency range, (1)( , )xx u ω  is 
sensitive to both u and ω. For 4.0 eVω < , which is below the band edge, 

(1)( , )xx u ω  is nearly constant for all u. This can be understood from the  

Kramers-Kronig relation 
(2)
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For ω well below the bandgap, (2)( , )αβ u ω  is close to zero for all u, thus 
(1)( , )αβ u ω  is nearly a constant. But for ω close to the band edge 

transition frequency, since the stacking pattern u has an influence 
on the electronic band structure [6], (2)( , )αβ u ω  would be different 
for different u, which in turn leads to the strong dependence of  

(1)( , )αβ u ω  on u. (1)( , )xx u ω at two selected frequencies, 4.30ω =  
and 4.55 eV  are shown in Fig. 2(c). For 4.30 eVω = , (1)(AB )xx '  is 
10.9, greater than both (1)(AA )xx ' (8.92) and (1)(SD)xx  (9.87). Therefore, 
when a LPL polarized in the x-direction with 4.30 eVω =  is applied, 

(AB )'  would get relatively lower in the GSF energy. When the laser 
is strong enough ( 1.8 V/nmE > ), AB'  stacking can be the most 

stable, with (AB ) (AA )' '<  . In this case, BBN originally at AAʹ 
stacking may slip into ABʹ stacking, aided by the nucleation of a 
partial dislocation loop. This effect is shown in Fig. 2(d). In order  
to induce a barrier-free transition, the minimum alternating electric 
field strength is 3.5 V/nmE =  (corresponds to laser pulse intensity 

12 2
0 1.6 10 m )W/cI = ´ .  
Once the laser is turned off, the BBN at ABʹ stacking has the 

thermodynamic driving force to return to AAʹ because AAʹ stacking 
is lower in energy without laser illumination. However, such a 
transition is hindered by the SD between AAʹ and ABʹ and a domain 
may be locked in ABʹ for a very long time before collectively 
transiting back to AAʹ, provided that the boundary condition is set 
right, namely to let the dislocation loop merge into the vacuum and 
“disappear”, rather than piling up at the edges, during writing. In this 

case the transition rate can be estimated as 0
B

Δexp NΓ ν
k T

æ ö÷ç= - ÷ç ÷çè ø
 ,  

where 0ν  is the trial frequency and is usually at the order of 12 110 s- , 
N is the number of the unit cells and Δ  is the height of the barrier 
(0.9 meV here). We can see that even if N = 2,000, the collective 
transition would take 1012 years at the room temperature. However, 
if there is no barrier in the landscape, BBN would transit freely 
from ABʹ to AAʹ and as we will elaborate later, the transition time is 
at the order of ps. In order to trigger such an instantaneous and fast 
transition from ABʹ to AAʹ, a laser with frequency 4.55 eVω = can 
be applied. We also plot calculated (1)( , 4.55 eV)xx u ω =  in Fig. 2(c). It 
demonstrates an order of dielectric function (1) (1)( )S A )A(Dxx xx '> >   

(1) AB( )xx ' . When the laser with electric field strength E greater than 
1.0 V/nm  is applied, the desired grand potential order (AB )' >  

(SD) (AA )'>   can be obtained, enabling a barrier-free transition 
from ABʹ to AAʹ. These alternating electric field magnitudes are 
moderate and achievable in current experiments. 

Next, we explore the dynamics of such transition with a one- 
dimensional (1D) equation of motion. As shown in Fig. 2(e), the 
model consists 2 layers of particles, each particle represents a unit 
cell in one layer, and is indexed by n ranging in 1, 2, .N¼  For 
simplicity, the positions of particles on the bottom layer are fixed  
as reference points. Particles on the top layer are allowed to move 
and their configuration are described by the displacements 
{ ,nu n = 1,2, }N¼  relative to the particles on the bottom layer. Three 
independent interactions are accounted, namely, elastic vdW .EU U U+ +  
The first one is the intra-plane interaction on the top layer, which is 
approximated by a harmonic spring with elastic constant .κ  The 
second term is the vdW interaction vdWU  between the two layers. 
The third interaction is the interaction under the laser field ,EU  
which is determined by the BBN slip-dependent dielectric function 

 
Figure 1 Three high symmetry stacking modes AAʹ, AʹB and ABʹ of BBN. They are different by a translational sliding u along the armchair direction (red arrow).
AAʹ, AʹB and ABʹ correspond to u = 0, 1/3 and 2/3, repectively. Blue: N; light pink: B. Smaller (larger) atoms lie in the upper (lower) layer. 
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(see Eq. (1)). Now we can put all ingredients together and write 
down the Lagrangian   of the system  
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By applying Lagrange’s equation, we can derive the equation of 
motion (EOM) for the n-th particle on the top layer 
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Here, m is the effective mass of a unit cell ( B Nm m m= + ), a ≈ 4.3 Å is 
the lattice spacing (along the armchair direction). The elastic constant 
κ  for a flat BBN can be obtained by fitting the strain-energy curve. 
In order to calculate the derivative of vdWU  and   with respect to u, 
we fit them with Fourier series (solid curves in Figs. 2(a) and 2(c)). 
The last term in Eq. (3) is a damping term, representative of all possible 
dissipation effects in the system. Considering that the phonon lifetime 
at room temperature is on the order of ps [26], phonon–phonon 
scattering would lead to a partial contribution of 1~ 1 ps .γ -  Since 
there are other contributions to the total dissipation, such as defects 
and the larger anharmonicity when u is large, it is reasonable to 
assume that γ  is on the order of several 1ps .-  In general, γ  
determines how quickly the oscillations around the GSF energy 
minimum damp out, and in turn determines the transition time. 
But the main conclusions do not sensitively depend on the specified 
value of .γ  In the following, γ  is set as 15 ps .-  If a larger γ  is used, 
the dynamics of the system is slower, but the oscillation around the 
GSF energy minimum is also weaker. On the other hand, if a smaller 
γ  is used, the dynamics becomes faster but the oscillation around 

the GSF energy minimum would take more periods to be damped 
out. This is similar to overdamped, critically damped and underdamped 
behaviors of a damped oscillator. 

We solve EOM Eq. (3) with a total number of unit cells N =  
20,000. The results (Fig. 3) show that AAʹ and ABʹ can be switched 
in picoseconds under laser with selected frequency. In Fig. 3(a), the 
system is originally in a homogeneous AAʹ stacking mode (blue curve). 
By shining laser with frequency 4.30 eV,ω =  and Gaussian profile 

( )
( )2

0
0 2exp

2
n nE n E

σ
é ù-ê ú= -ê úê úë û

 with 0 5.0 V/nmE = , 0 10,000n =  and 

2,000σ =  (with full width at half maximum around 1 μm. denoted 
as Laser-A) in the middle region, ABʹ stacking domain starts to develop. 
At 2.5 pst = , Laser-A is turned off and the system is allowed to 
relax freely. We can see that the middle region of the system first 
oscillates around ABʹ stacking, and after the oscillation damps out, 
it is locked in ABʹ (yellow curve). The whole process takes about  
5 ps. The thickness of the domain wall (DW) between AAʹ and ABʹ is 
about 100 unit cell length, roughly 40 nm. In Fig. 3(b), the system 
is initially set as the final state of Fig. 3(a). At 0,t =  a laser with 
frequency 4.55 eV,ω =  and the same profile as Laser-A except 
that 0 1.5 V/nmE =  (denoted as Laser-B) starts to shine on the  
ABʹ domain. At 0.5 ps,t =  Laser-B is turned off, and the system 
automatically collapses back to AAʹ. The DWs are erased as well 
and the system is restored to the initial state in Fig. 3(a), leaving no 
trace. That is, by alternatively applying Laser-A and Laser-B, the 
ABʹ stacking domain can be written and erased within picoseconds 
according to the EOM. 

In Figs. 3(c) and 3(d), we show that the DW can be moved 
towards the ABʹ (AAʹ) domain by moving Laser-A (Laser-B), with 
a mechanism similar to writing (erasing) ABʹ stacking modes. 
Originally, the system contains a ABʹ domain, separated from two 
AAʹ domains by DWs (oppositely signed dislocations). In Fig. 3(c), 
by shining Laser-A on the left DW and moving the laser to left, ABʹ 

 
Figure 2 (a) Intrinsic BBN GSF energy landscape along the armchair direction. Three high symmetry stacking modes are labelled. AAʹ is stable, ABʹ is metastable, 
and AʹB is unstable. SD denotes the saddle point between AAʹ to ABʹ. AAʹ is set as the energy reference in the plot. (b) Calculated dielectric function (1)( , )xx u ω  for
ω  from 4.0 to 6.5 eV. (c) Dielectric function (1)( , )xx u ω  at two selected frequencies 4.30ω =  and 4.55 eV. (1)( )xx u  at a fixed frequency is dependent on the displacement
u and can tune the shape of stacking energy landscape ( )u . 4.30 eVω =  favors ABʹ stacking while 4.55 eVω =  favors AAʹ stacking. In (a) and (b), crosses are 
from DFT calculations while solid curves are Fourier series fittings. (d) GSF energy ( , 4.30 eV)u ω =  at several different laser intensity. 0I  corresponds to

0 3.5 V/nmE =  and is strong enough to induce barrier free transition from AAʹ to ABʹ. (e) The 1D model system as described in the main text. Each pink point represents
a unit cell on one layer. 
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domain gradually grows to the left, replacing AAʹ domain. Similarly, 
in Fig. 3(d), by shining Laser-B on the right DW and moving the 
laser to the left, AAʹ domain grows to the left and swallows ABʹ 
domain. Both processes happen in picoseconds.  

It should be noted that in our spatially extensive model system 
with finite elastic constant ~ 10κ  eV/Å2, ABʹ domain is not very 
stable when the laser is turned off. Due to the elastic interaction 
between neighboring particles within the DW and the intrinsic 
metastability of ABʹ stacking mode, ABʹ–AAʹ DW would move 
towards the ABʹ direction and ABʹ domain shrinks with time, with 
a speed on the order of nm/ps. Therefore, a ABʹ domain with 
micrometer dimension would disappear in nanoseconds. To make 
the switching between different stacking modes non-volatile, the 
long-range elastic interaction in x, y should be eliminated. Fortunately, 
the elastic interaction exists only within the DW and can be removed 
by simply removing the DW (dislocation core). One way is to use 
a free surface boundary condition, as shown in Fig. 4. Monolayer 
h-BN flakes with dimension comparable to the spot size of the laser 
are distributed freely as separate sheets on the bottom layer, each 
of which can slide in-plane, like an air hockey table. If the spacing 
between top sheets are large enough and separated by boundary walls, 
there will be no crosstalk between them. When the laser is focused 
on one domain, it would transit collectively between AAʹ and ABʹ 
stacking modes. With the new stacking domain growing in size, the 
bounding partial dislocation loop will eventually be so large that it 
is pushed to the free boundary and annihilate there, rather than 
piling up at the boundary wall if both h-BN layers were clamped at 
the edge. This way, the in-plane elastic interaction can be nearly 
entirely removed and ABʹ domain can be locked in for a long time, 
rendering the switching non-volatile. To switch back, a new laser pulse 

has to be applied again, and an entirely new partial dislocation loop 
needs to nucleate afresh.  

Since the switching between different stacking modes is fast, 
reversible and non-volatile, we suggest that BBN could serve as a data 
storage media. Compared with currently used phase change materials 
[27] such as Ge-Sb-Te alloys, which can be switched between crystalline 
and amorphous phases upon heating over 1–1,000 nanoseconds time 
scale, the non-volatile phase transition in BBN can be ultrafast, 
athermal, and displacive. The EOM Eq. (3) has similar structure as 
the Frenkel–Kontorova model, with external forcing by the optical 
tweezing, that takes advantage of the significant contrast in dielectric 
response offered by the slippage.  

Based on this discussion, we illustrate a BBN optical disc drive 
(Fig. 4(b)). It is a lattice of BBN sheets with nearly-free surface 
boundary condition as describe above. The bottom layer can be 
deposited as rigid and flat, and can also be lifted off and wrapped as 
a scroll to increase the volume density for data storage (Fig. 4(b)). 
Note that the areal data density is limited by the laser spot size, 
which is in turn limited by the diffraction limit. For the laser used 
here with incident energy around 4 eV (corresponding to 300 nm 
wavelength), the diffraction limit is on the order of hundreds of 
nanometers. This size is also resolvable by imaging systems with 
optical wavelength of ~ 300 nm. Lasers can move around to read 
and write. We propose to use high intensity lasers to write and erase 
AAʹ (or ABʹ) configuration, which can serve as 0 (or 1) state. For 
reading, one applies a laser with low intensity, and measures the 
luminescence, or refractive index by ellipsometry, which are very 
distinct at certain frequencies for different stacking patterns [8]. Such 
a BBN disk can be switched back and forth at much faster bitrates 
of current phase-change storage media.  

 
Figure 3 Dynamics of the model system under different laser illumination. (a) Writing ABʹ domain. Initially the system is in a homogeneous AAʹ stacking mode. From t = 0 
to 2.5 ps, Laser-A, which favors ABʹ stacking mode shines on the middle region. An ABʹ domain gradually develops. After several oscillations, middle region of the 
system is locked in the ABʹ stacking mode. (b) Erasing ABʹ domain. The initail state here is the final state in (a). Between t = 0 to 0.5 ps, Laser-B, which favors AAʹ stacking
shines on the ABʹ domain. The system is restored to the initial state in (a), which is a homogeneous AAʹ domain. The laser profile is shown as the red dotted lines in 
(a) and (b). (c) and (d) Moving DW. Laser-A (Laser-B) shines on the DW between AAʹ and ABʹ domain, and moves towards ABʹ (AAʹ) domain. The DW moves in the 
same direction as the laser. 
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Figure 4 (a) BBN sheets with nearly-free surface boundary condition. Monolayer 
h-BN sheets with size comparable to the spot size of the laser are distributed on 
the the bottom layer. Each domain size is on the order of a few hundred 
nanometers, owing to the limitation of optical resolution and laser beam width. 
The top layers can move nearly freely upon laser illumination and BBN sheets 
can collectively transit between AAʹ and ABʹ stacking modes. The dislocation 
induced is abosrbed by the nearly-free boundary. No DW is formed so that the 
elastic interaction is elminated and the ABʹ stacking mode can be locked for a 
very long time, rendering the switching non-volatile. (b) BBN optical disk drive 
as a lattice of BBN sheets in (a). BBN layers can be scrolled to increase data 
density. Laser moves around to read and write. 

We would like to make some final remarks. First, such a scheme 
of optical tweezing is not limited to slippage: the other two high 
symmetry stacking modes, AA and AB, can come into play  as 
well by twisting. Some experimental and computational works  
have shown that AB stacking is also stable, with stacking energy 
comparable to that of AAʹ [7, 24]. The relative stability between these 
high symmetry stacking modes may be tuned by laser with selected 
frequency and polarization. Our model can thus be extended to 2D 
slippage and twisting. Second, the spatial density of storage can be 
very high, with locked-in domain as small as tens of nanometers, 
and by rolling up the 2D material as a scroll akin to DNA packing, 
one may achieve high total storage density in 3D. Third, besides data 
storage, optical stacking mode transition may find other applications 
such as in programmable optical switches, phase masks, grating 
array, etc. We expect that our theoretical prediction could evoke 
experimental validations in the near future. 

Methods 
Our first-principles calculations are based on DFT [22, 23] as 
implemented in Vienna ab initio simulation package (VASP) [28, 29]. 
Exchange-correlation interactions are treated by generalized gradient 
approximation (GGA) of Perdew–Burke–Ernzerhof (PBE) [30] form. 
Core and valence electrons are treated by projector augmented wave 
(PAW) method [31] and a plane wave basis set, respectively. The 
kinetic energy cutoff is set as 400 eV and the first Brillouin zone is 
sample by a 11 × 11 × 1 Γ-centered k-point mesh. Interlayer van der 
Waals interactions are treated with DFT-D3 method of Grimme with 
Becke-Jonson damping [32, 33]. For each displacement u, the in-plane 
lattice constant is fixed at 2.50 Å but the inter-plane distance is allowed 
to relax, until forces on all atoms are smaller than 0.001 eV/Å. 
The dielectric function is calculated in the independent particle 
approximation (IPA). More accurate quasi-particle GW calculations 
[34, 35] with exciton binding correction (Bethe-Salpeter equation, 
BSE [36, 37]) calculations are also performed and the results are 
qualitatively consistent with IPA results. 
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Figure S1 Dynamics of the model system under laser illumination. The laser has the same time and spatial profile as that in Figure 3. But the force constant k in   
Eq. (3) is set as zero, thus the DW is thinner and should have δ function (zero width) form as time approaches infinite. The DW, once formed, has no translational 
movement with time.  
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Figure S2 Dynamics of the model system under laser illumination. The laser has the same time and spatial profile as that in Figure 3 in the main text. But in the 
upper panels, the dissipation rate γ is set as 3 ps–1. The dynamics is faster but there are stronger oscillations around the energy minimum. In the lower panels γ is set as 
10 ps–1. The dynamics is slower, but there are no oscillations around the energy minimum. This corresponds to the over-damped regime. (a, c) writing ABʹ domain. (b, 
d) erasing ABʹ domain. 

 
Figure S3 The yy and zz components of Dielectric tensor at ω = 4.3 eV and 4.55 eV. The behavior of yy  is similar to xx  in Figure 2(c) of the main text, while zz  is 
quite different.  

 
Figure S4 Dielectric function (1)( , )xx u ω  from GW-BSE calculation. Two selected frequency ω = 4.95 eV and 5.15 eV favor ABʹ and AAʹ stacking, respectively. 


