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Abstract
Absorption of interstitial alloying elements like H, O, C, and N in metals and
their continuous relocation and interactions with various microstructural fea-
tures such as vacancies, dislocations, and grain boundaries have crucial influ-
ences on metals’ properties. However, besides limitations in experimental tools
in capturing these mechanisms, the inefficiency of numerical tools also inhibits
modeling efforts. Here, we present an efficient framework to perform hybrid
grand canonical Monte Carlo and molecular dynamics simulations that allow
for parallel insertion/deletion of Monte Carlo moves. A new methodology for
calculation of the energy difference at trial moves that can be applied to many-
body potentials as well as pair ones is a primary feature of our implementation.
We study H diffusion in Fe (ferrite phase) and Ni polycrystalline samples to
demonstrate the efficiency and scalability of the algorithm and its application.
The computational cost of using our framework for half a million atoms is a
factor of 250 less than the cost of using existing libraries.
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1. Introduction

H-embrittlement, oxidation, creep, and carbide precipitation are examples of life-limiting
chemo-mechanical mechanisms of metallic alloys in service. While continuum theories can
capture the deformation mechanism phenomenologically, they have a limited range of validity
when the inherent interactions between deformation and interstitial atoms are unspecified. On
the other hand, simulations at atomic resolution can reveal the underlying mechanisms and
their correlations, but are severely limited in computational efficiency.

Molecular dynamics (MD) simulations have been widely used for equilibrium and non-
equilibrium processes, while they have limitations in capturing long time-scale mechanisms
such as diffusion. Monte Carlo (MC) simulations, besides their convenience in implementa-
tion, cannot capture non-equilibrium deformation mechanisms. The combination of these two
techniques seems to be ideal. However, in practice, the probabilistic nature of the MC scheme
and also the evolving number of degrees of freedom complicate the efficient implementation,
i.e. parallelization of the hybrid MC-MD framework on multi-core architectures.

Diffusion simulations have been conducted by various frameworks at atomistic scale. These
frameworks are classified into two main categories depending on whether the kinetics of dif-
fusion is directly handled in the simulation or not. If the actual movements of atoms are not
handled, the outcome of diffusion, which is mainly captured by thermodynamics and semi-
classical statistical physics, is of concern. For the former case, the kinetic MC technique is the
most viable approach [1–4]. For the latter case, depending on the type of alloying elements
and the target thermodynamic properties, different ensembles are considered. For example,
in the case of a fixed percentage of substitutional alloying elements [5], or glass transition
[6, 7], MC simulations for swapping of pair atom types are performed. For a constant chem-
ical potential of substitutional alloying elements, semi-grand canonical MC (SGCMC) sim-
ulations are used [8, 9]. For interstitial alloying elements [10, 11], mainly grand canonical
MC (GCMC) simulations, which allow for insertion or deletion of these elements for a given
chemical potential/partial pressure, are conducted. It is noteworthy that in all these simula-
tions, the indistinguishability of particles is accounted for, while other quantum effects are
ignored (� → 0). Combinations of all these various MC techniques with MD allow modeling
diffusion-deformation problems at atomistic scale, while the computational efficiency of these
hybrid frameworks remained the most critical challenge to be addressed.

During the last decade, there have been multiple attempts at parallelization of MC. Sadigh
et al [12] designed and proposed a novel parallelization scheme capable of performing simul-
taneous MC moves based on domain decomposition. Yamakov [13] implemented parallel MD
and SGCMC simulations using this algorithm to efficiently model the behavior of substitutional
alloys. The objective of this work is to develop and implement a new GCMC algorithm that is
as scalable as MD, while being capable of addressing non-pair and many-body potentials.

Here, we first present the theoretical framework and reformulate the grand canonical ensem-
ble. Then, we present a newly developed software package that, among many features, has a
new hybrid GCMC based on the new formulation to model interstitial induced deformation
processes. In addition, we introduce a more generalized concept of the linked list algorithm
[14] that can be utilized to greatly improve the performance of the GCMC algorithm. Perform-
ing isothermal H-charging and discharging in a Ni model material will show that our library
has two orders of magnitude less computational cost than Large-scale Atomic/Molecular
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Massively Parallel Simulator (LAMMPS) [15]. Moreover, being able to conduct simulations
at polycrystalline scale reveals the unknown parameters of analytic formulas to extract the
concentration-pressure relationship of different microstructural defects in a model material
system.

2. Methodology

2.1. Theory

2.1.1. Proof of detailed balance. Consider a simulation supercell with a fixed total volume V ,
temperature T , and a chemical potential μ of an isotope of mass m. Even though the treatment
here is for a monatomic system, it can be trivially generalized to multiple chemical species
(isotopes), with constant {μc, mc} for c = 1 . . .C nuclide species. In the semi-classical treat-
ment, the grand partition function Q can be written for N identical particles of position vector
x3N ≡ x1x2 . . . xN as follows [16]:

Q (T,μ, V) ≡
∞∑

N=0

∫
dx3N

N!λ3N
th

eβ(Nμ−U(x3N)), (1)

where β ≡ (kBT)−1, λth ≡ h/
√

2πmkBT is the thermal de Broglie wavelength, and U
(
x3N

)
denotes the potential energy of the system. The differential probability of finding the system
at a phase-space volume

(
N, x3N

)
is therefore:

p (N, x) dx3N =
dx3N

N!λ3N
th

eβ(G+μN−U(x3N)), (2)

where G ≡ −kBT log Q is the grand potential. Note that if we consider the particle-index
permutation symmetry in x3N ≡ x1x2 . . . xN , there are N! copies of this phase-space volume
with exactly the same U and therefore the same probability density. (2) Represents just one
of these copies in a particular differential volume dx3N = dx1 dx2 . . . dxN , namely nuclide 1 in
(x1, x1 + dx1), nuclide 2 in (x2, x2 + dx2), . . . , nuclide N in (xN , xN + dxN).

Metropolis MC [17] relies on transition rates that respects detailed balance. If
we perform particle insertion with some transition

(
N, x3N → N + 1, x3N+3

)
dx3N+3 rate

where the proportionality to destination volume dx3N+3 is made explicit, leaving the
transition

(
N, x3N → N + 1, x3N+3

)
function itself an intensive quantity with finite value, then

the corresponding reciprocal deletion rate must satisfy

transition
(
N, x3N → N + 1, x3N+3

)
dx3N+3

transition
(
N + 1, x3N+3 → N, x3N

)
dx3N

=
p
(
N + 1, x3N+3

)
dx3N+3

p
(
N, x3N

)
dx3N

, (3)

where the right-hand side (rhs) is the ratio of the resident probabilities that we desire to
approach, and the left-hand side is the ratio of the conditional transition probabilities. It is
then clear that differential phase-space volumes dx3N+3, dx3N be canceled out from both sides,
making the exact values of these infinitesimal quantities immaterial, as they should be.

In principle, there needs to be no relation between x3N and x3N+3; in other words, the posi-
tions of all atoms can be changed, even by a lot, in one move. But in the simplest incarnation
that preserves detailed balance, we choose to preserve almost all of the atomic positions except
for the atom (or a position) in question:

x3N+3 = x3Nxquestion (4)
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in which case

dx3N+3 = dx3N dxquestion, (5)

and (3) is simplified to

transition
(
N, x3N → N + 1, x3N+3

)
dxquestion

transition
(
N + 1, x3N+3 → N, x3N

) =
eβ(μ−ΔU) dxquestion

(N + 1)λ3
th

(6)

where

ΔU ≡ U
(
x3N+3

)
− U

(
x3N

)
(7)

is always the energy difference between the high-particle-number configuration and the low-
particle-number configuration.

There is an index permutation issue, though, about exactly what (6) means. We know there
are N! copies of a particular differential volume hypercube dx3N = dx1 dx2 . . . dxN that are
energetically degenerate, permuting only the position of indistinguishable atoms. Similarly, we
know that (N + 1)! copies of the differential volume hypercube dx3N+3 = dx1 dx2 . . . dxN+1.
Are we allowing MC transitions between any pair of them, i.e. a total of N!(N + 1)! transitions
in labelled-atom space, or are we only adding/deleting the last atom in the labelled-atom space
without random permutation afterwards, i.e. in total only (N + 1)N! = (N + 1)! MC transi-
tion bridges? Since with the same computational cost, building more MC bridges facilitate
approaching equilibrium, the first interpretation (N!(N + 1)! transitions) is preferable. Thus, if
we take {N, x3N} to mean the ‘index-free’ collection of all N! degenerate copies, where every
copy in the {N, x3N} set automatically share the weight in the collective, then (6) is simplified
to

transition
(
{N, x3N}→ {N + 1, x3N+3}

)
dxquestion

transition
(
{N + 1, x3N+3} → {N, x3N}

) =
eβ(μ−ΔU) dxquestion

λ3
th

, (8)

where the {N, x3N} notation is philosophically closer to the quantum mechanical interpretation
for identical particles.

Requirement (8) is not that different from the standard MC for the canonical ensemble.
Given one is at N, x3N , one can attempt to insert (probability a+)/accept insertion, or attempt
to delete (a− = 1 − a+)/accept deletion ([18]). Both types of attempts would involve compu-
tational cost, and rejection of either type of attempts would mean wasted computations, and
therefore a+/a− may be chosen to optimize performance, i.e. speed of approaching chemical
equilibrium, and efficiency in computing the thermodynamic averages of measurables.

Within the a+ attempt branch, there is a question of where to insert. Again in the spirit
of the simplest incarnation, we can choose ‘anywhere in the supercell, equally’, and therefore
the attempt probability to dxquestion is (a+/V)dxquestion, representing a spatially uniform prior. It
does not have to be this way. If we have advanced screening information, we could use umbrella
sampling to tune this attempt probability (indeed, with the domain decomposition scheme to
come later, such issue could arise). But right now let us choose the simplest insertion prior.

Within the a− attempt branch, we can also choose ‘any of the atoms in the supercell,
equally’. It does not have to be this way. If we have advanced screening information, we could
may umbrella sampling to tune this attempt probability also. But the a−/N prior (or a−/(N + 1)
for the high-particle-number configuration) does lead to the simplest proof of detailed balance.
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Therefore, with these simplest insertion/deletion priors, the requirement (8) is converted to

(a+/V)acceptance
(
{N, x3N}→ {N + 1, x3N+3}

)
(a−/(N + 1))acceptance

(
{N + 1, x3N+3}→ {N, x3N}

) =
eβ(μ−ΔU)

λ3
th

, (9)

where dxquestion is canceled out, or

acceptance
(
{N, x3N} → {N + 1, x3N+3}

)
acceptance

(
{N + 1, x3N+3}→ {N, x3N}

) =
a−V eβ(μ−ΔU)

a+(N + 1)λ3
th

. (10)

The metropolis MC dichotomy [17] is then used to achieve (10) literally, by making one
of the acceptance

(
{N, x3N}→ {N + 1, x3N+3}

)
, acceptance

(
{N + 1, x3N+3} → {N, x3N}

)
unity, and the other �1, depending on the sign of the rhs. So the standard GCMC algorithm is
just

acceptance
(
{N, x3N} → {N + 1, x3N+3}

)
=

⎧⎪⎪⎨
⎪⎪⎩

1,
a−V eβ(μ−ΔU)

a+(N + 1)λ3
th

� 1,

a−V eβ(μ−ΔU)

a+(N + 1)λ3
th

,
a−V eβ(μ−ΔU)

a+(N + 1)λ3
th

< 1,
(11)

and

acceptance
(
{N + 1, x3N+3}→ {N, x3N}

)
=

⎧⎪⎪⎨
⎪⎪⎩

1,
a+(N + 1)λ3

th

a−V eβ(μ−ΔU)
� 1,

a+(N + 1)λ3
th

a−V eβ(μ−ΔU)
,

a+(N + 1)λ3
th

a−V eβ(μ−ΔU)
< 1,

(12)

or equivalently,

acceptance
(
{N, x3N} → {N − 1, x3N−3}

)
=

⎧⎪⎪⎨
⎪⎪⎩

1,
a+Nλ3

th

a−V eβ(μ−ΔU)
� 1,

a+Nλ3
th

a−V eβ(μ−ΔU)
,

a+Nλ3
th

a−V eβ(μ−ΔU)
< 1,

(13)

whereΔU is always the energy difference between the high-particle-numberconfiguration and
the low-particle-number configuration. It is seen from above that a+/a−, 1/V and 1/N are just
choices, reflecting the simplest prior about how to make moves. There is nothing set in stone
about them. As long as we use these choices consistently, detailed balance can be established.

It is clear from the derivations above that the 0 < a+ < 1 insertion attempt rate and a− =
1 − a+ deletion attempt rate can be arbitrarily tuned, and also the (a+/V)dxquestion and a−/N
priors can be substantially changed. Indeed, our domain decomposition scheme below changes
these prefactors of MC sampling for each domain, as Ndomain/Vdomain can vary from domain to
domain, and does not have to be equal to the average N/V .

2.1.2. Domain decomposition. Imagine that our supercell is spatially partitioned into
d = 1 . . .D separate domains. Analytically, one can rearrange (1) into the following form

Q (T,μ, V) = I1 . . . ID exp
[
−βU

(
x3N1 , . . . , x3Nd

)]
, (14)

where

Id ≡
∞∑

Nd=0

∫
Vd

eβμNd

Nd!λ
3Nd
th

dx3Nd , (15)
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is an integration and summation operator. The 1/Nd! prefactor comes from the combinatoric
N!/N1!N2! . . .ND! copies of assigning labelled but identical nuclides to different domains, that
yields the same integral for (1). Namely, in the way (1) was written, all particles can traverse
and live in all domains, but now in the new form (14), within each Id only ‘citizens’ of that
domain can live and contribute to the integral. Therefore the probability density of a microstate
while ignoring the labelling of particles inside each domain is:

p̄
(
{N1, x3N1}, . . . , {ND, x3ND}

)
= eβG

(
D∏

d=1

dx3Nd

λ
3Nd
th

eβμNd

)
exp [−βU (x1, . . . , xD)] . (16)

Now let us modify the standard GCMC algorithm by changing the priors. Every time that
an insertion or deletion attempt trial is to be performed, one of the domains, say d is randomly
chosen with a probability Pd:

∞∑
Nd=0

Pd = 1, (17)

Pd can be chosen to be proportional to its volume Vd, for example. Other priors may be chosen,
but one should be careful in not letting Pd depending on Nd, which can dynamically change, that
unless proven, may break the detailed-balance requirement. A time-constant {Pd} distribution
should always be fine, if computational efficiency is of no concern.

The domain-d insertion/deletion attempt rate is therefore Pda+
d /Pda−

d , and we can straight-
forwardly show that

acceptance
(
{Nd, x3Nd}→ {Nd + 1, x3Nd+3}

)
=

⎧⎪⎪⎨
⎪⎪⎩

1,
a−

d Vd eβ(μ−ΔU)

a+
d (Nd + 1)λ3

th

� 1,

a−
d Vd eβ(μ−ΔU)

a+
d (Nd + 1)λ3

th

,
a−

d Vd eβ(μ−ΔU)

a+
d (Nd + 1)λ3

th

< 1,

(18)

and

acceptance
(
{Nd, x3Nd}→ {Nd − 1, x3Nd−3}

)
=

⎧⎪⎪⎨
⎪⎪⎩

1,
a+

d Ndλ
3
th

a−
d Vd eβ(μ−ΔU)

� 1,

a+
d Nλ3

th

a−
d Vd eβ(μ−ΔU)

,
a+

d Ndλ
3
th

a−
d Vd eβ(μ−ΔU)

< 1,

(19)

whereΔU is always the energy difference between the high-particle-numberconfiguration and
the low-particle-number configuration, and may depend on nearby domains, would preserve
detailed balance. While (18) and (19) is factually a different algorithm from (11) and (13), their
derivation follows exactly the same logic flow of the previous section, just with a different set
of screening priors for making the next move. That is, in (18) and (19) all ‘citizens’ and all
volume elements of the same ‘country’ (domain) are treated the same before the ‘testing’ (eval-
uation) of the potential (‘presumed innocent’), but they are treated differently from country to
country, whereas in (11) and (13) all ‘citizens’ and volume elements of the ‘world’ (supercell)
are treated equally before the testing of the potential. Even though (18) and (19) is factually a
different algorithm from (11) and (13), as long as being run consistently, both can provide the
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Figure 1. Schematic representation of subdomain selection pattern in two dimensions
for �n = {15, 11} and �m = {2, 1}. Red and green subdomains denote origin and active
processors, respectively.

equilibrium ensemble distribution (2). So in this sense, the domain partition of the supercell
and the {Pd, a+

d /a−
d } are just ‘gauge’ choices. These gauge choices, however, can be used to

enhance the computational efficiency, because it is also clear from the logic flow of the proof
that the ‘global citizen’ approach of (11) and (13) has no reason to possess optimal efficiency.
Thus {Vd, Pd, a+

d /a−
d } can be optimized, and when Vd is taken to be quite small, it is clear

that the Pd spatial distribution would amount to a screening prior in umbrella sampling. While
we do not explore this degree of freedom fully here in this paper, taking the simplest uni-
form Vd, Pd approach, the connection between domain decomposition and umbrella sampling
is noted.

In addition to statistical sampling efficiency, there is the critical issue of efficient interatomic
potential evaluation and load balancing, well-known in parallel computing for discrete agent-
based simulations with short-range interactions. To this end, we break down a large supercell to
smaller individual domains, whose size is chosen according to the radial cutoff distance in the
interatomic potential and possible range of dynamic strain in the supercell [19, 20]. If the atoms
in two separate domains cannot possibly interact with one another, energy difference would
only depend on the affected domain and nothing prohibits us from performing D simultaneous
moves. Although the aforementioned assumption is almost never the case, it is possible to
choose a pattern of domains such that the changes of potential energy due to any perturbation
in the domains are independent of one another.

In the limit of truly isolated, non-interacting domains, it is clear that (14) will become a
product of domain-specific grand partition functions. Thus, (18) and (19) can be interpreted
as running chemical equilibration between the constant-μ reservoir with each domain inde-
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pendently, using the classic GCMC algorithm. For load balancing purposes, the frequency of
attempting to equilibrate these different domains may not need to be the same. In problems
involving multi-phase chemical equilibrium, for instance, one may have a vapor phase with
very different Nd/Vd with a solid phase that it should be in equilibrium with. The freedom to
pick Pd, a+

d /a−
d is in effect an umbrella-sampling scheme based on spatial location for load-

balancing and sampling efficiency. For detailed balance, Pd , a+
d /a−

d should not depend on Nd

turn-by-turn, as Nd sustains microscopic fluctuations. But by our derivations above, one should
be able to re-adjust Pd, a+

d /a−
d , say after every 1000 acceptances in that domain. One may also

re-partition the supercell and redefine the domains for computational efficiency and expedi-
ency (say in a parallel computer, the number of allocated computing nodes may be forced to
change from time to time), as long as this is not done too frequently.

2.2. Pattern selection algorithm

As mentioned in the previous section, it is possible to construct a pattern that involves non-
interacting domains. Such a pattern can be established by considering that these domains have
to be at least n × rC apart in any direction, where rC is the cutoff radius of the interatomic
potential and n is an integer determined by the type of the forcefield (see [12]). For example,
for pair potentials, n = 1; for embedded atom method (EAM), n = 2; and for modified embed-
ded atom method (MEAM), n = 3. It is noteworthy that as domains are chosen based on this
parameter, increasing the number of processors never changes the accuracy of simulations.
Here, we describe how to construct such a pattern given that the domains are predetermined
by the MD part of the GCMC + MD method.

Suppose that our supercell is spanned by n0 × n1 × n2 processors. Each processor controls
a domain determined by a domain decomposition method. Figure 1 depicts a simplified two
dimensional schematic of such a supercell. Our first task is to determine how far apart our
active domains should be. In other words, we must determine how many domains in each
direction will at least cover n × rC, namely integer vector �m. The best case scenario would be
�m = {1, 1, 1}. In figure 1, �m = {2, 1}. Let us define another integer vector

si = �ni/ (mi + 1)�, i = 0, 1, 2, (20)

where �.� is the floor function. �s defines the number of simultaneous trial moves in each
direction at any given GCMC step. Therefore, the total number of simultaneous trial moves
is s0 × s1 × s2.

At every step of GCMC, a processor is chosen at random. This processor will serve as the
‘origin,’ and its position in the domain grid is denoted by an integer vector �o (red domain
in figure 1). Now, all the processors that perform trial moves, namely ‘active,’ have to be
determined (green domains in figure 1).

Consider a processor whose position in the domain grid is denoted by the integer vector �p.
This processor is active if and only if

2∑
i=0

[(pi + ni − oi) mod ni] mod (mi + 1) = 0 (21)

where ‘mod’ denotes a modulo operation. The first modulo operation takes into account
the periodic boundary condition. The second one ensures that active domains are non-
interacting. Once the active processors are determined, they will perform trial moves
simultaneously.

8
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Figure 2. Classical linked list algorithm (green) versus proposed extension (red).

Figure 3. Relative excess search volume (Δv) with respect to number of discretization
of cutoff radius (N).

2.3. Potential energy difference calculation

As was pointed out earlier, the most expensive part of GCMC or any kind of atomistic simula-
tion is the potential energy evaluation. This is due to the fact that potential energy and forces
depend on the interaction of atoms. However, in the case of short-range force fields, the inter-
actions of an atom with its surrounding can be restricted to a volume within a cutoff radius. In
MD, all the pairs that are within a specified cutoff radius are included in a sparse matrix, usually
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referred to as a neighborlist. The forcefield employs the neighborlist to calculate energy/forces
of the system. Since the generation of the neighborlist is itself time-consuming, researchers
have come up with two major algorithms to speed things up: the cell/linked list [14] and the
Verlet algorithm [21].

The cell/linked list algorithm is employed to limit the search volume for finding all the pairs
interacting with an atom. The Verlet algorithm makes it possible to generate neighborlists less
often.

In the case of GCMC, due to insertion or deletion moves, the maintenance of a neighborlist
has extra complication. Nonetheless, a properly designed linked list will be relatively simple
to update. In our implementation of parallel GCMC, every processor has its own linked list.
Whenever a trial move is to be performed, a neighborlist for the affected atom will be instantly
generated using the linked list and passed to the forcefield to calculate the energy difference.
Next, the energy difference will determine whether the move is accepted or rejected. If the
move is accepted, the linked list will be updated, accordingly.

In order to speed up even further, we modified the linked list algorithm. In the traditional
linked list algorithm, the supercell is gridded by cubes (cells) with an edge of length rC. A
linked list would be generated to link all the atoms within a cell. The basic premise of the
algorithm is that when the neighborlist of an atom inside one of these cells is to be generated,
only the atoms in the surrounding cells need to be searched, and these are accessible via the
said linked list. In three dimensions, the search volume will be decreased from the volume of
the whole supercell V to 27r3

C.

It is possible to reduce the search volume even further. In our implementation the cell’s edge
length is rC/m, where m is a positive integer to be set by the user, see figure 2. For two cells
to interact, the minimum possible distance between them must be smaller than or equal to rC.
Suppose cell Ωi is labeled by a 3D vector�si, which determines its position in the grid and the
volume it covers. In other words, �x ∈ Ωi if

siα
rC

m
� xα <

(
siα + 1

) rC

m
, α = 0, 1, 2. (22)

One can easily show that for cells Ωi and Ω j to be interacting, the following must be true:

2∑
α=0

[
min

(
|siα − s jα | − 1, 0

)]2 � m2. (23)

Using this relationship, a ‘relative’ neighborlist for the cells is created and will be utilized to
build the neighborlist of a specific atom in one of the cells. Figure 3 shows relative excess
volume Δv vs the number of cutoff discretizations. Here, relative excess volume is defined by
the ratio of search volume to the volume of the sphere with a radius rC minus one. As the num-
ber of discretizations tends to infinity, the excess volume will tend to zero. One might naively
conclude that the higher number of discretizations must inevitably lead to better performance.
However, this improving trend is true only up to a point. The downside of increasing the num-
ber of discretizations is an increase in the memory storage of the head array of the linked list.
If the storage becomes too large, it can lead to cache pollution and indeed poor performance.
Much like the Verlet algorithm, in which the size of the shell must be chosen according to
the problem under study, the number of discretizations can be chosen empirically by trial and
error.

10



Modelling Simul. Mater. Sci. Eng. 29 (2021) 055018 S S Moeini-Ardakani et al

Figure 4. Total wall time as function of number of processors for 106 MC trial moves
of H in ferrite.

3. Results

3.1. Scalability tests

To demonstrate the performance and the scalability of our implementation, several benchmark
simulations were performed. All of these tests were conducted on a Beowulf Linux clus-
ter, where each of the computational nodes contained two Intel Xeon Gold 6248 processors
with 20 cores. The code was compiled using a C++ GNU compiler and −O3 optimization
flag.

These benchmarks simulated H absorption in a ferrite-phase Fe single crystal. A sample con-
sisting of 64 × 64 × 64 Fe body-centered-cubicunit cells was generated. To facilitate the inser-
tion of H, 0.1% of atoms were randomly removed. The total number of Fe (ferrite phase) atoms
is approximately 524 000. The EAM interatomic potential developed by Ramasubramaniam
et al [22] was used to model atomic interactions.

The sample was in equilibrium with a reservoir that had a−2.4242 eV H chemical potential.
The temperature was 300 K; in total, 106 MC insertion/deletion trials were conducted.

The tests were performed on 1, 2, 4, 8, 16, 32, 64, 128, and 256 CPU cores. For each given
number of processors, 4 tests were performed, and the average wall time was recorded as the
result. Figure 4 shows the total CPU wall-time with respect to the number of processors, with
the green dashed line being the ideal scalability line. Overall, the trend looks like a typical
domain decomposition parallel application.

The biggest decrease in the computational time is the transition from the serial execution
(1 core) to the parallel execution on 2 cores. However, this decrease is not due to parallel MC
moves. In fact, the parallel MC moves will only take place starting from 16 processors. The
main reason for the reduction in the computational time below the 16 cores is the reduction
of cache pollution. In other words, due to the reduction of the number of atoms per processor,
fewer cache misses would occur in the energy calculation.

The second largest drop takes place on transitioning from 8 to 16 processors, i.e. the onset of
parallel MC moves. The improvement in computational time continues in a consistent manner
up to 64 processors, reaching the start of a plateau. Increasing the number of processors does
not enhance the performance any further. In fact, it is evident from the plot that the performance
even slightly suffers. This slight decrease in performance can be explained by the overhead in
inter-processor communication, which is the bottleneck of performance beyond this point.
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Figure 5. Polycrsytalline Ni sample with 8 randomly oriented grains for hybrid
GCMC/MD simulations.

Figure 6. Isothermal curve for H absorption/desorption in the bulk of Ni polycrystalline
sample. H concentration has a square root relationship with H pressure and follows
Sieverts’ law. H mainly locates in grain boundaries.

Finally, we compared the performance of our code against LAMMPS [15] on 64 cores. The
same configuration, chemical potential, and interatomic potential were used in both tests. Like
the other benchmarks, this test was repeated 4 times, and the results were averaged. On average,
our code is faster by a factor of about 250. The reasons for such staggering differences are
twofold. Firstly, LAMMPS cannot perform MC moves simultaneously. Secondly, LAMMPS
is ill-equipped when it comes to calculating the energy differences resulting from MC moves of
atoms with non-pair potentials. Currently, at each MC move, the whole neighbor-list is rebuilt,
and the potential energy of the whole system is calculated and subtracted from the previous
value.
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Figure 7. Isothermal curve for H absorption/desorption on the surface of Ni polycrys-
talline sample. H atom interactions influence the H concentration on the surface.

3.2. Isothermal H absorption/desorption in a Ni polycrystalline sample with free surfaces

As an example of application of the code, we chose isothermal H absorption/desorption in a
polycrystalline Ni sample with free surfaces. This example was used in a previous work to study
the mobility of dislocations due to H charging [23]. The polycrystalline sample was constructed
using Voronoi tessellation to produce eight grains. A random crystal orientation was assigned to
each Voronoi cell. The single crystal Ni sample was rotated accordingly and put in each grain
volume. Periodic boundary conditions were considered for atoms located on sample edges.
Our sample has dimensions of 15 × 15 × 15 nm3 and is periodic in the x and y directions.
A 2.5 nm vacuum layer was considered in the z direction. Thus, the sample contains about
300 000 atoms in eight randomly oriented grains, which are approximately 7.5 nm in diameter
(see figure 5). For Ni and Ni–H interatomic interactions, the EAM potential [24] was adapted.
Prior to absorption, a Nosé–Hoover thermostat was used to maintain the isothermal–isostress
ensemble at room temperature T = 300 K and zero stress for 5 ns. After stress relaxation, the
sample was relaxed in a μVT ensemble using hybrid GCMC + MD for 2 fs with a time step
of 0.5 fs. The chemical potential of H was set to μ0 = −2.547 eV. After every 1000 steps
of MD, 10 000 GCMC trials were conducted. Thereafter, H chemical potential was varied
from μ0 to μ1 = −2.447 eV in 50 increments of equal pressure change (p1 − p0)/50 from
p0 ∝ exp(2μ0/(kBT)) to p1 ∝ exp(2μ1/(kBT)). At each increment, hybrid GCMC + MD was
conducted for 200 ps, using the scheme described above. After the chemical potential reached
μ1, the procedure was reversed to return to the initial chemical potential. Figures 6 and 7 show
the evolution of the H-concentration in the bulk and the free surface of the polycrystalline
Ni. No hysteresis was observed in either case. In the case of bulk atoms, H mainly locates in
grain boundaries. As demonstrated, H concentration inside the bulk has a square root relation
with pressure and obeys Sieverts’ law (see supplementary discussion 1 for the derivation of the
equation (https://stacks.iop.org/MSMS/29/055018/mmedia)).

However, for the surface, the story is different. Due to the high concentration of H on
the surfaces, the ideal solution model with no H–H interactions, i.e. the basis of Sieverts’
law, is no longer valid. However, employing the regular solution model for 2D, i.e. the
Fowler–Guggenheim adsorption isotherm model with lateral interaction between H∗ and H∗,
where∗ means surface site, can capture the behavior. We can define species A and B of regular
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solution as a surface site being occupied by H and a vacancy, respectively. The excess Gibbs
free energy per site due to mixing is:

Δg (x) = nskBT

[
x
ns

log

(
x
ns

)
+

(
1 − x

ns

)
log

(
1 − x

ns

)]

+ nsw
x
ns

(
1 − x

ns

)
. (24)

Here x and ns denote the concentration of H and number of H sites per Ni atom, respectively.
w is the effective interaction energy of the regular model

w = wAB − wAA + wBB

2
. (25)

Therefore,

μH =
∂Δg
∂x

|p,T = kBT log

(
x/ns

1 − x/ns

)
+ w

(
1 − 2

x
ns

)
. (26)

As shown in details in supplementary discussion 1, since H is a diatomic gas, we can assume
that its pressure is proportional to exp (2βμH), leading to

pH2 (x) = C

(
x/ns

1 − x/ns

)2

e−4βwx/ns . (27)

Based on the concentration curves, we conclude that ns = 2. Figure 7 shows that the fit
is in excellent agreement with the values obtained from the simulations. Based on our fit-
ting, the effective interaction was calculated to be almost zero for H in grain boundaries
(Langmuir–McLean isotherm), and w = −0.22 eV for H on free surfaces.

4. Discussion

In conclusion, we present a hybrid GCMC/MD framework that can efficiently simulate intersti-
tial solid solution behavior in large polycrystalline samples. We show that the parallelization
of the code is necessary for samples with large numbers of atoms. We provide two applied
case studies for H-absorption/desorption in a polycrystalline Ni sample. Although currently
only Lennard-Jones and EAM potentials are implemented in the package, the implementation
is general; it can easily be extended to any other pair or non-pair potentials such as bond order
potentials and the MEAM potentials. As noted in the pattern selection algorithm section, n
parameter, which defines the distance between active processors by n × rC, is to be set with care
by the developer in the source code. Otherwise the accuracy will suffer, leading to unreliable
results. Our analytical analysis was an excellent match with the obtained numerical results. The
hidden parameters in the theory (H-interaction energy) can now be extracted from our efficient
library. The framework has broad applications for simulation of interstitial alloying elements
such as C, H, and O in different alloying systems and provides a new pathway to study the
diffusion-deformation mechanisms in these samples.

All data required to reproduce the findings during this study are included in this manuscript
and supplementary information. The code is available for downloading at the code reposi-
tory https://github.com/sinamoeini/mapp4py. In the examples directory of the code repository,
multiple examples and guides, including two tutorials, are provided for interested users to get
started. In addition, the scripts used for testing scalability and hydrogen absorption/desorption
in Ni polycrystalline samples are provided in the noted directory.
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