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SUMMARY

Molten salts are a promising class of ionic liquids for clean energy
applications, such as nuclear and solar energy. However, efficient
and accurate evaluation of salt properties from a fundamental,
microscopic perspective remains a challenge. Here, we apply artifi-
cial neural networks to atomistic modeling of molten NaCl to accu-
rately reproduce the properties from ab initio quantum mechanical
calculations based on density functional theory (DFT). The obtained
neural network interatomic potential (NNIP) effectively captures the
effects of both long-range and short-range interactions, which are
crucial for modeling ionic liquids. Extensive validations suggest
that the NNIP is capable of predicting the structural, thermophysi-
cal, and transport properties of molten NaCl as well as properties
of crystalline NaCl, demonstrating near-DFT accuracy and 1033
higher efficiency in atomistic simulations. This application of NNIP
suggests a paradigm shift from empirical/semiempirical/ab initio
approaches to an efficient and accurate machine learning scheme
in molten salt modeling.
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INTRODUCTION

Molten salts have been widely exploited for clean energy applications, such as

molten salt reactors (MSRs)1-3 and concentrated solar power (CSP) technologies.4,5

A major role played bymolten salts in these applications is to transfer/store heat that

can be subsequently converted into other energy forms. Safe and efficient heat

transfer and storage require excellent thermophysical and transport properties of

clean salts (e.g., melting point, heat capacity, thermal conductivity, viscosity, vapor

pressure, diffusivity, etc.).2 Moreover, practical concerns, such as stability under

extreme conditions,6 tolerance to impurities,7 and compatibility with major struc-

tural materials,8 need to be addressed. Due to the high-dimensional nature of ma-

terials space, searching for appropriate salt systems and their optimization for

various applications remain essential challenges, requiring a deep understanding

of the underlying molecular structures, chemistry, and dynamics of relevant molten

salts.

Expediting the discovery of the desired salt system hidden in a vast materials space

generally requires:

(1) efficient searching algorithms, such as Bayesian optimization,9,10 to balance

exploration and exploitation and

(2) fast yet accurate evaluation of a new system in the high-dimensional

space.
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Very often, the latter requirement constitutes the rate-limiting step. For example,

experimental techniques, such as neutron and X-ray diffraction and electrochemical

measurements,11-17 are generally expensive and challenging under extreme condi-

tions and stringent impurity control. Ab initio molecular dynamics (AIMD) simula-

tions, such as those based on density functional theory (DFT),18,19 have been suc-

cessful in modeling various molten salts,20-28 but this is costly for properties (e.g.,

melting temperature, heat capacity, thermal conductivity, etc.) that require statistics

on relatively large time and length scales. Classical atomistic simulations based on

physics-informed empirical interatomic potentials29-33 are many orders of magni-

tude faster than AIMD, but their accuracy is generally limited by the expressive po-

wer of the functional form employed for the potential. Evaluating properties in

molten salts space, both experimentally and computationally, is subjected to an ac-

curacy-versus-cost trade-off. Machine-learning-based interatomic potentials

(MLIPs)34-41 are emerging as a promising solution to alleviate this problem. Specif-

ically, MLIPs have been shown to afford accuracy close to that of DFT calculations

at a computational cost comparable to (although typically higher than) that of clas-

sical empirical interatomic potentials. MLIPs empower accurate and efficient MD

simulations with 103�104 atoms on the timescale of nanoseconds, offering unprec-

edented opportunities to explore molten salt space.

In this work, we choose NaCl as a prototype system to demonstrate the feasibility of

applying an artificial neural-network (NN) framework in training high-quality inter-

atomic potentials for modeling molten salts. We emphasize that the effects of

long-range Coulombic interactions and short-range repulsive interactions, both of

which are crucial in modeling ionic liquids with high-temperature dynamics, can

be effectively captured by a medium-ranged NN interatomic potential (NNIP).

This has been achieved by a carefully designed, balanced training dataset. Extensive

evaluations suggest that our NNIP is capable of predicting the structural, thermo-

physical, and transport properties of molten NaCl as well as common crystal prop-

erties, with an accuracy close to AIMD simulations. Furthermore, most of our NNIP

predictions are also in good agreement with experimental measurements, suggest-

ing NNIP as a robust approach for accurate and efficient modeling of molten salts.
RESULTS

Artificial NN framework

To model the high-dimensional potential energy surface of molten NaCl with a large

number of atoms, we follow the framework of Behler and Parrinello34 to represent

the total potential energy of a system as a sum of atomic contributions,

E =
XNat

i

EiðGiÞ; (Equation 1)

where a species-specific fully connected NN takes the local atomic environment

descriptor Gi of a single atom i as input and outputs the atomic contribution Ei to

the total energy; Nat is the total number of atoms in the system. In this work, both

Na and Cl share the same atomic NN architecture but with different optimized

weights and biases. A few hidden layers can be used for a higher level abstraction

of the input information. We used two hidden layers in the current work. See Fig-

ure S1 for more details.

The local atomic environment of a given atom i is described by a vector that is built

from Behler-Parinello symmetry functions,34 with modifications proposed by Smith

et al.37 and Lot et al.42 These functions include two-body (radial) and three-body
2 Cell Reports Physical Science 2, 100359, March 24, 2021
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(angular) descriptors that specify a local atomic environment in a species-resolved

manner. The radial descriptor is defined as

GR
i ½s� =

XNp

jsi

e�hðRij�RsÞ2 fc
�
Rij

�
; (Equation 2)

where h and a set of Gaussian centers Rs are parameters of the descriptor defined by

the user. The sum runs over all pairs Np between atoms of a given species, whose

distance Rij from the central atom is within a cutoff distance Rc . The cutoff function

that smoothly diminishes beyond the cutoff distance is defined as

fc
�
Rij

�
=

�
0:5 cos

�
pRij

Rc

�
+ 0:5

�
for Rij%Rc ; 0:0 for Rij > Rc : (Equation 3)

The angular descriptor is defined as

GA
i ½s� = 21�z

XNt

j;ksi

�
1+ cos

�
qijk � qs

��z
e
�h

�
Rij +Rik

2 �Rs

�2

fc
�
Rij

�
fcðRikÞ; (Equation 4)

where the sum runs over all pairsNt of neighboring atoms j and k for a given species

triplet, with interatomic distances of Rij and Rik within the cutoff radius, and forming

an angle qijk with it. The parameters h and zcontrol the width of the Gaussian and

cosine functions, although the sets of Rs and qs determine the peak positions.

Together, these user-defined parameters determine the radial and angular resolu-

tion of the descriptor and are tuned to achieve sufficient resolution. See the section

Experimental procedures for more details.
Ab initio dataset

The design of a robust NNIP depends crucially on the choice of training dataset. For

molten salt applications, the primary focus is on liquid properties, such as the

melting point (Tm), heat capacity (CP), thermal conductivity (l), diffusion coefficient

(D), density (r), molecular structure, equation of state, etc. For robustness, the

NNIP should also be able to make reasonably good predictions on common crystal

properties. To this end, we constructed our training dataset using an iterative

augmentation procedure based on quick training-validation-augmentation cycles.

This procedure, similar to active learning, allows us to efficiently identify the config-

urations where NNIP predictions are far from DFT results. By adding these relevant

configurations to the training set and retraining the NN, we build a more robust

NNIP at each cycle. The constitution of the final training dataset is shown in Fig-

ure S2. Specifically, our training dataset includes normal liquid (disordered) config-

urations from zero-pressureMD trajectories (T= 900 K, 1,000 K, 1,100 K, 1,200K, and

1,300 K and quenching from 3,000 K to 1,100 K), compressed liquid (some are

partially crystallized) configurations up to �10 GPa (from T = 1,100 K to T = 1,300

K), high-temperature liquid (T = 5,000 K, 10,000 K, and 20,000 K) under a confined

volume, non-1:1 Na/Cl ratio liquid (T = 1,100 K, 1,200 K, and 1,300 K), high-temper-

ature crystals (near the melting point, T = 900 K and 1,000 K), zero-temperature crys-

tal (subjected to hydrostatic pressures, shear, and uniaxial deformation), dimer con-

figurations (Na-Na, Na-Cl, and Cl�Cl from �1 to 8 Å) in the gas phase, and two

isolated Na and Cl atoms. The number of total configurations in our training dataset

is �112,000 (see Table S1 for more details). We note that adding compressed liq-

uids, high-temperature liquids, and short-range dimer configurations can help stabi-

lize dynamics and prevent non-physical clustering at short ranges (where the NN

hardly learns because of less available data). Similarly, non-1:1 Na/Cl ratio liquid

configurations are important to balance local environments showing compositional
Cell Reports Physical Science 2, 100359, March 24, 2021 3
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fluctuations. As will be demonstrated shortly, such a composition of training dataset

leads to excellent training and testing results for both liquid and crystalline NaCl

properties.

NNIP predictions on energy, forces, and dynamics

We test our NNIP potential in three steps that cover a wide range of use scenarios.

(1) We assess the prediction performance by using the 20% of the dataset that is

separated for testing, which consists of configurations that are similar to the

ones of the training set (basic testing).

(2) We test the ability of the potential to generate a stable MD trajectory (inter-

polation testing). We make this scenario more challenging by simulating a

microcanonical ensemble (NVE, constant number of atoms N, volume V,

and total energy E), without the use of a thermostat, so that the error due

to wrong predictions would accumulate to divert the system from constant to-

tal energy dynamics.

(3) We assess the prediction quality of NNIP on configurations that are less corre-

lated to the ones in the training dataset and/or on the prediction of properties

that are not utilized during the training of the NNIP (extrapolation testing),

such as radial distribution function, equation of state, and density. Finally,

we use our NNIP to explore properties that are beyond affordable ab initio

simulations, such as heat capacity, thermal conductivity, diffusion coefficient,

and melting temperature, as well as elastic properties of crystalline phases

and surfaces and compare its predictions with experimental observations.

We first report the basic testing errors of our final NNIPmodel. As the current NNIP is

mainly developed for simulating molten NaCl, the testing errors are based on eval-

uating unseen configurations from normal MD trajectories, such as liquid (disor-

dered) structures from 900 K to 1,300 K as well as crystalline structures near the

melting point. In total, there are �18,400 structures in the test dataset. In Figure 1,

the deviation of NNIP predictions from DFT results for potential energy and atomic

forces is reported. The testing errors in both potential energy and atomic forces

largely follow a Gaussian distribution (see the histogram plot and normal distribution

fitting on the right side of Figures 1A and 1B); thus, we use root mean square error

(RMSE) as a measure of the overall testing errors. Specifically, the RMSE of total po-

tential energy predictions reaches a value as low as 1.52 meV/atom, although the

RMSE of atomic forces predictions is 0.04 eV/Å. Such small testing errors suggest

an accuracy close to DFT level. The two distinct clusters in Figure 1A are due to

the potential energy differences between crystalline structures and liquid/disor-

dered structures. When the testing dataset includes all configurations with the

same proportions as shown in Figure S2, that is, the full validation set that corre-

sponds to 20% of the total dataset, then the RMSEs of total energy predictions

and atomic force predictions become 7.9 meV/atom and 0.07 eV/Å, respectively,

still quite accurate, considering that the distribution has longer tail (larger kurtosis)

than a Gaussian and overestimates the average spread (see Figure S3).

A good interatomic potential should exhibit smoothness in atomic forces as a function of

continuously changing atomic positions. This capability of interpolation between

learned snapshots of configurations is particularly important in actual MD simulations,

where stability of the dynamics is required to continuously sample the configurational

space. To assess this capability, we carry out the challenging test of energy conservation

during microcanonical ensemble; that is, we test whether the NNIP forces are smooth

enough to allow high-accuracy time integration so that total energy is conserved during
4 Cell Reports Physical Science 2, 100359, March 24, 2021
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Figure 1. Basic testing and interpolation testing of NNIP

(A) Testing errors in total potential energies.

(B) Testing errors in atomic forces. The distribution of both testing errors largely follows a Gaussian

distribution, as shown in the histogram plot and corresponding normal distribution fitting. Color

intensities of 2D bins indicates the counts of data points. As the NNIP is mainly targeted for MD

simulations on molten NaCl, testing errors are reported based on unseen configurations from

normal MD trajectories, such as liquid (disordered) structures from 900 K to 1,300 K and crystalline

structures near the melting point.

(C) Conservation of total energy in anNVEMD simulation. The MD simulation was performed at T =

1,530 K at a time step of 1 fs. The total energy drift within 1 ns is on the order of 10�3 meV/atom,

suggesting excellent stability of high-temperature dynamics.
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a simulation. Specifically, in a properly integrated (at a time step of 1 fs) NVEMD simu-

lation without any thermostats, good atomic force predictions should in principle

conserve the total energy, althoughpoor or noisy force predictionsmay lead to spurious

atomic velocities, breaking energy conservation. Note that smoothness of the predicted

potential energy surface and conservation of the total energy is not a sufficient condition

but a necessary condition of an accurate NNIP model. We performed MD simulations

under NVE ensemble with 1,728 atoms at �1,530 K (well above the melting point,

thus high-temperature dynamics), with a time step of 1 fs. As seen in Figure 1C, on

the timescale of 1 ns, the total energy drift during this simulation is only on the order

of 10�3 meV/atom, demonstrating excellent stability of high-temperature dynamics.

These evaluations on both the discrete configurations in the testing dataset and dy-

namicMD trajectories at high temperature thus suggest that the currentNNIP is capable

of simulating molten NaCl with energy/force predictions on DFT-level accuracy.

NNIP predictions on the liquid-phase atomic structures

Next,we test ourNNIP in termsof various liquidproperties that areoften consideredwhen

identifying candidate molten salts. We first examine the liquid structures from both our

AIMDsimulations andNNIP-MDsimulations. To effectively describe the average structure
Cell Reports Physical Science 2, 100359, March 24, 2021 5



Figure 2. Radial distribution functions (RDFs) of liquid NaCl at 1,150 K

All three partial RDFs predicted by NNIP-MD using a 512-atom supercell excellently match those

from AIMD. Both AIMD and NNIP-MD were performed under NVT ensemble at T = 1,150 K. The

equilibrium supercell lengths for AIMD and NNIP-MD are 12.38 Å and 24.91 Å, respectively.

Experimental measurements were adopted from Edwards et al.14 and Biggin and Enderby.15
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of liquidNaCl,wecomputedpartial radial distribution functions (RDFs) for all three atomic-

pairs (Na-Na,Na-Cl, andCl�Cl). Specifically,wecarriedoutbothAIMDandNNIP-MDsim-

ulations under the same conditions, such asNVT ensemble (constant number of atomsN,

volumeV,andtemperatureT)withT=1,150Kandatequilibriumvolume.After10psequil-

ibration,averageRDFswerecomputed fromMDtrajectoriesover66psand90ps forAIMD

andNNIP-MD, respectively. As shown in Figure 2, partial RDFs fromNNIP-MD simulation

(black solid line) almost overlap with those from AIMD simulation (yellow circles with

shaded bands indicating the standard deviations), and both AIMD and NNIP-MD show

the same first and second peak positions (RNaNa
1 = 3:9�A; RNaCl

1 = 2:7�A; RClCl
1 = 4:0�A;

RNaNa
2 = 8:1�A; RNaCl

2 = 6:2�A; RClCl
2 = 8:0�A) and overlapping shoulders after the first

peak in both Na-Na and Cl-Cl RDFs, thus suggesting excellent agreement between

NNIP-MDandAIMD. Partial RDFs can also be deduced fromneutron diffractionmeasure-

ment using isotopic substitutionmethod;14,15 the only publishedmeasurement formolten

NaCl (T= 1,148 K) wasmade in the 1970s14 andwas later correctedwith updated neutron

scattering amplitudes for Cl isotopes.15 As seen in Figure 2, both AIMD andNNIP-MDare

consistent with experimentalmeasurements in the first and secondpeak positions and the

profile after the first minimum; however, some deviations in peak amplitude and shape

appear below the first minimum. Such deviations have also been observed in a previous

DFT study using various exchange-correlationdensity functionals (see Figure S4 for a com-

parison between different AIMD simulations).43 The short-range RDFs in experimental

measurements may be limited by a small Q cutoff (1.5–12 �A
�1
),14 which points to the

need for better measurements with higherQ cutoff and higherQ resolution.
6 Cell Reports Physical Science 2, 100359, March 24, 2021
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Figure 3. Equations of state

Equation of state (EOS) at (A) 1,100 K, (B) 1,150 K, and (C) 1,200 K. All NNIP-MD simulations were performed for 1 ns, and each data point was averaged

over the last 0.9 ns. AIMD simulations were carried out for 40 ps, and each data point was averaged over the last 36 ps. Error bars correspond to standard

deviations.
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NNIP predictions on the equation of state

The equation of state (EOS) is another important metric for testing relations between

thermodynamic state variables. Figure 3 shows the relationship between pressure P

and the average atomic volume V at three temperatures. As can be seen from this

figure, the NNIP-MD results are in excellent agreement with AIMD in the pressure

range 3.0 GPa to �0.5 GPa. Note that deviations at negative pressure range are

slightly larger than those in the positive pressure range. This is because configura-

tions under negative pressures were not included in our training dataset. By fitting

both AIMD and NNIP-MD data to the Murnaghan equation of state,

PðVÞ = B

B0

��
V

V0

��B0

� 1

�
; (Equation 5)

we can further compare the bulk modulus B (B0 is the first derivative of Bwith respect

to pressure) and equilibrium volume V0. For the three temperatures considered here,

the bulk moduli from AIMD simulations are 4.8 GPa, 4.2 GPa, and 4.3 GPa, although

the NNIP predictions are 5.3 GPa, 5.1 GPa, and 5.0 GPa, with increasing tempera-

ture, respectively. On average, the NNIP predicted bulk moduli are �15% higher

than that from AIMD. Such generally higher bulk modulus should be due to the slight

deviations in the negative pressure range, which increases the slope of Equation 5.

Nevertheless, the NNIP-predicted equilibrium volumes at the three temperatures

are 29:3 , 29:6 , and 30:1 (in units of �A3=atom), in excellent agreement with the

AIMD results 29:3 , 29:7 , and 30:1, respectively. From these equilibrium volumes

at three closely spaced temperature values, we can further estimate the volumetric

thermal expansion coefficient,

aV =
1

V

�
vV

vT

�
P : (Equation 6)

Both NNIP and AIMD predict a volumetric thermal expansion coefficient of

2:73 10�4 K�1 for T = 1,150 K, close to the experimentally measured44 aV of

3:13 10�4 K�1.

Following the above discussion on the thermal expansion coefficient, we further

compare mass densities at various temperatures. To efficiently reach equilibrium

volumes at different temperatures, all AIMD (64 atoms for 120 ps), NNIP-MD

(1,728 atoms for 200 ps), and Fumi-Tosi MD (1,728 atoms for 200 ps) simulations

were performed under NPT ensemble (constant number of atoms N, pressure P,
Cell Reports Physical Science 2, 100359, March 24, 2021 7



Figure 4. The mass density of molten NaCl at different temperatures

NNIP predictions agree very well with AIMD results. Compared to experimental measurement,45

both NNIP and DFT overestimate the mass densities by �7% although Fumi-Tosi potential29

underestimates the mass density by �10%. Error bars correspond to standard deviations.
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and temperature T), and the mass densities were averaged over the last 100 ps for

each temperature. As shown in Figure 4, over a wide range of temperatures (1,100

K–1,300 K), NNIP once again shows exceptionally good agreement with AIMD. In

comparison to experimental measurement,45 both AIMD and NNIP slightly overes-

timate the mass densities by�7%, although the Fumi-Tosi potential underestimates

the mass density by �10%. It should be noted that, because NNIP prediction using

1,728 atoms is in excellent consistency with AIMD results using 64 atoms, the density

deviations are unlikely due to finite size effects. Although fluctuations in small-cell

simulations are generally large, the time-averaged density over a long simulation

is expected to converge to that of large-cell simulations. This has been indepen-

dently demonstrated using the Fumi-Tosi potential (see Figure S5).29 We believe

the density deviations of AIMD simulations from experimental measurements could

be attributed to the approximations involved in DFT calculations, such as electronic

exchange-correlation functional and dispersion corrections. It has been highlighted

in several previous works23,43 that the dispersion interaction shows a significant ef-

fect on calculated density.

NNIP predictions on heat capacity

The excellent heat transfer performance of molten salts plays an essential role in

both MSR and CSP applications. Among others, heat capacity, self-diffusion coeffi-

cient (or viscosity), and thermal conductivity are the most relevant properties con-

trolling heat transfer performance of liquid coolants and heat storage medium.

We first compare our NNIP predictions on heat capacity under constant pressure

(CP) with experimental measurement and the predictions from the Fumi-Tosi poten-

tial.29 To this end, independent MD simulations (with 4,096 atoms) under NPT

ensemble were carried out in the temperature range from 1,070 K to 1,510 K at

zero pressure. The average enthalpy H at each temperature was then calculated

over 100 ps, and the constant pressure heat capacity was evaluated according to

CP =

�
vH

vT

�
P: (Equation 7)
8 Cell Reports Physical Science 2, 100359, March 24, 2021



Figure 5. Heat capacity of molten NaCl over the temperature range from 1,070 K to 1,510 K

Heat capacity was calculated from the polynomial fit to the temperature-dependent enthalpy (see

Figure S6). A 100-ps-long MD simulation was carried out at each sampled temperature. The largest

difference between NNIP predictions from third-order polynomial fitting and experimental

measurements is �2%. NNIP also predicts a consistent temperature dependence of CP with

experimental measurement.
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Figure 5 shows both the calculated and experimental CP. The change of H with

respect to T was calculated from a third-order polynomial fit to all H-T data points

(see Figure S6). As can be seen, our NNIP-predicted CP is overall in good agreement

with experimental measurements (blue line),46 and the largest deviation is �2%.

Furthermore, the temperature dependence of CP from NNIP prediction is in excel-

lent agreement with experimental results. In contrast, although the predictions

from the Fumi-Tosi potential29 show smaller errors at certain temperatures, the pre-

dicted temperature dependence significantly deviates from the experimental

measurement.
NNIP predictions on self-diffusion coefficients

The self-diffusion coefficient was calculated by evaluating the slope of mean square

displacement (MSD) with respect to time. Due to high computational cost, especially

for AIMD simulations, theMSDwas determined bymultiple-time-origin averaging.20

All AIMD, NNIP-MD, and Fumi-Tosi MD simulations were carried out under the NVT

ensemble for �180 ps. Figure 6 shows the diffusion coefficients (on a natural loga-

rithmic scale) versus 1/T from both computations and from experimental measure-

ments.16 As can be seen, NNIP predictions are generally consistent with AIMD re-

sults, demonstrating ionic self-diffusion coefficients on the order of 10�5 to 10�4

cm2/s. Such predictions are on the same order of magnitude with experimental mea-

surements.16 Furthermore, from the Arrhenius plots in Figure 6, both computational

and experimental measurements show similar slopes and thus similar activation en-

ergies of self-diffusion. It is also interesting to note that both our computations and

experimental measurement consistently show a smaller diffusion coefficient of Cl�

ions as compared to Na+ ions. We note that, despite the overall agreement (order

of magnitude, slopes, and relative magnitudes between Na+ and Cl�) with experi-

mental measurements,16 our NNIP-MD (or AIMD) predictions slightly underestimate
Cell Reports Physical Science 2, 100359, March 24, 2021 9



Figure 6. Self-diffusion coefficients of molten NaCl

Diffusion coefficients are plotted on a logarithmic scale. The temperatures corresponding to the

horizontal axis are labeled on the top. Error bars on calculated values represent standard

deviations. The shaded band indicates the uncertainties of experimental measurement.16 For

clarity, error bars associated with the predictions from the Fumi-Tosi potential29 are not shown.
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the diffusion coefficients. Such a tendency is in line with the slight overestimation of

mass density as discussed above, indicating the effects of dispersion corrections on

the bonding strength. Although the Fumi-Tosi potential29 shows similar prediction

errors in Na+ diffusion coefficients (especially at the high temperature end), the pre-

diction errors in Cl� diffusion coefficients are smaller. Self-diffusion coefficients can

also be converted into viscosity via relations such as Stokes-Einstein equation, offer-

ing important guidelines in designing MSR with appropriate salt hydrodynamic

properties.
NNIP predictions on thermal conductivity

Thermal conductivity was calculated using the reverse non-equilibrium MD (reverse

NEMD) method by Muller-Plathe.47 Unlike the usual NEMD approach to calculate

thermal conductivity, which imposes a temperature gradient on the system and ob-

serves the resultant heat flux, reverse NEMD imposes heat flux and measures the

temperature gradient as the system’s response. Specifically, in the reverse NEMD al-

gorithm, a temperature gradient is induced by periodically exchanging kinetic en-

ergy between two atoms in two different regions. For example, if a periodic simula-

tion box is divided into N bins (N is an even number) along dimension z, then the

atom with the highest kinetic energy in the 1st bin and the atom with the lowest ki-

netic energy in the (N/2+1)th bin are identified to exchange kinetic energy every

certain number of steps (kinetic energy should be conserved in cases of different

atomic masses). This eventually establishes two symmetric temperature gradients

dT=dz (see Figure 7A for examples). Because heat flux can be accurately calculated

based on the exchanged kinetic energies, thermal conductivity is then calculated

following

l = � Q

2tlx lydT
�
dz

; (Equation 8)

where Q is the total kinetic energy exchanged during a time period of t, lx ly is the

cross-sectional area perpendicular to z dimension, and the factor 2 is to account

for the periodicity of the simulation box. Reverse NEMD generally leads to better

convergence performance than the conventional NEMD approach. Following such

a reverse NEMD approach, we carried out NNIP-MD simulations under the NVE
10 Cell Reports Physical Science 2, 100359, March 24, 2021
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Figure 7. Thermal conductivity of molten NaCl

(A) Three examples of temperature profiles along the z dimension of the simulation box. Error bars

represent standard deviations.

(B) Comparison of thermal conductivity between our NNIP predictions, experimental

measurements,48 and MD simulations using other empirical potentials (MD-1 Fumi-Tosi,49 MD-2

Fumi-Tosi,50 and MD-3 dipole polarizable potential51). Error bars represent standard deviations.
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ensemble with equilibrium volumes over the temperature range from 1,100 K to

1,350 K. At each temperature, 10 independent simulations were carried out to

obtain the average thermal conductivity. The supercell contains 3,456 atoms (the

width/length ratios vary from 3.7 nm/7.4 nm to 3.8 nm/7.6 nm due to thermal expan-

sion). All simulations were carried out over sufficient time (300 ps) to establish a

converged temperature gradient. Figure 7A shows three examples of the tempera-

ture profiles established at 1,100 K, 1,200 K, and 1,300 K, respectively. As can be

seen, under the imposed heat flux, all systems exhibit a linear temperature profile;

thus, dT=dz can be determined by fitting to such a temperature profile. Figure 7B

compares our NNIP predictions with experimental measurements,48 as well as other

classical MD simulation results based on the Fumi-Tosi49,50 potential and dipole

polarizable potential.51 The NNIP predictions largely lie between the experimental

measurements and Fumi-Tosi predictions, suggesting considerable improvements

over this widely used empirical potential. We also note that the dipole polarizable

potential51 makes an excellent prediction at the single temperature point of 1,300

K, largely consistent with our NNIP prediction. Such improved prediction can be

attributed to the extended representability of the polarizable potential form as

well as the ab initio force-matching fitting procedure using proper configurations.

Both aspects can now be systematically handled with artificial NNs, as demonstrated

by our NNIP.
NNIP predictions on melting/freezing point

Last, but not least, we evaluate themelting/freezing point of our NNIPmodel. Due to

safety and efficiency considerations in MSR design, the melting/freezing point has

been identified as the most important thermophysical property in choosing candi-

date salt systems.52 Therefore, it is crucial for an interatomic potential model to cap-

ture the correct melting/freezing phase transition. We determined the melting/

freezing point through a series of NVE MD simulations on coexisting crystal-liquid

phases.53-55 Specifically, initial (100) crystal-liquid interfaces were constructed by

filling half of the periodic supercell with crystalline NaCl molecules (based on the

equilibrium lattice constant at the corresponding temperature) and the other half

with liquid NaCl molecules (based on the equilibrium density at the corresponding
Cell Reports Physical Science 2, 100359, March 24, 2021 11
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Figure 8. Melting/freezing temperature of NaCl

(A) Two examples of coexisting phases. Liquid (also point defects in crystalline NaCl) and crystal

phases are colored in red and green, respectively.

(B) Melting temperature versus pressure. The zero-pressure melting temperature (red dot marker)

is determined as 1,140 K, which is 66 K higher than that of experimental measurement (1,074 K).56

Melting/freezing point predicted from the Fumi-Tosi potential is from Zykova-Timan et al.55 Error

bars represent the standard deviations of calculated data points, although the shaded band

represents the standard deviations of experimental measurements.
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temperature). The simulation box contains �2,000 atoms with dimensions of

�17.6 nm3 1.76 nm3 1.76 nm. Then, the systemwas slightly equilibrated at an esti-

mated melting temperature under NPT conditions at zero pressure. With this equil-

ibrated configuration, internal energy variations were introduced in subsequentNVE

MD simulations to probe the local crystal-liquid phase boundary (Clapeyron equa-

tion). Partial crystallization or melting occurred in these NVE MD simulations, but

the systems always remained in a two-phase coexisting state for a simulated time

of 2 ns. Figure 8A shows two typical examples of the two-phase coexisting system,

demonstrating partial crystallization and partial melting duringNVEMD simulations.

Figure 8B plots the observed melting temperature versus observed pressure. As can

be seen from the linear fitting of this local phase boundary, the estimated melting/

freezing point at zero pressure is 1,140 K, which is 66 K higher than that from exper-

imental measurement (1,074 K).56 This difference between our NNIP prediction and

the experimental result is within a reasonable agreement, especially when consid-

ering that AIMD simulations included dispersion corrections on crystalline structures

such that an increased crystal bonding (also see Table 1) and thus higher melting

point is expected (compared to AIMD simulations without dispersion corrections).

The Fumi-Tosi potential29 was fitted to experimental crystal properties; thus, it

shows a closer prediction55 to the experimental measurements. We emphasize

that performing melting point predictions with this technique would have been pro-

hibitively expensive with AIMD due to size (O ð1000Þ atoms) and simulation time (ns)

requirements. As such, NNIPs can also be seen as an approach to extrapolate the
12 Cell Reports Physical Science 2, 100359, March 24, 2021



Table 1. Comparisons of various crystalline phase properties

DFT-D2 Exp. NNIP DFT DFT-spin

a0 (Å) 5.657 5.64a 5.658 5.693 5.691

Ecoh (eV/ Na-Cl pair) 7.19 6.62b,c 7.07 6.71 6.29

C11 (GPa) 82.4 49.47d 78.2 46.8 50.5

C12 (GPa) 13.4 12.88d 10.9 10.1 10.7

C44 (GPa) 13.1 12.87d 11.1 11.5 10.2

gð100Þ ðmeV =�A2Þ 17.4 – 16.6 – –

gð110Þ ðmeV =�A2Þ 29.1 – 27.9 – –

gð111Þ Cl ðmeV =�A2Þ 43.4 – 25.2 – –

gð111Þ Na ðmeV =�A2Þ 27.6 – 20.0 – –

ESchottky;1NN
f (eV) 1.68 – 1.49 – –

ESchottky;2NN
f (eV) 2.14 – 1.90 – –

ESchottky;3NN
f (eV) 2.18 – 1.97 – –

ESchottky;4NN
f (eV) 2.31 – 2.10 – –

ESchottky;5NN
f (eV) 2.34 – 2.13 – –

ECsCl
coh (eV/ Na-Cl pair) 7.01 – 6.97 – –

EZincblende
coh (eV/ Na-Cl pair) 6.84 – 6.82 – –

aBarrett and Wallace57 measured at room temperature
bChase46

cLi et al.58

dLide et al.59 measured at room temperature
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AIMD predictions to relevant scales for applications, and they can be used to

compare and rank different underlying theoretical approximations (such as ex-

change and correlation functional) according to novel experimental benchmarks.

Through these extensive validations, we see that our NNIP not only accurately repro-

duces AIMD results but also agrees well with experimental measurements; there-

fore, we conclude that this NNIP is capable of predicting the structural, thermophys-

ical, and transport properties of molten NaCl in relevant temperature ranges.
NNIP predictions on crystalline-phase properties

To further show the robustness of the NNIP, we now validate common properties of

the B1 phase NaCl. Figure 9A shows the 0 K equation of state for B1 phase over lat-

tice constants strained from �11.6% to +17.0%. Overall, NNIP predictions are in

excellent agreement with DFT calculations except that deviations appear to be

increasing when the potential energy is above roughly �3.3 eV/atom. A similar phe-

nomenon has also been observed in Figure 1A, where the testing errors become

more scattered with increasing potential energy. This is a typical issue due to un-

even/insufficient sampling of those high-energy configurations in the training data-

set. If high-energy configurations are important in practical applications, one may

simply increase the proportion of these configurations in the training dataset, adopt

proper weighting strategy on training dataset,60 or even take the advantage of well-

established empirical potentials.61 The derived bulk modulus from fitting to the

Birch-Murnaghan equation of state are 29.6 GPa and 31.7 GPa for DFT and NNIP,

respectively. Once again, our NNIP prediction agrees well with DFT calculations;

however, the DFT prediction itself is �25% higher than the experimentally derived

bulk modulus at zero pressure (24.0 GPa).62 Such a difference may be due to the

addition of van der Waals corrections in our DFT calculation, which leads to a

much higher C11 value than that without dispersion correction (see Table 1 for de-

tails). Figure 9B shows the diatomic interactions as a function of the interatomic dis-

tance: Na-Na interactions and Cl-Cl interactions show excellent agreement with DFT
Cell Reports Physical Science 2, 100359, March 24, 2021 13
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Figure 9. Potential energy as a function of interatomic distance

(A) Equation of state for the B1 phase NaCl at zero temperature.

(B) Diatomic interactions.
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results up to the potential energy level of �25.0 eV, although Na-Cl interactions

show relatively larger deviations below the equilibrium distance. Such deviations

in Na-Cl interactions also suggest an insufficient sampling of the Na-Cl dimer config-

urations when considering many other Na-Cl pairs embedded in the ionic liquid.

Nevertheless, these diatomic interactions are sufficient to provide short-range

repulsive interactions, especially when temperatures are well above the melting

point.

Table 1 shows more comparisons of various B1 phase properties as predicted by

NNIP and DFT simulations and as measured experimentally. We also include results

from DFT calculations without van der Waals corrections (denoted as DFT) and spin-

polarized DFT calculations (no dispersion corrections, denoted as DFT-spin) for

comparison. All DFT-predicted lattice constants are slightly larger than the experi-

mental measurement,57 even though the latter was measured at room temperature.

Among DFT predictions, those without dispersion corrections generally lead to

slightly larger lattice constants. Our NNIP predicts a lattice constant nearly the

same as the reference DFT calculation, DFT-D2. The cohesive energy Ecoh of the

B1 phase was calculated as

Ecoh = nENa + nECl � nENaCl; (Equation 9)

where n is the number of Na-Cl pairs and ENa, ECl, and ENaCl are the energies of an

isolated Na atom, isolated Cl atom, and the bulk B1 phase, respectively. DFT predic-

tions for the cohesive energy decrease going from DFT-D2, DFT, to DFT-spin. This is

because dispersion corrections increase bonding in the bulk phase although spin-

polarization lowers the energy of isolated atoms with negligible effects on the ener-

getics of the bulk phase. The experimental value46,58 is close to DFT results without

both the vdW correction and spin polarization, possibly due to the cancellation of

errors. As expected, our NNIP prediction agrees well with that of dispersion-cor-

rected DFT results. Elastic constants were calculated using the finite deformation

method. As can be seen in Table 1, our NNIP predictions are consistent with DFT-

D2 results. As adding dispersion corrections leads to stronger bonding in the bulk

phase, DFT-D2 predictions are �70%, �30%, and �20% higher in C11, C12, and

C44, respectively, in comparison to those without dispersion corrections. As for

the comparison with experimental measurements59 available at room temperature,

all DFT calculations need to be improved for better agreement.
14 Cell Reports Physical Science 2, 100359, March 24, 2021
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Transferability of NNIP

Transferability is an important aspect in the development and application of an inter-

atomic potential. In the following, we demonstrate that our NNIP shows good trans-

ferability to a wide range of unseen configurations. First of all, we compare the NNIP

energies of randomly picked configurations from high-temperature, high-pressure

liquids (2,000 K+2 GPa and 3,000 K+5 GPa), which were not considered in our

training data, to corresponding DFT energies. As can be seen in Figure S7, the

mean absolute errors are generally less than 3 meV/atom, suggesting excellent

transferability to unseen liquid conditions. Second, we calculate the cohesive en-

ergies of CsCl and zincblende structures using our NNIP and compared them to

DFT results (see Table 1). Again, the comparisons show excellent agreement, sug-

gesting robustness in describing unseen crystalline structures. Third, we further

test our NNIP’s transferability on the Schottky defect formation energies. As shown

in Table 1, in comparison with DFT calculations, our NNIP prediction correctly cap-

tures the trend of formation energy change with respect to VNa-VCl separation (up to

5th nearest neighbor distance), with prediction errors % 10%. Finally, we test our

NNIP with surface energies. To this end, we used slab configurations with a vacuum

thickness of 24 Å separating periodic images. Surface energies are calculated ac-

cording to

g =
1

2A

�
En �NnðEn � En�1Þ

ðNn �Nn�1Þ
�
; (Equation 10)

where n = 12 is the number of layers, En is the potential energy of the slab with n

layers, En�1 is the potential energy of the slab with n-1 layers, Nn is the number of

atoms in the slab with n layers, Nn�1 is the number of atoms in the slab with n-1

layers, and A is the surface area. The second term in the bracket of Equation 11

represents the corresponding bulk energy. A flat surface was considered for

both (100) and (110) surfaces. The (111) surface may terminate with either Cl spe-

cies or Na species, and we adopted the octopolar reconstructions63 to eliminate

the long-range dipole interactions and maintain charge neutrality (see Figure S8

for the atomistic configurations of these surface structures). As can be seen in

Table 1, our NNIP predictions on both (100) and (110) surface energies only differ

by �1:0meV=�A2 (or �16 mJ/m2) from DFT calculations, although the predictions on

(111)-Cl and (111)-Na surface energies differ by 18:2 meV=�A2 (or 291 mJ/m2) and

7:6 meV=�A2 (or 122 mJ/m2), respectively. This difference in NNIP prediction error

can be understood by considering that both (100) and (110) surfaces have local

atomic neighborhoods with a 1:1 Na/Cl ratio but less neighboring atoms; thus,

the local atomic environment still shares certain similarities with configurations in

our training dataset. In contrast, for an octopolar (111) surface, the flat termination

is reconstructed such that the outermost layer only contains 1/4 of the full lattice

sites, although the two layers below contain 3/4 and 4/4 of the full lattice sites,

respectively. Compared to both liquid and B1 structures, atoms on the octopolar

(111) surface show quite different local atomic environments in terms of coordina-

tion number and species involved. Therefore, through these extensive property

validations on liquid and crystalline phases, we have tested the limits of our

NNIP for both interpolation within the configuration space close to the training

set and for extrapolation out of it. Given the excellent transferability for a wide

range of configurations of interest, we believe this NNIP is highly capable of simu-

lating molten NaCl as well as the crystalline phase.

DISCUSSION

To recap, we have applied the Behler-Parrinello NN framework34 to develop a

robust interatomic potential for a prototype NaCl molten salt system. Through
Cell Reports Physical Science 2, 100359, March 24, 2021 15
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proper design of the training dataset and minimizing a loss function considering

both potential energy and atomic forces, our NNIP achieves a DFT-level accuracy

in energy/force predictions and offers excellent stability of MD simulations under

various ensembles. Meanwhile, its computational cost is at least three orders of

magnitude lower than AIMD and only one order of magnitude higher than the

Fumi-Tosi potential (see Figure S9). Extensive material property validations,

including the structural/thermophysical/transport properties of molten NaCl and

crystalline phase properties, demonstrate remarkable and consistent agreement

between NNIP-MD and AIMD simulations. Furthermore, these NNIP-MD-based

property evaluations also agree well with a wide range of experimental measure-

ments, demonstrating the potential of NNIP for robust molten salt modeling.

We emphasize that a medium-range truncated NN, even without any explicit

charge learning, appears sufficient to capture the effects of long-range electro-

static interactions in molten salts. This is both due to sufficient screening of the

electrostatic potential thanks to the molten salt medium and because NNIP is

trained with energies and forces obtained from AIMD calculations that consistently

include the long-range interactions. However, if accurate energetics is crucial,

explicit treatment of the Coulomb interaction may be needed for ions with a sep-

aration larger than the cutoff distance and in a lesser electrostatically screened me-

dium than the molten salt. On the opposite end, our NN learning strategy also

stressed the sub-nearest-neighbor interactions, as atoms in the liquid phase may

gain enough kinetic energy to enter such non-equilibrium ranges.

Regarding practical applications, several challenges remain to be addressed by

further work. First, real-world molten salt systems are often mixtures of two or

more salts and also involve various impurities, such as fission/corrosion products.

Thus, multi-element interatomic potentials that are capable of handling extra chem-

ical complexities64,65 are highly desired. Second, a high-quality training dataset re-

quires careful validations of ab initio calculations with existing experimental results

as well as minimized convergence errors among different systems. Third, efficient

and adaptive sampling of training data (such as active learning) and deep learning

on local atomic environment descriptors66 should be explored to reduce human

bias and effort. Despite these challenges, NNIP-MD-based modeling represents a

promising pathway to mitigate the long-standing accuracy-versus-cost trade-off in

molten salt assessments. Particularly, unlike most empirical potentials, which are de-

signed for specific applications, the predictive power of NNIP can be systematically

improved by augmenting the training dataset to include various phases, defects, un-

stable states, chemical species, and so forth, thus enabling simulations to approach

one step closer to complex, real-world applications.
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Local atomic environment descriptors

In this work, we have used 30 equidistant Gaussian centers for the radial part and 6

equidistant Gaussians with 6 equally spaced qs centers for the angular part of the

descriptor. Considering the species resolution, we have used 60 radial (30 Na-

Na + 30 Na-Cl) and 108 angular components (636 Na-Na-Na + 636 Na-Na-Cl +

636 Cl�Na-Cl) or a vector of dimension 168 that describes the local atomic environ-

ment of each atom (see Table S2 for the values of other parameters used). Also see

Note S1 and Figure S10 for more discussions. We note that descriptor function

choice is not unique; other definitions67,68 are equally valid as long as the local

atomic environment is described accurately.
Ab initio quantum mechanical calculations

All configurations in our training/testing/validation dataset were generated using

the Vienna Ab initio simulation package (VASP).69-72 In our ab initio calculations,

generalized gradient approximation (GGA) in the form of Perdew-Burke-Ernzer-

hof (PBE)73 was adopted for the exchange-correlation functional. Core electrons

are modeled by projector-augmented wave (PAW) pseudo-potentials74,75

(Na_pv: 2p62 s1, Cl: 3 s23p5) with an energy cutoff of 600 eV. Brillouin zone inte-

gration was performed using the G point only. Gaussian smearing with a width of

0.05 eV was used for the partial occupancies of states. Based on a previous

study,43 van der Waals corrections with the DFT-D2 scheme of Grimme76 were

added to DFT energy. The convergence criterion for electronic self-consistent

calculations is 0.1 meV. AIMD simulations were carried out under either the

NVT (Nose-Hoover thermostat) or the NPT (Langevin thermostat) ensemble

with a timescale of 101–102 ps at a time step of 1–3 fs. Configurations were ex-

tracted every �30 fs. A 64-atom supercell was used for molten NaCl AIMD (the

non-1:1 Na/Cl ratio supercells generally have less than 64 atoms), although a

relatively larger supercell size (216 atoms) was used for crystalline NaCl calcula-

tions. We note that cell-size effects could be significant for dynamical properties

from AIMD simulations; however, small supercells are acceptable for NN training,

as the training process only considers the total energy and atomic forces from

different configurations.
NN training

NN training consists of searching for a set of optimal model parameters (weights and

biases) that minimizes a predefined cost function, typically finding a local minimum

rather than the global minimum value. Here, we use a quadratic loss on total en-

ergies and atomic forces as well as an L1 norm regularization,

Cb =
X

i˛batch

"�
EDFT
i � ENN

i

�2
+ cf

XNat

j = 1

	
FDFT
ij � FNN

ij


2
#
+ c1 kWk1; (Equation 11)

where the subscript b in Cb indicates that the cost function is defined over a mini-

batch (stochastic gradient descent method), Nat is the total number of atoms in

the system, EDFT
i is the target energy (from the DFT calculation) of configuration i,

ENN
i is the corresponding NN energy prediction, FDFT

ij is the target force (from the

DFT calculation) of atom j in configuration i, FNN
ij is the corresponding NN force pre-

diction computed analytically through the chain rule, kWk1 is the L1 norm regulari-

zation term that helps reduce redundant weight parameters to prevent overfitting,

and cf and c1 are parameters to tune the weight of force-based loss and L1-regula-

rization-based loss, respectively. cf = 0:1 and c1 = 0:01 were adopted in this work. L1

regularization was adopted in particular with the earlier cycles of the training dataset

in mind, when the network size (�15k parameters) was comparable to the training
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dataset size. All our training was carried out using the PANNA package,42 which also

provides an implementation of a new ‘‘pair_style panna’’ in LAMMPS77 for NNIP-

based MD simulations. Performance tests using a local computing cluster (64 cores

as in 2 nodes, each with 2 3 16 cores of Intel Xeon 2.1 GHz and 128 GB RAM) on a

range of cell sizes (from 64 atoms to 1,024 atoms) show that the cost, in terms of CPU

(central processing unit) hours per atom per MD step, for the chosen NNIP architec-

ture and for Fumi-Tosi empirical potential29 are on the order of 10�6 and 10�7,

respectively, making NNIP only one order of magnitude more costly than the

Fumi-Tosi potential (see Figure S9).29
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