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A B S T R A C T   

The success of electric vehicles depends largely on energy storage systems. Lithium-ion batteries have many 
important properties to meet a wide range of requirements, especially for the development of electric mobility. 
However, there are still many issues facing lithium-ion batteries. One of the issues is the deposition of metallic 
lithium on the anode graphite surface under fast charging or low-temperature conditions. Lithium plating re-
duces the battery life drastically and limits the fast-charging capability. In severe cases, lithium plating forms 
lithium dendrite, which penetrates the separator and causes internal short. Significant research efforts have been 
made over the last two decades to understand the lithium plating mechanisms. However, the lithium plating 
mechanisms have not yet been fully elucidated. Meanwhile, another challenge in the development of fast 
charging technologies is to identify degradation mechanisms in real-time. This includes real-time detection of 
lithium plating while the battery is being charged. Accurate detection and prediction of lithium plating are 
critical for fast charging technologies. Many approaches have been proposed to mitigate lithium plating, such as 
adopting advanced material components and introducing hybrid and optimized charging protocols. Nevertheless, 
most detection techniques and mitigation strategies are only used for fundamental research with limited pos-
sibilities in large-scale applications. To date, there is still a lack of a comprehensive review of lithium plating, 
reflecting state of the art and elucidating potential future research directions. Therefore, in this article, we 
provide a snapshot of recent advances in lithium plating research in terms of mechanism, detection, and miti-
gation to fill this gap and incentivize more innovative thoughts and techniques. In the present study, the 
mechanisms of lithium plating and approaches used to characterize and detect it in different applications are 
carefully reviewed. This review also provides a summary of recent advances in model-based approaches to 
predict lithium plating. Based on the gathered information, the advantages and drawbacks of each model are 
compared. The mitigation strategies for suppressing lithium plating at different levels are studied. Finally, we 
highlighted some of the remaining technical challenges and potential solutions for future advancement.   
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1. Introduction 

The transportation sector is one of the largest contributors to global 
greenhouse gas (GHG) emissions [1–3]. The negative effect of GHG on 
human life and the environment provides a strong driving force for 
reducing GHG emissions [4]. Transportation electrification is a prom-
ising solution to alleviate the growing concern about GHG emissions. 
More and more electric vehicles (EVs), hybrid electric vehicles (HEVs), 
and plug-in hybrid electric vehicles (PHEVs) have been developed and 
deployed as alternatives to traditional internal combustion engine (ICE) 
vehicles [4–6]. The success of transportation electrification depends 
largely on energy storage systems. As one of the most promising energy 
storage systems, lithium-ion batteries (LiBs) have many important 
properties to meet the wide range of requirements of electric mobility 
[7,8]. The challenging requirements for further development of the LiB 
system are longer life, fast charging, low-temperature charging, 
self-recovery capability, and safety performance. In fact, according to 
the literature, these requirements are related to the aging mechanisms of 
lithium plating and anode kinetics. Precise diagnosis, prognosis and 
understanding of the mechanisms and effects of lithium plating on the 
performance of cells and battery packs are critical to the optimal design 
and safe operation of LiB systems. However, due to the complex, 
nonlinear, and path-dependent nature of battery degradation [9,10], the 
aging mechanisms are not fully understood. As a result, as shown in 
Fig. 1, lithium plating has been the subject of several levels of research, 
ranging from understanding the mechanism of lithium plating to 
demonstrate why, where, when, and under what conditions this phe-
nomenon occurs, to determining the most effective method to detect, 
predict, and prevent it. Therefore, the purpose of this article is to review 
the existing work in the literature and identify some of the fundamental 
knowledge gaps at each of these levels. 

A typical lithium-ion battery cell, as shown in Fig. 2 (A), comprises a 
composite negative electrode, separator, electrolyte, composite positive 
electrode, and current collectors [11,12]. The composite negative elec-
trode has a layered and planner crystal structure that is placed on the 
copper foil, which functions as a current collector. There are three types 
of carbonaceous materials: graphite, graphitizable carbon, and 
non-graphitizable carbon (hard carbon) [11,13]. Graphite is frequently 
used as a negative electrode because of its excellent performance, low 
cost, and non-toxicity [14]. The composite positive electrode (cathode) 
is a metal-oxide with a tunneled or layered structure that is coated with 

aluminum foil [15]. Aluminum acts as a current collector. The electro-
lyte plays a critical role in the lithium-ion diffusion process. The elec-
trolyte allows lithium ions to move between electrodes [13,16]. The 
separator is a piece of thin microporous polymer film (10 to 30 μm) 
soaked in the electrolyte and sandwiched between the anode and cath-
ode electrodes to prevent shorting of the two electrodes [11]. 

During the normal charging process, electrons are extracted from the 
cathode and moved to the anode through the external circuit by the 
charger. Meanwhile, Li+ions are de-intercalated from the cathode and 
moved to the anode through electrolyte [14]. During discharge, the 
entire procedure is reversed. The lithium-ion intercalation process 
(during charging) has three major steps [17]: (i) the Li+ions diffuse out 
of the cathode, (ii) the diffusion of solvated Li+ions in the electrolyte, 
(iii) de-solvation Li+ ions pass through the SEI and intercalate into the 
interlayer of graphite [18–20]. Step (iii), generally known as the 
charge-transfer process, is broken into three subprocesses [21,22]: 1) 
de-solvation of solvated Li+ions (strip off their solvation shell), 2) naked 
Li+passing through the SEI, and 3) solid-state lithium diffusion into 
graphite (Li+ reaching the anode and receiving an electron, which could 
occur at the anode-SEI interface or the anode-electronic conductor-SEI 
interface [18]) (Fig. 2 (C)). These steps would be favored in an ideal 
battery working condition. Nonetheless, in real-world applications, LiBs 
are subjected to a variety of severe working conditions, which have a 
substantial impact on battery performance and longevity. 

Battery degradation is a complicated issue involving numerous 
physical and chemical processes. Degradation is dependent on a number 
of complex mechanisms caused by a variety of factors (e.g., intrinsic and 
extrinsic) [23,24]. Intrinsic factors are classified into two categories: 
material properties and manufacturing procedures [25]. Extrinsic fac-
tors derive from the LiB operating conditions, such as charging at a high 
C-rate, high state of charge (SOC), or low temperature [23,24]. As 
shown in Fig. 3, the aging mechanisms affect not only the anode and 
cathode electrodes, but also other LiB components such as electrolyte, 
separator, binder, and current collector [25–27]. The most detrimental 
aging mechanisms impacting graphite anode electrodes are solid elec-
trolyte interphase (SEI) film growth, binder decomposition, and lithium 
plating [28–30]. According to the literature, aging mechanisms can be 
divided into three main degradation modes (DMs): loss of lithium in-
ventory (LLI), loss of active materials (LAM) [31], and loss of electrolyte 
[25,32]. In LLI, lithium ions are consumed by side reactions, such as SEI 
film formation and irreversible plating [33]. Since these lithium ions are 

Figure 1. Lithium Plating Phenomena at Different Research Levels.  
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no longer cyclable for the intercalation process, the cell capacity is 
reduced (capacity fade) [34,35]. LAM, on the other hand, is usually 
related with structural changes and material loss [23]. The active mass 
on the anode is reduced due to graphite exfoliation, electrode particle 
cracking, or dead lithium blocking the active site pathway. Furthermore, 
the active mass of the cathode is reduced due to transition metal 
dissolution, structural disordering, and electrode particle cracking [27, 
34,36,37]. The other significant cause of degradation is electrolyte loss; 
the deposited lithium on the anode interface reacts with the electrolyte, 
consuming the electrolyte [16,32]. The significant reduction in elec-
trolyte content may result in capacity and power fading at the end of the 
battery’s life. 

Among the several aging mechanisms in LiBs, one of the most 
detrimental is the deposition of metallic lithium or lithium plating on 
the graphite anode surface. This is due to the fact that lithium plating 
may not only promote further degradation, but it may also have a 
negative impact on the safety of LiBs [38]. During fast charging, 
lithium-ions can be deposited on the surface of the graphite anode rather 
than being intercalated into the interstitial space between the graphite 
anode’s atomic layers [39]. In general, the deposited lithium can be 
reversible or irreversible. The irreversible portion can react with the 
electrolyte to form a secondary SEI layer, or it can form a 
high-impedance “dead” lithium film that is electrically isolated from the 
graphite anode and remains irreversible, increasing internal resistance 

and decreasing energy density [29,40]. The irreversible portion causes 
capacity fade to be accelerated. In severe cases, the accumulated lithium 
might also form a dendrite. Dendrites can develop and pierce the 
separator [41]. The reversible portion describes the deposited lithium 
with an electrical contact on the anode interface, which can undergo 
charge transfer reaction into the electrolyte and subsequently 
re-intercalate into the anode, this process is known as lithium stripping. 
The stripping process occurs throughout the rest or discharge process 
following lithium plating [42,43]. One of the major limiting factors for 
fast charging is lithium plating. As a result, one of the major difficulties 
of fast charging technologies is to prevent or mitigate lithium plating 
during the charging process. 

Several studies have been conducted, including investigations into 
lithium plating mechanisms at various charging conditions, the devel-
opment of effective detection techniques, and the development of stra-
tegies for mitigating lithium plating. Fig. 4 (A) and (B) outline the 
various charging currents (C-rates), testing temperatures, and com-
mercial cell types used in the literature to study lithium plating. The C- 
rate is the current value that discharges a battery within 1 h from a fully 
charged state to a fully discharged state [44]. It is generally known in 
battery testing as a current value equal to a cell’s rated capacity (Ah). 
The test temperature varies from study to study and might range from 
-60 ◦C to 80 ◦C. According to our findings, the majority of the studies 
tested the cells at room temperature (25 ◦C) at 1 C. Some studies at 

Figure 2. Schematic of a Battery Cell During Charging Process and Lithium Plating Behavior under Different Operational Conditions. 
(A) In the intercalation/de-intercalation process, Li-ions intercalate into or de-intercalate from the active material between the two electrodes in a reversible manner. 
(B) Schematic of lithium plating-stripping on the graphite anode electrode. The primary SEI layer (yellow color) is formed at the anode surface during the first charge 
of the cell to protect the electrode. Because the primary SEI layer prevents electrons from making direct contact with the electrolyte, metallic lithium (red color) is 
deposited between the primary SEI layer and graphite particles. Mossy and dendritic deposition are two well-known morphologies of deposited lithium. When 
deposited lithium reacts with electrolyte solutions, the secondary SEI layer (green color) forms. (C) Under ideal conditions, the charge-transfer process consists of 
three steps: 1. de-solvation of solvated Li+ions, 2. Li+ions pass through the SEI, and 3. solid-state lithium diffusion into graphite particles. (D) At low temperature, Li+

ions move slowly in graphite due to the low diffusivities of lithium ions and the sluggish charge transfer kinetics, resulting in lithium plating. (E) At high charging C- 
rate, Li+ ions move fast and a large amount of Li+ ions accumulate at the electrode interface due to the slow lithium solid diffusion, and lithium plating occurs. (F) 
Under high SOC conditions, Li+ ions could accumulate at the surface due to fewer available sites in graphite under high SOC conditions. 
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higher C-rates and lower temperatures have also been conducted. 
Several studies investigated lithium plating at lower charging rates 

(0.3 and 0.5 C-rate) and temperature ranges from (-20 ◦C to 40 ◦C). 
However, further research on lithium plating at lower temperatures and 
greater C-rates is still necessary. Various types of commercial cells were 
employed in the literature to study lithium plating, ranging from 18650 
and 26650 types (1.5 Ah to 3.4 Ah) to large-scale pouch types (9.5 Ah to 
16 Ah). In the literature, various battery cells are used for investigating 
lithium plating. Most of them use graphite as the anode and use different 
cathode materials, such as lithium nickel cobalt manganese oxide (NMC 

111), lithium iron phosphate (LFP), and lithium cobalt oxide (LCO). 
The overarching goal of this paper is to provide a timely, compre-

hensive review of the latest progress of lithium plating in the existing 
literature, to gain a better understanding of lithium plating. Since 
graphite has been widely used as the anode in commercial LiBs, this 
work is focused on studying lithium plating in batteries that use graphite 
as the anode. The most recent studies on lithium plating on graphite 
anode are thoroughly reviewed. The mechanisms of lithium plating and 
the chemical reactions that contribute to lithium plating under various 
conditions are discussed. Recent approaches for detecting lithium 

Figure 3. Degradation Modes, Aging Mechanisms and the Affected Components in Lithium-ion Batteries. 
There are many different aging mechanisms, and they are generally divided into three different degradation modes (DMs): loss of lithium inventory (LLI), loss of 
active material (LAM) and loss of electrolyte. There is a general relationship between battery working conditions and the affected components with the corresponding 
aging mechanisms. Charging the battery at a high C-rate, a high state of charge (SOC), or at a low temperature can accelerate battery degradation [34]. 

Figure 4. Lithium Plating C-rates/ Temperature Summary. (A) Analyzing the existing literature on lithium plating based on two common testing conditions: 
temperature and C-rate. Larger dots represent a greater number of publications that used the C-rate and temperature at those dots. (B) Commercial lithium-ion 
batteries cells that have been used for lithium plating studies in the literature. 
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plating are thoroughly explored and compared. Each detection method’s 
applicability is also investigated. The existing electrochemical models 
used to simulate cell behavior in order to predict lithium plating are 
studied and explained. Additionally, optimal and common charging 
protocols are introduced. In conclusion, based on the literature, research 
gaps are identified, and suggestions for future research directions are 
provided. 

2. Lithium Plating Reactions 

Lithium plating is a parasitic process that goes along with the lithium 
intercalation process. Equation (1) shows the complete insertion of 
Li+ions into the graphite anode electrode. Intercalation is a diffusion- 
limited process, meaning that a certain amount of Li+ions can be 
embedded into the interlayer of graphite per unit time at a given tem-
perature [37]. The potential range for Li+ions insertion inside the 
graphite is 65-200 mV vs. Li+/Li [29]. Equation (2) shows partial or full 
deposition of lithium on the anode surface. The charging current is 
divided into two parts: (i) intercalation current and (ii) lithium plating 
current [38]. Ideally, the charging current affects the pace at which 
Li+ions are coming to the anode surface. However, there is a competi-
tion between the intercalation current and the lithium plating current. 
As the charging process continues, the vacancy sites in the graphite layer 
will decrease, and therefore the intercalation current is decreased while 
the lithium plating current is increased [19]. When the anode potential 
drops below 0 V, lithium plating is thermodynamically permitted and 
the rate of lithium deposition exceeds the rate of intercalation. The main 
contributors to the graphite electrode overpotential are i) charge 
transfer, ii) electrolyte concentration (mass transfer), and iii) lithium 
solid-phase in the negative electrode [39]. These are the kinetics cause 
for lithium plating. When the local potential at the negative electrode 
falls below 0 V (vs. Li+/Li) due to high SOC, high charging C-rate, and 
low temperatures, all of which polarize the electrode, lithium plating 
can occur thermodynamically [7,45]. However, because the reaction 
enthalpy is more positive, lithium plating is not as favorable as inter-
calation from a thermodynamic standpoint. Kinetic arguments alone are 
insufficient to explain lithium plating. It should be noted that LiB 
charging is a dynamic process that is not in equilibrium, especially at 
high C-rates. In thermodynamic equilibrium, the cell voltage can be 
determined by the Nernst equation [40,41]. The equilibrium potential 
difference can be used as an indicator of the thermodynamic driving 
force of plating vs. intercalation, as plating and intercalation compete 
for electrons and lithium-ions [42]. The equilibrium electrode potential 
shifts with temperature, for both lithium plating and graphite interca-
lation. This temperature variation leads to a heterogeneous distribution 
of the equilibrium potential on the anode [41]. The heterogeneous 
equilibrium electrode potential leads to heterogeneous lithium plating 
[42]. It should be noted that the plated lithium will react with electro-
lyte and consume electrolyte, and due to the heterogeneity on the 
graphite electrode, lithium electroplating may occur locally [43]. 

xLi+ + LiδC6 + xe− → Lix+δC6 (1)  

(1 − X)Li+ + (1 − X)e− →(1 − X)Li (2) 

Lithium plating has three different outcomes, which are dead 
lithium, reversible lithium, and secondary SEI film, as shown in Fig. 2 
(B) [46]. A portion of deposited lithium with lost electrical contact with 
the graphite is referred to as dead lithium [20]. Dead lithium may create 
a tortuous pathway for lithium-ion transport, reducing the active area 
for intercalation [46]. The secondary SEI film is the result of a reduction 
of solvent electrolyte (R) by the deposited lithium (Equation (4)). Both 
dead lithium and SEI film are irreversible [47] and lead to reduced 
lithium from the system and capacity loss over time [17]. Reversible 
lithium returns back to the system in the lithium stripping process 
(Equation (5)) during relaxation or resting time (Equation (3)) [48]. 
During relaxation, the reinsertion continues until all the reversible 

lithium is inserted into the anode. The lithium stripping process is an 
easier reaction than lithium deintercalation (Equation (3)). However, 
the reversible lithium in the lithium stripping process during discharge 
has two destinations, the intercalation into the graphite and transfer to 
the cathode to deliver output current [48]. 

εLi + Liδ+xC6→ Liδ+x+εC6 (3)  

R + Li →R − Li (4)  

Li→Li+ + e− (5) 

Based on the working and charging conditions, the morphology of 
deposited lithium are different, which can be classified into three types, 
including mossy, granular (particle-like), and dendritic (needle-like 
deposits) [7,47]. Morphology is determined by the current rate. Mossy 
and granular lithium form at low current rates, whereas dendrites form 
at high current rates [49]. Dendritic growth can be particularly 
destructive to the cell because it can penetrate the separator and reach 
the cathode electrode, causing an internal short-circuit and rapid heat-
ing of the cell. The generated heat may first melt dendrite and discon-
nect the short, and later it may trigger other aging mechanisms, such as 
SEI formation and electrolyte decomposition [17,50]. In terms of safety, 
the dendritic structure is considerably less safe than the mossy and 
granular lithium forms. Internal short circuits can be classified into two 
types, soft shorts and hard shorts [20]. Soft shorts normally disappear 
after discharge and do not cause cells to fail catastrophically. A soft short 
may reduce the cell’s current and voltage while simultaneously 
increasing the local temperature [51,52]. The heat generated by the soft 
short can cause an exothermic reaction with the electrolyte, causing the 
separator to melt. Hard shorts are characterized by slightly larger short 
circuit currents between the anode and the cathode due to their low 
resistance [52]. Due to a higher increase in local temperature, hard 
shorts are also more likely to contribute to thermal runaway [52]. It 
should be noted that lithium plating is a result of the actual operating 
conditions, poorly balanced cell, material properties, electrode design, 
and cell design [45]. 

3. Main Factors Affecting Lithium Plating 

Many research efforts have been undertaken to understand how, 
where and why lithium plating occurs during both normal and fast 
charging conditions. However, the mechanisms of lithium plating have 
not been fully elucidated due to its complex nature [53]. According to 
numerous previous researches, lithium plating occurs as a result of three 
major factors, which include but are not limited to: (i) hazardous 
operating conditions, (ii) cell defects, and (iii) aging of the cell (Table 1) 
[54]. 

3.1. Hazardous Operating Conditions 

Lithium plating occurs when batteries are subjected to harsh condi-
tions, such as charging at high C-rates, charging at a high state of charge 
(SOC), and charging at low temperatures [55–59]. These harsh condi-
tions can limit the charge transfer kinetics in the electrolyte and 

Table 1 
Factors Causing Lithium Plating  

Factors Causes and Conditions 

Hazardous Operating 
Conditions 

(a) Low temperatures 
(b) High charging C-rates 
(c) High SOCs 

Cell Defects (a) Cell properties and poor design, such as imbalanced 
negative to positive ratio 

Aging of the Cell (a) Leading to cell unbalance 
(b) Kinetic degradation (Capacity fade, energy fade, CE 
decrease, energy efficiency fade and resistance increase)  

X. Lin et al.                                                                                                                                                                                                                                      



Progress in Energy and Combustion Science 87 (2021) 100953

6

solid-state diffusion, causing anode potential to drop below the potential 
of lithium metal to make lithium plating happen [60,61]. Because 
hazardous operating conditions are considered to be one of the main 
factors affecting lithium plating, we will provide a comprehensive re-
view of the main parameters that accelerate lithium plating under the 
aforementioned conditions in this section. 

3.1.1. Low-Temperature Effects 
Low temperature is one of the main obstacles to fast charging. 

Charging at high C-rates can result in a severe capacity fade. Charging a 
7.5 Ah cell at 1 C-rate at 0 ◦C, for example, would result in a considerable 
capacity loss (3.6%) [59]. Generally, the power and energy densities of 
LiBs are reduced at low temperatures, particularly during the charging 
process, due to three major factors: 1. decreased ionic conductivity in 
the electrolyte; 2. poor solid diffusivity of lithium-ion in the electrode; 3. 
poor charge-transfer rate [62–64]. According to the Arrhenius equation, 
at low temperatures, the cell internal resistance increases due to 
decreasing ionic conductivity in the electrolyte; however, decreased 
ionic conductivity is not the main problem in low-temperature charging. 
Studies show that the poor Li+diffusivity within the electrodes may be 
one of the main causes for lithium plating at low temperature, where 
lithium ions accumulate at the interface between carbon particles and 
electrolyte [46,47,59]. Lithium plating occurs when the surface con-
centration of lithium ions in the graphite particles reaches the maximum 
value. The other major limiting factor in low-temperature charging is 
sluggish charge transfer kinetics. As soon as the current is applied, a 
large overpotential is produced. As anode polarization increases, the 
anode potential falls below 0 V (vs. Li+/Li), resulting in lithium plating, 
where Li+ions accumulate at the anode interface rather than intercala-
tion, as shown in Fig. 2 (D) [49,53]. In addition, the potential drop of the 
composite anode close to the separator is larger than that at other lo-
cations, indicating that the lithium plating begins on the anode close to 
the separator [46,54,65]. As a result, charging currents at low temper-
atures should be strictly controlled. The lithium deposition at low 
temperatures may be suppressed by applying a pre-heating strategy 
prior to charging the cell or by charging the cell at low rates [66]. 
Recently, Yang and coworkers developed a cell structure consisting of 
thin nickel (Ni) foils embedded within the cell. The Ni foil acts as an 
internal heating material, generating heat in less than 10 seconds. The 
structured cell can be charged to 80 % SOC without lithium plating in 15 
minutes with high charging currents (3.5 C-rate) at temperatures as low 
as -50 ◦C [66]. The same group recently developed an asymmetric 
temperature modulation (ATM) method that charges a cell by elevating 
the cell temperature to 60◦C during charging.  They showed that lithium 
plating may be prevented by a short-time exposure to 60◦C (10 minutes 
per cycle) [67]. It should be noted that, from an EV standpoint, most 
modern EVs have an effective thermal management system that prevents 
extreme operating temperatures. In addition, at low temperatures, 
electricity from the grid is often used to preheat the cells. 

3.1.2. High Charging C-rates 
Fast charging is becoming increasingly important for EVs and other 

types of applications. Fast charging, which is based on a high charging 
current (C-rate), has a significant impact on the battery’s performance 
and cyclic life due to accelerated aging. The charging rate is more likely 
to exceed the intercalation rate during fast charging. At a high C-rate, 
the amount of Li+ions moved from the cathode to the anode in the 
charge-transfer process per unit time increases [20]. Increased charging 
rates are often associated with higher polarization due to transport and 
kinetic overpotentials, making lithium plating favorable [68,69]. For 
example, to recharge a cell in 10 mins, a charge rate of 6 C is required. At 
this charge rate, Li+ions start to accumulate at the anode surface (Fig. 2 
(E)). As the high-rate charging continues, the accumulated Li+ions result 
in a high concentration of Li+ ions on the graphite surface. If the con-
centration at the anode surface is saturated, lithium plating occurs[16, 
19]. Furthermore, because fast charging uses a high charge current, 

more heat is generated. Lithium plating and temperature rise are two 
well-known issues during the fast charging process [70]. 

3.1.3. High SOC 
Each cell has an upper cutoff voltage predefined by the manufac-

turer. The failure of a battery management system (BMS) to stop 
charging beyond its upper cutoff voltage during the charging process is 
the main cause for overcharging (high SOC) of the cell. High SOC is a 
condition under which the LiB is already full, but the current keeps 
flowing to the LiB [71]. At high SOCs, as the charging continues, it is 
much easier for the concentration of Li+ions on the anode surface to 
exceed the maximum allowable level and become saturated (Fig. 2 (F)). 
Lithium starts to deposit on the anode surface once the anode is satu-
rated [19,49]. Juarez-robles et al. [72] studied the effect of high SOC on 
graphite/LCO 5 Ah pouch cells at the various cutoff voltages ranging 
from 4.2 V to 4.8 V. Cells charged beyond 4.5 V showed significant 
capacity fade, lithium plating, electrolyte decomposition, and volume 
expansion. Dendrite structures are observed in cells that were charged to 
4.6 V, 4.7 V, and 4.8 V [72]. The dendrite penetrated the porous sepa-
rator, resulting in a micro-internal short-circuit. Moreover, at high SOCs, 
the side reactions are not only limited to the anode electrode, and the 
decomposition of the electrolyte also occurs at the cathode electrode 
side. 

3.2. Cell Defects 

Many studies in the literature have emphasized the impact of the cell 
manufacturing process and cell properties on lithium plating. For 
example, Liu and coworkers showed that a cell with a negative to pos-
itive (N/P) ratio of 1.19 has a lower aging rate and less impedance rise 
than a cell with an N/P ratio of 1.06 [73]. The local cell defects can have 
an impact on lithium plating. For example, separator deformation (pore 
closure), which might occur during the cell manufacturing process or 
operation as a result of internal mechanical stress accumulation during 
charging or aging, could lead to lithium plating [74]. Furthermore, the 
kinetics at the material level can be characterized by the activation 
energy barrier. The kinetics of interfacial Li+ion transfer is one of the 
important factors in charge transfer [22,49,75]. There is a correlation 
between the intercalation kinetics and the lithium plating behavior [20, 
76]. Xu et al. [21] reported that desolvation is the most 
energy-consuming (50kJmol− 1) step in the charge-transfer process 
while the overall activation energy barrier of the graphite/electrolyte is 
about (60 − 70kJmol− 1) [77]. In another study, Yao et al. [78] found 
that due to the difference of the energy barrier for lithium de-solvation 
on the edge plane and the basal plane of graphite, the intercalation 
process prefers to occur at the edge plane of the graphite instead of the 
basal plane. It should be noted that during lithium plating, lithium-ions 
tend to continue deposition on the surface where lithium has been 
previously deposited. 

3.3. Aging of the Cell 

Even under normal operation conditions, lithium plating can still 
occur due to the aging of the cell. As mentioned earlier, the most com-
mon modes of degradation in the literature are LLI and LAM, where LAM 
can be further divided into four types based on the affected electrode 
and the degree of lithiation: loss of active material on the delithiated 
negative electrode (LAMdeNE), loss of active material on the delithiated 
positive electrode (LAMdePE), loss of active material on the lithiated 
negative electrode (LAMliNE), and loss of active material on the lithiated 
positive electrode (LAMliPE) [31]. After the lithium plating occurs, the 
side reaction between the plated lithium and the electrolyte generates 
new SEI, resulting in capacity fading and increased impedance [17]. The 
changes in these degradation mechanisms can be used to study lithium 
plating. The analysis of capacity fade curve shapes will provide insight 
into the mechanism of aging and signs of lithium plating. These curve 
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shapes were classified into three types, linear capacity fade, decelerated 
capacity fade, and accelerated capacity fade, all of which can be 
expressed as a function of the number of cycles [20]. In commercial 
cells, generally, the batteries have a two-stage capacity fade. The ca-
pacity fade is fairly constant in the first stage, with a degradation mode 
related to LLI [31]. Accelerated capacity fade can be found in the second 
stage of degradation, usually after 500 cycles. The second stage is usu-
ally due to LAMdeNE. Ansean et al. [54] showed that LAMdeNE occurs at a 
pace four times faster than LLI, which causes cell imbalance and 
over-lithiation of the negative electrode and leads to lithium plating. 
They found that lithium deposition becomes irreversible at the turning 
point of sudden capacity loss (curve shape). The second stage usually 
does not occur due to changes in cell usage, but it may be a product of 
underlying silent degradation mechanisms from the beginning of life 
[54,79]. The type of silent degradation will be affected by the cell 
chemistry as well as its form factor (pouch and cylindrical cells). These 
silent degradations have a certain incubation period during which they 
do not cause any capacity loss [79]. Therefore, it is important to study 
the modes of degradation, particularly those that may lead to lithium 
plating. Besides the ratio of LAMNEto the LLI, the plating threshold 
(LAMNE,PT) is also a predictor of an accelerated degradation stage [80]. 
Cell design parameters (such as mass ratio), capacity loss, and the two 
degradation modes (LLI and LAMPE) will affect this value. Values 
exceeding this threshold cause lithium plating [80]. In another study, 
Schuster et al. [81] found a significant decrease in capacity at moderate 
temperatures and charging rates due to lithium plating. They showed 
that the lithium plating occurred due to significantly decreased ionic 
kinetics of the graphite as a result of SEI growth and graphite active 
material loss. It should also be noted that in literature, the capacity curve 
is often plotted against temperature (Arrhenius plot), which is obtained 
from cycling experiments at various temperatures. Lithium plating leads 
to faster aging at lower temperatures, although without lithium plating, 
it typically ages faster at elevated temperatures [82]. 

4. Lithium Plating Detection Approaches 

Detecting lithium plating in its early stages is often challenging. To 
understand the formation and growth of lithium plating, extensive ef-
forts have been made in the past to characterize and observe the anode 
lithium plating morphology [83]. Many approaches (in-situ, ex-situ, 
non-destructive, and recently in-operando methods) have been pro-
posed by researchers to investigate lithium plating mechanisms in LiBs. 
These detection methods are classified into three main categories: (i) 
physical characterization of surface morphologies, (ii) physical charac-
terization of surface chemistry, and (iii) electrochemical methods. The 
first and second categories are based on physical properties of the plated 
lithium films, such as morphology, chemical composition, and surface 
chemistry, whereas the third technique is based on electrochemical re-
actions between the electrolyte and metal lithium [19]. These tech-
niques enable ex-situ and in-situ investigations. To study lithium plating 
using ex-situ methods, post-mortem analysis is required, in which the 
cell is disassembled and opened with special tools, and then the desired 
specimen is transferred to microscopes or spectrometers for further 
investigation. In-situ approaches, on the other hand, require a complex 
spectroelectrochemical cell design [84]. In the following subsections, we 
have systematically classified the existing lithium plating detection ap-
proaches to highlight the technological status of this ever-evolving 
research field and current research gaps. Furthermore, we have classi-
fied each electrochemical approach based on its ability to be used 
on-board in real-time automotive applications. We briefly review the 
post-mortem analysis steps, including cell disassembly, specimen pro-
cessing, and specimen analysis, as this is the basic procedure for the 
majority of the ex-situ approaches. 

4.1. Post-Mortem Analysis for Lithium Plating Study 

In literature, methodologies or procedures for post-mortem analysis 
of lithium plating have not been clearly explained. Research groups 
mainly carried out the procedures based on their own expertise and 
experiences [85,86]. Therefore, we provide a snapshot of the detailed 
steps for the disassembly process and post-mortem analysis (Fig. 4). The 
first stage, as illustrated in Fig. 5 (A), is to deep-discharge the cell (end of 
the discharge voltage 0 V) to reduce the potential risk of the short circuit 
during the cell opening process [87–89]. After that, since the electrode 
sample surfaces are reactive to the atmospheric gases (H2OandO2), the 
cell should be transferred to the controlled environment to decrease the 
risk of surface contamination during the disassembly process. In general, 
two types of controlled environments are used for this procedure: 
argon-filled glove boxes and fume hoods (Fig. 5 (B)). The choice of either 
option is dependent on the cell design and the goal of the investigation 
[86]. Choosing an appropriately controlled environment is not only 
important for safety, but it can also have an impact on the experimental 
outcomes [86]. The entire disassembling procedure takes place in a 
controlled environment. To avoid sample contamination, the H2OandO2 
levels in the argon-filled glove box should be between 0.1 ppm and 10 
ppm [87,90,91]. If the samples do not need to be protected from at-
mospheric gases, the disassembly procedure can be carried out in a fume 
hood. To avoid inhaling dangerous gases, the fume hood should evac-
uate the air at a rate of 60-100 feet per minute [86]. The final step of the 
disassembly process is cell opening. Non-conductive tools are recom-
mended to prevent any short-circuiting between the cell terminals. The 
cell configuration will determine which cutting tool should be used in 
the disassembly process. Rotary tools, such as Dremel, are typically used 
for cylindrical cells; the isolated plier is used for prismatic cells; and the 
knife, along with a pair of scissors, can be used for pouch cells [85,86, 
92]. No heat or smoke will be produced if the disassembly procedure is 
successful. During the post-mortem analysis, the jelly cell is unrolled and 
the cell components are separated from one another to be studied 
individually. The separated components are then transferred to 
dimethyl carbonate (DMC) solvent for washing [92]. The appropriate 
components are immersed in the DMC liquid during the washing process 
to dissolve the electrolyte salt residues on the sample surface (Fig. 5 (C)). 
Some authors, however, suggested two washing steps, one minute each, 
to remove all electrolyte salt residues [85]. It should be noted that the 
post-mortem analysis takes place in a controlled environment. 
Following that, the samples are kept in the glove box to dry and prepared 
for further investigation. The cell components are now ready to be 
moved to the testing facility for physical characterization, and the 
samples must be transferred from the glove box to the testing facility in a 
vacuum-sealed container due to the possibility of air contamination of 
the cell component (Fig. 5 (D)) [86,93]. 

4.2. Physical Characterization of Surface Morphologies 

Several efforts have been made in recent years to study the 
morphology of deposited lithium using physical characterization ap-
proaches to acquire a better understanding of the lithium plating- 
stripping mechanism. Physical characterization approaches are 
commonly employed to study the structure of the deposited lithium and 
the growth processes of the lithium dendrites on the anode surface in the 
laboratory [83]. The most commonly used approaches for the physical 
characterization of lithium plating are explained. In addition, Table 2 
summarizes the advantages and disadvantages of each approach in order 
to highlight their effectiveness. 

4.2.1. Optical Microscopy 
High-resolution optical microscopy can be used both in-situ and ex- 

situ to observe lithium plating-stripping processes during cell operation 
[94]. In-situ optical microscopy can be used to directly observe the 
plating morphology. A custom-made optical in-situ cell is designed 
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(Fig. 6 (A)) to study the penetration of lithium dendrite through the 
separator in order to find strategies to stop them (Fig. 6 (B) and (C)) 
[95]. The in-situ techniques can also be used to find the position and 
direction of the deposited lithium on the electrode surface [96]. In 
Ref. [77], in-situ optical microscopy is used to study the morphology of 
deposited lithium. At 10 ◦C, mushroom-like dendrites were seen, 
whereas needle-like and wound-ball morphologies were observed at 5 
◦C and 20 ◦C, respectively. During the lithium stripping process, dead 
lithium is observed, where it grows at the tips of the lithium and even-
tually loses electrical contact and separates from the graphite [96]. 
Lithium ions are extracted from the cathode compound and intercalate 
into the graphite structure. The color of the graphite changes depending 
on the stage of intercalation. Each stage has been associated with 
recognizable color, ranging from black to red to gold (as a function of 
lithium concentration x in LixC6 (Fig. 6 (D)) [97,98]. As a result, the 
in-situ optical microscopy method based on color change can be useful 
for observing lithium plating. Thoma-Aleya et al. [99] designed a 
coin-type half-cell for in-situ optical microscopy to analyze color change 
at the graphite particles (Fig. 6 (E)). Using in-situ optical microscopy, 
Harris et al. [43] observed three stages on the meso-carbon microbeads 
(MCMB) electrode. In the beginning, the electrode was entirely in the 
blue stage (4L). The red-blue and gold-red boundaries then began at the 
edge of the electrode and sparsely departed from there until the voltage 
dropped to +2 mV (Fig. 6 (F)). Furthermore, they observed lithium 
plating on the (MCMB) electrode. The MCMB electrodes became golden 
(stage 1) after a voltage (+2 mV) was applied to the current collector, as 
shown in Fig. 6 (G) and (H). The edge of the electrode was free of lithium 
plating, whereas the rest of the electrode remained (stage 2) red graphite 
particles for many hours [43]. Moreover, they observed that lithium 
plating occurred when the anode potential was +0.002 V against Li+/Li. 
However, thermodynamically lithium plating should occur when the 
anode potential drops below 0 V against Li+/Li[43]. The change in the 
color associated with lithium concentration is dependent on the ambient 
lighting condition; thus, this technique is characterized as 

semi-quantitative. 

4.2.2. Scanning Electron Microscopy (SEM) 
Since 1988, SEM has been used to investigate the surface 

morphology of the lithium electrode, and it has a higher resolution than 
optical microscopy [100]. Many studies have employed both in-situ and 
ex-situ SEM to investigate the lithium plating-stripping process [101, 
102]. Yamaki et al. [103] used ex-situ SEM observation to characterize 
the lithium electrode surface morphologies during an extensive cycling 
test on a lithium coin cell for the first time. They identified two types of 
lithium deposits: particulate and dendritic. During discharge, the par-
ticulate lithium structure is reinserted into the anode graphite. The 
dendritic structure, on the other hand, remained on the anode surface. 
Rauhala et al. [88] investigated the lithium plating on the cell that was 
cycled at low temperatures using ex-situ SEM. A considerable amount of 
lithium plating was observed on the anode surface when the cell was 
cycled at -18 ◦C. Surface contamination is always a risk during ex-situ 
SEM investigations, especially for highly sensitive surfaces like 
graphite anode electrodes [83,96]. Using in-situ SEM to study lithium 
plating-stripping, on the other hand, requires unique cell and equipment 
designs. Many research groups have developed ultrahigh vacuum types 
of equipment to reduce the possible risk of lithium specimen contami-
nation during the transfer process [100,102,104]. However, because 
ultra-high vacuum equipment is used in the examination process, in-situ 
SEM is only applicable to batteries that use solid polymer electrolytes 
and ionic liquids [102,105,106]. Uhlmann et al. [98] applied a high 
charging current of up to 10 C to three different half-cells to study 
lithium plating. They used SEM to observe changes in the surface 
morphology of the deposited lithium during both the charging and 
relaxation phases. Fig. 6 (I) and (J) show the surface structure of the 
anode sample with mossy grown lithium that is charged with a high 
charging current of 10 C. To avoid the relaxation period, this sample was 
disassembled in less than 5 minutes after charging. Another interesting 
approach was taken by Rong et al. [107] who developed an in-situ 

Figure 5. Overview of Post-Mortem Analysis for Lithium-Ion Cells. A) The test cell is required to be fully discharged before any further steps. B) The test cell is moved 
to the controlled environment for the opening procedure, where the controlled environment is chosen based on the study goals. Cell casing is removed. C) Cell 
components are separated and washed, and they are ready to be sent to the testing facilities. D) Cell components are subjected to further analysis in order to 
investigate lithium plating. 
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electrochemical scanning electron microscopy (EC-SEM) technique to 
observe the lithium plating-stripping process on Li/Cu electrode in 
liquid electrolyte LiTFSI/DOL/DME. They showed the significance and 
advantages of LiN3 and Li2S8 as additives on lithium dendrite 
suppression. 

Fig. 7 (A) shows lithium dendrites with a length of 18 μm after 350 
seconds. During the stripping process, however, the majority of the 
lithium dendrites begin to dissolve into the electrolyte after 600 seconds, 
while the remainder tends to become dead lithium. Tallman et al. [108] 
reduced the amount of the deposited lithium up to 50 % by increasing 
the deposited overpotential through surface treatment. They deposited 
ultrathin (10 nm) Cu and Ni film on the graphite electrode surface. 
Ex-situ SEM results reveal that the deposited lithium was significantly 
decreased on the coated graphite with Cu and Ni compared to the un-
coated graphite Fig. 7 (B). 

4.2.3. Transmission Electron Microscopy (TEM) 
One of the most promising observation methods for studying lithium 

dendrite growth at the nanoscale is transmission electron microscopy 
(TEM) [83]. In the literature, in-situ TEM setup is divided into two major 
types: a liquid cell system and an open-cell system [109,110]. In 
Ref. [111], a nanoscale LiB was built inside a TEM to investigate lithium 
plating in-operando using an ionic liquid as the electrolyte. They 
demonstrated how lithium ions nucleate at the anode-electrolyte inter-
face and ultimately form fibers. The fundamental disadvantage of this 
approach is that volatile organic compounds (ionic liquids or solid-state 
electrolytes) are incompatible with the high-vacuum environment of 
TEM, hence it cannot be used to analyze lithium plating [112]. Mehdi 
et al. [113] recently used an in-situ liquid ec-TEM cell to study the dy-
namic volumetric changes at the electrolyte silicon nanowires interface 
during the charging and discharging process. They measured the 
thickness of the SEI layer of the anode electrode which was immersed in 
LiClO4with (EC: DMC) as electrolytes during lithium plating-stripping. 
They confirmed that the SEI formation kinetics is greatly reduced by 
electron transport. Lithium plating-stripping in a LiPF6-ethylene 

carbonate (EC)-diethyl carbonate (DEC) electrolyte was studied by Zeng 
et al. [114] to investigate the formation of dead lithium during cycling, 
as shown in Fig. 7 (C). Overall, in-situ TEM requires further develop-
ment, particularly for liquid cell constructions due to electron scattering 
in the liquid layer [83]. The key issue is to find a suitable electrolyte for 
the TEM column [101]. 

4.2.4. Nuclear Magnetic Resonance Spectroscopy (NMR) 
The key advantages of this technique over other approaches are its 

non-destructive nature and applicability to both crystalline and amor-
phous materials [115,116]. Ex-situ NMR can distinguish between 
different chemical states of lithium in the active material of the graphite 
electrode. Hao et al. [57] used an ex-situ NMR to measure the quantity of 
plated lithium while the cell was charged from 0 % to 60 % SOC (-25 ◦C), 
80 % SOC (-25 ◦C), and 80 % SOC (-20 ◦C) with high currents (1.5 C). 
They found that the activation energy of lithium intercalation is higher 
than lithium plating even at low SOCs, resulting in lithium plating [57]. 
However, the use of the ex-situ method, like the ex-situ procedures 
discussed above, requires certain additional steps before the experi-
ments, which may influence the experimental outcomes [117]. 

Several research groups have employed in-situ NMR to study carbon 
graphite electrodes, lithium metal oxide, and metal electrodes 
[117–120]. The hard carbon electrode as a negative electrode can 
consume more lithium during relaxation compared to the graphite 
electrode, Gotoh et al. [121] constructed full LiB cells with different 
materials including LiCoO2, LiNixCoyAlz, and LiMn2O4 as the positive 
electrode, along with graphite and hard carbon as the negative elec-
trodes to study relaxation effects in LiBs. They measured lithium spectra 
of cells at various SOCs, particularly after overcharging (2 C and 3 C) at 
170 % SOC. They showed that the phenomenon of the "relaxation effect" 
occurs after overcharging based on the lithium metal signal measure-
ment [121]. The lithium metal signal decreases with time as lithium 
atoms begin to reinsert into the graphite layer. Ota et al. [122] employed 
NMR spectroscopy to investigate the surface chemistry (surface film). 
They found that lithium cycling efficiency affects not only the 

Table 2 
Advantages and Disadvantages Physical Characterization of Surface Morphologies for Lithium Plating Detection  

Techniques In- 
situ 

Ex- 
situ 

Advantages Disadvantages Refs 

Scanning Electron 
Microscope (SEM)   ✓   ✓  

(a) Suitable for large morphology change 
(b) Applicable to all types of cells 
(c) More effective to monitor the detrimental 
formation of dendrites directly 

(a) Only applicable on batteries using solid polymer or inorganic 
SSE in in-situ condition 
(b) Risks of surface contamination were always present 
(c) Not applicable for quantitative studies in dynamic condition 
(d) The requirement of an extra high vacuum 

[170,172,169, 
174,7,105,83] 

Optical Microscopy  ✓  ✓  (a) Instantly distinguish the surface change 
(b) Able to monitor lithium stripping/ 
plating during operation 

(a) Resolution not as high as of SEM 
(b) Not applicable for quantitative studies in dynamic condition 
(c) Resolution is too low for most of the nanoscale materials 
(d) Required to design an optical cell for in-situ investigation 

[7,43,83,175, 
105] 

Atomic Force Microscopy 
(AFM)  

✓   (a) Imaging at the atomic level 
(b) Three-dimensional (3D) image 
(c) Visibility of Li surface including 
boundaries, ridgelines, flat areas 

(a) Not suitable for inspection of dendrite formation 
(b) Not applicable for quantitative studies in dynamic condition 
(c) Destructive method (surface scratching needed in the 
contact mode) 
(d) Risks of surface contamination were always present  

[176,7,130, 
129] 

Transmission Electron 
Microscope (TEM)  

✓  ✓  (a) Suitable for large morphology change 
(b) Dynamic evolution of interfaces at high 
tempo-spatial resolutions 
(c) Observation of SEI mechanisms and 
structures at the nanoscale 
(d) Observing microstructures in real-time 
(using open cell) 

(a) The requirement of an extra high vacuum 
(b) Require solid-state electrolyte and ionic liquid (volatile 
organic electrolytes are incompatible with the high-vacuum 
environment) 
(c) Surface damage due to the beam effect (80/300keV) 
(d) Low spatial/energy resolution due to the presence of various 
stimuli along the beam path 

[19,177,112, 
7,178,101, 
110] 

Nuclear Magnetic Resonance 
Spectroscopy (NMR)  

✓  ✓  (a) Quantitative method 
(b) Provide a non-equilibrium state during 
charging/discharging 
(c) Processes in a non-invasive manner 
(d) Observe the change in intensity 
proportional to the lithium content of each 
stage 

(a) Risks of surface contamination were always present on Ex- 
situ condition  

[121,117,179, 
102]  
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morphology of deposited lithium but also the chemical components of 
the surface film. Arai et al. [119] studied lithium metal deposition with 
in-situ solid-state Li NMR on a full cell consisting of LiCoO2 (positive 
electrode), graphite (negative electrode), polypropylene (separator), 
and an organic liquid such as electrolyte (1 M LiPF6, ethyl methyl car-
bonate 30:70 vol.%) during both continuous currents (CC) and pulses 
current (PC) mode operations. As shown in Fig. 7 (D), the deposited 
lithium metal became visible at approximately 265 ppm at -5 oC tem-
perature for different cell cycles with a CC mode pattern. Simulta-
neously, no lithium metal deposition was detected at -5 oC with a PC 
mode pattern [119]. 

They also calculated the lithium deposition rate (k) using the slopes 
of the plots. The lithium deposition rate at -5 oC is approximately 12.4 
(103mgmAh− 1). Wandt et al. [124] employed electron paramagnetic 
resonance (EPR) spectroscopy to identify the onset of lithium plating in 
a graphite electrode under realistic cell conditions. EPR is more sensitive 
than NMR, making it excellent for analyzing lithium materials 
in-operando [125,126]. EPR spectroscopy, in addition to NMR, uses 
low-energy radiation that does not affect the chemical characteristics or 
morphology of the investigated species [125,127]. 

4.2.5. Atomic Force Microscopy (AFM) 
AFM is one of the most effective tools for analyzing the surface 

morphology of electrodes at the nanoscale scale [128,129]. AFM scans 
the surface of a sample with a cantilever and a sharp probe. In com-
parison to SEM or optical microscopy, it can also provide significantly 
higher morphological resolution in three-dimensional (3D) format [83]. 
In-situ AFM was utilized by Mogi et al. [130] to investigate the surface 
morphology of deposited lithium on the Nickel substrate at elevated 
temperatures. At 40 ◦C, they discovered heterogeneous and massive 
deposits of lithium underneath the substrate’s surface film, whereas, at 
60 ◦C and 80 ◦C, they discovered a homogenous and thick surface film. 
The results, however, were inaccurate since the AFM observation was 
done in contact mode. During the investigation, the AFM probe (tip) 

scrapes the sample’s surface in contact mode [130]. The image resolu-
tion is low in non-contact mode due to the large distance between the 
probe and the sample. As shown by in-situ AFM in Ref. [129], the 
structure of the lithium surface includes grain boundaries, ridge-lines, 
and flat areas. These lines were found to be critical in controlling the 
morphology of the deposited lithium. Aurbach et al. [131] studied 
lithium deposition on the copper electrode in a nonaqueous electrolyte 
system using in-situ AFM measurements. They found that although 
lithium metal is soft, utilizing AFM as a detection tool does not modify 
the surface morphology. In another approach, Shen et al. [132] used 
in-situ electrochemical atomic force microscopy (EC-AFM) to study 
lithium dendrite growth on a graphite electrode cycled in 1 M LiP-
F6-EC-DMC and 1 M LiPF6-FEC-DMC electrolytes. They confirmed the 
importance and advantages of FEC-based electrolytes on lithium 
dendrite detention, as the formed SEI is harder and denser compared to 
the SEI formed in the EC-based electrolyte. Overall, AFM is an accurate 
and powerful technique to study the morphology and topography 
changes of LiBs [133]. However, it is not recommended to use AFM for 
inspection of the dendrite formation as it has some limitations in the tip 
dimension and the usual vertical scanning range of instruments [134]. 

4.3. Physical Characterization of Surface Chemistry 

One of the most common approaches in the field of LiBs is to analyze 
the chemical composition of the surface films on electrodes in non- 
aqueous solutions. The chemical composition of deposited lithium as 
well as the oxidation states of the elements can be examined using 
surface chemistry analysis techniques [135,136]. In the following part, 
the methodologies used to characterize the surface chemistry of the 
deposited lithium on the anode surface will be introduced. In addition, 
for a more in-depth understanding of the existing techniques, the ad-
vantages and disadvantages of each are listed in Table 3. 

Figure 6. In-situ Cell Design and Results of Optical Microscopy and Ex-situ SEM for Lithium Plating Morphology Characterization. 
(A) Schematic of the custom-made optical in-situ cell with a quartz glass window. (B) In-situ optical microscopy at a current density of 1 mA/cm2 (t = 0 - 600 s). The 
gap between lithium metal and separator helps in the observation of the dendrite growth until it reaches the separator. (C) In-situ optical microscopy at a current 
density of 1 mA/cm2 (t = 0 - 795 s). There is no gap between the separator and the lithium electrode. Penetration started at t = 595 s and quickly changed to the bush- 
like structure (Reprinted from Liu et al. [95] with permission of American Chemical Society Publications). (D) The color of graphite is affected by the concentration 
of lithium x in LixC6 (data adapted from Ref. [123], the random occupation of all superlattices defined as ’liquid-like’ or L stage). (E) Side-view schematic of a 
custom-made coin-type half-cell for in-situ optical microscopy (Reprinted from Thomas-Alyea et al. [99] with permission of Electrochemical Society). (F) The MCMB 
electrode surface inside an in-situ optical half-cell, three different graphite colors (stages) were observed over 3 hours. Lithium Plating on an MCMB electrode was 
observed when a voltage (+2 mV) is applied to the current collector, although according to bulk thermodynamics, lithium metal plating should not occur unless the 
voltage becomes negative. The image (G) is taken 8 h before (H) (Reprinted from Harris et al. [43] with permission of Elsevier). (I) and (J) Ex-situ SEM images show 
the morphology of an anode surface with mossy lithium plating. The anode is charged with a high current of 10 C and then instantly dismantled in less than 5 minutes 
to interrupt the relaxation phase, scale bars: 20 μm and 2 μm (Reprinted from Uhlmann et al. [98] with permission of Elsevier). 
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4.3.1. X-ray Photoelectron Spectroscopy (XPS) 
X-ray photoelectron spectroscopy has been widely used for surface 

chemistry analysis (element analysis and oxidation state of elements) of 
lithium electrodes due to the relative simplicity in use and data inter-
pretation [137]. Castro et al. [136] used XPS to investigate the aging 
mechanism of a LiFePO4/graphite cell after 200 cycles at ambient 
temperature. They found that cyclable lithium can be consumed at each 
cycle due to the deposited lithium on the anode surface and the insta-
bility of the SEI (LAM). XPS may be a destructive method due to the 
usage of an argon ion sputter gun and an X-ray beam on the sample 
during the investigation [84]. However, Aurbach et al. [137] found that 
by working at low emission and balancing the quality of the spectra 
based on the shorter measurement duration, it is possible to collect 
reliable and reproducible findings with minimum damage to the mate-
rial when using the XPS technique. The XPS method, like most other 
spectroscopic methods, requires a vacuum system and there is always 
the risk of surface contamination in highly sensitive electrodes. As a 
result, a special transfer arrangement is required [138,139]. X-ray to-
mography can provide a better understanding of the structure and ma-
terial composition of the electrodes, as well as morphological changes 
[140–143]. X-ray beams with energy ranging from 10-100 keV may 
easily penetrate the plastic and metallic cell casing and directly visualize 
the inner LiB components in 3D [140,144]. Eastwood et al. [145] 
applied a synchrotron-based X-ray phase-contrast tomography tech-
nique to investigate the microstructures of the electrodeposited lithium, 
which is necessary for understanding the dendrite formation. Harry 

et al. [146] used synchrotron hard X-ray microtomography to investi-
gate the lithium dendrite in a lithium/polymer/lithium cell. They 
discovered that the subsurface structure of the electrode is critical in 
facilitating dendritic formation in the polymer electrolyte. 

4.3.2. Fourier Transform Infrared Spectroscopy (FTIR) 
FTIR is a non-destructive method for analyzing the chemistry of the 

lithium surface [84]. Many researchers have used FTIR to investigate the 
surface chemistry of lithium in organic electrolytes [147–149]. To 
quantitatively describe liquid electrolyte solutions, Ellis et al. [150] 
combined FTIR spectra with machine learning (ML) techniques. The 
electrolyte concentration was reported to be reduced by 10–20% (Vol) 
in cells after 200 cycles at 55◦C. This is a significant amount of salt loss, 
which contributes to cell failure. Morigaki [148] analyzed the impact of 
EC+dimethyl carbonate (DMC) solution on lithium surface based on the 
locations and strengths of the peaks in DMFTIR spectra. They found a 
new reduction product of the solvent on lithium after 1 and 15 hours 
immersion with DMFTIR. In another approach, FTIR was used by 
Kramer et al. [149], who studied lithium plating in pristine cells of two 
different forms (cylindrical and pouch). The impacts of electrolyte sol-
vent such as propylene carbonate (PC), ethylene carbonate (EC), 
dimethyl carbonate (DMC), and different salts (LiAsF6,LiBF4,LiPF6)on 
the lithium surface were investigated with FTIR in [137]. The in-situ 
FTIR technique uses attenuated total reflectance (ATR) to examine the 
lithium sample in the nonaqueous system [151]. Therefore, using ATR 
crystal for each experiment would be prohibitively expensive due to the 

Figure 7. Different Physical Characterization Approaches for Lithium Plating investigation. 
(A) Schematic of the in-situ SEM EC-liquid cell setup for direct observation of lithium plating, Li/Cu electrode during lithium plating for a)200 s, b)250 s, c)350 s, and 
d)50 s, e)270 s, f)600 s for stripping under 0.15 mAcm− 2. Scale bars: 20 μm, (Reprinted from Rong et al. [107] with permission of Advanced Materials). (B) Schematic 
of Li-metal nucleation on the uncoated graphite surface and coated graphite surface during high current charging, the nucleation is significantly decreased due to 
increased overpotential for Li-metal deposition, which was obtained by the nanoscale coating of Cu and Ni, backscatter SEM images of the deposited lithium metal on 
the uncoated graphite and coated graphite with Cu and Ni. Scale bar: 20 μm (Reprinted from Tallman et al. [108] with permission of American Chemical Society). (C) 
Schematic of in-situ TEM liquid cell for nanoscale observation of electrode-liquid electrolyte interfaces using lithium dendrite growth. Scale bars: 800 nm, (Reprinted 
from Zeng et al. [114] with permission of Nano Letters). (D) The stacked in-situ NMR spectroscopy for different cells at -5◦C. These spectra were measured at the fully 
charged state in the latest cycle. Pulse current mode: cells were cycled with pulse current (PC) mode pattern, and no lithium plating was detected. Continuous current 
mode: cells were cycled with continuous current (CC) mode pattern and lithium plating observed at 265 ppm (Reprinted from Arai et al. [119] with permission of 
Electrochemical Society). 
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damage to the crystal surface during the investigation [84]. 

4.4. Electrochemical Methods 

Electrochemical in-situ, ex-situ, and in-operando are the most 
effective methods for monitoring unsafe battery behavior, such as 
lithium plating. Voltage plateau after charging, anode potential, elec-
trochemical impedance spectroscopy (EIS), differential voltage (DV), 
and incremental capacity (IC) can be used in in-situ or in-operando 
electrochemical methods [44]. These methods are based on electro-
chemical signals, which are available in any LIB. Using electrochemical 
techniques is convenient because they can be implemented in BMS [19]. 
The most common electrochemical approaches for detecting lithium 
plating in the context of possible BMS deployment are described briefly. 
Table 4 summarizes the benefits and drawbacks of each strategy for a 
more thorough comparison. 

4.4.1. Voltage Plateau After Charging 
Voltage plateau is a non-destructive and indirect method that has the 

potential to be used as an online tool for lithium plating detection in 
automotive applications [48]. Reversible lithium is reinserted into the 
graphite during the relaxation. This process affects the voltage plateau 
signal due to variations in the overall potential of the anode electrode 
during relaxation and discharging after a charging step [48,59,152]. 
Therefore, the presence and changes in the voltage plateau could pro-
vide indications of lithium plating [153,154]. Zinth et al. [155] com-
bined the voltage plateau method with in situ neutron diffraction 
measurements to study lithium plating at -20 oC, where the degree of 
graphite lithiation can be used to estimate the amount of lithium plating. 
A quantitative detection method for lithium plating based on plotting 
the derivative of voltage over capacity (dV/dQ plot) was presented by 
Petzl et al. [153], who found that the voltage plateau appeared at the 
beginning of discharge. They proposed that the discharge capacity at the 
dV/dQ peak contributes to the total reversible part of the deposited 
lithium during charging. Recently, it has been reported by Campbell 
et al. [59] that the cell self-heating and concentration gradients during 
fast charging can increase the voltage plateau curve, which could be 
incorrectly detected as lithium plating. Also, they showed that the 
absence of stripping plateau does not mean that no lithium plating has 

taken place in the cell. However, a recent study showed that the relax-
ation process is much faster at a higher temperature and the voltage 
plateau is less visible at higher temperatures [156]. Therefore, the 
voltage plateau detection technique works better at lower temperatures 
(-20 oC) since the relaxation process is slower at subzero temperatures 
[98,157]. In another approach, Uhlmann et al. [98] detected a kink in 
the voltage curve during relaxation after the charging process rather 
than during discharging. They found that for the detection of lithium 
plating, flattening the voltage curve can be used. This technique was 
later expanded by plotting the derivative voltage over time (dV/dt), 
where the same dV/dt peak curve for lithium stripping is seen [154]. 
Yang et al. [48] studied the voltage plateau during relaxation and during 
discharge to determine the parameters affecting the voltage curves 
during lithium stripping. In this study, they used a 9.5 Ah pouch cell for 
a plug-in hybrid EV application. The dV/dt curve is plotted and shown in 
Fig. 8 (A), where it is shown that the dV/dt peaks appear sooner with a 
higher discharge rate compared to the dV/dQ analysis. They showed 

Table 3 
Advantages and Disadvantages Physical Characterization of surface chemistry 
for Lithium Plating  

Techniques In- 
situ 

Ex- 
situ 

Advantages Disadvantages Refs 

Fourier 
Transform 
Infrared 
(FTIR) 

✓  ✓  (a) Non- 
destructive 
method 
(b) High surface 
sensitivity at 
the molecular 
level 
(c) Qualitative/ 
quantitative 
analysis 

(a) Only suitable 
for detecting the 
organic 
components 
(b) Low 
reflectance 
intensity and 
broad 
(c) Expensive 
material for in- 
situ experiments 
(d) Damages the 
electrode surface 
(in contact mode) 

[83, 
84, 
151, 
180] 

X-ray 
Photoelectron 
Spectroscopy 
(XPS)  

✓  ✓  (a) Provide the 
3D structure of 
surface films 
(b) Analysis of 
inorganic 
components 
(c) Study 
surface species 
(which are not 
too active in IR) 

(a) Damages the 
electrode surface 
(b) Modify the 
oxidation states 
of elements 
(c) Requires a 
vacuum system 

[181, 
139, 
136, 
138, 
137]  

Table 4 
Advantages and Disadvantages of On-Line Electrochemical Lithium Plating 
Detection  

Techniques BMS Advantages Disadvantages Refs 

Measurement of 
Columbic 
Efficiency 

- (a) Applicable to 
all types of cell 
(b) Suitable for 
identification of 
side reactions in 
early stages 

(a) Inaccurate 
results if another 
parasitic reaction 
happens (Oxidation, 
loss of active 
materials) 
(b) Expensive 
equipment 

[170, 
172, 
169, 
174] 

Voltage Plateau 
after charging 

✓ (a) Non- 
destructive 
method 
(b) Suitable for on- 
board 
implementation 
(c) No requirement 
for special and 
expensive 
equipment  

(a) Needs slow 
discharge rate 
(b) Availability of 
abnormal 
exothermic peaks 
(c) The importance 
of the lithium 
deposited areas 
(d) Highly depends 
on internal cell 
characteristics 

[17, 
48,59, 
98, 
154, 
195] 

Third Lithium 
Reference 
Electrode 

- (a) Quantitative 
evaluation of 
different 
electrochemical 
aspects 
(b) Reliable 
method  

(a) Safety (Short 
circuit) 
(b) Not applicable in 
Commercial cells 
(c) Require 
modifying cell 
design and 
fabrication 
(complicated 
implementation) 

[49] 
[162, 
196, 
197, 
163, 
160] 

Electrochemical 
impedance 
spectroscopy 
(EIS) 

✓ (a) Suitable for 
study LiB 
characteristics 
(b) Non- 
destructive 
method which is  
suitable for on- 
board 
implementation 
(c) Fast analyzing 
period (25/min/ 
cell)  

(a) Reduction in cell 
performance after 
RE insertion 
(b) Require 
complicated 
computation 
(c) The cell must be 
in the equilibrium 
state 

[183, 
182, 
23, 
198, 
199] 

Incremental 
Capacity (IC) 
Differential 
Voltage (DV) 

✓ (a) Non- 
destructive 
method 
(b) Suitable for on- 
board 
implementation 
(c) Ideal for 
identification and 
quantification of 
DM 

(a) Required small 
currents for 
discharge curves 
(b) Slow analyzing 
period (10 h/cell) 

[200, 
31, 
201, 
44]  
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that the rate of lithium stripping is limited by the rate capability of 
intercalating Li+ions into graphite, and that the duration of the voltage 
plateau is highly dependent on the rate of lithium stripping. Intercala-
tion kinetics, graphite solid-state diffusivity, and cell temperature all 
have an effect on the voltage curves. Another interesting finding is 
represented in the schematic above Fig. 8 (A). Near the separator, 
lithium metal is deposited. The high degree of graphite lithiation limits 
the rate of Li+ions insertion. Since the Li+ions can not be inserted into 
the anode near the separator, they begin moving to the other part of the 
anode near the foil and are intercalated into the graphite along the path 
[48]. At the beginning of discharge, a dV/dQ peak occurs. Nevertheless, 
in the case of C/3 discharge, the dV/dQ peak seems earlier than that of 1 
C Fig . 8 (B). Li+ions intercalation still takes place in the anode in the 
discharge phase after charging, as long as the Li stripping reaction can 
support the discharge current. 

4.4.2. Third Lithium Reference Electrode (RE) 
As previously stated, lithium plating takes place when the anode 

potential drops below 0 V (vs. Li/Li+). To directly measure the anode 
potential, a third reference electrode (RE) must be used [49]. None-
theless, because commercial cells lack a third reference electrode, 
measuring the anode potential directly is not currently practicable. 
Anode potential may, however, be measured in the laboratory using a 
specific setup in which the RE is inserted into the cell (machinery). The 
RE materials (e.g., metallic Li, FePO4/LiFePO4, Li-Sn, Li-Al) and cell 
configurations are important factors in the insertion process. The loca-
tion of the RE is chosen based on these factors [49,158,159]. Several 
studies have been conducted to demonstrate how to develop and 
implement the RE into LiBs, as well as where the ideal position for the RE 
is to reduce the ohmic drop while maximizing measurement accuracy 
[160–163]. An interesting approach was taken by Waldmann et al. [49], 

Figure 8. Electrochemical Methods. 
(A) Differential voltage over time (dV/dt) for the two discharge cases and the 5C charge relaxation event, as well as a schematic diagram of the anode’s internal 
characteristics at the start of relaxation. During relaxation, Li+ions that are not consumable at the separator travel and diffuse through the electric field (migration) 
and concentration gradient (diffusion) towards the foil, where they are intercalated into graphite (Reprinted from Yang et al. [48] with permission of Elsevier). (B) 
Differential voltage over capacity (dV/dQ) in the discharge phase as a result of discharge capability and a schematic diagram of the anode’s internal characteristics at 
the start of discharge. During discharge, Li+ ions formed by Li stripping near the separator have three destinations: they are intercalated into graphite, they travel to 
the cathode to deliver output current, and they move under an electrical field (migration) and a concentration gradient (diffusion) towards the foil and are inter-
calated along the path into graphite (Reprinted from Yang et al. [48] with permission of Elsevier). (C) Cycling data versus time extracted by a high-precision charger. 
A two-stage charge process is applied on pouch cells at different rates from (C/50 to 5C) at 30 oC ((a) Capacity, (b) Coulombic efficiency, (c) Coulombic inefficiency 
per hour) (Reprinted from Burns et al. [170] with permission of Electrochemical Society). (D) Resistance values Rcc + RSEI as a function of time for various electrolyte 
solutions (Reprinted from Schweikert et al. [120] with permission of Elsevier). 

X. Lin et al.                                                                                                                                                                                                                                      



Progress in Energy and Combustion Science 87 (2021) 100953

14

who positioned the RE near the current collecting tab of the anode as this 
area has a higher current density. Due to the low diffusivity of 
lithium-ions in graphite at low temperatures and high SOC, they 
discovered that lithium-ions begin to accumulate at the anode interface. 
Rangarajan et al. [69] used a lithium titanate (LTO) electrode as a 
reference electrode in a pouch cell with a stable voltage over a range of 
SOC to detect and quantify lithium plating. To quantify the amount of 
lithium plating at each rate, the plating period, plating power, and 
plating energy were defined. They called lithium plating a non-linear 
process since it does not increase monotonically under varied working 
conditions. Low cost and reliable RE insertion methods have been 
introduced in Ref. [163], which require less equipment than existing 
procedures for commercial 18650 cells. Non-polarizability, reliability, 
and reproducibility are the key characteristics in the RE material se-
lection process [164]. Lithium metal is the most common material for 
RE, but it cannot provide all these characteristics due to unstable po-
tential (reliability) [165]. The potential of RE may vary due to me-
chanical treatment, the nature of the electrolyte, and the formation of 
the SEI layer [19,164]. Moreover, lithium metal is not a proper choice 
for high-temperature applications due to its low melting point (i.e., 180 
○C) [49]. The accuracy of the RE method with alternative materials such 
as Li4Ti5O12andLiFePO4 has been studied by Mantia et al. [164]. They 
showed that these materials may be the most promising materials for RE 
since they exhibit a constant potential for Li4Ti5O12 (1.567 ± 0.0025 V) 
and LiFePO4(3.428 ± 0.0005 V) vs. Li/Li+. These materials can also 
provide low polarizability under high current rates during the two-phase 
reactions. Overall, RE insertion may cause surface film modification and 
degradation by interfering with the battery’s electrochemical process. 
Furthermore, due to safety concerns, RE has yet to be deployed in any 
commercial cells or real-time LiB applications for measuring electro-
chemical characteristics. 

4.4.3. Incremental Capacity (IC) and Differential Voltage (DV) 
IC-DV techniques are based on the rate of changes in the electro-

chemical equilibrium phase (EEP) [166]. The EEP changes are deter-
mined by the intercalation and de-intercalation processes that occur 
between the anode and cathode materials. The IC-DV curves are ob-
tained by a constant battery charge curve, and the IC curve is mathe-
matically estimated as the gradient of Q with respect to V (dQ/dV = f(V)) 
[166]. The DV curve is obtained by inversely computing the IC curve 
(dV/dQ = f(Q)). The researchers use prognostic/mechanistic models to 
directly clarify the aging mechanism by identifying model parameters 
[31,166,167]. Indeed, the mechanistic model is a backward-looking 
modeling approach in which the degradation is the input and the 
output is the cell’s voltage and capacity [31]. Thus, when a cell is in 
equilibrium, the IC-DV approach can quantify its electrochemical 
properties as well as its various degradation modes (LLI, LAM) [31,167]. 
The IC and DV curves can be used to study the degradation mechanism 
both qualitatively and quantitatively [44]. Tanim et al. [68] recently 
investigated the lithiation voltage profile and demonstrated that 
reversible lithium stripping is dependent on the level of over-lithiation 
in the graphite electrode. Capacity fading was observed using IC anal-
ysis on 13 cells cycled at a low temperature (-10◦C) under diverse 
conditions such as varying charge current rates, charge cut-off voltages, 
and charge cut-off current [24]. 

4.4.4. Coulombic Efficiency (CE) 
Coulombic efficiency (CE) is defined as the ratio of energy (Qd) a LiB 

outputs during discharge to the energy (Qc) a LiB takes in during charge 
[168]. When lithium plating occurs on the anode surface during the 
charging cycles, the CE decreases [19]. As a result, CE can be recognized 
as a method for detecting lithium plating. Smith et al. [169] advised four 
important aspects to correctly measure the CE: (i) accuracy of the set 
current, (ii) precision of the voltage measurement, (iii) duration be-
tween voltage measurements, and (iv) precisely controlled cell tem-
perature. Burns et al. [170] investigated lithium plating by plotting CE 

versus charging current rates. As shown in Fig. 8 (B), there is a consid-
erable variation in the capacity loss rates of cells charged at room 
temperature above 2 C. Furthermore, with a charging rate of 1C at 12 ◦C, 
they found a considerable amount of lithium plating. The CE versus 
charging rate at various temperatures was recorded (Fig. 8 (C)), with a 
minor drop in CE occurring as the deposited lithium began to consume 
the active lithium. They also proved the presence of lithium plating on 
graphite electrodes for cells cycled at charging current rates of 2 C for 50 
◦C and 0.5 C for 12◦C [170]. Liu et al. [171] measured the CE of four 
silicon-based electrode materials during cycling (condition: voltage cut 
off 1.5-0.02 V), and the resulting CE ranged from 95 % to 98 %. The 
measurement equipment used in this procedure must be highly precise 
to detect any variations in voltage and current. However, Tanim et al. 
[68] recently demonstrated that the CE approach could not be precise 
for detecting lithium plating in a full cell over extended cycling. When 
only small amounts of lithium are deposited, high precision coulomb-
meters are required. Otherwise, if the amount of deposited lithium is 
significant, conventional testers or measurement devices can be used 
[68,172]. Furthermore, the rest period has a considerable impact on the 
CE method, as it cannot distinguish stripping from the plating process 
[68,173]. 

4.4.5. Electrochemical Impedance Spectroscopy (EIS) 
EIS is a quantitative approach for analyzing battery behavior and 

determining electrochemical kinetics throughout the lithium insertion- 
extraction process [165]. Lithium deposition has been studied in Li/L-
i4Ti5O12 battery cells based on ionic liquid electrolytes during several 
charging/discharging cycles by EIS [120]. In another study by the same 
author, a correlation between the surface area of the electrolyte and 
lithium metal (formation of lithium dendrites) with Rcc + RSEIwas 
introduced. They showed that a decrease in the Rcc + RSEIvalue corre-
sponds to an increase in the interfacial area between the electrolyte and 
lithium metal electrode [182]. As shown in Fig. 8 (D), using a conven-
tional electrolyte (LiPF6 in EC/DMC) resulted in the formation of lithium 
dendrites [120]. The Rcc + RSEI values ofLiPF6 in EMIM-TFSA/EC and 
LiPF6 in EMIM-TFSA/PC do not show any decrease. However, there 
could be additional factors causing a drop in Rcc + RSEI values. EIS 
measurements are often conducted using laboratory equipment [120, 
182,183]. Nevertheless, Nazer et al. [184] proposed an online EIS 
technique for implementation in the BMS of HEVs and EVs. They 
measured electrochemical impedance using broadband excitation sig-
nals (pseudo-random binary sequences (PRBSs), random white noise, 
swept sine, swept square, and a square wave). The proposed system, 
however, was noisy and could result in an impedance error value at high 
frequencies [184]. 

4.5. Recent Non-Destructive Approaches for Detecting Lithium Plating 

In addition to these electrochemical and physical detection methods, 
simpler techniques for studying lithium plating have been proposed. 
According to the literature, when transitioning from a completely unli-
thiated condition to lithiatedLiC6 (intercalation of lithium), the total 
volume of the graphite anodes might increase by 10% [43,185]. The 
extra volume changes can also be caused by the deposited lithium on the 
graphite. As a result, detecting changes in cell thickness can be a useful 
strategy for detecting lithium plating [36,186,187]. There is a correla-
tion between the volume change and lithium plating, which determines 
the expected extent of volume gain due to deposited lithium Fig. 9 (A) 
[185]. In Ref. [185], a customized setup was provided to measure the 
thickness of a 20Ah pouch cell during cycling with varied currents and 
temperatures, as illustrated in Fig. 9 (B). Due to the reversibility of 
lithium plating, it was shown that the cell thickness increases rapidly 
during the lithium plating condition and decreases during the rest time 
(Fig. 9(C)). This method is straightforward and valid, but it requires the 
use of an accurate device to measure cell thickness. Furthermore, this 
approach is only applicable to pouch cells. It should be also noted that it 
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is not possible to differentiate volume changes due to gassing reactions 
with lithium plating [188]. 

Ultrasonic acoustic approaches have recently been used to study LiB 
behavior [189–191]. The propagation and reflection of soundwaves is 
the fundamental working principle of the ultrasonic method. Hsieh et al. 
[192] used this approach to measure SOC and SOH in a pouch cell. The 
ultrasonic investigation can be divided into two modes [193]: (i) 
pulse-echo mode, which uses a transducer that can either be glued or 
pressed onto the cell casing. In this case, a voltage pulse is sent out to-
wards the object (cell) and the pulse is reflected back to the transducers. 
(ii) Through-transmission mode, which employs two separate trans-
ducers, one of which serves as a transmitter and the other as a receiver; a 
voltage pulse is transmitted from the transceiver and travels through the 
object material (cell), arriving at the receiver, which is installed on the 
opposite side of the object. Gold et al. [191] proposed a linear model 
with ultrasonic pulse frequencies ranging from 200 kHz to 2.25 MHz, 
which is lower than the one used in prior studies to measure SOC in one 
cycle. Bommier et al. [189] recently employed the electrochemical 
acoustic (EA) technique to study SEI formation in NMC/SiGr pouch cells. 
Due to gassing reactions that occurred during the first SEI for-
mation/lithiation of the silicon particles, the acoustic signal was lost 
during the first 40 hours of charging. They demonstrated that the 
acoustic signal is significantly attenuated in the presence of a gaseous 
environment. Moreover, they found a correlation between the passiv-
ation of the silicon particles and the acoustic time-of-flight (TOF) shift. 

Bommier et al. [194] used the ultrasonic approach to detect lithium 
plating in a pouch cell. Commercial 210-mAh lithium-ion cells were 
ultrasonically tested in through-transmission mode. Fig. 9 (D), shows a 
schematic of the ultrasonic setup. In their study, they established a 
connection between the acoustic signal and lithium plating. When the 
cell was charged with 1C and discharged with C/10, the acoustic signal 
was quickly attenuated at the second cycle (t=20 h) and reappeared at 

the 18th cycle (t=195 h), as shown in Fig. 9(E) [194]. Meanwhile, the 
cell capacity was reduced from 0.210 Ah to 0.195 Ah, and they sus-
pected that the loss of acoustic signal was due to lithium plating. 
However, the loss of the acoustic signal, according to the literature, is a 
strong sign of a gassing reaction in the cell, and because distinguishing 
between lithium plating and gas reaction is difficult, it cannot be utilized 
as an indication for lithium plating. As a result, they discovered that 
employing an acoustic signal alone is ineffective. In the second attempt, 
they decided to measure the shifts (time-of-light) in the full acoustic 
waveforms [194]. Cells were cycled twice at C/15 for both charge and 
discharge and then a CC charge with a fixed capacity of 0.210 Ah (no 
voltage cutoff) was applied to trigger lithium plating. As shown in Fig. 9 
(F), they found a significant difference at the endpoints of the TOF shifts 
of the cells that were cycled with fixed-capacity charge (1 C) than the 
cells that were cycled with a C/15 charge. It was shown that there is a 
correlation between TOF endpoints differences and lithium plating. 
They proved the efficiency of this strategy using various ex-situ char-
acterization methods, such as ex-situ SEM, as shown in Fig. 9 (G) [194]. 

5. Model-Based Investigation of Lithium Plating 

In order to optimize the battery design and develop more practical 
charging protocols, model-based approaches are a good option [7,35, 
202]. There are several different approaches to model LiBs: electro-
chemical models, equivalent-circuit battery models (ECM), thermal 
models, electrical models, mechanical models, and molecular models 
[203]. Modeling provides us with the exact time of lithium plating and 
the location of the deposited lithium on the electrode surface. Newman 
[204] and co-workers introduced the first battery physics-based model. 
In the following, we review the recent results on lithium plating 
modeling, and based on the gathered information, the advantages and 
disadvantages of each model are compared in Table 5. 

Figure 9. Non-Destructive Approaches for Detecting Lithium Plating. 
(A) Theoretical relation between volume gain and lithium plating. (B) Schematic of the setup for in-operando measurements of pouch cell thickness during the 
lithium plating (resolution 1 µm). (C) Significant changes in the cell thickness at the charge current of 7 A due to lithium plating (Reprinted from Bitzer et al. [185] 
with permission of Elsevier). (D) Schematic of the in-operando acoustic detection setup for studying lithium plating. (E) Acoustic plots consist of three distinct panels, 
which are, from top to bottom, a heatmap of acoustic time of flight (s), total amplitude of waveforms in random components, and a voltage versus time curve 
corresponding to the adjoined waveforms. (F)  The difference in acoustic TOF shifts during the C/15 charge and the fixed-capacity charge of 0.210 Ah at different 
temperatures was measured when the cell was cycled at 10◦C with a fixed capacity charge of 1 C. The cell was cycled with a fixed capacity charge of 1 C at 0◦C (G) 
Ex-situ SEM measurement: electrodes were washed in (DMC) and dried in an argon-filled box for 2 hours at 40◦C. Scale bars: 5 μm (Reprinted from Bommier et al. 
[194] with permission of Cell Reports). 
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5.1. Electrochemical Models of Lithium Plating 

Electrochemical models based on the porous electrode theory and 
lithium concentration solution have been widely used to study lithium 
plating in LiBs [7]. The electrochemical models cover both particle level 
and cell level dynamics. At the particle level, the mass conservation and 
diffusion dynamics at both electrodes are explained based on Fick’s law 
[205]. At the cell level, it needs to describe the flow of lithium-ion in the 
electrolyte, the diffusion of lithium in the active material, and the 
electron charge transfer in the lithium-ion intercalation process at the 
surface of the active material. All of them are based on the 
porous-electrode model. The cell level and particle level dynamics are 
coupled through the local reaction current based on charge conserva-
tion. The properties of materials can be estimated based on the electrical 
measurements of the full cell [206]. The lithium plating criteria can be 
divided into two different kinds: (i) A saturation concentration at the 
interface; lithium plating would happen when the concentration of 
lithium-ions at the electrode interface reaches the saturation level [7, 
57]. (ii) The interfacial overpotential; when the overpotential (η) is 
lower than 0 V against Li/Li+, lithium plating would occur [7,57,98]. 
These criteria are applied in the electrochemical models to predict 
lithium plating. Arora et al. [38] made the first attempt to develop a 
physics-based mathematical model for investigating lithium plating on 
the negative electrode (graphite and coke) during charge and over-
charge. This macro-homogeneous model was based on the work of Doyle 
and Newman [204]. Kinetic and thermodynamic parameters (e.g., 
transfer coefficient (αa,αc), exchange current density (i0)) were adopted 
into the model to simulate the electrochemical reactions, mass transport, 
and other physical processes. 

They assumed lithium plating is partially reversible. They found that 
the particle size and electrode thickness can influence the lithium 
plating phenomena [38]. As long as the electrode is thinner and has a 
smaller particle size, lithium plating is less favorable compared to 
thicker electrodes with larger particles [38]. However, many other 
features need to be added to this model to study lithium deposition in an 
overcharge reaction. Moreover, this model cannot capture the edge ef-
fects of the cell on the accumulation of the lithium-ions on the anode 
electrode during the charging process [207]. 

In another approach by Ge et al. [57], who used Newman’s elec-
trochemical model, also known as a pseudo-two-dimensional (P2D) 
model, to study lithium plating at low temperatures. They divided the 
total electrochemical reaction current density into two parts: the lithium 
intercalation current j1 and the lithium deposition current j2: [57], 

j = j1 + j2 (6) 

Both of them can be described by the Butler-Volmer equation: 

j1 = j0,1

[

exp
(

∝aF
RT

η1

)

− exp
(

−
∝cF
RT

η1

)]

(7)  

where j0,1 is the exchange intercalation current, ∝a and ∝c are the 
transfer coefficients which generally equal to 0.5, and η1 is the over- 
potential for intercalation reaction. 

j2 = min
{

0, j0,2

[

exp
(

∝a,2F
RT

η2

)

− exp
(

−
∝c,2F
RT

η2

) ]}

(8)  

where j0,2 is the exchange plating current, ∝a,2 and ∝c,2 are the transfer 
coefficients which are generally taken to be 0.3 and 0.7, respectively, 
and η2 is the over-potential for lithium plating reaction. When the 
overpotential (η2) is lower than 0 V against Li/Li+, lithium plating would 
occur. They found that during low temperature charging when the 
overpotential (η2) is minimum, lithium-ions start to accumulate at the 
anode-separator interface and then move into the anode electrode. This 
model also proposed a multi-step charging process that can charge the 
cell fast and safely without incurring lithium plating at low temperatures 
[57]. However, the model validation has been carried out with few data 

points. 
A P2D-modeling has been presented by Tang et al. [207] to study 

lithium plating during cell charging. They found that increasing the 
thickness of the negative electrode can hinder the deposition of lithium, 
specifically at the edge of the electrode. In another interesting approach 
by Tippmann et al. [206], a P2D electrochemical model was combined 
with a 0D thermal model to predict the aging at different temperatures 
(-25 ○C to 40 ○C) and currents (0.1 C to 6 C). They used COMSOL Mul-
tiphysics 4.2 to perform the simulation and compared the obtained re-
sults with EIS experiments. However, the implementation of this model 
into BMS is difficult due to the cost and time-consuming simulations 
while using the porous electrode theory. 

Computational cost is also one of the challenges in lithium plating 
modeling due to a large number of governing equations (e.g., ten non- 
linear and multidimensional partial differential in spatial directions x, 
r, t) that are required to be solved at the same time with the highly non- 
linear algebraic expression for transport and kinetic parameters [208]. 
Liu et al. [50] developed a model that couples lithium plating with SEI 
growth, allowing simulating concurrent lithium dendrite growth, SEI 
growth, SEI penetration and regrowth. Their work highlights the effect 
of SEI in lithium plating. Boovaragavan et al. [208] proposed a refor-
mulated physics-based model for real-time parameter estimation. Their 
model can simulate porous model equations in 15-45 ms with only 29-49 
differential-algebraic equations (DAEs) while using the rigorous model, 
it takes 90-120s with at least 4800 DAEs. This model is suitable for 
predicting the capacity fade, but it has only been validated at the 2C rate 
of discharge [208]. A reduced-order model (ROM) was created by Per-
kins et al. [209], who defined five different assumptions, such as keeping 
the cell always in the quasi-equilibrium state for studying lithium 
plating during overcharge. This model is an optimized version of the 
Arora model to speed up the calculation of the governing equation in the 
ROM compared with the physical-based model. They could reduce the 
calculation time to 1/5000 by using ROM compared to the 
physical-based model. This ROM can only be implemented for short 
pulses (less than 10s) due to the quasi-equilibrium. Thus, it can recog-
nize the time when lithium plating is about to occur in the charging 

Table 5 
Advantages and Disadvantages of Lithium Plating Models in LiBs [7].  

Criterion Model Advantages Disadvantages  

(i) The 
interfacial 
overpotential 
(ii) A saturation 
concentration 
at the interface.  

Purushothaman 
et al. [212] 

(a) Time-efficient 
calculation 
(b) Quickly iterate 
on cell design 

(a)Only applicable 
at low C-rate and 
small electrode 
thickness 
(b) Not-accurate 

Arora et al. [38] (a) Applicable to 
Predict the overall 
behavior of many 
systems. 
(b) High accuracy 
(c) Based on the 
internal 
electrochemical 
process  

(a) Only focus on 
overcharging 
conditions. 
(b) 
Computationally 
expensive 
(b) Involve lots of 
manual tuning 
(c)Require deep 
understanding  

Tang et al. [207] (a) Capture the 
edge effects 
(b) Easily iterate 
on cell design 

(a). Long 
simulation time 
due to a large 
number of 
nonlinear 
equations 
(b) Extremely 
sensitive to the rate 
constant and 
charge rate 

Perkins et al.  
[209] 

(a) Time-efficient 
calculation 

(a) Only applicable 
at low C-rate and 
small electrode 
thickness  
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process [209]. A physics-based model by Wang et al. [210] studied the 
aging behaviors due to lithium plating and SEI growth of a plug-in 
electric vehicle (PEV) battery over a normal charge/discharge current 
at the ambient temperature. This model considered the SEI growth and 
lithium plating rate to explain linear and nonlinear behavior during 
cycling. The linear aging stage is linked to SEI growth. The transition 
from linear to nonlinear aging is associated with lithium plating. 
Recently, Lin [205] proposed a data-driven strategy that uses long 
short-term memory (LSTM) to monitor anode electrode potential in 
real-time to prevent lithium plating. Because physics-based model 
implementation is complex, time-consuming, and requires extensive 
manual tuning, real-time LSTM is far more computationally efficient and 
can be easily integrated into the BMS. The LSTM model can complete the 
entire test in 87 seconds, whereas the physics-based model takes 7 hours 
and 44 minutes. 

6. Effect of Material Components and Charging Protocols on 
Lithium Plating 

As shown in Fig. 10, developing high-performance fast-charging LiB 
without lithium plating requires a multidisciplinary approach. The 
previous sections have provided a comprehensive overview of the 
mechanisms, detection, and prediction of lithium plating. Extensive ef-
forts have been made at multiple levels, including material component 
modification (electrode and electrolyte interfaces), cell and pack design 
optimization, charging protocol optimization, and the development of a 
battery management system to prevent the formation of lithium den-
drites. The success of each approach can greatly improve the fast 
charging performance of lithium-ion batteries. As a result, we will re-
view the existing literature on material components, cell design, and 
charging protocol approaches in terms of their strengths and weaknesses 
in the following sections. 

6.1. Effects of Material Components on Lithium Plating 
LiB material components, such as electrodes and electrolytes, have a 

significant impact on lithium plating. Many studies have been conducted 
from a material perspective to improve the lithium-ion cell for fast 
charging while suppressing lithium plating. The approaches proposed 
with an emphasis on material properties can be divided into two groups. 
As shown in Fig. 11 (A) [211], group A is focused on anode material 
modification, whereas group B is focused on advanced electrolyte 

adoption. In group A, the modification of anode martial can be further 
categorized into five groups in terms of their functions and effects on the 
charge transfer process. In group B, adopting advanced electrolytes 
could be further divided into three subgroups: (1) introduction of low 
viscosity co-solvents and esters, with improvement in ionic conductivity 
and electrolyte diffusion; (2) introduction of electrolyte additives to 
obtain desirable SEI properties; and (3) introduction of optimal Li+-

transfer number. 
Based on the aforementioned classification, considerable efforts have 

been made to introduce a potential liquid electrolyte with enhanced 
transport as well as a fast-charging capable anode electrode that can 
prevent lithium dendrite formation. Recent advances in the improve-
ment of the charge transfer process (rate performance) are discussed 
below. For a more precise comparison of the different strategies, the 
advantages and disadvantages of each strategy are summarized in 
Table 6. 

Anode material modifications are necessary since it has a significant 
impact on the lithium plating in LiBs. The most practical anode material 
in the current market is graphite due to its low working potential, high 
capacity, and long cyclic life [12]. However, the activation energy of 
charge transfer, which is dependent on Li+desolvation at the SEI layer 
and lithium diffusion in small graphite interlayer spaces (0.335 nm), 
limits the lithiation rate capability of graphite anode materials, resulting 
in lithium plating [213]. Hard carbon and soft carbon are two other 
carbonaceous-based compounds used as anode materials. Because of the 
larger interlayer space, these materials exhibit higher intercalation rates 
than graphite [214]. Nonetheless, due to low CE and high raw material 
costs, these materials are not widely used in today’s market. 

The size and structure of graphite particles, such as flake-like and 
spherical, can influence charge acceptance [7,215]. Park and his col-
leagues demonstrated that lithium plating occurs more frequently in 
graphite with flake-like particles than in graphite with spherical parti-
cles [216]. Graphite with flake-like particles is typically used in the 
market due to the low price. Cheng et al. [213] designed a multi-channel 
structure that significantly increased the intercalation sites by making 
holes on the graphite surface with KOH etching. A hybrid anode was 
developed which consists of an edge-plane activated graphite and Si 
nanolayer (SEAG), where the activated edge-plane increases the site 
reaction [217]. Nanoscale Si coating layer enhances the energy density 
while reducing the Li+ diffusion path by increasing accessible reaction 

Figure 10. Fast Charging Process.  
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sites. The fabrication of SEAG composite includes simple steps which 
are: a) reflux, b) heat treatment, and c) chemical vapor deposition 
(CVD). The SEAG electrode showed improvement in capacity retention 
(99.3%) at a current density (1.75 mA/cm2) for 50 cycles. Moreover, a 
stable CE (> 93.8%) is achieved with a high specific capacity (525 
mAh/g) in the first cycle. Additionally, the effect of fast charging (> 3 C) 
on the SEAG electrode was examined, as shown in Fig. 11 (B), no lithium 
plating was observed on the SEAG electrode for the first 50 cycles, while 
a significant amount of the deposited lithium was observed on the 
graphite electrode [217]. 

The use of electrodes with reduced tortuosity is another approach, 
which is especially useful for thick electrodes to prevent lithium plating. 
The Li+move in the electrolyte through the porous electrode, the 
diffusion rates of the Li+ highly depends on the microstructure of the 
electrode, which is called tortuosity [215]. A lower tortuosity yields a 
higher rate capability and improvement in capacity retention, where a 
high tortuosity slows down Li+ transport in the electrodes and increase 
the concentration gradients [218]. Reducing the tortuosity for thick and 
dense electrodes would be beneficial for developing materials for fast 
charging. Recently, Habedank and co-workers investigated the effects of 
anode tortuosity on lithium plating [215]. The tortuosity was reduced 
by using a laser structuring technique (pulse duration 150 ps/frequency 
1.200 MHz) to remove a tiny fraction of the electrode material. As 

shown in Fig. 11 (C), many holes in a hexagonal pattern with a lateral 
length of 100 μm were made. They used OCV (after charging) as a 
detection technique. Lithium plating was significantly reduced in the 
cell at 2 C charge rate and 0 oC compared to the conventional cell. 
However, laser structuring of the graphite anode was not effective at -15 
oC due to very slow lithium diffusion in the graphite particles. In another 
study, Kraft et al. [218] applied laser structuring to modify the pore 
morphology of the graphite anodes. Charging time was reduced by 15 % 
to 17 % for a 3 C charge, and almost no lithium plating was observed. 

As mentioned earlier, strategies to prevent lithium plating are not 
only limited to the anode modifications. The electrolyte is the media in 
which Li+ ions move between the cathode and anode electrodes, and the 
electrolyte also affects the properties of the SEI layer. Organic solvent 
blends for electrolyte is made of a mixture of ethyl methyl carbonate 
(EMC), ethylene carbonate (EC), dimethyl carbonate (DMC), and diethyl 
carbonate (DEC), where DEC, EMC, and DMC have a lower melting 
pointing and viscosity compared to the EC [219]. EC has a high 
dielectric constant and is traditionally included in the electrolyte as it 
can help form SEI on the graphite layer. Adding aliphatic esters along-
side the linear carbonates, such as DMC and EMC, which have lower 
melting points and viscosity, would have a positive impact on the per-
formance of the electrolyte [16]. Dahn et al. [219] have studied using 
the most typical type of solvents esters such as methyl acetate (MA), 

Figure 11. Electrode Modification and Mitigation Strategies. 
A) Classification of existing mitigation strategies based on the material components. B) The procedures for the fabrication of SEAG composite. a) reflux: spherical 
nickel nanoparticles (size 500 nm) are adsorbed on the Mesocarbon Microbeads (MSMBs) with the use of reflux technique (80 oC), b) heat treatment: the holy 
structure of the sample is a result of two steps, first heating the sample at 1000 oC in a Hydrogen (H2) environment, then the penetration of adsorbed Ni nanoparticles 
into the graphite with the methane (CH4) gas evolution, c) Chemical vapor deposition: CVD method was used with C2H2 and SiH4 gases to distribute graphitic carbon 
and a SiO nanolayer on the graphite with holy structure. As a result, no lithium plating was observed on the cell with the SEAG electrode after 50 cycles, while 
significant lithium plating was observed on the cell with a graphite electrode (Reprinted from Kim et al. [217] with permission of Nature Communication). C) 
Detailed illustration of a cell with the laser-structured graphite anode and unstructured NMC cathode and an SEM image (resolution 10 μm) of a structured hole with 
a lateral length of 100 μm (Reprinted from Habedank et al. [215] with permission of Electrochemical Society). 
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ethyl acetate (EA), methyl propionate (MP), and methyl butyrate (MB) 
in the electrolyte to improve the charging speed of lithium-ion cells. 
They found that MA is the most suitable co-solvent as it has the lowest 
viscosity compared to the EMC and DMC (Fig. 12 (A)). Therefore, esters 
(MA) were added at a fraction of 20 % and 40 % to the 
(NMC532)/graphite cells that were cycled at 1 C, 1.5 C, and 2 C charge 
rates, leading to a 50 % increase in ionic conductivity. As shown in 
Fig. 12 (B), significant capacity fade at 2 C charging occurred due to 
lithium plating in the cells without MA. However, cells with 20 % and 40 
% MA did not show any capacity fade. Other research groups also 
investigated the effects of esters such as MA or EA as co-solvents in LiB 
electrolytes, where all of them agree that using esters can significantly 
improve low-temperature performance and rate capability of cells. They 
also found the negative effect of using esters. The SEI layer can not be 
formed properly, and the cell cycle life is reduced because esters cause 
other side reactions, such as gassing and CE drops [220,221]. 

Transference number (t+) is defined as the fraction of the ionic 
conductivity contributed by the Li+ions [16,222]. The importance of the 
transference number, especially at rates above 2 C, is highlighted in 
Fig. 12 (C). The optimal transference number should be close to 1. Even 
when the electrolyte has a low conductivity, a high transference number 
can still provide good power densities and enable high-rate charging 
[222]. However, due to the formation of large solvation shells around 
the Li+, the transference number in existing liquid electrolytes ranges 
between 0.30 and 0.40. Approaches to increase transference number can 
be divided into two groups: (a) immobilizing the anions (using salts with 
bulky anions) [223,224], (b) increasing electrolyte concentration 
(nonaqueous polyelectrolytes) [225,226]. Du and colleagues investi-
gated the effects of the lithium bis(fluorosulfonyl)imide (LiFSI), as an 
alternative to the typical salt hexafluorophosphate (LiPF6) in the 
graphite - LiNi0.8Co0.1Mn0.1O2 pouch cells [227]. Cell capacity retention 
and fast charging capability have been significantly improved, as the 
LiFSI have a higher transference number (t+ = 0.495) and ionic con-
ductivity compared to the LiPF6(t+ = 0.382). Additionally, a smaller 
amount of lithium plating was observed on the graphite electrode in the 
LiFSI electrolyte after 500 cycles compared to the LiPF6 electrolyte 
(Fig. 12 (D)). In fact, Li+ can move faster in LiFSI, as LiFSI have bulky 
anions (FSI− 95 Å3) compared with LiPF6 (PF6

− 69 Å3). However, using 
LiFSI may cause anodic corrosion of the aluminum cathode current 
collector. 

The effects of electrolyte additives on the performance of LiBs have 
been extensively investigated over the last decade. Electrolyte additives 
play a critical role in forming the SEI layer. To improve the fast charging 
capability, the desirable SEI layer should be thin, compact, and less 
resistive with high ionic conductivity [228,229]. Using electrolyte ad-
ditives, such as vinylene carbonate (VC), lithium bis (oxalato) borate 
(LiBOB), fluoroethylene carbonate (FEC), showed significant improve-
ment in terms of performance and lifetime at a lower charge rate [230, 
231]. However, it may also increase the chance of lithium plating due to 
the formation of a highly resistive SEI layer by adding the above addi-
tives. Adding LiSFI as an electrolyte additive in (1.0 M LiPF6 in EC +
EMC + MP (20: 20: 60 vol%) can improve the low temperature per-
formance and reduce lithium plating [230]. A comprehensive review of 
recent advances in electrolyte composite for fast-charging can be found 
in Ref. [16]. 

Besides the material selection and microstructure modification dis-
cussed in the previous section, the selection of electrode and cell 
geometrical parameters (cell and pack design) and the design of 
advanced battery thermal management systems (high-temperature ho-
mogenization) are also important. Approaches such as increasing the 
porosity and the width of the anode are widely used in literature as a 
method to prevent lithium plating. However, they may also lead to a 
reduction in capacity [231]. The negative to positive ratio (N/P) is 
closely related to lithium plating, where values greater than 1 are 
typically used for commercial cells. Mechanical stresses on the anode are 
reduced with the higher N/P ratios, resulting in a decrease in SEI 

Table 6 
Advantages and Disadvantages of Material Based Strategies for Lithium Plating 
Mitigation  

Material 
Based 
Strategies for 
Lithium 
Plating 
Mitigation 

Material 
Components 
Modification 

Advantages Disadvantages Refs.  

Reducing 
Particle Size of 
the Electrode 

(a) Shortened 
lithium 
diffusion path 
(b) Enhance 
energy 
density 

(a) Low 
electronic 
conductivity 
(b) 
Volumetric 
expansion 

[215,213, 
217]   

Reducing 
Electrode 
Thickness and 
Tortuosity  

(a) Higher Li- 
ion diffusivity 
rate 
(b) 
Improvement 
in capacity 
retention 

(a) Low 
performance 
at subzero 
temperatures  

[215,218] 

Modification 
of Anode 
Material 

Coating with 
Conducting 
Agent / Metal or 
Metal Oxides 

(a) Excellent 
electrical 
conductivity 
(b) Improve 
Electrode 
kinetics 
(c) Higher 
lithium-ion 
diffusivity 

(a) Coulombic 
efficiency 
drops 
(b) Adverse 
effect on 
specific 
capacity 

[108,215]  

Increasing 
Lithium Solid 
Diffusion 

(a) Higher 
lithium-ion 
diffusivity 
(b) Improve 
high-rate 
charge 
(c) Improve 
low- 
temperature 
performance 

(a) Coulombic 
efficiency 
drops 
(b) Severe 
parasitic 
reactions 

[19,20]  

Nanostructured 
Carbon Design 

(a) Increased 
energy 
(b) Shortened 
lithium 
diffusion path 

(a) Costly 
process 
(b) Not 
applicable for 
large scale 

[215,232]  

Adopting 
Advanced 
Electrolyte 

Introduction of 
Low Viscosity 
Co-solvents / 
Esters 

(a) Improve 
high-rate 
charge 
(b) Increase in 
ionic 
conductivity 
(c) Improve 
low- 
temperature 
performance 

(a) Failure in 
properly SEI 
layer 
formation 
(b) Negative 
impact on 
calendar life 
(c) Gas 
generation 
(d) Coulombic 
efficiency 
drops 

[219-221]  

Introduction of 
Optimal 
Transference 
Number 

(a) Increased 
power 
densities 
(b) Improve 
high-rate 
charge 
(c) 
Improvement 
in capacity 
retention 

(a) Corrosion 
of the current 
collector 

[222-226]   

Introduction of 
Electrolyte 
Additives 

(a) Improve 
low- 
temperature 
performance 
(b) Forming 
effective SEI 
(c) Reduce 
anode 
interface 
resistance are 

(a) Prone to 
lithium 
plating 
(b) Increase 
polarization 
at the anode 

[228-231]  
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formation and associated LLI. Kim and colleagues investigated the effect 
of various N/P ratios on 1.4 Ah pouch cells. In cells with N/P ratios 
greater than 1.10, no lithium plating was observed at 0.85 C and 25◦C. 
They demonstrated that designing the anode capacity at least 20% 
bigger than the cathode capacity is an effective strategy to suppress 
lithium plating [233]. 

However, the optimal ratio may also be affected by other parameters 
in the battery, such as the electrode material and battery form param-
eters. Especially for large cells, the battery form parameters affect the 
current and temperature distribution. In large cells, the current distri-
bution is very important, because a uniform current distribution can 
reduce the risk of lithium plating. Details of cell and pack design and 
their impacts on lithium plating can be seen in reference [61]. 

6.2. Effects of Charging Protocols on Lithium Plating 

Several mitigation strategies were discussed in the previous section 
from a material standpoint. Although they show promising results, most 
of them are complicated and time-consuming to execute and are not 
compatible with large-scale manufacturing. As a result, many re-
searchers have focused more on cell and pack-level solutions, such as 
charging strategies, which can usually be implemented in actual sys-
tems. Charging protocols determine how the current changes during the 
charging process. The improvement of the charging protocols would be 
beneficial for mitigating the formation of lithium dendrite on the 
graphite surface [19,70,234]. Conventional charging protocols include 
constant-current constant-voltage (CC-CV), multistage constant current 
(MSCC), pulse charging (PC), and boost charging (BC). These methods 
are based on predetermined charging parameters with constant voltage, 
current, or power (Fig. 13) [235]. These techniques are simple and 

ignore the detailed battery response in each stage. Optimizing the 
charging protocols according to the battery dynamics could be useful. In 
the following subsections, we review different charging protocols and 
their characteristics, along with a discussion of strategies that can 
reduce the charging time without sacrificing battery health. Table 7 
highlights the advantages and disadvantages of each charging protocol. 

6.2.1. Constant Current Constant Voltage (CC-CV) Charging 
The standard constant current-constant voltage (CC-CV) is a combi-

nation of the constant current (CC) and constant voltage (CV) methods, 
which is the most commonly-used technique for charging the LiBs [70, 
236]. The CC-CV charging profile starts with the (CC) phase until the cell 
voltage reaches a predefined voltage (cut-off voltage). Then the process 
switches to CV phase, maintaining the constant cell voltage. The 
charging process stops when the charging current drops below a pre-
determined low value(Iend)(Fig. 13 (A)). The CC-CV technique is simple 
and useful for various battery types. However, the charging time is 
usually long due to CV phase [234]. One of the main reasons for battery 
degradation in CC-CV high-rate charging is lithium plating because the 
high charge rate triggers favourable conditions for lithium plating 
[237]. Some researchers proposed some methods that may reduce 
lithium plating during the charging process, such as modifying the 
electrode thickness, adding electrolyte additives, and using smaller 
active material particles in the negative electrode [37,214,238]. Tipp-
mann et al. [206] performed a charging experiment in which, CC phase 
continued until it reached 4.2 V (cut-off-voltage) followed by CV phase 
to investigate CC-CV charging parameters for LiBs to prevent anode 
lithium plating at sub-zero temperatures. Ref. [239] studied the effect of 
high charge current rate and high charge voltage on the cycle life of a 
900-mAh wound prismatic cell, and found that a cut-off voltage higher 

Figure 12. Electrolyte Adaptation and Mitigation Strategies. 
A) The viscosity of different esters and carbonated co-solvents was measured as a function of temperature (-25 ○C to 40 ○C), solid lines show the viscosities that 
measured from the advanced electrolyte mode (AEM). B) Discharge capacity against cycle number; after adding 20 % and 40 % of MA, two similar cells were 
designed and evaluated. All cells were charged at 1 C, 1.5 C, and 2 C rates at 20 ○C, cells without MA showed significant capacity fade due to lithium plating 
(Reprinted from Dahn et al. [219] with permission of Electrochemical Society). C) Attainable SOC against C-rate for electrolyte with a constant ionic conductivity (10 
mS/cm), the positive impacts of high transference number is highlighted at 2 C charge rate and above (Adopted from Diederichsen et al. [222]). D) long term cycling 
(500 cycles) performance for two cells with LiPF6(t+ = 0.382)and LiFSI (t+ = 0.495), both cells were charged at 5 C rate for 12 minutes. Capacity fade for the cell with 
LiFSI at the first cycle was about 153.2 mAh/g, which was 134.3 mAh/g for the same cell after 500 cycles (84 % retention). Capacity fade for the cell with LiPF6 at the 
first cycle was about 135.4 mAh/g, which was 110.6 mAh/g for the same cell after 500 cycles (77 % retention) (Reprinted from Du et al. [227] with permission 
of Elsevier). 
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than 4.2 V, a long charge period at 4.2 V, and a high charge rate above 1 
C will significantly reduce the cell cycle life. Zhang et al. [240] studied 
the effect of charging currents and temperatures on the electrode’s po-
tential during the CC-CV charging and showed that the anode potential 
is decreased at high charging rates and low ambient temperature. 
Lithium plating could occur at the end of the CC phase and continue 
until the charge current reaches the predetermined value. 

6.2.2. Multistage Constant Current (MSCC) Charging 
The multistage constant current (MSCC) method can be a suitable 

alternative to the CC-CV charging protocol [7]. MSCC is designed to 
charge LiB through a series of decreasing currents (Ich1 > Ich2 > Ich3... >
Ichn) [70]. The MSCC consists of several CC steps. At each stage, the 
charging current has a predefined value. Charging continues until the 
voltage reaches its upper limit. Then the charge current is reduced to the 
next level accordingly and the charging process continues until all the 
stages are completed (Fig. 13 (B)) [70]. The decreasing charging rate 
over time can help reduce the chance of lithium plating on the anode 
surface. MSCC fast charging technique was introduced in Ref. [241] for 
charging a high-power LFP cell. The charging pattern was divided into 
three stages to recharge a cell in 20 min. No cell overheating was 
observed during the charging process. MSCC optimization technique 
was proposed in Ref. [242] based on Taguchi’s method to calculate the 
magnitude of each current step in the MSCC charging pattern. They 
charged a cell up to 75% capacity in 40 min. This method can be easily 
implemented into the battery charging and testing equipment. Tanim 
et al. [53] proposed an MSCC charging protocol to examine XFC cycling 
behavior in different cells. In the proposed MSCC charging protocol, 
they maximized the magnitude of CC charging by minimizing the cell 
overpotential (< 0.25V). Zhang et al. [243] studied the effect of three 
charging protocols (MSCC, CC-CV, and constant power-constant voltage 
(CP-CV)) on the capacity fade of commercial 18650 cells. They found 
that the rate of capacity degradation is minimum when using CP-CV at 1 
C rate compared with other charging protocols. 

6.2.3. Pulse Charging (PC) 
Pulse charging is a fast-charging method [212,244]. In PC, the 

charging current to a LiB consists of pulses characterized by frequency, 
duty cycle, pulse current peak, and pulse width. In order to control these 
parameters, the internal states of LiBs are needed (Fig. 13 (C)). PC im-
proves the charging performance due to the short relaxation times or 
discharge pulses which reduce the concentration gradients and anode 
overpotential. Therefore, this technique can reduce the risk of lithium 
plating. Another useful approach was proposed by Purushothaman et al. 
[212]. They developed a macro-homogeneous lithium diffusion model 

for conventional and pulse charging protocols. They determine the 
charging current waveform based on the lithium concentration. The 
charging pulse width and the rest pulse width were determined. Their 
pulse charging method is 2.6 times faster than the typical method. Hasan 
et al. [245] presented an electrochemical thermal coupled model to 
study the impact of different temperatures and charging rates on PC, 
CC-CV, and BC protocols. They found that the pulse charging protocol is 
the fastest one among others and has maximum efficiency. Monte Carlo 
simulation was used by Aryanfar et al. [246] to study the dendrite 
growth during the pulse charging process. They showed that using 
shorter pulses (1 ms) with 3 ms relaxation time can hinder lithium 
dendrite growth. However, they did not study the impact of ambient 
temperature during their experiments. PC technique requires a good 
understanding of LiB internal states. Also, implementing PC into char-
gers requires a complicated control algorithm. 

6.2.4. Boost Charging (BC) 
The boost charging method is another form of MSCC. The cell is 

charged using a high current (Iboost) at the beginning of the charging 

Figure 13. Schematic of General Fast Charging Protocols. A) Constant Current- 
Constant Voltage, B) Multi-stage Constant Current, C) Pulse Charging, D) Boost 
charging (Reprinted from Keil et al. [70] with permission of Elsevier). 

Table 7 
Advantages and Disadvantages of Charging Protocols  

Charging 
Protocols 

Advantages Disadvantages Consider 
lithium 
plating 

Refs. 

Constant 
Current 
– 
Constant 
Voltage 
(CC-CV) 

(a) Simplicity 
(b) Ease of 
implementation 
(c) Reliable at 
mid to low 
charging rates 
(d) Chargeable up 
to max. capacity 

(a) It is not suitable 
for rapid charging 
(b) Not time- 
oriented due to the 
long CV stage 
(c) Impedes 
overcharging the 
battery 
(d) Reduces the 
cyclic life of the 
battery  

By choosing 
appropriate 
constant 
current and 
voltage 

[70, 
236, 
262] 

Multi 
Constant 
Current 
– 
Constant 
Voltage 

(a) Prolonged 
cycling life 
(b) Improve 
energy transfer 
efficiency 
(c) Improve cell 
capacity 
retention 

(a) Limited in 
application to 
pouch cell 
(b) Needs to 
estimate the SOC 
accurately during 
the process. 
(c) Increases the 
implementation 
costs  

Limited effect 
on lithium 
plating 

[70, 
242, 
241, 
235] 

Pulse 
Charging 

(a) Shortening 
charging time 
(b) Reduce the 
impedance 
accumulation of 
anode electrode 
(c) Reduce the 
polarization 

(a) Pulverization of 
the electrode 
particle due to 
informal cycling 
performance 
(b) Increase heat 
generation in the 
connected parallel 
pack 
(c) It is so 
complicated and 
costly 
(d) Require an 
accurate estimation 
for selecting the 
appropriate 
parameter for pulse 
sequence. 

The pauses 
during 
charging can 
prevent 
lithium 
plating 

[263, 
236, 
246, 
235] 

Boost 
Charging 

(a) Shorter 
charging time 
(b) Ease of 
implementation 
(c) Reduce the 
degradation 
effects  

(a) Temperature is 
not considered 
(b) The charge rate 
is not optimized 

– [70, 
235, 
247, 
235]  

X. Lin et al.                                                                                                                                                                                                                                      



Progress in Energy and Combustion Science 87 (2021) 100953

22

process for a short period which is called the boost-charge period, and is 
then followed by a conventional CC-CV method (Fig. 13 (D)) [70]. The 
boost-charge period is terminated based on a predefined maximum 
voltage Vmaxand time value tb. Notten et al.[247] proposed the BC 
protocol on the cylindrical (US18500, Sony) and prismatic (LP423048, 
Philips) cells. They compared BC with the conventional CC-CV in terms 
of charging time and cyclic life performance. Both cells can be charged 
to 30% of the cell capacity in 5 mins for 700 times without any degra-
dation. Keil et al. [70] studied different charging protocols and the effect 
of charging currents and charging voltages on the cycle life of three 
high-power 18650 cell types. They showed that the cell cycle life could 
be reduced in BC protocol at high charging rates and high or low SOCs. 
However, in both above studies, the impact of temperature on the 
charging process was not considered. 

6.2.5. Charging of Electric Vehicles 
EV companies try to address the issue of ’range anxiety,’ which is one 

of the primary market barriers for EVs [248,249]. Depending on the 
ambient temperature, charging a Nissan LEAF with a typical 50 kW 
charger can take anywhere from 30 minutes to 90 minutes to reach 80 % 
SOC [250]. Among EV manufacturers, Tesla was the first to offer su-
perchargers with a recharge rate of 120 kW [251]. They also just 
upgraded the supercharger’s charging rate to 225 kW [252]. Last year, 
Porsche developed an ultra-rapid charger rated at 350 kW (800 V) in 
Berlin for the new Taycan model released to the market in 2020 [253, 
254]. The Tycan ultra-rapid charger with a maximum charging capacity 
(peak) of 270 kW can charge the battery from 5 % to 80 % in just 22 
minutes [254]. Despite the recent development, the current charging 
solutions are still far from what EV consumers expect. Charging up to 
80% SoC in 15 minutes by 2023 is a goal set by the U.S. advanced battery 
consortium [255]. To achieve the 15-minutes refueling for a large bat-
tery pack size (for example, >90 kWh), at least 300 kW charging power 
is required [214]. 

Various charging standards have been developed around the world. 
IEC 62196 is a global standard issued by the International Electro-
technical Commission (IEC) that acts as an umbrella standard for many 
charging standards. The umbrella standard addresses the fundamentals 
of power and communication interfaces, whereas other charging stan-
dards address the mechanical and electrical requirements for plug and 
socket assemblies [256]. Charging standards are classified into four 
categories [256]: (i) SAE J1772, which is used in North America for ac 
and dc charging, (ii) VDE-AR-E 2623-2-2, which is used in Europe for 
single-phase and three-phase ac charging, (iii) JEVS G105-1993 (also 
known as CHAdeMo), which is developed in Japan and used globally for 
high-power dc charging, (iv) Charging standard provided by Tesla 
[251]. Tanim et al. performed pack-level evaluations using two Nissan 
Leaf battery packs (2012 model year) [257]. They evaluated the effect of 
50 kW (approximately 2C) direct current rapid charging on a full-size 
electric vehicle’s battery pack compared with a pack charged at 3.3 
kW (the standard alternating current level 2 charging). They investi-
gated various aging modes using IC analysis. The primary aging modes 
in the cells tested with AC Level 2 and DCFC charging protocols were 
found to be LLI and LLM in the negative electrode. Lithium plating was 
not observed at any stage of the test at any of the three temperatures 
(20◦C, 30◦C, and 40◦C) [257]. 

6.2.6. Optimization Methods for Fast Charging 
The current standard fast-charging protocols are mostly model-free 

strategies, which means they are based on charging profiles with fixed 
values and do not use any mathematical models. The existing protocols 
cannot achieve optimal charging performance in terms of charging ef-
ficiency and charging time. Therefore, developing optimal charging al-
gorithms is essential to meet the requirements. The LiB charging 
structure is shown in Fig. 10, which includes the battery model, state 
estimator and model-based controller [235]. In general, optimal 
charging strategies are formulated based on battery models. Zou et al. 

[258] divided optimal charging strategies into two categories based on 
the type of battery model used in the development process: (I) ECMs, 
which fit the electrical and thermal behavior using an equivalent circuit 
consisting of a voltage source, several resistors, and capacitors. This 
model is known for its simplicity. The results of ECMs are less accurate 
due to the simple structure of the model. (II) Electrochemical-based 
model, which is based on the ion diffusion dynamics, intercalation ki-
netics, and electrochemical potentials [235,259,260]. Based on the state 
estimator and reduced-order battery model, an optimal charging algo-
rithm is developed [235]. Many optimal control algorithms were 
developed, such as (i) model predictive control (MPC)-based, (ii) 
generalized predictive control (GPC)-based, (iii) dynamic programming 
(DP)-based, and (iv) linear quadratic-based. MPC, as one of the most 
powerful and advanced control techniques, has been widely used in 
industrial process control. For the multiple objectives during the 
charging process, MPC is one of the most promising techniques to meet 
these objectives [235,261]. MPC can be implemented in BMS due to its 
simple structure and computational efficiency. 

7. Challenges and Future Trends 

Lithium plating has been widely investigated in the last decade. 
However, some problems remain, such as accurate and reliable detec-
tion methods, mechanisms, prediction, and prevention. In this section, 
challenges and prospects are introduced in the aspects of mechanisms, 
detection methods, modeling, material components, and optimized 
charging protocols. 

7.1. Mechanisms Study 

Understanding the lithium plating mechanism is the key to 
advancing fast charging technology. Most of the current studies are 
conducted in the laboratory, which is useful to understand lithium 
plating mechanisms [45]. However, the results obtained from laboratory 
experiments cannot be easily validated in large-scale engineering ap-
plications [45]. Considering electric vehicles equipped with a large 
battery pack, electrical contacts between different parts of the system, 
mechanical forces, and vibrations may affect the behavior of lithium 
plating in the cell [264]. Therefore, the results from the lab may become 
inaccurate when applied in the actual vehicle [265]. Taylor et al. [266] 
showed that even the laboratory experiments on the same battery cell 
could have a 4% error. They divided the errors into two types: proce-
dural and environmental. Procedural errors occur during the experi-
ments, such as set-up variations. Environmental errors include room 
temperature, humidity, and measurement accuracy [266]. For example, 
a recent study by Tanim et al. [53] showed that lithium plating behavior 
could be different between two same cells (NMC532 pouch cell) cycled 
under the same XFC conditions. Therefore, a major challenge in studying 
lithium plating mechanisms in laboratories and large-scale applications 
is how to ensure accurate and reliable results at different charging 
conditions. 

The impact of vibration on the electrochemical performance of a 
single cell or an EV battery pack has not been investigated. Based on the 
previous study, the pouch cell does not experience any degradation 
under vibration [267]. However, when going through the z-vibration, 
the cylindrical cells appear to show an increase in the internal resis-
tance, which may cause power capability decline [268]. Vibration could 
cause the SEI layer to break [269] and SEI has been shown to interact 
with lithium plating [50]. Moreover, it is well-known that temperature 
plays a vital role in the performance of LiB. During low-temperature 
charging, the resistance of charge transfer increases, and lithium 
plating may occur, which leads to significant battery capacity fade. 
Thus, accurate measurement of internal temperature would be helpful 
for a deeper understanding of the lithium plating mechanism. In the 
literature, the cell temperature can be adjusted in a thermal chamber. 
However, battery cells in electric vehicles are located in a battery pack 
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where the temperature can decrease slowly and the internal temperature 
and heat generation of cells cannot be monitored easily [270]. There are 
methods in the literature to measure cell temperature based on the 
thermal models [64]. These methods are computationally costly and 
challenging to implement. Besides, accurate measurement of battery 
core temperature is still challenging in real-time applications. A method 
for internal temperature estimation is proposed in [271]. The authors 
proposed an internal temperature estimation approach using a recurrent 
neural network which was trained based on the temperature signal 
measured by a thermocouple inserted into a cylindrical cell. However, 
the method was only tested on a single cell, not a battery pack. Two 
important questions remain: what is the core temperature of the cells in 
the automotive battery packs, how does it affect the lithium plating. 
Unfortunately, there are limited studies on lithium plating mechanisms 
under real-world EV operation conditions. A better understanding of the 
relationship between battery testing environment and local electro-
chemistry is needed. Further research on lithium plating mechanisms 
under actual EV operation conditions is needed. 

Another important aspect of studying lithium plating at the cell level 
is related to overall safety. It is necessary to understand the negative 
impact of lithium plating on safety. According to the literature, internal 
short circuits caused by lithium dendrites are safety concerns. The 
thermal runaway caused by lithium plating on the anode surface has 
been studied, and most of the studies have theoretically explained the 
possibility of thermal runaway due to lithium plating. Recently, Li et al. 
[272] explained that the reaction between plated lithium and electrolyte 
could release enough heat after fast charging to activate the thermal 
runaway, and the temperature rise rate decreases as the plated lithium is 
completely consumed. Commercial battery cells with a considerable 
amount of lithium plating can still be cycled hundreds of times without 
any explosion, short circuit, or other safety hazards [54]. Therefore, an 
important question is whether lithium plating is really a dangerous 
safety issue. 

It is still difficult to understand the lithium plating mechanism at the 
atomic level, as lithium plating is a reversible/irreversible reaction. If all 
the lithium deposited on the surface of the anode is reversible, the cell 
will not lose capacity. Therefore, another important question is what 
variables affect the reversibility. There is an urgent need to study the 
factors that affect the reversibility of lithium plating, which can mitigate 
lithium plating in various applications. 

7.2. Detection Methods 

Since lithium plating significantly affects the capacity of LiBs, much 
research has been conducted to design and develop methods for 
detecting lithium plating. Characterization methods for analyzing the 
morphology and material composition are available. TEM, SEM, FTIR, 
XPS, and acoustic methods have been used in many studies to observe 
and quantify the deposited lithium on the anode surface. Physical 
characterization approaches for both surface morphologies and chem-
istry are commonly used for fundamental studies to gain a deep un-
derstanding of the lithium plating process in the laboratory. However, 
they can not be used for real-time lithium plating detection in actual 
engineering applications. In ex-situ studies, sample transfer while 
avoiding contamination is required. Due to the difficulty of quantifying 
the lithium plating process during cycling, ex-situ techniques cannot 
provide enough dynamic information [156]. Techniques such as X-ray 
diffraction (XRD) are known as techniques that can characterize the 
local lithium plating in fully assembled cells [53]. It is challenging to 
study ex-situ lithium plating, because the deposited lithium is partially 
reversible and most of the reversible lithium plating could be gone after 
sample transfer [155]. Several non-destructive electrochemical methods 
have been developed. Some of them require specialized instrumentation 
such as high precision coulombmeters, while others, such as RE tech-
nique, require special cell design. In-situ electrochemical methods rely 
on electrochemical parameters such as voltage, current, and capacity 

[153,154]. In the literature, analyzing voltage plateau after discharging 
or relaxation and analyzing IC curves are some of the most promising 
methods for detecting lithium plating [54]. However, new studies show 
that when the amount of deposited lithium is small, the voltage plateau 
technique could provide incorrect results [60]. Fear et al. [60] showed 
that battery capacity fade could be prevented by detecting lithium 
plating when graphite starts lithiation. However, none of the existing 
techniques can detect and quantify lithium plating in real-time when the 
battery is in the charging process. Recently, Konz et al. [195] developed 
an in-situ method for detecting lithium plating using differential 
open-circuit voltage (dOCV) analysis. Knowing the starting point of 
lithium plating is very useful for charging protocols to prevent lithium 
plating. However, it is not clear how much lithium must be deposited on 
the anode surface to detect the dOCV plating signal. In another inter-
esting approach, Carter et al. [273] introduced a new in-operando 
technique for detecting lithium plating. They detected the onset of 
lithium plating under two transient thermal conditions (transient 10 to 
0 oC and 40 to 0 oC). The deposited lithium was increased by charging 
the battery under transient thermal conditions, and a negative differ-
ential voltage occurs. They mentioned that the negative differential 
voltage in the charge voltage could be used as a signal to detect the onset 
of lithium plating in the BMS algorithm. Several in-situ electrochemical 
lithium plating detection techniques based on the reversible part of 
lithium plating have been proposed. However, only a few of them can 
measure or estimate the irreversible part via online measurements. 
Therefore, further research should develop a better in-operando method 
that can distinguish and evaluate the ratio of reversible and irreversible 
lithium plating and stripping during the fast charging. 

7.3. Lithium Plating Modeling 

Electrochemical models are usually used to simulate lithium plating. 
They can be used to study the long-term behaviors of LiBs. One of the 
problems for electrochemical models is the difficult parameterization 
due to a large number of parameters [206]. Developing sophisticated 
models that capture the interaction of lithium plating with other side 
reactions, such as SEI growth, can help understand the lithium plating 
mechanisms and battery degradation [50]. The models need to be 
simplified so that they can be implemented in the BMS for real-time 
monitoring. The charging strategy can use the feedback from electro-
chemical models to adjust the charging current to prevent lithium 
plating and extend battery cycle life. With machine learning algorithms, 
data-driven methods can become a promising solution and are expected 
to play an important role in predictions, especially for lithium plating 
predictions. However, they require a huge amount of training data. 
Recently, Dubarry et al. [274] proposed a mechanistic framework that 
works backward compared with the conventional battery model, which 
means the model input is the degradation and the model’s output is the 
voltage and capacity of the cell. This makes the technique ideal for 
producing training data. They produced the first synthetic dataset to 
train diagnosis and prognosis algorithms. 

7.4. Material Components and Optimized Charging Methods 

Many research groups have investigated each LiB component sepa-
rately to prevent lithium plating on the anode electrode. Some of the 
important approaches for suppressing lithium plating are: adopting 
advanced electrolytes, reducing the lithium-ion path by changing the 
structure of the anode electrode, and introducing hybrid and optimized 
charging protocols. However, any changes in internal components may 
adversely affect other battery components [214]. Moreover, most of the 
existing strategies are only focusing on suppressing lithium plating, but 
other factors, including final production cost and the requirement of 
new manufacturing techniques, need to be considered because the cost 
is a very important factor in large-scale applications. 

Most existing charging protocols are only validated for specific types 

X. Lin et al.                                                                                                                                                                                                                                      



Progress in Energy and Combustion Science 87 (2021) 100953

24

of cells at fixed temperatures. However, under fast charging conditions, 
each type of cell has a different response. Validating charging protocols 
for each type of cell is a time-consuming process. Therefore, developing 
reliable cell and battery pack models is important to speed up the 
development of fast charging protocols. The charging protocols need to 
be optimized to effectively control lithium plating. The optimization of 
the charging protocols requires a balance between charging time and 
battery degradation [261]. The disadvantages associated with the 
existing optimized charging protocols, such as complexity, imple-
mentation cost as well as harsh duty cycle cell tests, need to be addressed 
before implementation [265]. Rynne and coworkers tried to address the 
challenge of a large number of testing in battery research by using 
Design of Experiments (DoE) and statistical techniques, which made it 
possible to minimize the number of experiments and obtain meaningful 
parameters [275]. Overall, the development of fast and smart optimal 
charging protocols based on machine learning techniques is a promising 
direction for future research. 

8. Conclusions 

In this paper, the current literature on lithium plating was reviewed. 
Degradation of LiBs during operation is one of the most complicated and 
critical issues that involve the variety of electrochemical side reactions 
in all the LiB components. Lithium plating is one of the most important 
degradation mechanisms of the anode electrode. The main impact of 
lithium plating is severe capacity fade. It occurs under three main 
working conditions: low-temperature charging, high C-rate charging, 
and high SOC charging. It’s a challenging but important task to under-
stand the lithium plating mechanisms and how to prevent them. 
Therefore, in this paper, we comprehensively reviewed the recent 
progress on investigating the lithium plating mechanisms, existing 
detection techniques, and mitigation strategies. Detection techniques 
can be divided into two main categories: (i) Physical characterization of 
the deposited lithium morphology and anode surface characterization. 
These techniques are more suitable for fundamental studies. (ii) Elec-
trochemical techniques based on the charging voltage and currents are 
more useful for real-time applications. Although many studies have been 
done for lithium plating detection, there is still no promising and real- 
time method for lithium plating detection in engineering applications. 
Prediction of lithium plating is also a complicated task. The current 
electrochemical models for lithium plating have been reviewed. These 
models are too complicated and computationally costly for imple-
mentation in BMS. Many approaches have been studied that could 
potentially prevent lithium plating, especially the formation of lithium 
dendrite, including modification of material components (adopting 
advanced electrolyte and modifying the graphite surface structure) and 
optimization of charging protocols. More progress needs to be made in 
developing methods to avoid lithium plating during charging. We can 
significantly reduce the degradation during fast charging and achieve 
long cycle life through a deep understanding of lithium plating mecha-
nisms under different operating conditions and advanced detection 
methods that can be easily implemented in engineering applications. 
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battery charging and discharging control strategies: Application to renewable 
energy systems. Energies 2018;11:1–15. https://doi.org/10.3390/en11041021. 

[235] Gao Y, Member S, Zhang XI, Member S, Cheng Q. Classification and Review of the 
Charging Strategies for Commercial Lithium-Ion Batteries. IEEE Access 2019;7: 
43511–24. https://doi.org/10.1109/ACCESS.2019.2906117. 

[236] Arabsalmanabadi B, Tashakor N, Javadi A, Al-Haddad K. Charging Techniques in 
Lithium-ion Battery Charger: Review and New Solution. IEEE 2018. https://doi. 
org/10.1109/IECON.2018.8591173. 

[237] Howell David, Boyd Steven, Cunningham Brian, Samm Gillard LS. Enabling Fast 
Charging : A Technology Gap Assessment. US Dept Energy; 2017. p. 83. 

[238] Eberman K, Gomadam PM, Jain G, Scott E. Material and design options for 
avoiding lithium-plating during charging. ECS Trans 2010;25:47–58. https://doi. 
org/10.1149/1.3414003. p. 

[239] Choi SS, Lim HS. Factors that affect cycle-life and possible degradation 
mechanisms of a Li-ion cell based on. LiCoO 2 2002;111:130–6. 

[240] Zhang SS, Xu K, Jow TR. Study of the charging process of a LiCoO2-based Li-ion 
battery. J Power Sources 2006;160:1349–54. https://doi.org/10.1016/j. 
jpowsour.2006.02.087. 
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