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Normal-to-topological insulator martensitic phase
transition in group-IV monochalcogenides driven
by light
Jian Zhou 1, Shunhong Zhang2 and Ju Li 3

Abstract
A material potentially exhibiting multiple crystalline phases with distinct optoelectronic properties can serve as a
phase-change memory material. The sensitivity and kinetics can be enhanced when the two competing phases have
large electronic structure contrast and the phase change process is diffusionless and martensitic. In this work, we
theoretically and computationally illustrate that such a phase transition could occur in the group-IV
monochalcogenide SnSe compound, which can exist in the quantum topologically trivial Pnma-SnSe and nontrivial
Fm3m-SnSe phases. Furthermore, owing to the electronic band structure differences of these phases, a large contrast
in the optical responses in the THz region is revealed. According to the thermodynamic theory for a driven dielectric
medium, optomechanical control to trigger a topological phase transition using a linearly polarized laser with selected
frequency, power and pulse duration is proposed. We further estimate the critical optical electric field to drive a
barrierless transition that can occur on the picosecond timescale. This light actuation strategy does not require
fabrication of mechanical contacts or electrical leads and only requires transparency. We predict that an optically
driven phase transition accompanied by a large entropy difference can be used in an “optocaloric” cooling device.

Introduction
Phase change memory (PCM) materials are one of the

key components of next-generation information storage1.
Currently, the most widely used commercialized PCM
materials are Ge–Sb–Te alloys2. These materials can exist
in both crystalline and amorphous phases with distinct
optical or electronic transport features, which are sepa-
rated by a significant energy barrier. The phase transfor-
mation between these phases is reconstructive owing to
the diffusional displacements of atoms. The drawback of a
temperature-driven transformation is that due to the

equipartition theorem, all phonon modes are involved,
and thus, the total driving energy and the heat dissipation
are significant. Furthermore, the phase change occurs on a
timescale on the order of a few to a few hundred nano-
seconds. Hence, one would like to find a PCM material
that can simultaneously satisfy the following require-
ments: (i) it can exist in at least two structural phases, (ii)
these phases have distinct physical properties that can be
easily measured, preferably in a contact-free manner, (iii)
the phase transformation is displacive/martensitic, where
the atomic motions are diffusionless, and (iv) the directed
phase transition preferably occurs within a single phonon
oscillation period (picosecond) in the barrier-free limit.
The main idea is to strongly bias only the reaction coor-
dinates of the structural transition, instead of exciting all
the phonon modes, such as in a temperature-driven
transition. With these requirements fulfilled, the phase
transition would have the benefits of low energy con-
sumption, low heat load and fast switching speed.
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The discovery of topological materials during the past
decade has offered ample interesting physical effects3.
Transitions between topologically different states have
attracted tremendous attention both theoretically and
experimentally. One example is group-VI transition metal
dichalcogenide (TMD) monolayers, such as MoTe2 and
its analogues, which exist in the 2H (normal insulator,
NI)4 and 1T′ (topological insulator, TI) phases5. Theore-
tical predictions have shown that the 2H→ 1T′ phase
transformation can occur under lithiation6, electron
doping7, or tensile strain8. Later experimental efforts
showed that such a phase transformation can occur under
Ar plasma bombardment9 or gate voltage10. During this
process, ~1/6 of the Mo-Te chemical bonds need to be
broken, and then, the same number of new Mo-Te bonds
will be formed. Hence, even though the energy difference
between 2H-MoTe2 and 1T′-MoTe2 is small, the energy
barrier separating the two phases is high ( ~ 2000 J/cm3

when we take an energy barrier of 1.05 eV/f.u. and a
MoTe2 monolayer thickness of 7.74 Å5,8). Most other
topological phase transitions in a single material occur via
modulation of their electronic band dispersion under
strain engineering11,12, electrostatic gating13–15, or tem-
perature change16,17. Some of these phases have a short
lifetime (volatile) once the external field is removed. In
addition, these phase transitions usually require electro-
chemical, electrical, or mechanical contacts and pattern-
ing. This stimulates us to explore topological phase
change materials whose phase transition can be triggered
through a noncontacting scheme with intermediate energy
barriers18.
In this work, based on thermodynamic analysis and

first-principles density functional theory (DFT) calcula-
tions, we propose that a group-IV monochalcogenide
compound (such as SnSe or other analogues) is a good
platform to realize nonvolatile topological phase transi-
tion by optomechanical stimulation. This group-IV
monochalcogenide compound family possesses a few
interesting properties19,20. The SnSe compound can exist
in multiple phases, such as in the space groups of Pnma,
Fm3m, and Cmcm. While many studies focus on the high-
temperature ( > 800 K) phase transition from Pnma to
Cmcm21,22, here, we study the two energetically lower
polymorphs, namely, Pnma (ground state) and Fm3m
(metastable). Geometrically, Pnma-SnSe is a layered
structure. This phase has been attracting great interest
owing to its good thermoelectric property22–24.
Fm3m-SnSe shows a rocksalt geometry and has been
proven theoretically25,26 and experimentally27,28 to be a
novel type of quantum topological material – a topolo-
gical crystalline insulator (TCI) with a large change in
near band-edge (NBE) optical susceptibilities. Hence, the
topological phase transition between Pnma and Fm3m
would be interesting and promising for potential

applications. Nevertheless, except for foreign atom dop-
ing29,30, theoretical studies on such phase transitions are
very rare. Here, we apply the random phase approxima-
tion (RPA) to calculate the optical response features.
Owing to the topological band inversion feature of
Fm3m-SnSe, its dielectric screening effect is much
stronger than that of semiconducting Pnma-SnSe.
Therefore, according to the thermodynamic theory of a
driven dielectric medium, when the sample is exposed to a
linearly polarized laser (LPL) with THz frequency, the free
energy of Fm3m-SnSe reduces faster with greater alter-
nating electric field strength (the optical tweezers effect)
than that of Pmna-SnSe. Hence, we predict a phase
transformation between Pnma and Fm3m under an
intermediate intensity LPL. Such a transformation can
even be barrier-free, with significantly enhanced kinetics.
Owing to the entropy difference between the two phases,
we can even design a thermodynamic phase-change cycle
to utilize the “optocaloric” effect of SnSe as a refrigeration
medium.

Methods
Density functional theory
We employ DFT calculations31,32 with generalized

gradient approximation (GGA)33 treatment of the
exchange-correlation energy term using the Vienna ab
initio simulation package (VASP)34,35. The projector
augmented wave (PAW) method36 and a planewave basis
set with a cutoff energy of 300 eV are applied to treat the
core and valence electrons in the system, respectively. The
first Brillouin zone is represented by a Γ-point-centered
Monkhorst–Pack k-mesh37 with a grid density of 2π ×
0.02 Å−1 along each dimension. The convergence of these
parameters is well tested. To correct the underestimation
of long-range dispersion in the GGA treatment, we
include the semiempirical quantum chemical method
DFT-D3 term in the total energy expression38. Other
treatments give similar results. The convergence criteria
of the total energy and force component are set to 1 ×
10−7 eV and 0.001 eV/Å, respectively. Spin-orbit coupling
(SOC) is self-consistently included due to the high Z of Sn
and Se atoms. We perform ab initio molecular dynamics
(AIMD) simulations and confirm that both phases are
thermally stable at room temperature (Fig. S1 in the
Supplementary Information). To evaluate the finite tem-
perature behavior, we also calculate phonon dispersions
and the frequency density of states using the finite dis-
placement method, as implemented in the Phonopy
code39.

Results and discussion
When an LPL containing an alternating electric field

(~E ω0; tð Þ ¼ E0e�iω0t êi, where eî is a unit vector along the
i-th direction) is applied to the system, its contribution to
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the free energy can be evaluated via the thermodynamic
theory of an external reservoir bath and Legendre trans-
formation. By taking the electric field magnitude as the
thermodynamic variable, one adds an additional term into
the free energy density (in units of energy/volume)40,

GE ¼ � 1
2
~E� ω0; tð Þ � ε 1ð Þ ω0ð Þ �~E ω0; tð Þ: ð1Þ

Here, ε(1)(ω0) is the real part of the dielectric function
tensor at optical frequency ω0. Note that here, the optical
frequency ω0 is much larger than the vibrational
frequency ωvib (typically < 6 THz); thus, the ion motion
contribution to the dielectric function is neglected.
Microscopically, the incident photon carries an optical
electric field and excites electron subsystems. Then,
phonons are stimulated by electron-phonon coupling.
When the phonon displacement is large enough, the
system can go beyond elastic deformation and undergo a
phase transition.
We start our discussions with the geometric and ener-

getic features of the SnSe compound in both the Fm3m
and Pnma phases (Fig. 1). Pnma-SnSe shows a layered
structure. According to previous works, each SnSe layer
possesses an in-plane (along the y-direction) ferroelec-
tricity (P0= 1.5 × 10−10 C/m)41,42. In the bulk Pnma-SnSe
compound, the layers are antiferroelectrically stacked,
exhibiting a centrosymmetric structure with no net
spontaneous polarization. This structure has been
demonstrated to be a semiconductor with an optical band
gap of 0.9 eV, showing high-performance thermoelectric
behavior (ZT > 2.2)22,23. In contrast, in the rocksalt
Fm3m-SnSe, all the Sn and Se atoms are ionically bonded.
Its band dispersion calculation reveals an inverted band
order near the Fermi level, which is topologically pro-
tected by spatial mirror symmetry25. Thus, this structure

belongs to the TCI family, with a calculated band gap of ~
0.2 eV43. Our DFT-D3 scheme yields Pnma-SnSe lattice
parameters of a= 4.169 Å, b= 4.515 Å, and c= 11.558 Å
(each supercell contains two SnSe layers) and Fm3m-SnSe
lattice parameters of a= b= c= 4.247 Å. These results
agree well with experimental data (Pnma-SnSe:
a= 4.15 Å, b= 4.45 Å, and c= 11.50 Å; Fm3m-SnSe: a=
b= c= 4.24 Å)44,45. From the atomic structures, one
observes that when the even and odd numbered layers in
Pnma-SnSe alternatively translate along the ± y-direction
by 0.18 × b (green arrows in Fig. 1a), this phase can change
into Fm3m-SnSe. During this internal coordinate shuf-
fling, the supercell transformation strain is actually small
(compared with, e.g., ref. 46); thus, little mesoscopic elastic
constraint strain energy is required when a certain
embedded region undergoes transformation. The volume
difference between the two phases is within 0.5%. These
facts demonstrate that the phase transition is martensitic
and displacive, without requiring random atomic diffu-
sion. Hence, the time scale of the phase transition can be
greatly reduced, and the energy input to drive the phase
transition is also small.
Our DFT calculations show that Pnma-SnSe has a lower

ground state energy than Fm3m-SnSe by 17meV per
formula unit (meV/f.u.). This agrees well with previous
DFT works43. To estimate the energy barrier between the
two phases and phase transition kinetics, we apply the
cell-variable nudged elastic band (NEB) method47,48 to
calculate the reaction path versus total energy. As shown
in Fig. 2a, the energy barrier from Pnma-SnSe to
Fm3m-SnSe is calculated to be 42meV/f.u., correspond-
ing to 123 J/cm3. This value is much smaller than the
energy barrier from monolayer 2H-MoTe2 to 1T′-MoTe2
(~2000 J/cm3). The phonon spectrum of the saddle point
crystal structure is shown in Fig. 2b, where only one large
imaginary optical branch can be observed (at Γ). This
imaginary mode corresponds to reaction coordinate
shuffling to the Pnma phase, while the imaginary modes
at Z (0, 0, 1/2) correspond to the transition to Fm3m.
When the system transits back from Fm3m-SnSe to
Pnma-SnSe, the energy barrier will be 25meV/f.u.
(73 J/cm3). By applying the Arrhenius law to estimate the

transition rate, k ¼ υ0exp �NEb
kBT

� �
(where Eb is the energy

barrier, N is the total number of formula units, and ν0=
10−12 s is the trial frequency), we note that Fm3m-SnSe
can exist for over 20 years at room temperature
(T= 300 K) when N= 60 (~3 nm3). On the other hand,
the moderate energy barrier value per unit also indicate
that the phase change between the two phases may be
triggered by intermediate external field energy input with
fast kinetics.
One fascinating feature during this structural phase

transformation is the accompanying topological

Fig. 1 Atomically geometric phase transition of SnSe. Geometric
structures of the SnSe compound in the a layered Pnma and b
rocksalt Fm3m phases. In a, empty arrows represent the spontaneous
electric polarization of each layer, and green arrows show the
translation direction of each layer to form the Fm3m phase. The blue
dashed rectangle represents the simulation supercell.
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electronic phase transition. As previously discussed,
Pnma-SnSe is a topologically trivial semiconductor, with
its highest valence band and lowest conduction band
located far from the Fermi level [Fig. 3a, left panel]. In
contrast, the topologically nontrivial band gap insulator
Fm3m-SnSe has a valence and conduction band inversion
at the L-point in the Brillouin zone [Fig. 3b, left panel].
We plot the calculated band dispersions in the Supple-
mentary Information, Fig. S2. Such a band topology
change leads to quite a few important contrasting prop-
erties between the two phases, such as robust metallic
surface states without backscattering. During a topologi-
cal phase transition, a band gap closing and reopening
process usually occurs. Thus, we also calculated the band
gap value variation along the reaction path [Fig. 2a]. The
band gap closing structure lies in the Fm3m-SnSe energy
basin. Here, we show that the optical responses to an LPL
of the two phases are very different. One can examine the

electron-contributed dielectric function based on the
random phase approximation (RPA)49,50 via

ε ωð Þ ¼ 1� e2

2πð Þ3ε0

Z
d3k

X
c;v

huv;kj∇kjuc;kihuc;kj∇kjuv;ki
Ec;k � Ev;k � �hω� iξ

:

ð2Þ
Here, jun;ki and En,k are the periodic part of the Bloch
wavefunction and its corresponding eigenvalue of band n
at k, with indices v and c representing valence and
conduction bands, respectively. ξ is a phenomenological
damping parameter representing the temperature and
disorder effects of the sample. From the above equation,
one sees that the real part of the dielectric function is
determined by two factors: (i) the direct energy band gap
(Ec,k – Ev,k) and (ii) the Berry connection
~Anm kð Þ ¼ ihun;kj∇kjum;ki. Hence, compared with the NI
Pnma-SnSe, the TCI Fm3m-SnSe has not only a relatively
small band gap but also a larger Berry connection
magnitude owing to its inverted band order with an
enhanced band correlation. These facts indicate that the
magnitude of ε(1) of Fm3m-SnSe should be much larger
than that of Pnma-SnSe, giving a large contrast of their
NBE optical responses.
We thus calculate the dielectric functions of the two

phases by choosing ξ= 0.025 eV, as shown in the right
panels of Fig. 3a (Pnma-SnSe) and Fig. 3b (Fm3m-SnSe).
Due to the geometric anisotropy, the x-, y-, and z-com-
ponents of ε(ω) of Pnma-SnSe are slightly different. In our
current setup, when the incident photon energy is less
than the direct band gap (ℏω < 0.70 eV, where ε(2)(ω) is
zero), the real parts of the dielectric functions of Pnma-
SnSe almost remain constant, with εxx

(1)(ω)= 19.9,
εyy

(1)(ω)= 17.5, and εzz
(1)(ω)= 17.9. On the other hand,

the real parts of the dielectric functions of isotropic
Fm3m-SnSe below the direct band gap are much larger.
For example, at an incident energy ℏω0= 0.17 eV, the
calculated values are εxx

(1)(ω0)= εyy
(1)(ω0)= εzz

(1)(ω0)=
109.9, which are nearly six times those of Pnma-SnSe at
the same incident photon energy. We also plot the optical
response of the DFT-calculated saddle point in the Sup-
plementary Information (Fig. S3). We use a simplified k·p
model to illustrate the topological contribution to the
optical responses of Fm3m-SnSe (see the Supplementary
Information for details). We find a relationship between
the band gap at L-point (1/2, 1/2, 1/2) (measured as 2|m|
in the model) and the dielectric constant,
ε 1ð Þ 0ð Þ ¼ 1þ α mj j�γ . For the topologically nontrivial
band structure, the fitting coefficient α is much larger
than that of the trivial band structure, indicating a large
Berry connection contribution, as previously discussed.
Owing to the centrosymmetric geometric feature

of both phases, one can hardly apply a static electric
field to drive the phase transition, as in ferroelectrics.

Fig. 2 Thermodynamic and topological change in SnSe
compound. a DFT-calculated total energy and band gap versus
reaction path during NEB simulation. The inset shows the geometric
structure of the saddle point. The gray shaded area indicates the
topological phase transition point (energy band gap closes) between
the NI (Pnma-SnSe) and TCI (Fm3m-SnSe) states. b Phonon spectrum
of the saddle point, where only one optical soft mode appears around
the Γ-point. The inset shows the atomic vibration of the imaginary
normal mode at the Brillouin zone center, where the atoms in the two
compositional layers have opposite in-plane motions.
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Alternatively, here, we propose a noncontacting opto-
mechanical approach. According to our previous discus-
sions, the free energies GE (Eq. 1) under LPL pulse (ℏω0=
0.17 eV) exposure of the two phases are different. Taking
a y-directional LPL as an example (the other directions
are similar), we calculate the free energy difference
between the two phases under different electric field
magnitudes (Fig. 4),

ΔG Ey
0ð Þ ¼ EFm3m � EPnma

h i

� 1
2Ωε0 ε 1ð Þ;Fm3m

yy ω0ð Þ � ε 1ð Þ;Pnma
yy ω0ð Þ

h i
Ey
0ð Þ2:

ð3Þ

Here, Ω is the volume of a formula unit, and ε0 is the
vacuum permittivity. As the electric field magnitude ε0
increases, the Gibbs free energy difference ΔG quad-
ratically reduces to zero. We see that the critical electric
field is 0.35 V/nm. Above this value, LPL exposure makes

Fig. 3 Topological contrasting optical feature. Optical responses of a Pnma-SnSe and b Fm3m-SnSe. We show the schematic optical response in
the left panels. In the right panels, we show the DFT-calculated real part and imaginary part of the dielectric function along the x-, y-, and z-directions.

Fig. 4 Free energy difference as a function of LPL electric field
magnitude. SP denotes the transition saddle point.
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Fm3m-SnSe more stable, enabling a martensitic topolo-
gical phase transition. To drive the opposite phase
transition (from Fm3m-SnSe to Pnma-SnSe), even though
the Pnma phase has a lower energy, we can apply a laser
frequency at ℏω0′= 0.25 eV to accelerate the process. At
this incident energy, the calculated εxx

(1)(ω0′) values are
20.1, 41.2, and 6.5 for Pnma-SnSe, the transition saddle
point, and Fm3m-SnSe, respectively. We estimate the
electric field required to drive an ultrafast barrier-free
phase transformation. For the Pnma to Fm3m transition,
the incident LPL pulse can be ℏω0′′= 0.12 eV along the y-
direction, and the calculated dielectric functions are
εyy

(1)(ω0′′)= 17.2, 107.5 and 78.7 for Pnma, the saddle
point and Fm3m, respectively. Hence, the electric field
strength of 0.56 V/nm would drive a barrier-free phase
transformation. For the Fm3m to Pnma transition, an
electric field along the x-direction of 0.69 V/nm (incident
energy ℏω0′= 0.25 eV) can suppress the energy barrier.
When the bulk energy barrier (in units of meV/f.u.)
vanishes, the transition kinetics is similar to that of
spinodal decomposition, but in terms of the phonon
displacement48 instead of the chemical composition order
parameter. With such a driving force that causes a
vanishing bulk energy barrier, the typical nucleation-
growth kinetics can be avoided, and the transition process
could occur within picoseconds. We also illustrate this
process (see the Supplementary Information for details),
which reveals that the barrier-free phase transition occurs
with a discontinuity of the electric displacement. Note
that the phase transition is not temperature driven.
Therefore, it does not require a large amount of latent
heat to trigger the phase transition, as in the conventional
temperature-driven process.
Since standard DFT calculations underestimate the

band gap, here, we also use a more accurate approach to
verify our calculations. As shown in Fig. S4 (Supplemen-
tary Information), we plot the real parts of the dielectric
functions of both phases, calculated by the hybrid func-
tional HSE0651,52, which has been proven to correct
the band gap underestimation of the GGA approach.
We find that the overall trends are the same. If the inci-
dent photon energy is chosen to be ℏω0= 0.34 eV,
then the calculated values for Pnma-SnSe are εxx

(1)(ω0)=
14.0, εyy

(1)(ω0)= 12.4, and εzz
(1)(ω0)= 12.8 and for

Fm3m-SnSe are εxx
(1)(ω0)= εyy

(1)(ω0)= εzz
(1)(ω0)= 70.7.

Quasi-particle calculations with exciton binding correc-
tion (GW-BSE)53–56 are also performed (Fig. S5). The
dielectric function difference between the two phases is
much larger. At an incident energy of ℏω0= 0.14 eV, the
calculated results are εxx

(1)(ω0)= εyy
(1)(ω0)= εzz

(1)(ω0)=
185.0 (Fm3m) and εxx

(1)(ω0)= 10.2, εyy
(1)(ω0)= 8.5, and

εzz
(1)(ω0)= 11.7 (Pnma). The corresponding electric field

strength to trigger the phase transition from Pnma to
Fm3m is 0.25 V/nm (laser power of 8.3 × 109W/cm2). The

dielectric function value of the TCI Fm3m-SnSe is larger
than that of Pnma-SnSe, indicating the robustness of the
optomechanically driven martensitic phase transition. To
accelerate the transition from Fm3m to Pnma, an incident
light of ℏω0′= 0.5 eV (along x) can be applied, with its
calculated εxx

(1)(ω0′) being 12.3 and 1.8 for Pnma and
Fm3m, respectively.
We then propose that this optomechanically driven

phase transformation of SnSe will lead to a promising
cooling mechanism57, which we refer to as the optocaloric
effect. We calculate the entropy (S= Sph+ Sel, where Sph
and Sel are the phononic and electronic entropies,
respectively) difference between the two phases (Fig. 5a).
The calculation details can be found in the Supplementary
Information. The largest entropy change appears at
T= 40 K, with ΔS= –0.23 kB/f.u. At room temperature
(T= 300 K), Fm3m-SnSe has a higher entropy than
Pnma-SnSe by 0.01 kB/f.u. (kB is the Boltzmann constant,
corresponding to 0.5 J K−1 kg−1). Such latent heat (TΔS)
between two phases (one stable, one metastable, at T
when optical field is turned off) can be used to drive
cooling, similar to producing ice from liquid water in a
summer day using a specially made mechanical shocking
device, and then letting ice→ liquid water for cooling
purposes on that summer day. This is not a Carnot cycle
(Fig. 5b), which is based on a single-phase medium (ideal
gas) and consisting of four quasi-static thermodynamic
legs (two isothermal which contributes sensible heat, and
two adiabatic legs, and all four legs require gradual
pressure/volume changes). Here, instead, we propose to
use latent heat rather than sensible heat during a two-
legged cycle (Fig. 5c): in one leg of the loop we use
optomechanical shock to non-quasistatically drive the
phase transition from the stable→metastable phase
(stable and metastable phases defined when the optical
field is turned off, for that T), and in the other leg we allow
the metastable phase to relax back to the stable phase
thermally. This will be a two-step loop. During the first
step, the Fm3m-SnSe phase absorbs latent heat (Qin) and
quasi-statically (and isothermally) transforms to Pnma-
SnSe, like ice melting in a cold drink. In the second step,
we apply a laser pulse to drive Pnma-SnSe back to the
Fm3m-SnSe phase. This leg is not a quasi-static process
(out of local thermal equilibrium, since the reaction
coordinate gains a lot more kinetic energy than the other
vibrational degrees of freedom), which cannot be repre-
sented by a thermodynamic state curve in an equilibrium
thermodynamic macro-state plot like Fig. 5b.
We also perform calculations for other analogous

group-IV monochalcogenide compounds (Fig. S7). Dur-
ing geometric optimization, Pnma-PbSe and Pnma-PbTe
relax to the Fm3m structure owing to the large size of the
Pb ion. Fm3m-PbS is also energetically more stable than
Pnma-PbS. Hence, alloyed materials, such as Pb1−xSnxX
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(X= S, Se, Te)58 compounds, are possible candidates for
tuning Pnma↔ Fm3m transitions. For example, when
x= 0.30, experimental evidence shows that the topologi-
cal transition temperature is ~ 250 K in Pb1−xSnxSe

59. We
also know that in the Fm3m-GeTe and Fm3m-SnTe
compounds, there is a spontaneous cubic-to-
rhombohedral structural phase transition in which the
sublattice Ge/Sn and Te atoms displace along the [111]
direction60,61. This forms a ferroelectric state, which is
topologically trivial with a wide band gap. Under hydro-
static pressure, the rocksalt Fm3m phase can be dyna-
mically stable. Hence, unless under pressure, the phase
transition between the two phases is not accompanied by
topological changes in the electronic band structure, but
nonetheless has certain dielectric response contrast. The
GeSe, GeS, SnS, and PbS compounds all have similar
results to SnSe, whose Pnma and Fm3m phases are locally
stable when not optically pumped. The optical responses
of these compounds are also similar to those of SnSe (Fig.
S8).

Conclusion
In conclusion, we systematically calculate the energetics

and optical responses of the SnSe compound and che-
mical analogues in their low temperature phases, namely,
normal insulator Pnma and topological crystalline insu-
lator Fm3m. We propose that the phase transition can

also be driven when one applies a pulsed laser with a
selected frequency. Such a topological phase transition,
similar to the transformation of TMD monolayers from
2H to 1T′ but with lower energy barrier and energy input,
belongs to martensitic displacive phase transitions, but
with very little transformation strain during and after the
transformation, and thus has low elastic constraint pen-
alty energy, ensuring fast kinetics and reversibility. We
predict a promising optocaloric effect in SnSe based on
the phase-change cycle, taking advantage of the low dis-
sipation and stress of such rapid optically driven transi-
tions, which could be useful as a refrigerant.
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Supplementary figures. 

 

Figure S1. Temperature and free energy variation with respect to ab initio molecular 

dynamics simulation time of (a) 𝑃𝑛𝑚𝑎 and (b) 𝐹𝑚3̅𝑚 phase of SnSe. Inset of each 

panel shows the distorted geometry after 5 ps, which can be optimized back to 

equilibrium structure. 
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Figure S2. Band dispersion of SnSe. 

 

 

Figure S3. DFT (RPA) calculated dielectric function of the saddle point during phase 

transition between Pnma-SnSe and 𝐹𝑚3̅𝑚-SnSe. 
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Figure S4. Dielectric function of SnSe calculated by HSE06. 

 

 

Figure S5. Dielectric function of SnSe calculated by many body GW-BSE. Left (right) 

panel corresponds to Pnma (𝐹𝑚3̅𝑚) phase. At an incident energy of 0.14 eV, εxx
(1)(ω0) 

= εyy
(1)(ω0) = εzz

(1)(ω0) = 185.0 (𝐹𝑚3̅𝑚 ) and εxx
(1)(ω0) = 10.2, εyy

(1)(ω0) = 8.5, and 

εzz
(1)(ω0) = 11.7 (Pnma). 
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Figure S6. Phonon density of states of two phases. 

 

 

Figure S7. DFT (with vdW) calculated relative energy (in eV/f.u.) and their band 

dispersions. For each structure, the left (right) panel is 𝐹𝑚3̅𝑚  (Pnma) geometry. 

During geometric optimization, the Pnma phase of PbSe and PbTe relaxes to 𝐹𝑚3̅𝑚 

structure. Note that the 𝐹𝑚3̅𝑚  phase of GeTe and SnTe is not dynamically stable 

(unless under pressure). It shows a cubic-to-rhombohedral structural phase change (not 

shown here), and induces ferroelectricity with trivial topology. The Pb-structures are all 

topologically trivial. This indicates that PbxSn1−xX (X = S, Se, Te) might be good 

candidates for such phase transition, with similar energy in their 𝑃𝑛𝑚𝑎 and 𝐹𝑚3̅𝑚 

phases. We suggest that the GGA results could be further improved by meta-GGA 

functional, for example, SCAN. 
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Figure S8. DFT (RPA) calculated dielectric function of 𝐹𝑚3̅𝑚-GeSe (left panel) and 

Pnma-GeSe (right panel). Vertical line denote incident energy of 0.53 eV, with εxx
(1)(ω0) 

= εyy
(1)(ω0) = εzz

(1)(ω0) = 74.0 (𝐹𝑚3̅𝑚 ) and εxx
(1)(ω0) = 15.2, εyy

(1)(ω0) = 14.2, and 

εzz
(1)(ω0) = 13.6 (Pnma). 

 

 

Ginzburg-Landau theory of optical field induced phase transition. 

We adopt Ginzburg-Landau approach to illustrate this process. We choose the 1D 

configuration coordinate (as in Fig. 2a) 𝑢 as order parameter. The free energy can be 

written as (neglecting gradient term under independent particle approximation) 

𝐺 =
1

2
𝑎𝑢2 +

1

4
𝑏𝑢4 + 𝑐𝑢 

Here, we include an odd power term 𝑐𝑢 to break the symmetry between two different 

configuration phases (𝐹𝑚3̅𝑚 and 𝑃𝑛𝑚𝑎). In the case of SnSe, our fitting gives: 𝑎 = 

−0.021 eV/f.u., 𝑏 = 0.003 eV/f.u., and 𝑐 = 0.002 eV/f.u. Note that 𝑎 < 0 and 𝑏 >

0, satisfying with Landau continuous phase transition theory. In addition, higher order 

coefficients (𝑢3, 𝑢5, 𝑢6) are small, hence we do not include them into the expression. 

Before optical field is applied, the equilibrium states satisfy 

𝜕𝐺

𝜕𝑢
= 𝑎𝑢 + 𝑏𝑢3 + 𝑐 = 0,

𝜕2𝐺

𝜕𝑢2
= 𝑎 + 3𝑏𝑢2 > 0 

The solutions of the above equations are 

𝑢1 = −2√𝑟0
3 cos (

𝜋

3
− 𝜃0),   𝑢2 = 2√𝑟0

3 cos 𝜃0 
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where 𝑟0 = √
−𝑎3

27𝑏3  and 𝜃0 =
1

3
cos−1 (−

𝑐

2𝑟0𝑏
) . Note that the solution 𝑢3 =

2√𝑟0
3 cos (𝜃0 +

𝜋

3
) ≈ 0 is the energetically maximum on the free energy curve, which 

serves as the energy barrier. 

Under a laser illumination, we need to include variation of real part of the dielectric 

function with respect to configuration coordinate. To make it simple, we only consider 

the zeroth order of variation (
𝑑𝜀(1)

𝑑𝑢
= 𝑐′), so that the free energy now takes the form 

𝐺(𝑢, ℰ) =
1

2
𝑎𝑢2 +

1

4
𝑏𝑢4 + (𝑐 −

1

2
𝑐′ℰ2) 𝑢 

Without loss of generality, we set 𝑐′ > 0 , which means that positive 𝑢  solution 

corresponds to topologically nontrivial phase (larger 𝜀(1)). Then, the equilibrium states 

can be calculated according to 

𝜕𝐺

𝜕𝑢
= 𝑎𝑢 + 𝑏𝑢3 + (𝑐 −

1

2
𝑐′ℰ2) = 0 

Denoting 𝑟 = √
−𝑎3

27𝑏3  and 𝜃 =
1

3
cos−1 (−

𝑐−
1

2
𝑐′ℰ2

2𝑟𝑏
) , and Δ = (

𝑐−
1

2
𝑐′ℰ2

2𝑏
)

2

− (
𝑎

3𝑏
)

3

 . 

When the magnitude ℰ is small, Δ < 0, and there are three different real solutions. 

The two physical solutions are 

𝑢1 = −2√𝑟
3

cos (
𝜋

3
− 𝜃),   𝑢2 = 2√𝑟

3
cos 𝜃 

and the energetic saddle point locates at 𝑢3 = 2√𝑟
3

cos (𝜃 +
𝜋

3
) . We thus have two 

critical ℰ  values. The first one satisfies 𝐺(𝑢1, ℰ1) = 𝐺(𝑢2, ℰ1) . Above this ℰ1 , the 

𝑢2 state becomes the thermodynamic ground state and the system transforms from 𝑢1 

to 𝑢2  by overcoming an energy barrier 𝐺(𝑢3, ℰ) − 𝐺(𝑢1, ℰ)  under thermal 

fluctuation. The second critical value ℰ2  makes Δ = 0  and hence 𝑢1 = 𝑢3  and 

𝐺(𝑢3, ℰ2) = 𝐺(𝑢1, ℰ2). Above this value (ℰ > ℰ2, Δ > 0), the phase transition barrier 

disappears, and phase-1 (𝑢1) could transit to phase-2 (𝑢2) with a fast kinetics. Note that 

electric displacement 𝐷 = −
𝜕𝐺

𝜕ℰ
= 𝑐′𝑢ℰ. During the phase transition (𝑢1 → 𝑢2), there 

is a discontinuity of 𝐷, so that it corresponds to a first-order phase transition (with 
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internal energy increment of Δ𝑈 = ℰ2Δ𝐷 = 𝑐′(𝑢2 − 𝑢1)ℰ2
2). In addition, continuous 

phase transition requires that the space group of old phase is a subset of the space group 

of new phase. In the current situation, this is not satisfied. Therefore, the phase 

transition belongs to first-order phase transition. However, in our proposed approach, 

the phase transition is not temperature driven. Therefore, it doesn’t require large amount 

of latent heat to trigger phase transition (as in conventional temperature driven phase 

transition) and its kinetics can be ultrafast. 

 

Scaling of dielectric constant with respect to bandgap. 

We adopt a k·p model to consider its topological contribution (𝐹𝑚3̅𝑚-phase). The 

k·p model is expanded around the L point (1/2, 1/2, 1/2) in the reciprocal space (S1,S2) 

�̂� = (𝑚 +
ℏ2𝑘2

2𝜇
) �̂�𝑧 + 𝑣(𝑘1�̂�2 − 𝑘2�̂�1)�̂�𝑥 + 𝑣3𝑘3�̂�𝑦 

Here �̂�  and �̂�  are Pauli matrix of p-orbital (cation and anion) and total angular 

momentum degrees of freedom, respectively. The k1, k2, and k3 are measured from the 

L point and form an orthogonal coordinate system, with k3 along the [111] and k1 along 

the [110] direction perpendicular to the mirror plane. Positive (negative) m indicates 

that the conduction and valence bands are derived from the cation (anion) and the anion 

(cation), respectively. Thus, topologically trivial band character is given by positive m, 

while band inversion occurs with negative m. The bandgap value is 2|m| at L. For 

simplicity, we use this Hamiltonian and calculate its contributed dielectric constant 

according to random phase approximation under independent particle picture. In order 

to discuss the topological contribution to the dielectric response and considering that 

the k·p model is valid near the L point, the integral in the Brillouin zone (Eq. 2 in the 

main text) is only performed in the vicinity of L (the integral volume is 12.5% of the 

total first Brillouin zone volume). We compare the dielectric constant from 

topologically trivial and nontrivial cases with the same bandgap (2|m| at L). We use 

parameters μ = 0.4, v = 0.1, and v3 = 0.8. We reveal that the dielectric constant can be 

fitted with respect to |m| by 𝜀 = 1 + 𝛼|𝑚|−𝛾. For the topologically trivial (positive m) 
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case, the fitting parameters are 𝛼(𝑡) = 0.78, 𝛾(𝑡) = 1.16, and topologically nontrivial 

(negative m) case gives 𝛼(𝑛𝑡) = 177.57 ≫ 𝛼(𝑡), 𝛾(𝑛𝑡) = 0.25 . This is demonstrates 

that the Berry connection in the topologically nontrivial system contributes much larger 

than that in trivial cases. The result is shown in Fig. S9. Hence, 
𝜀(𝑛𝑡)−1

𝜀(𝑡)−1
=

𝛼(𝑛𝑡)

𝛼(𝑡)
|𝑚|𝛾(𝑡)−𝛾(𝑛𝑡)

. Note that at finite frequency, the dielectric function is proportional to 

the dielectric constant (below the bandgap) (Ref. S3). 

 

Figure S9. Variation of dielectric constant with respect to bandgap parameter |𝑚|. 

 

Entropy calculation details. 

To investigate the influence of electronic entropy and lattice thermal expansion on 

the relative thermodynamic stability of the two distinct polymorphs, we calculate the 

temperature-dependent Gibbs free energy of the both structures within the quasi-

harmonic approximation (QHA) (S4), which can be directly implemented in Phonopy. 

The Gibbs free energy (without optical field) can be expressed as 

𝐺(𝑇, 𝑝) = min
𝑉

[𝐸KS(𝑉) + 𝐹ph(𝑇, 𝑉) + 𝐹el(𝑇, 𝑉) + 𝑝𝑉] 

𝐸KS(0) is the Kohn-Sham total energy which can be calculated directly from DFT, 𝐹el 

and 𝐹ph  are the electronic and phononic free energy, respectively, which can be 

derived from the DFT calculations under QHA. For each phase, we choose a couple of 
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volumes near the equilibrium volume, relax the atomic positions at 0 K, and then 

calculate electronic free energy 𝐹el(𝑇, 𝑉) 

𝐹el(𝑉, 𝑇) = −𝑔𝑘𝐵𝑇 ∑{𝑓𝐤,𝑖(𝑉)𝑙𝑛𝑓𝐤,𝑖(𝑉) + [1 − 𝑓𝐤,𝑖(𝑉)]𝑙𝑛[1 − 𝑓𝐤,𝑖(𝑉)]}

𝐤,𝑖

 

where 𝑓𝐤,𝑖(𝑉) is Fermi-Dirac distribution. The g-factor is 2. The harmonic phonon free 

energy 𝐹ph(𝑇, 𝑉) is 

𝐹ph(𝑇, 𝑉) =
1

2
∑ ℏ𝜔vib(𝐪, 𝑠)

𝐪,𝑠

+ 𝑘𝐵𝑇 ∑ 𝑙𝑛[1 − 𝑒𝑥𝑝(−ℏ𝜔vib(𝐪, 𝑠)/𝑘𝐵𝑇)]

𝐪,𝑠

 

Here 𝑘𝐵  and ℏ  are the Boltzmann and reduced Planck constants respectively. The 

entropy is thus calculated by 𝑆(𝑇, 𝑉) = (𝐹el + 𝐹ph)/𝑇. At each temperature, we fit the 

G-V curves with the Birch-Murnaghan equation of states (S5), and take V that 

minimizes G as the equilibrium volume V (T). The results are shown in Figure S10. 

 

Figure S10. Variation of Gibbs free energy (solid, left axis) and volume (dashed, right 

axis) of the two SnSe phases as a function of temperature, calculated by the quasi-

harmonic approximation. 
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