Surpassing lithium metal rechargeable batteries with self-supporting Li–Sn–Sb foil anode

Hui Xu a,b,1, Sa Li a,b,*,1, Xinlong Chen a,b, Can Zhang a,b, Zhuoqun Tang a,b, Huimin Fan a,b, Yue Yu a,b, Wenjian Liu a,b, Na Liang a,b, Yunhui Huang a,b,*,**, Ju Li a,c,***

a School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
b Institute of New Energy for Vehicles, Tongji University, Shanghai, 201804, China
c Department of Nuclear Science and Engineering and Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA

ARTICLE INFO

Keywords:
Lithium metal anode
Li–Sn–Sb alloy anode
Full cell
Volumetric energy density
Mesoscale science

ABSTRACT

Lithium metal rechargeable batteries (LMBs) degrade rapidly due to morphological instabilities as well as electrolyte consumption. As an alternative to Li4C2, metal foil, in this study, a self-supporting Li–Sn–Sb foil prepared by metallurgically alloying 5 wt%Sb–95 wt%Sn with Li4C2 is used as the anode in full-cell configurations. The electrochemical performance is highly competitive against equal-thickness pure Li4C2 foil, exhibiting much slower electrolyte degradation and less volume expansion: at the same amount of industrial-level electrolyte usage, LiFePO4/Li–Sn–Sb pouch cells can sustain twice longer cycle life than LiFePO4/Li4C2 pouch cells. When pairing Li–Sn–Sb anode against high-area-capacity LiNi0.8Co0.1Mn0.1O2(NCM811), LiNi0.8Co0.1Mn0.1O2(NCM811) and LiCoO2(LCO) cathodes, the cell life is significantly improved compared to lithium metal batteries. In particular, a ~6 mAh cm−2 LCO/Li–Sn–Sb pouch cell delivers an initial energy density of 1027 Wh L−1. Coulombic inefficiency analysis combined with morphological observations reveals that the excellent full-cell performance of Li–Sn–Sb is correlated with the smaller apparent volume expansion (thickening) and mesoscale features such as amount and type of porosity. Theoretical calculations and experimental measurements affirm doping 5 wt% Sb significantly suppresses porosity and long crack damage, evidenced by the smaller total porosity: 11% of Li–Sn–Sb versus 23% of Li–Sn, right after mechanical prelithiation, due to facile stress relief through the sliding grain boundaries (GBs), nano SnSb phase boundaries (PBs) and the buffering of soft residual Sn. The reaction kinetics and lithiation products of Sn electrode also change after doping Sb, breaking down a huge chemomechanical shock (Sn→Li2Sn5) into several milder ones (Sn→Li2Sn→LiS2→Li2Sn5) by nano features. While the Li-carrying ability of Li2Sn5 is similar to that of Li4C2, the low volume expansion, cycling stability, better air stability and safety of Li–Sn–Sb foil mean it comprehensively surpasses Li4C2 metal foil anode.

1. Introduction

While rechargeable lithium metal batteries (LMBs) are regarded as the most promising candidates for next-generation high-density energy storage devices, their practical applications have been limited by poor cycle life and safety concerns [1]. After acquiring Moli Company and conducting in-depth research, NEC Corporation accepted the failure of LMBs commercialization because they could not overcome safety challenges caused by lithium metal morphological instabilities (LMI) [2,3]. Undeniably, lithium metal has great merits because of its high theoretical capacity (3860 mAh g−1 and 2062 mAh cm−3) and low electrochemical potential (e.g. −3.04 V vs. the standard hydrogen electrode, SHE) [4]. But as a hostless anode, the plating/stripping of Li4C2 in body-centered cubic (BCC) crystal structure, is accompanied by dendrite

1 These authors contributed equally to this work.

https://doi.org/10.1016/j.nanoen.2020.104815

Received 7 January 2020; Received in revised form 6 April 2020; Accepted 7 April 2020
Available online 23 April 2020
2211-2855/Published by Elsevier Ltd.
growth, electrode pulverization [5], electrolyte consumption and apparent volume expansion [6]. When Li$_{BCC}$ dendrites penetrate through separator, short-circuiting happens, leading to fire or explosion, seriously threatening personal and property safety. The poor cycle life of LMBs is another essential problem [7]. Serious surface area proliferation due to LMI drives side reactions with the electrolyte, which irreversibly consumes electrolyte and lithium inventory, disrupts electronic percolation and causes huge apparent expansion of the electrode thickness [8]. Thus, the cycle life of LMBs depends sensitively on the amount and type of electrolyte used, as well as excess lithium inventory (the amount of cyclable lithium beyond that carried by the cathode). Although a fresh Li$_{BCC}$ metal foil starts out fully dense, the non-active volume fraction ϕ ($\phi=1-V_{\text{active}}/V_{\text{total}}$) of the foil electrode will increase after cycling, that is includes volume taken by electrolyte decomposition products (e.g. SEI), parasitic voids and inactive lithium fragments [9], seriously lowering the actual volumetric energy density. In order to overcome these problems of pure lithium metal, extensive efforts have been focused on solid electrolyte development for avoiding short circuits [10-13], interface treatment and electrolyte optimization for better lithium deposition [14-16] as well as 3D electrode structure fabrication for constraining volume expansion [17,18], and so on.

Developing self-supporting Li-M (M = C, Si, Sn, Al, etc.) alloy foil to substitute Li$_{BCC}$ foil anode is another approach. Due to the high packing density/concentration of lithium (PD) [19] of Li$_2$Sn (materialsproject.org mp-1198729) PD$_{Li2Sn} = 22/479.68 \ \text{Å}^3 = 1/21.8 \ \text{Å}^3$, compared to Li$_{BCC}$ (mp-135): PD$_{Li} = 1/20.121 \ \text{Å}^3$, preliiated Sn foil (Li-Sn) is a very potent Li carrier volumetrically [20]. This should eliminate Li$_{BCC}$ precipitation even at large rates due to higher equilibrium electrochemical potential (e.g. Sn at ~0.4 V vs. Li/Li$^+$) [21,22]. For example, Cui et al. [23] have reported the stable lithium plating/stripping of their freestanding Li$_x$M/graphene electrode (M = Si, Sn, and Al), prepared by firstly heating the mixture of M nanoparticles and Li$_{BCC}$ under inert atmosphere for Li$_x$M preparation and then casting/filtrating the suspension of Li$_x$M and graphene for shaping. Considering metallic tin and aluminum foils have intrinsically superior electronic conductivity and compressed density [24,25], in our previous work, we developed an easy-to-implement, roll-to-roll mechanical prelithiation (MP) method to produce Li-Sn and Li-Al foils at room temperature [26]. The as-prepared self-supporting Li-Sn and Li-Al electrodes not only show striking air stability but also achieve an ultrahigh initial Coulombic efficiency (ICE) of ~90%-94% and long full-cell cycle life, e.g. LiFePO$_4$/Li-Sn and LiFePO$_4$/Li-Al with a commercial-scale areal capacity of ~2.65 mAh cm$^{-2}$ achieved 200 cycles and 100 cycles in full-cell cycling, respectively. While preliiated alloy foil anode has evident advantages, e.g. Li$_{BCC}$ dendrite-free and safety enhancements [27-29], they still face severe challenges for practical applications including large volume change, excessive SEI formation and poor cycle life, etc. [30]. Previously, Li-Sn alloy showed significant apparent electrode thickening with cycling, for instance, a Li-Sn foil of 100 μm thickness thickened to 351 μm after full-cell cycling of 200 cycles, which seriously degrades the actual volumetric capacity. In addition to the absolute volume expansion caused by lithiation reactions, such apparent thickening of Sn foil also originates from the cracks, parasitic voids formation (see Fig. S1) and electrolyte decomposition products accumulation (see Fig. S2). In previous work, we reduced cracking and suppressed electrode thickening to a certain extent by grain size refinement, where the grain boundaries (GBs) in foil electrode was shown to be effective sliding system to relieve stress and avoid large cracks. However, such improvement is still limited because Sn foil is easy to experience re-crystallization and grain growth at the room temperature, as it is already at 2/3 of the absolute melting temperature of Sn ($T_{TM}=0.66$) [31], so the starting grain size is still quite coarse, and GB density is not as high as desired.

Finely dispersed second-phase precipitates not only pin down grain growth to refine the initial grain size $D_{initial}$ [32-34], but they can also be electrochemically active [35]. For example, after doping Sb to Sn matrix to obtain SnSb intermetallic precipitates, they will undergo the following reactions upon electrochemical lithiation or mechanical prelithiation (MP),

During the first step: SnSb $+$ 3Li \rightarrow Li$_3$Sb $+$ Sn (at $-$0.8 V), (1)

2nd step: Sn $+$ xLi \rightarrow Li$_x$Sn (0 $<$ x $<$ 4.4, at 0.7–0.4 V). (2)

So on one hand, the starting SnSb precipitates can refine Sn grain and increase the density of GBs and phase boundaries (PBs) [36,37], and on the other hand, the lithiation of SnSb produces nano Sn/Li$_3$Sn/Li$_x$Sb particles that contribute extra PBs [38]. Thus, doping Sb in Sn matrix may have double effects for stress relief. When stress is released significantly by enough sliding GBs and PBs [39,40], the number and size of cracks will be reduced, and the apparent thickening caused by porosity and accumulated SEI will be subsequently reduced. The occurrence of dead particles caused by the loss of electronic percolation (surrounded on all sides by electronically insulating SEI or liquid electrolyte) will be reduced in cycling as well, because as long as one of the metal/metal GB/PBs surrounding an active grain or grain cluster remains, it can maintain electronic percolation to the outside and cycling activity. Here we can draw an analogy between foil anode and the traditional slurry coating anode. If we consider an active metallic grain in foil to be equivalent with an active particle in slurry, then the GB/PBs play the dual role of conductive agent and binder, as metal/metal GB/PB conduct electrons across to the active particle and simultaneously can transmit tensile stress, where a sliding GB/PB is akin to a more stretchable binder [41]. It is well known that conductive agents and binders play a huge role for the slurry electrodes, especially for high volume expansion anode materials like Si [42], thus it should not be surprising that the type and concentration of GB/PBs impact the cycling stability and apparent volume expansion of the metallic foil electrode, as they are effectively “deformable conductive binders” (since GBs can slide and migrate), and the smaller the grain size, the higher the volumetric concentration of such “conductive binders” which is proportional to 1/D, where D is the grain size. In this paper, we employed 5 wt% Sn$_{95}$ wt%Sb foil (SnSb/Sn) as a starting material and prepared self-supporting Li-Sn/Sb foil electrode by mechanically rolling 5 wt% Sn$_{95}$ wt%Sn and Li$_{BCC}$ foils together, to induce mechanical prelithiation (MP), a solid-state metallurgical reaction that is accomplished at room temperature under ~30 MPa pressure [26,43]. The as-formed Li-Sn/Sb foil electrode exhibited quantitatively superior electrochemical performance than Li$_{BCC}$ foil in multiple ways, including excellent full-cell cycle performance, no risk of lithium dendrites, as well as better air stability and much lower fire and short-circuiting risk.

2. Experimental procedures

5 wt%Sn$_{95}$ wt%Sb foil (50–150 μm thick, Zhenjiang Fan Yada Electronic Technology Co., Ltd.) was punched into a disc with a diameter of 12 mm and then directly used as working electrode. The mechanical prelithiation was carried out as following: pressing two 5 wt% Sn$_{95}$ wt%Sb foils sandwiching a Li$_{BCC}$ foil (China Energy Lithium Co., Ltd.) in the middle with a roller (MSK-2150, Shenzhen Kejing Star Technology, LTD.). The as-prepared prelithiated foil was punched into disc or designed dimensions of pouch cell and then directly used as anode electrode. The commercial LiFePO$_4$ and NCM523 cathodes were purchased from MTI. NCM811 and LCO cathodes were homemade.

Grain and phase microstructures of 5 wt%Sn$_{95}$ wt%Sb foil were observed via optical microscopy (6XB-PC, Shanghai optical instrument factory) and transmission electron microscopy (TEM, FEI Tecnai TF20, JOEL 2100F). The solution consisting of 1.5 vol.% HCl, 1 vol.% HNO$_3$ and 97.5 vol.% methanol was employed to corrode foil for grain observation. The surface and cross-section morphologies were observed via a field emission scanning electron microscope (SEM, FEI Quanta 200). The phase structure of foil was identified by X-ray diffraction (XRD, Bruker AXS GMBH GERM D8) with CuK$_\alpha$ radiation ($\lambda=1.54184$ Å).
Å). The signal of diffraction angles (2θ) between 10° and 80° was collected at a scan rate of 3° min⁻¹, Kapton tape was used to protect the lithiated foils from air corrosion.

CR2025 coin-cell tests were performed on Neware CT-4008. The applied separator was Celgard 2400. The electrolyte of LiFePO₄/Li–Sb–Sn full cell was 1 M LiPF₆ solvated in EC/DEC (v/v = 1:1) with 10% FEC and 1% VC as additives, the electrolyte of NCM523/Li–Sb–Sn, NCM811/Li–Sb–Sn and LCO/Li–Sb–Sn full cells was purchased from Hubei Jiubang New Energy Technology Co., Ltd. (NP6054A1). The CV measurements of 5 wt%Sb-95 wt%Sn/LiBCC and Sn/LiBCC cells were performed on an electrochemical work station (CHI660E, Shanghai Chen Hua Instrument Co., Ltd.), scanning from 1.5 V to 0 V at a rate of 0.1 mV s⁻¹. LiFePO₄/Li–Sb–Sn cells were charged to 3.8 V and then discharged to 2 V at 0.3C. NCM523/Li–Sb–Sn and NCM811/Li–Sb–Sn full cells were charged to 4.2 V and then discharged to 2.6 V at 0.3 C. LCO/Li–Sb–Sn were charged to 4.1 V and then discharged to 2.6 V at 0.3 C. The puncture experiments were carried out in Tianmu Lake Institute of Advanced Energy Storage Technologies.

3. Results and discussion

Thermodynamically, SnSb intermetallic has higher equilibrium potential than Sn matrix, and thus will be lithiated first [32], influencing the later kinetics. Thus, the distribution and size of intermediate phase SnSb particles in 5 wt%Sb-95 wt%Sn were characterized by optical microscopy, SEM and TEM. As shown in Fig. S3, the little black dots circled by the red dash line at grain (Sn) boundaries are SnSb particles. SEM also showed considerable protruding nano particles in the foil matrix (Fig. 1a) and EDS elemental analysis proved that these nano particles were the SnSb intermetallic phase (Fig. S4). Note that due to the imprecision of EDS, the determined atom ratio of Sn and Sb elements is not strictly following the ratio of 1:1, e.g. Sn is 50.83% and Sb is 37.35%. TEM revealed a ~500 nm wide SnSb particle imbedded into Sn matrix (Fig. 1b). Afterwards, we prepared the free-standing Li–Sb–Sn electrode by mechanical prelithiation. The specific preparation processes (see Fig. S5) and operating parameters were identical with our previously reported method [26,43]. After the room-temperature solid-state reactions (1), (2), we allow metallurgical reaction

\[\text{Sn}_{10} \text{HCP} + 22 \text{LiBCC} \rightarrow \text{Li}_{22} \text{SbS}_{5} \quad (at \ 0.4 \text{ V vs. Li/Li}^+) \]

of the matrix to finish under pressure. Note that SnHCP of (3) indicates tin phase with hexagonal close-packed structure. After sandwiching a LiBCC foil between two 5 wt%Sb-95 wt%Sn foils and pressing (see Fig. S5a), lithium will be fully ‘absorbed’ into the Sn-based foils (see Fig. S5b). The product could be easily separated into two pieces of identical free-standing Li–Sb–Sn foils, by mechanical peeling (see Fig. S5c). Thus, such prelithiation method is easy to achieve large-scale preparation of foil electrode. As shown in Fig. 1c, where two 10 cm × 2.8 cm × 50 μm lithiated foils are obtained by rolling two 7.5 cm × 2.6 cm × 50 μm 5 wt%Sb-95 wt%Sn foil sandwiching one 7.5 cm × 2.6 cm × 50 μm LiBCC foil in the middle. After mechanical prelithiation, an obvious lateral area expansion of ~44% has occurred (Fig. S6 and Table S1) because the externally applied rolling pressure during MP and the heat released made Li and Sn foils experience plastic deformation. According to XRD analysis (PDF# 18-0753), the characteristic peaks belong to Li₂₂Sn₅ (see Fig. 1d), with no obvious signals of Li₃Sb or other Li–Sn intermetallics. Besides, according to SEM, as shown in Fig. 1e, the 50 μm thick Li–Sb–Sn

![Fig. 1. Characterizing 5 wt%Sb-95 wt%Sn foil and Li–Sb–Sn electrode prepared by mechanical prelithiation. a) SEM image of 5 wt%Sb-95 wt%Sn foil. Some protruding nano particles were observed in the matrix. b) TEM image of intermediate phase SnSb particle embedded in Sn matrix. c) Digital photo of Li–Sb–Sn prepared by mechanically pressing two 7.5 cm × 2.6 cm × 50 μm 5 wt%Sb-95 wt%Sn foils sandwiching one 7.5 cm × 2.6 cm × 50 μm Li foil in the middle. d) XRD result of Li–Sb–Sn. Only Li₂₂Sn₅ phase was determined. e) SEM image of Li–Sb–Sn electrode. The electrode consists of two layers, including 24.1 μm thick porous reacted part and 25.9 μm thick unreacted 5 wt%Sb-95 wt%Sn part. f) Percentages of porosity (the blue), retained Sn (the green) and Li₂₂Sn₅ (the orange) in the reacted layer of Li–Sb–Sn.](image-url)
consists of a 24.1 μm thick reacted layer with porosity, and a 25.9 μm thick unreacted 5 wt%Sb-95 wt%Sn that is still fully dense. The reacted layer (Fig. 1e, the top layer) consisted of lithiation products, cracks (porosity), as well as unreacted residual soft Sn ("retained Sn", akin to the "retained austenite" phase in martensitic steels which improves the ductility). We calculated the individual percentage of three components in the Li–Sb–Sn reacted layer, in Supplementary Note 1 based on the theoretical volumes of SnBCC, LiBCC and Li$_2$SbSn$_5$ phases, and show the result in Fig. 1f.

As a quantitative measure of the chemomechanical shock damage from the mechanical prelithiation [41], the porosity of the reacted layer in Li–Sb–Sn foil was estimated to be 11.05%, which is much lower than that of Li–Sn (23%, see Supplementary Note 2) prepared in an identical manner. The larger porosity of Li–Sn not only indicates the more serious damage but also directly leads to the electrical conductivity deterioration. Our previous works had revealed the metal/metal GB/PB can damage but also directly leads to the electrical conductivity deterioration. The larger porosity of Li–Sn–Sb is ~563.92 mAh g$^{-1}$ and delithiation capacity is ~748.29 mAh g$^{-1}$. Such potent lithium absorbing and desorbing ability is the basis that the Li–Sb–Sn foil can be competitive against Li–Sn–Sb. To compare the full-cell cycling performance of our self-standing Li–Sb–Sn with equal thickness pure LiBCC electrode, here, we adopted the standard ester electrolyte (1 M LiPF$_6$ in EC/DEC (v/v = 1:1) with 10% FEC, 1% VC) and explored the influence of electrolyte weight on cycle life of LiFePO$_4$/Li–Sb–Sn full cell and LiFePO$_4$/LiBCC with an areal capacity of ~2.65 mAh cm$^{-2}$. For reference, the industrially standard usage of this kind of electrolyte for LiFePO$_4$/graphite cell is 6–8 g (electrolyte) Ah$^{-1}$. As shown in Fig. 2a, when the electrolyte used was 20 μL for the cathode areal capacity of 2.65 mAh cm$^{-2}$ in CR2025 coin-

Fig. 2. Influence of electrolyte amount on cycle performance of LiFePO$_4$/Li–Sb–Sn full cell and Li–Sb–Sn electrode thickening analysis after full-cell cycling. a) Cycle performance of LiFePO$_4$/Li–Sb–Sn full cell and LiFePO$_4$/LiBCC cell respectively with electrolyte of 20 μL (e.g. 7.56 g Ah$^{-1}$) and 40 μL (e.g. 15.12 g Ah$^{-1}$). b) Columbic inefficiency (CI=100%-Columbic efficiency (CE)) analysis of LiFePO$_4$/Li–Sb–Sn full cell with 40 μL electrolyte. The blue dot is CI > 0 and the red is CI < 0. The black dotted line is |CI| = 0.001. c) SEM image of Li–Sb–Sn electrode after full-cell cycling of 20 cycles. d, e) SEM images of Li–Sb–Sn after full-cell cycling of 200 cycles. f) SEM image of Li–Sb–Sn matrix after peeling off the top dense protective layer. There are lots of ~200 nm sized Sn particles.
cell (e.g. 7.56 g Ah⁻¹), LiFePO₄/LiβCCE cell failed rapidly after just 37 deep charge/discharge cycles (Fig. 2a, the olive), due to electrolyte contamination and drying out (see Fig. S10), with the cell failing to reach the cutoff voltage 3.8 V (Fig. S11) and a precipitously dropping CE at 28th cycle (Fig. S12). In contrast, LiFePO₄/Li-Sb-Sn full cell (Fig. 2a, the magenta) stably charged and discharged 80 cycles, indicating the side reactions between electrolyte and Li-Sb-Sn were less severe. We further increased electrolyte to 40 µL (e.g. 15.12 g Ah⁻¹) to examine long-term cycling of Li-Sb-Sn electrode. As shown in Fig. 2a (the blue), after 200 cycles, LiFePO₄/Li-Sb-Sn stably kept at ~2.37 mAh cm⁻² and achieved a capacity retention of 95.2%. In contrast, LiFePO₄/LiβCCE (Fig. 2a, the red) remained stable for 95 cycles and then rapidly failed. We analyzed the Coulombic inefficiency (C.I=100%-Columbic efficiency) [45] of LiFePO₄/Li-Sb-Sn full cell with 40 µL electrolyte and found nearly 80% of Cs of 200 cycles were less than 0.001 (see Fig. 2b), meaning the corresponding CE was up to 99.9%. It should be noted that in this paper, adopting CI instead of CE is because CI can more sensitively correlate with major structural repairs of SEI and irreversible SEI growth per cycle [45].

SEM observations suggested that the excellent full-cell performance and favorable CE of Li-Sb-Sn electrode originated from its significantly less nominal volume expansion. As shown in Fig. 2c, Li-Sb-Sn electrode thickened to 66 µm after full-cell cycling of 20 cycles, including 41 µm thick reacted layer and 25 µm thick intact layer that was not yet involved in electrochemical reactions (Fig. 2c, the inset). The electrode became homogenously dense and sturdy after 200 cycles (see Fig. 2d). Even though the electrode had thickened to 105 µm eventually from the initial 50 µm, this was still far more acceptable than LiβCCE. As shown in Fig. S13, the 50 µm LiβCCE foil pulverized and totally lost mechanical strength after 120 cycles. With further analysis, we found the Li-Sb-Sn electrode surface was covered by a layer of ~8 µm thick film that was capable of being bent and wound (Fig. 2e and Fig. S14), which seemed to prevent the continuous electrolyte corrosion. After peeling off this ~8 µm layer, lots of ~200 nm sized Sn particles could be observed (Fig. 2f). So the top film acted as a solid electrolyte barrier that effectively blocked liquid electrolyte penetration and suppressed continuous SEI formation during the future cycling. Conversely, we believe that such a sturdy protective layer could form and maintain because the matrix experienced less geometry change, for reason to be shown next.

Cyclic voltammetry (CV) shows doping Sb evidently changed the electrochemical kinetics and lithiation products of Sn foil. As shown in Fig. S15, except for Li₂Sb peak at ~0.82 V, 5 wt%Sn LiβCCE cell also had another three lithiation peaks at ~0.67 V (for LiSn₂Sb), ~0.51 V (for LiSn) and ~0.34 V (for Li₂Sb), respectively; but pure Sn/ LiβCCE cell only had a single Li₂Sn peak at ~0.3 V [46]. Thus, after doping Sb, the originally dense volume change of pure Sn foil electrode could be catalyzed into several milder ones, which greatly eased the mechanical stress in each step. We speculate that the formation of “lithium-poor” Li₂Sn₅ and LiSn phases in 5 wt%Sn LiβCCE may be attributed to the nano Sn particles created from (1), which is kinetically more favorable to engender the “lithium-poor” Li₂Sn₅ and LiSn products later because of smaller particle size. In previous work, we had revealed the lithium diffusion mainly takes place along grain boundaries at the beginning of lithiation [41,43,44]. Therefore, for a pure Sn foil having large grain sizes, the initial reaction paths are scarce, resulting in highly inhomogeneous lithium flux, geometric incompatibility and stress, mainly gathering around GBs initially. In addition, Li diffusion is facile in metallic LiSn phase (e.g. 5.9 × 10⁻⁹ m² s⁻¹ for LiSn for 8 × 10⁻⁸ m² s⁻¹ for LiSn at 25 °C) [19], so for a pure Sn foil with large grain size and lots of interior grounds to cover, it is more kinetically favorable to form a single lithium-rich phase Li₂Sn₅. But for 5 wt% Shb 95 wt%Sn with smaller grain size and nano Sn particles on GBs from (1), the reaction kinetics is branched. When galvanostatically lithiating foils to 10 mAh cm⁻² at 0.1 C, unlike Sn/LiβCCE cell that dropped to ~0.4 V directly and only formed Li₂Sn₅ (Fig. S16, the red) which entails a huge volume change, 5 wt%Shb 95 wt%Sn/LiβCCE cell had an evident long inclined lithiation plateau at ~0.7–0.6 V, which corresponds to the generation of lithium-poor Li₂Sn₅ and LiSn phases, contributing a capacity of ~4 mAh cm⁻² (Fig. S16, the blue). Therefore, the effects of doping Sb are significant, and helpful in reducing the stress shock and suppressing volume expansion because it goes through the “lithium-poor” phases Sn→Li₂Sn₅→LiSn→Li₂Sb, instead of a direct “flight” to the lithium-rich phase Sn→Li₂Sn₅ that is a huge chemomechanical shock and more likely to damage the foil integrity. As shown in Fig. S17, Li-Sn foil reacted deeply from the top to bottom and became loose, porous after only 100 cycles. Thus, Li-Sn thickened by ~86 µm from initial 46.05 µm to 132 µm. However, even after performing 200 cycles (see Fig. 2f), Li-Sb-Sn had a denser structure due to a series of intermediate phase transformations.

Although the superior LiFePO₄/Li-Sb-Sn full-cell performance strengthens the application prospect of such free-standing electrode (as compared to the graphite slurry electrode, Li-Sb-Sn does not require the heavy and expensive Cu current collector as backing), the low voltage and low areal capacity of LiFePO₄ cathode still limit capacity output of the full cell. As shown in Fig. S18, in a ~3 mAh LFP/Li-Sb-Sn full cell, the utilized gravimetric capacity of Li-Sb-Sn is only ~171.23 mAh g⁻¹ (~3 mAh/(17.52 × 10⁻³ g)), far below its theoretical capacity – in other words the state of charge (SOC) of the anode is still low - due to insufficient areal capacity of the matching cathode.

To this end, Li-Sb-Sn was further paired against NCM523, NMC811 and LCO cathodes respectively for full cells. As shown in Fig. 3a (the red) and Fig. S19, NCM523/LiβCCE cell with areal capacity of ~3 mAh cm⁻² and electrolyte amount of 40 µL (14.81 g Ah⁻¹) showed faster capacity decay and its capacity retention dropped below 80% after only 45 cycles at 0.2 C, but NCM523/Li-Sb-Sn performed stably for 150 cycles, and achieved a capacity retention of 89.53% at the same rate (Fig. 3a, the blue, and Fig. S20). This highlights the significant superiority of the Li-Sb-Sn foil electrode versus the LiβCCE foil electrode in high-energy-density batteries.

We also found the CI of NCM523/LiβCCE drastically increased to ~0.25 after 45th cycle (Fig. 3b, the orange) but that of NCM523/Li-Sb-Sn still kept at ~0.01 (see Fig. 3b, the olive), which indicated Li-Sb-Sn actually experienced fewer side reactions with electrolyte due to the more stable electrode. Furthermore, unlike NMC811/LiβCCE cell which showed linear attenuation in capacity and lasted only for 56 cycles (Fig. 3c, the red), NMC811/Li-Sb-Sn cell with areal capacity of ~4 mAh cm⁻² and electrolyte amount of 60 µL (13.33 g Ah⁻¹) achieved 85.4% capacity retention after 100 cycles (Fig. 3c, the blue). Clearly, pairing Li-Sb-Sn electrode against NCM cathodes can achieve better full-cell performance, so we believe more attention should be paid to such free-standing Li-Sn based foil electrodes instead of focusing on lithium metal foil only.

Considering that LCO cathode has the highest compaction density (e. g. ~5 g cm⁻³), pairing LCO against Li-Sb-Sn anode can achieve an ultra-high volumetric energy density for the full cell. Thus, firstly, a LCO/ Li-Sb-Sn coin cell with areal capacity of ~6 mAh cm⁻² was fabricated and the electrolyte amount was 70 µL (11.67 g Ah⁻¹). As shown in Fig. 3d (the blue) and Fig. 3e, the remaining capacity of LCO/Li-Sb-Sn was 5.28 mAh cm⁻² and the capacity retention was ~90% after 50 cycles but LCO/LiβCCE showed obvious decay after 35th cycle (Fig. 3d, the red). And its capacity dropped to ~4.21 mAh cm⁻² after 50 cycles, the capacity retention was only ~72%. The rapid decay of LCO/LiβCCE is attributed to LiβCCE foil pulverization and electrolyte depletion with deep cycle. As a result, due to pairing against the high-areal-capacity LCO cathode, the utilized specific capacity of Li-Sb-Sn can be increased to 337.98 mAh g⁻¹ (see Fig. S21), significantly increasing the state of charge (SOC) of the anode. To further highlight the volumetric energy performance, we have assembled a 2.5 cm × 2.8 cm sized LCO/Li-Sb-Sn pouch cell (see Fig. 3f, the inset) and its cycle capacity and energy were plotted in Fig. S22 and Fig. S23. Encouragingly, although the Li-Sb-Sn electrode thickened to 75 µm after 1st cycle from 50 µm, its volumetric energy was still 1027 Wh l⁻¹. After 20 cycles, even though the thickness
increased to 93 μm, the volumetric energy still reached 908 Wh L⁻¹ (see Fig. 3f and Table S3), which is significantly superior to the commercial Li-ion batteries with 750 Wh L⁻¹ discharge energy. This means Li-Sb–Sn electrode is much closer to applications. In future work, we believe the performance of Li-Sb–Sn can be further improved by carefully designs, i.e., building artificial SEI [47–49]. For example, we have roughly designed a PEO artificial SEI on Li-Sb–Sn surface. As shown in Fig. S24, Li-Sb–Sn@PEO achieved less thickening and denser structure than the naked Li-Sb–Sn.

In addition to full-cell electrochemical performance, we have also studied the safety of Li-Sb–Sn foil, including the risk of short circuiting at deep plating/stripping, air stability as well as fire safety. Firstly, as we studied the safety of Li-Sb–Sn electrode, it still had capacity retention of 83 μm 5 wt% Sb–95 wt% Sn foil). The electrochemically retrievable lithium inventory was a gigantic value of ~22 mAh cm⁻² (see Fig. S25). Eventually, despite the Li-Sb–Sn/Li-Sb–Sn cell died from large polarization (note the condition of extreme current and capacity of 10 mA cm⁻² and 10 mA h cm⁻² used), at least the safety hazard of short circuit was completely avoided here. In addition, it should be noted that the reason for a larger "polarization potential" of Li-Sb–Sn/Li-Sb–Sn cell (see Fig. 4a, the inset, the blue) was not actually all kinetic polarization potential, but also because of the multi-staged open circuit voltage (OCV) of Li-Sb–Sn electrode itself in reaction (2) [50].

For comparison of the structural integrity, the cycled LiBCC metal showed visually obvious pulverization and gross mechanical delamination after deep plating/stripping of Li (Fig. 4b), but Li-Sb–Sn still kept a decent mechanical strength and integrity (see Fig. 4d). Further SEM analysis showed the initially dense LiBCC foil became broken and powdered (Fig. 4c) but Li-Sb–Sn still had a relatively dense and compact structure (Fig. 4e). What is more, the LiBCC foil thickened to 304 μm from the initial 200 μm (Fig. 4f, the pink), which was almost twice of Li-Sb–Sn thickening, e.g. Li-Sb–Sn thickened to 304 μm from the initial 200 μm (Fig. 4f, the green). Despite the fact that some cracks still can be found, the electrode seemed to be self-healing by organic electrolyte decomposition products [45] like glue to assist the electrode in maintaining a relatively sturdy structure (Figs. 4e and 1e).

Compared to the intensely flammable lithium metal foil, Li-Sb–Sn foil showed satisfactory air stability and fire safety [26,41]. As shown in Fig. S26, after exposed to the air for 10 h, despite the slightly darkened surface color of Li-Sb–Sn electrode, it still had capacity retention of
93.5% (Fig. S27). The flammability of Li–Sb–Sn and LiBCC electrodes (both are 100 μm) was explored by directly burning samples with alcohol lamp flame in the air. As shown in Fig. 5a and Video S1, despite the Li–Sb–Sn electrode shrank due to melting of Sn metal (the melting point of Sn is ~230 °C), the electrode itself would not burn after removing the lamp flame. In contrast, LiBCC foil instantly burned out of control once in contact with a flame. As shown in Fig. 5b and Video S2, even removing the alcohol lamp, LiBCC foil was still burning and shining with dazzling light.

Lastly, needle piercing experiments were performed on cycled LCO/Li–Sb–Sn (Fig. 5c and Video S3) and LCO/LiBCC (Video S4) pouch cells with capacity of ~110 mAh (see Figs. S28 and S29). Although neither pouch cell caught fire after needle piercing, the LCO/LiBCC pouch cell generated significantly more heat. As shown in Fig. 5d, the temperature of LCO/LiBCC has risen by 2.8 °C (from 26.9 °C to 29.7 °C) after piercing, but the temperature of LCO/Li–Sb–Sn cell increased by only 0.3 °C (e.g. from 26.9 °C to 27.2 °C), which proved that Li–Sb–Sn cell was much less likely to initiate thermal runaway after short circuiting than LiBCC of the same thickness. Besides, the maximum applied force of LCO/Li–Sb–Sn (Fig. 5e, the blue) during the piercing measurement was 110 N but LCO/LiBCC (Fig. 5e, the orange) only sustained 80 N, which indicates LCO/Li–Sb–Sn has larger mechanical resistance to piercing.

4. Conclusions

To summarize, in this study, a self-supporting mechanically pre-lithiated Li–Sb–Sn and LiBCC electrodes (both are 100 μm) was explored by directly burning samples with alcohol lamp flame in the air. As shown in Fig. 5a and Video S1, despite the Li–Sb–Sn electrode shrank due to melting of Sn metal (the melting point of Sn is ~230 °C), the electrode itself would not burn after removing the lamp flame. In contrast, LiBCC foil instantly burned out of control once in contact with a flame. As shown in Fig. 5b and Video S2, even removing the alcohol lamp, LiBCC foil was still burning and shining with dazzling light.
safety of prelithiated Li–Sn–Sb foil means it comprehensively surpasses LiBCC metal foil anode.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

CRediT authorship contribution statement

Hui Xu: Conceptualization, Data curation, Formal analysis, Investigation, Writing - original draft. Sa Li: Conceptualization, Data curation, Formal analysis, Funding acquisition. Xinlong Chen: Investigation. Huimin Fan: Methodology. Yue Yu: Methodology. Wenjian Liu: Methodology. Na Liang: Methodology. Yunhui Huang: Conceptualization, Data curation, Formal analysis, Funding acquisition. Ju Li: Conceptualization, Writing - review & editing.

Acknowledgments

JL acknowledges support by Samsung Advanced Institute of Technology. The authors are grateful for the support from the National Natural Science Foundation of China (NSFC-No. 91934304, 51632001 and 51972236).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.nanoen.2020.104815.

References

[41] Y. Yu, S. Li, S. Han, H. Xu, M. Jiang, Y. Huang, J. Li, Optimizing the Al foil anode for prelithiation and full-cell cycling in Li-ion battery: the role of grain boundaries in lithiation/delithiation duality, Nano Energy 68 (2020) 1054274, https://doi.org/10.1016/j.nanoen.2020.1054274.

[47] H. Xu et al. is currently a Ph.D. candidate in School of Materials Science and Engineering at Tongji University. Her research mainly focuses on advanced Sn-based and lithium metal anodes for high-energy-density storage devices.
Sa Li received her Ph.D. degree in Materials Science and Engineering from Tsinghua University in 2015. Afterwards, she joined the School of Materials Science and Engineering at Tongji University as an assistant professor until now. Her current research interest is mainly on designing advanced anode and cathode materials for lithium-ion batteries, Li-S batteries.

Yue Yu is currently a Master student in School of Materials Science and Engineering at Tongji University. His research mainly focused on advanced anode materials for Li-ion batteries.

Xinlong Chen is currently an undergraduate student in School of Materials Science and Engineering at Tongji University. His researches mainly focus on high-performance alloy anodes for lithium ion batteries and sodium ion batteries.

Wenjian Liu is currently an undergraduate student in School of Materials Science and Engineering at Tongji University. His researches mainly focus on anodes materials for Li-ion/Na-ion batteries.

Can Zhang is currently an undergraduate student in School of Materials Science and Engineering at Tongji University. His researches mainly focus on high-performance alloy anodes and lithium anodes for lithium ion batteries.

Na Liang is a Master student in School of Materials Science and Engineering at Tongji University. Her research is mainly focuses on advanced anode materials for Li ion batteries.

Zhuoqun Tang is a Master student in School of Materials Science and Engineering at Tongji University. Her research interest is mainly on lithium metal anode materials for high-energy-density lithium batteries.

Yunhui Huang received his Ph.D. from Peking University in 2000. From 2004 to 2007, he worked with Prof. John Goodenough in the University of Texas at Austin. In 2008, he became a Chair Professor of materials science in Huazhong University of Science and Technology. He is now the Director of the Institute of New Energy for Vehicles in Tongji University. His research group works on rechargeable batteries for energy storage and their electrode materials.

Huijun Fan is a PhD student in School of Materials Science and Engineering at Tongji University. Her researches mainly focus on advanced electrode materials for energy storage devices, such as Al, Sn anodes and lithium metal batteries.

Ju Li is BEA Professor of Nuclear Science and Engineering and Professor of Materials Science and Engineering at MIT. His group (http://Li.mit.edu) performs computational and experimental research on mechanical properties of materials, and energy storage and conversion. Ju was elected Fellow of the American Physical Society in 2014 and Fellow of the Materials Research Society in 2017.
Supplementary Information

Surpassing lithium metal rechargeable batteries with self-supporting Li-Sn-Sb foil anode

Hui Xu, Sa Li*, Xinlong Chen, Can Zhang, Zhuoqun Tang, Huimin Fan, Yue Yu, Wenjian Liu, Na Liang, Yunhui Huang* and Ju Li*

1School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
2Institute of New Energy for Vehicles, Tongji University, Shanghai 201804, China
3Department of Nuclear Science and Engineering and Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
†These authors contributed equally to this work

*Corresponding authors
Email address: lisa@tongji.edu.cn; huangyh@tongji.edu.cn; liju@mit.edu

Fig. S1. SEM images of cracks and parasitic voids in Li-Sn electrode. a, b) Cracks in the fresh Li-Sn electrode prepared by MP. The cracks formation is due to the large volume change and stress releasing during the mechanical prelithiation. c) Parasitic voids of cycled Li-Sn electrode, caused by volume change and recrystallization of Sn matrix, as well as the corrosion of electrolyte during electrochemically cycling.
Fig. S2. SEM images of electrode thickening caused by the accumulation of electrolyte decomposition products. a) SEM image of Li-Sn electrode just after 1 cycle. The liquid electrolyte permeated and decomposed along cracks. b) The broken SEI covered on the electrode surface. The electrode was observed after 10 cycles. c) SEM image of Li-Sn electrode cycled 100 cycles. The garbage substance, including electrolyte decomposition and inactive electrode fragments, accumulated on the electrode surface and resulted in an evident electrode thickening.

Fig. S3. Digital photo of precipitated SnSb particles in the etched 5wt%Sb-95wt%Sn foil. The black particles circled by the red dotted line are SnSb particles.
Fig. S4. EDS element analysis of the protruding particles in 5wt%Sb-95wt%Sn foil.

<table>
<thead>
<tr>
<th>Element</th>
<th>Wt%</th>
<th>At%</th>
</tr>
</thead>
<tbody>
<tr>
<td>CK</td>
<td>02.53</td>
<td>13.80</td>
</tr>
<tr>
<td>OK</td>
<td>09.28</td>
<td>38.03</td>
</tr>
<tr>
<td>SnL</td>
<td>50.83</td>
<td>28.07</td>
</tr>
<tr>
<td>SbL</td>
<td>37.35</td>
<td>20.11</td>
</tr>
<tr>
<td>Matrix</td>
<td>Correction</td>
<td>ZAF</td>
</tr>
</tbody>
</table>

Fig. S5. Operation processes of mechanical prelithiation. a) Two 5wt%Sb-95wt%Sn foils sandwich a Li foil in the middle. b) After pressing, lithium will be fully ‘absorbed’ into Sn-based foils and a laminate will form. c) The as-formed laminate could be separated into two pieces of identical free-standing Li-Sb-Sn foils by mechanical peeling very easily. d) Each piece of Li-Sb-Sn foil is consisted of a part of lithiated porous and residual dense 5wt%Sb-95wt%Sn matrix.
After prelithiation, the area of foil expanded to $5.75 \text{ cm}^2 = 2.5 \text{ cm} \times 2.3 \text{ cm}$ (the right) from the initial $4 \text{ cm}^2 = 2 \text{ cm} \times 2 \text{ cm}$ of 5wt%Sb-95wt%Sn foil (the left). Based on the following formula of lateral areal expansion:

$$\alpha \equiv \frac{\text{area(after MP)}}{\text{area(before MP)}}$$

(S1)

So the lateral areal expansion α of Li-Sb-Sn is 144%. All details are listed in the following Tab. S1.

Tab. S1. Dimension size of 5wt%Sb-95wt%Sn foil before and after MP

<table>
<thead>
<tr>
<th>Sample</th>
<th>5wt%Sb-95wt%Sn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size (cm, Before MP)</td>
<td>2×2</td>
</tr>
<tr>
<td>Size (cm, After MP)</td>
<td>2.5×2.3</td>
</tr>
<tr>
<td>Lateral areal expansion</td>
<td>144%</td>
</tr>
<tr>
<td>α</td>
<td>1.44</td>
</tr>
</tbody>
</table>
The more serious damage of Li-Sn directly leads to the electrical conductivity deterioration. Because this damage destroys electronic path connectivity by splitting the originally adjacent conductive grain/grain clusters, see Fig. S7a and S7b. Our previous works have revealed the metal/metal GB/PB can release stress and maintain conductivity, like the stretchable binder and conductive agent of tradition electrode. For example, silver, copper-doped Sn foil[1] or Mn, Si-doped Al foil[2] with more abundant GB/PBs has less damage and better electrical conductivity. Thus, compared to the severely damaged Li-Sn, Li-Sb-Sn has less damage (see Fig. S7c) and almost no secondary cracks on the shard (Fig. S7d).

![Fig. S7. SEM observation of Li-Sn and Li-Sb-Sn electrode damage. a) Li-Sn from top to bottom widely distributes deep cracks indicating severe damage. b) The evident Y-shaped second cracks on the shard. c, d) Li-Sb-Sn electrode has less damage than Li-Sn.](image)

![Fig. S8. Retrievable lithium inventory in Li-Sb-Sn foil electrode. 50 μm Li-Sb-Sn was prepared by rolling two 50 μm 5wt%Sb-95wt%Sn foils sandwiching 50 μm LiBCC foil in the middle. The lithium inventory was determined by delithiating Li-Sb-Sn/LiBCC cell to 1.5 V at a current density of 0.3 mA cm².](image)

Since the electrochemical reactions between Sn and Li are multi-step, multiple plateaus are
shown on the potential. With delithiation proceeding, Li-Sb-Sn foil gradually becomes lithium-poor phases from the initial lithium-rich Li$_{22}$Sn$_5$, proceeding as follows,

$$\text{Li}_{22}\text{Sn}_5 \rightarrow \text{Li}_x\text{Sn} + (4.4-x) \text{Li}^+ + (4.4-x) \text{e}^- \quad (\sim 0.4-0.8 \text{ V vs. Li/Li}^+) \quad (0 < x < 4.4)$$

According to the reaction potentials of Li–Sn compounds in Tab. S2,

<table>
<thead>
<tr>
<th>Theoretical capacity (mAh g$^{-1}$)</th>
<th>Potential (V vs. Li/Li$^+$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li$_2$Sn$_5$</td>
<td>88.3</td>
</tr>
<tr>
<td>LiSn</td>
<td>213.3</td>
</tr>
<tr>
<td>Li$_3$Sn$_2$</td>
<td>-</td>
</tr>
<tr>
<td>Li$_2$Sn$_2$</td>
<td>492.5</td>
</tr>
<tr>
<td>Li$_{13}$Sn$_5$</td>
<td>509.6</td>
</tr>
<tr>
<td>Li$_2$Sn$_2$</td>
<td>656</td>
</tr>
<tr>
<td>Li$_4$Sn</td>
<td>-</td>
</tr>
<tr>
<td>Li$_{22}$Sn$_5$</td>
<td>790</td>
</tr>
</tbody>
</table>

Therefore, the electrochemical reactions at discharge plateaus respectively would proceed as:

At ~ 0.38 V-0.48 V (vs. Li/ Li$^+$), Li$_{22}$Sn$_5$ changes to Li$_{13}$Sn$_5$ or Li$_5$Sn$_2$

$$\text{Li}_{22}\text{Sn}_5 \rightarrow \text{Li}_x\text{Sn} + x\text{e}^- \quad (13/5 \leq x < 22/5)$$

At ~ 0.48 V-0.6 V (vs. Li/ Li$^+$), Li$_{13}$Sn$_5$ or Li$_5$Sn$_2$ changes to LiSn

$$\text{Li}_{13}\text{Sn}_5 \rightarrow \text{Li}_x\text{Sn} + y\text{e}^- \quad (1 \leq y < 13/5)$$

At ~ 0.6 V-0.7 V (vs. Li/ Li$^+$), LiSn changes to lithium-poor Li$_2$Sn$_5$,

$$\text{Li}_2\text{Sn} \rightarrow \text{Li}_x\text{Sn} + z\text{e}^- \quad (0.4 \leq z < 1)$$

Additionally, ~ 0.9 V (vs. Li/Li$^+$) is the delithiation potential of Li$_3$Sb, so the electrochemical reactions at ~ 0.92 V would proceed as:

$$\text{Li}_3\text{Sb} \rightarrow 3\text{Li} + 3\text{e}^- + \text{Sb}$$

Fig. S9. Capacity and specific capacity of Li-Sb-Sn electrode. a) The biggest lithiation (the black) and delithiation (the red) capacity of Li-Sb-Sn. b) The biggest gravimetric lithiation (the blue) and delithiation (the orange) specific capacity of Li-Sb-Sn.

To determine the biggest gravimetric specific capacity of Li-Sb-Sn electrode itself, a Li-Sb-Sn/Li half-cell was assembled by adopting a Li-Sb-Sn electrode with diameter of 12 mm and weight of 17.52 mg. The half-cell was lithiated to 0 V and then delithiated to 1.5 V at
~0.88 mA cm\(^{-2}\). As shown in Fig. S9a and S9b, the lithiation capacity of Li-Sb-Sn was 9.88 mAh and the corresponding specific capacity was \(~563.92\) mAh g\(^{-1}\) (= 9.88 mAh/\((17.52\times10^{3})\)). Furthermore, due to prelithiation treatments, the delithiation capacity of Li-Sb-Sn was higher, e.g., 13.11 mAh and \(~748.29\) mAh g\(^{-1}\) (= 13.11 mAh/\((17.52\times10^{3})\)).

Fig. S10. Digital photo of cycled Li\(_{\text{BCC}}\) electrode from LFP/Li\(_{\text{BCC}}\) cell. The initial Li\(_{\text{BCC}}\) foil is \(~50\) \(\mu\)m thick. Just after 37 cycles, the electrolyte is drought and lithium metal is obviously pulverized and shedding.

Fig. S11. Potential-Capacity profiles of LFP/Li\(_{\text{BCC}}\) cell with electrolyte of 20 \(\mu\)L. The orange is the 1\(^{st}\) cycle and the blue is the 37\(^{th}\) cycle. The charge potential of 37\(^{th}\) cycle is fluctuating and unstable, with the cell failing to reach the cutoff voltage 3.8 V due to electrolyte drought and contamination.
Fig. S12. Coulombic efficiency (CE) analysis of LFP/LiBCC cell with 20 μL electrolyte. The 28th CE promptly dropped to ~50 % and then the later CE remained at ~50% or less.

Fig. S13. Digital photo of the cycled LiBCC metal foil in the LFP/LiBCC cell. The 50 μm thick lithium metal foil seriously pulverized after 120 cycles.
Fig. S14. SEM image of Li-Sn-Sb electrode after 200 cycles. From the cross-sectional image, the surface has a layer of dense and curled film (marked with red arrow) that can effectively prevent liquid electrolyte leakage. The formation and maintenance of dense film conversely indicates that Li-Sn-Sb electrode is stable and less of volume change during cycling process.

Fig. S15. CV measurements determined that the different lithiation plateaus and products in 5wt%Sb-95wt%Sn/Li$_{BCC}$ (the blue) and Sn/Li$_{BCC}$ cell (the red). The CV measurements were performed from 1.5 to 0 V at a current density of 0.1 mAh cm$^{-2}$.

59
Fig. S16. Lithiation profiles of 5wt%Sb-95wt%Sn/Li_{BCC} (the blue) and Sn/Li_{BCC} (the red) at a current of 1 mA cm$^{-2}$. Once the lithiation starts, the potential of Sn/Li_{BCC} directly drops to 0.4 V and forms lithium-rich phase Li$_{22}$Sn$_5$. However, 5wt%Sb-95wt%Sn/Li$_{BCC}$ has an evident inclined plateau between 0.71 V and 0.46 V, forming lithium-poor Li$_2$Sn$_5$ and LiSn, which totally contributes to a capacity of ~ 4 mAh cm$^{-2}$. Then the potential remains at ~0.46 V stably, where mainly forms lithium-rich phase Li$_{22}$Sn$_5$.

![Figure S16](image1.png)

Fig. S17. Electrode expansion of Li-Sn after full-cell cycling.

After only 100 cycles, Li-Sn foil reacted deeply from the top to bottom and became loose, porous. Correspondingly, Li-Sn thickened by ~ 86 µm from the initial 46.05 µm to 132 µm. However, even after performing 200 cycles, Li-Sb-Sn has a denser structure and only thickens by 55 µm (e.g. from 50 µm to 105 µm) due to a series of “lithium-poor” intermediate phase transformations Sn \rightarrow Li$_2$Sn$_5$ \rightarrow LiSn \rightarrow Li$_{22}$Sn$_5$, that reduce the “electrochemical shock” damage to the foil.
According to weighing, the mass of 50 μm thick Li-Sb-Sn electrode with a diameter of 12 mm is ~17.52 mg. Thus, in a ~3 mAh LFP/Li-Sb-Sn full cell, as shown in Fig. S18, the gravimetric capacity of Li-Sb-Sn is ~171.23 mAh g⁻¹ (=3 mAh/(17.52×10⁻³ g)). Evidently, the low-capacity-density LFP cathode limits the gravimetric capacity of Li-Sb-Sn. Thus, as a high-volumetric-capacity anode, Li-Sb-Sn is more suitable to pair against NCM811 and LCO cathodes.

Fig. S19. Potential-Capacity profiles of NCM523/LiBCC cell. The cell shows evident and continuous capacity decay. The capacity retention of 50th cycle is low to 71.18% = (1.63/2.29) × 100%.
Fig. S20. Potential-Capacity profiles of NCM523/Li-Sb-Sn full cell. The capacity retention of 150th cycle is up to 95.82% = (2.29/2.39) \times 100\%. At first cycles, the capacity had slight increase, e.g. the capacity of 25th cycle increased to \sim2.48 \text{mAh cm}^{-2} from 2.39 \text{mAh cm}^{-2} of 1st cycle.

Fig. S21. Gravimetric capacity of Li-Sb-Sn electrode in a \sim6 \text{mAh LCO/Li-Sb-Sn} full cell.
Fig. S22. Total discharge capacity and areal capacity of LCO/Li-Sb-Sn pouch cell (2.5 cm × 2.8 cm). The LCO cathode is 130 μm thick and the initial Li-Sb-Sn is 50 μm thick. The orange is total discharge capacity and the blue is the areal capacity.

Fig. S23. Discharge energy of LCO/Li-Sb-Sn pouch cell.
Tab. S3. Volumetric energy calculation of LCO/Li-Sb-Sn pouch cell

<table>
<thead>
<tr>
<th>Cycle number</th>
<th>1<sup>st</sup></th>
<th>20<sup>th</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension LCO (cm)</td>
<td>2.5 × 2.8 × 0.013</td>
<td>2.5 × 2.8 × 0.013</td>
</tr>
<tr>
<td>Dimension Li-Sb-Sn (cm)</td>
<td>2.5 × 2.8 × 0.0075</td>
<td>2.5 × 2.8 × 0.0093</td>
</tr>
<tr>
<td>Discharge Energy (Wh)</td>
<td>0.154</td>
<td>0.142</td>
</tr>
<tr>
<td>Volumetric Energy Density (Wh L<sup>-1</sup>)</td>
<td>1073</td>
<td>909</td>
</tr>
</tbody>
</table>

Fig. S24. Full-cell performance of Li-Sb-Sn@PEO protected with an artificial PEO SEI. a) SEM observation of Li-Sb-Sn@PEO observation before full-cell cycling. b) Cycle performance of LFP/Li-Sb-Sn@PEO cell. c) SEM observation of Li-Sb-Sn@PEO electrode after 50 cycles. d) SEM observation of the naked Li-Sb-Sn after 50 cycles.

As stated in this paper, we divided the apparent thickening of alloy electrode into large porosity and excessive SEI. Thus, building an artificial SEI should be very effective to avoid excessive SEI thickening. Inspired by Zhang[5], we roughly coated a layer of PEO on Li-Sb-Sn surface. As shown in Fig. S24a, the artificial SEI is ~8 μm thick so the total thickness of Li-Sb-Sn@PEO is ~58 μm. Although the initial Columbic efficiency (ICE) of Li-Sb-Sn@PEO is slightly lower than the naked Li-Sb-Sn, e.g. Li-Sb-Sn@PEO is 88.5% (Fig. S24b) and Li-Sb-Sn is ~92%, LFP/Li-Sb-Sn@PEO cell can perform stably after activation. The lower ICE may be because the polymer consumes Li⁺ for side reactions during first cycles. After 50 cycles, the Li-Sb-Sn@PEO thickened by ~11 μm, e.g. from initial 58 μm to 69 μm (see Fig. S24c), but the naked Li-Sb-Sn thickened by ~16 μm, e.g. from 50 μm to 66 μm (see Fig. S24d). Furthermore, compared to the porous structure of Li-Sb-Sn, the reaction layer of Li-Sb-Sn@PEO showed denser, indicating less electrolyte corrosion after coating PEO.
In future work, we believe the performance of Li-Sb-Sn can be further improved by more carefully designing protective SEI by some exquisite methods, e.g. in-situ reaction to build an artificial host[6], or constructing a robust dual-phase artificial interface by a garnet and a lithiated Nafion layer on the surface of Li-Sb-Sn[7].

![Fig. S25. Lithium inventory of Li-Sb-Sn electrode for fabrication of Li-Sb-Sn/Li-Sb-Sn symmetrical cell. The 200 μm thick Li-Sb-Sn was prepared by rolling one 180 μm Li_{BCC} foil on one 120 μm 5wt%Sb-95wt%Sn foil, with similar amount of area expansion as before (180 μm/1.44 = 125 μm of Li_{BCC} reacting with 120 μm/1.44=83 μm 5wt%Sb-95wt%Sn foil). The lithium inventory is determined by delithiating Li_{BCC} to 1.5 V at a current density of 1 mA cm^{-2}.](image)

![Fig. S26. Digital photos of Li-Sb-Sn electrodes of fresh (the left) and exposed in the air for 10 h (the right). The surface color of Li-Sb-Sn electrode was slightly darkened.](image)
Fig. S27. Delithiation of Li-Sb-Sn electrode of fresh (the orange) and exposed in the air for 10 h (the blue). The capacity retention is up to 93.5% = (2.9/3.1) × 100%.

Fig. S28. Potential-Capacity profiles of LCO/Li-Sb-Sn pouch cell for needle piercing experiment. Before measurement, the pouch cell was cycled for 5 cycles. The profiles in the graph are the 1st charge (the black) and discharge curves (the red).
Fig. S29. Potential-Capacity profiles of LCO/Li\textsubscript{BCC} pouch cell for needle piercing experiment. Before measurement, the pouch cell was cycled for 5 cycles. The profiles in the graph are the 1st charge (the black) and discharge curves (the red).
Supplementary Notes

Calculation details about the proportions of porosity, lithiation product Li$_{22}$Sn$_5$ and retained soft pure Sn in Li-Sb-Sn and Li-Sn lithiated layer are given as follows:

Firstly, according to the chemical reaction:

$$5 \text{Sn} + 22 \text{Li} \rightarrow \text{Li}_{22}\text{Sn}_5 \text{ (at 0.4 V)}$$

We can calculate the individual thickness of reactant Sn foil, Li foil and product Li$_{22}$Sn$_5$ based on the following equation:

$$\frac{7.28 \times S_{\text{Sn}} \times T_{\text{Sn}}}{118.71} : \frac{0.534 \times S_{\text{Li}} \times T_{\text{Li}}}{6.941} : \frac{2.58 \times S_{\text{Li}_{22}\text{Sn}_5} \times T_{\text{Li}_{22}\text{Sn}_5}}{149.25} = 5:22:1 \quad (S2)$$

Where 7.28 g cm$^{-3}$, 0.534 g cm$^{-3}$ and 2.58 g cm$^{-3}$ respectively is the density of Sn, Li and Li$_{22}$Sn$_5$; 118.71, 6.941 and 149.25 respectively is relative atomic mass of Sn, Li and Li$_{22}$Sn$_5$; S_{Sn}, S_{Li} individually is reaction area of Sn and Li foils, and $S_{\text{Li}_{22}\text{Sn}_5}$ is the area of lithiation product Li$_{22}$Sn$_5$. Note that, here, we assume the areas of Sn, Li and Li$_{22}$Sn$_5$ are identical. T_{Sn}, T_{Li} respectively is the reaction thickness of Sn foil and Li foil, and $T_{\text{Li}_{22}\text{Sn}_5}$ is the thickness of lithiation product Li$_{22}$Sn$_5$.

Since XRD result of Li-Sb-Sn only determined the presence of Li$_{22}$Sn$_5$, in order to simplify the calculation process, we assume Li$_{22}$Sn$_5$ is the only lithiation product. Thus, according to the calculation based on formula (S2), to absorb 25 μm worth of LiBCC, at least 7.13 μm worth of Sn is needed, and forming 25.29 μm worth of Li$_{22}$Sn$_5$.

Thus, for a Sn based foil of 50 μm thick, there is 42.87 μm = (50-7.13) μm thick Sn foil not involved in reactions, which is clearly still fully dense.

So, after absorbing 25 μm LiBCC, the theoretically total electrode thickness ($t_{\text{theoretically total}}$) (porous reacted layer + residual dense Sn) should be 68.16 μm = 25.29 μm + 42.87 μm. According to Yu [8], the porosity is calculated by the following formula,

$$p \equiv \left(E[t_{\text{actually total}}] - t_{\text{theoretically total}}/\alpha \right) / t_{\text{react}} \quad (S3)$$

Where, p is porosity of reacted layer; $E[t_{\text{actually total}}]$ is the actually total lithiated electrode thickness obtained by experiment measurements; $t_{\text{theoretically total}}$ is 68.16 μm; α is coefficient of lateral areal expansion; t_{react} is statistically average reacted thickness.

Supplementary Note 1: Calculation details about proportions of porosity, retained Sn and Li$_{22}$Sn$_5$ in the reactioned layer of Li-Sb-Sn electrode

In order to calculate porosity (p), according to formula (S3), the values of $E[t_{\text{actually total}}]$, α and t_{react}, need to be determined firstly. Here, we measured the values of $E[t_{\text{actually total}}]$ and t_{react} by SEM observation of Fig. S30, and the thicknesses of 20 sites were measured for determining $E[t_{\text{actually total}}]$ and t_{react}.

San
Fig. S30. Measuring reacted layer thickness of Li-Sb-Sn electrode. The measured thicknesses were listed in the following Tab. S4, and its average thickness of reaction layer and standard deviation also were calculated.

Tab. S4. Thickness of reacted layer in Li-Sb-Sn

<table>
<thead>
<tr>
<th>Thickness (μm) of reacted layer</th>
<th>Average thickness</th>
<th>Standard Deviation</th>
<th>Reacted layer thickness t_{react}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li-Sb-Sn</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.58</td>
<td>25.33</td>
<td>25.17</td>
<td>24.17</td>
</tr>
<tr>
<td>24.75</td>
<td>22.58</td>
<td>24.31</td>
<td>24.58</td>
</tr>
<tr>
<td>24.22</td>
<td>24.58</td>
<td>24.08</td>
<td>23.33</td>
</tr>
<tr>
<td>22.58</td>
<td>23.58</td>
<td>23.83</td>
<td>23.42</td>
</tr>
</tbody>
</table>

Thicknesses of the reacted layer and unreacted layer in Li-Sb-Sn were listed in following Tab. S5.

Tab. S5. Thicknesses about reacted layer and unreacted layer of Li-Sb-Sn

<table>
<thead>
<tr>
<th>Sample</th>
<th>5wt% Sb-95wt% Sn</th>
<th>Li-Sb-Sn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actually total thickness (μm)</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Reacted layer (t_{react}) (μm)</td>
<td>--</td>
<td>24.13</td>
</tr>
<tr>
<td>Unreacted layer ($t_{unreact}$) (μm)</td>
<td>--</td>
<td>25.87</td>
</tr>
</tbody>
</table>

In summary, for the as-prepared Li-Sb-Sn foil electrode, $E[t_{actually total}]$ is 50 μm, $t_{theoretically total}$ is 68.16 μm, α is 1.44 (see Tab. S1) and t_{react} is 24.13 μm.

So, the porosity of reacted layer is

$$11.05\% = (50 \mu m - 68.16 \mu m/1.44)/24.13 \mu m$$

Due to the lateral areal expansion of 144% (see Tab. S1), the lithium foil actually is thinned to
17.36 μm = (50 μm/2) / 1.44,
5wt%Sb-95wt%Sn foil is thinned to
34.72 μm = 50 μm / 1.44
According to Tab. S5, where 25.87 μm thick 5wt%Sb-95wt%Sn is no involved in reactions, so the actual thickness of Sn involved in lithiation reactions is
8.85 μm = (34.72 - 25.87) μm
Due to the assumption that Li$_{4.4}$Sn was the only lithiation product, thus, at least 6.4 μm worth of Sn is needed for absorbing 17.36 μm worth of Li$_{BCC}$, forming 17.56 μm worth of Li$_{22}$Sn$_5$. So there is 2.45 μm = 8.85 μm - 6.4 μm residual pure soft Sn (“retained Sn”) in the reacted layer, accounting for
10.15% = 2.45 μm / 24.13 μm
So, the proportion of Li$_{22}$Sn$_5$ is
78.8% = 100% - 11.05% - 10.15%
Note that there is some little deviation, e.g. if calculating the proportion of Li$_{22}$Sn$_5$ based on theoretical thickness of Li$_{22}$Sn$_5$ (e.g. 17.56 μm) after Sn totally absorbs 17.36 μm Li$_{BCC}$, the proportion of Li$_{22}$Sn$_5$ should be
72.77% = 17.56 μm / 24.13 μm
We speculate such deviation is because the formation of Li$_3$Sb is not taken into account in this calculation.

Supplementary Note 2: Calculation details of porosity, retained Sn and Li$_{22}$Sn$_5$ proportions in reacted layer of Li-Sn

Firstly, we determined the lateral areal expansion α of Li-Sn prepared by rolling two 2 cm × 2 cm × 50 μm pure Sn foils sandwiching one 2 cm × 2 cm × 50 μm lithium foil in the middle. After prelithiation, the area expanded to 6.75 cm2 = 2.7 cm × 2.5 cm (Fig. S31, the right) from the initial 4 cm2 = 2 cm × 2 cm of Sn foil (Fig. S31, the right). The lateral areal expansion α of Li-Sn is 169% = 6.75 cm2/4 cm2. All details were listed in following Tab. S6.

Fig. S31. Dimension size measurement of pure Sn foil before and after MP.
Tab. S6. Dimension size of pure Sn foil before and after MP

<table>
<thead>
<tr>
<th>Sample</th>
<th>Sn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size (cm, Before MP)</td>
<td>2×2</td>
</tr>
<tr>
<td>Size (cm, After MP)</td>
<td>2.7×2.5</td>
</tr>
<tr>
<td>Lateral areal expansion</td>
<td>169%</td>
</tr>
<tr>
<td>α</td>
<td>1.69</td>
</tr>
</tbody>
</table>

The reacted layer thickness t_{react} and $E[t_{actually \; total}]$ of Li-Sn were measured by SEM image in Fig. S32. The measured thicknesses were listed in the following Tab. S7, the average thickness of reacted layer was also calculated.

![SEM image](image)

Fig. S32. Thickness measurements of the reaction layer in Li-Sn foil by SEM. The thicknesses of 20 sites in the reacted layer were measured.

Tab. S7. Reacted layer thickness of Li-Sn

<table>
<thead>
<tr>
<th>Thickness (μm) of the reacted layer</th>
<th>Average thickness</th>
<th>Standard Deviation</th>
<th>Reacted layer thickness t_{react}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li-Sn</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.63 25.66 25.71 25.37 23.68</td>
<td>24.86 μm</td>
<td>2.64 μm</td>
<td>24.86 ± 2.64 μm</td>
</tr>
<tr>
<td>23.68 26.32 26.32 24.34 28.95</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 22.37 21.71 20.39 21.05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 21.05 26.32 26.32 30.26</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Thicknesses of reacted layer and unreacted layer in Li-Sn electrode were measured and listed in following Tab. S8,
Tab. S8. Thicknesses of reacted and unreacted layer in Li-Sn electrode

<table>
<thead>
<tr>
<th>Sample</th>
<th>Sn</th>
<th>Li-Sn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actually total thickness (µm)</td>
<td>50</td>
<td>46.05</td>
</tr>
<tr>
<td>Reacted layer (t_{react}) (µm)</td>
<td>--</td>
<td>24.86</td>
</tr>
<tr>
<td>Unreacted layer (t_{unreact}) (µm)</td>
<td>--</td>
<td>21.19</td>
</tr>
</tbody>
</table>

Thus, E[t_{actually total}] of the as-formed Li-Sn foil electrode is 46.05 µm (Tab. S8), t_{theoretically total} is 68.16 µm, α is 1.69 (Tab. S6) and t_{react} is 24.86 µm (see Tab. S8).

The porosity of reacted layer in the as-obtained Li-Sn is

\[
\text{23 \%} = (46.05 \mu m - 68.16 \mu m /1.69) / 24.86 \mu m
\]

Due to the lateral areal expansion of 169%, the lithium foil is thinned to

\[
14.79 \mu m = (50 \mu m / 2) / 1.69
\]

Pure Sn foil is thinned to

\[
29.59 \mu m = 50 \mu m / 1.69
\]

According to Tab. S8, there is 21.19 µm thick Sn no involved in reactions, so the actual thickness of Sn involved in lithiation reactions is

\[
8.4 \mu m = (29.59 - 21.19) \mu m
\]

Due to the assumption that Li_{4.4}Sn is the only lithiation product (see Fig. S33), thus, at least 4.22 µm worth of Sn is needed for absorbing 14.79 µm worth of Li_{BCC}, forming 14.96 µm worth of Li_{22}Sn_{5}.

Fig. S33. XRD results of the Li-Sn. According to analysis (PDF#-18-0753), the characteristic peaks belong to Li_{22}Sn_{5}.

So there is 4.18 µm=8.4 µm-4.22 µm thick residual soft Sn ("retained Sn") in the reacted layer, accounting for

\[
16.81\% = 4.18 \mu m / 24.86 \mu m
\]

So, the proportion of Li_{22}Sn_{5} is

\[
60.19\% = 100\% - 23\% - 16.81\%
\]

We find the calculation is quite reasonable, evidenced by the calculated percentage of Li_{22}Sn_{5} 60.18%=14.96 µm /24.86 µm, based on the theoretically formed Li_{4.4}Sn thickness of 14.96 µm after absorbing lithium foil of 14.79 µm by 4.22 µm Sn, which almost is equal to 60.19%.
In order to compare the composition differences between Li-Sb-Sn and Li-Sn more clearly, we also plot the proportion of Li-Sn in the following graph:

![Proportion of individual composition in Li-Sn foil reacted layer](image)

Fig. S34. Proportion of individual composition in Li-Sn foil reacted layer. The olive is residual Sn, the navy is porosity and the orange is Li$_2$Sn$_5$.

Reference

Supplementary Video

Video S1: Burning LiBCC metal with flame

Video S2: Burning Li-Sb-Sn electrode with flame
http://li.mit.edu/S/HuiXu/Upload/BurningLi-Sb-Sn.mp4

Video S3: Needle piercing experiment of LCO/Li$_{BCC}$ pouch cell
http://li.mit.edu/S/HuiXu/Upload/Puncturemeasurement-LCO-Lipouch.mp4

Video S4: Needle piercing experiment of LCO/Li-Sb-Sn pouch cell
http://li.mit.edu/S/HuiXu/Upload/Puncturemeasurement-LCO-Li-Sb-Snpouch.mp4