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Machine learning for deep elastic strain engineering of
semiconductor electronic band structure and effective mass
Evgenii Tsymbalov1,4, Zhe Shi 2,4, Ming Dao 2,3, Subra Suresh3✉, Ju Li 2✉ and Alexander Shapeev1✉

The controlled introduction of elastic strains is an appealing strategy for modulating the physical properties of semiconductor
materials. With the recent discovery of large elastic deformation in nanoscale specimens as diverse as silicon and diamond,
employing this strategy to improve device performance necessitates first-principles computations of the fundamental electronic
band structure and target figures-of-merit, through the design of an optimal straining pathway. Such simulations, however, call for
approaches that combine deep learning algorithms and physics of deformation with band structure calculations to custom-design
electronic and optical properties. Motivated by this challenge, we present here details of a machine learning framework involving
convolutional neural networks to represent the topology and curvature of band structures in k-space. These calculations enable us
to identify ways in which the physical properties can be altered through “deep” elastic strain engineering up to a large fraction of
the ideal strain. Algorithms capable of active learning and informed by the underlying physics were presented here for predicting
the bandgap and the band structure. By training a surrogate model with ab initio computational data, our method can identify the
most efficient strain energy pathway to realize physical property changes. The power of this method is further demonstrated with
results from the prediction of strain states that influence the effective electron mass. We illustrate the applications of the method
with specific results for diamonds, although the general deep learning technique presented here is potentially useful for optimizing
the physical properties of a wide variety of semiconductor materials.
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INTRODUCTION
Elastic strain engineering (ESE) has emerged as a promising tool to
enhance the performance of functional materials, whereby
characteristics of semiconductor materials, such as carrier mobility,
can be modulated solely through the introduction of strain1. With
Moore’s law approaching its widely anticipated limit and with an
ever-accelerating search for improved device performance, tuning
physical properties through controlled mechanical strains could
offer a powerful pathway to advance the performance of
semiconductors. Here, the magnitudes of elastic strains consid-
ered are significantly greater (deeper) than prior approaches
adopted over the past several decades by the semiconductor
industry, involving strained silicon with strain levels on the order
of 1%2–4.
To achieve “deep ESE” with significant performance enhance-

ment in devices and to realize the optimal figure-of-merit (FoM),
the required elastic strain state would have to significantly exceed
what strained silicon technology has thus far achieved through
epitaxy. Indeed, recent experiments5–7 in free-standing geometry
have revealed that several materials, at nanoscale dimensions
typically used in semiconductor devices, are capable of with-
standing large elastic strains at room temperature without
inelastic shear relaxation, phase transformation, or fracture. For
example, it has been demonstrated that even in the hardest
material found in nature, diamond, the local tensile elastic strain
can reach up to 10% in appropriately grown and oriented single-
crystal nanoneedles5,6 and microfabricated nanobridges7. In
nanowires of silicon, a reversible tensile strain of 15% has been
realized in uniaxial tension experiments8. These findings of ultra-
large elastic deformation of semiconductor materials bookended

by the ultra-wide bandgap (5.6 eV) diamond and the more
manufacturing-friendly and ubiquitous silicon (with a bandgap
of 1.1 eV) have opened up potential opportunities to design their
performance characteristics for applications such as power
electronics, nanophotonics, and quantum information processing.
The complexity of modulating the fundamental physical

properties of materials, such as the electronic band structure
and bandgap through ESE, calls for identifying preferred and
actionable strain states within the general six-dimensional (6D)
strain space, represented by the elastic strain tensor ε≡ (ε11, ε22,
ε33, ε23, ε13, ε12). In order to achieve this through rigorous physics-
informed computational predictions, first-principles calculations
based on density functional theory (DFT) are necessary to screen
for relevant properties and characteristics to realize targeted FoM.
Appropriate mechanical boundary conditions would then have to
be designed to impose optimal strain states at the targeted spatial
regions at the device level. To picture the complexity of this task,
consider for example a crystal’s electronic band structure En(k; ε),
which is a function of the 3-dimensional wave vector k and the
six-dimensional homogeneous strain tensor ε. Representing these
band structures with a tabulation approach with 9 dependent
variables would obviously require billions of first-principles
calculations. Plain DFT calculations can also introduce systematic
errors in the estimation of bandgap, and these errors have to be
overcome with the extra computational cost incurred by employ-
ing more expensive calculation techniques such as many-body
perturbation theory (so-called GW corrections9). Additional costs
with representing and storing of ESE effects would arise when the
elastic strain gradient ▽ε is incorporated as a dependent variable
(since ▽ε can be on the order of 107/m in nanoscale devices),
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which could influence properties such as nonlinear optical
response induced by the flexoelectric effect10,11.
The modulation of bandgap and carrier mobility (which

characterizes electrical conductivity based on the speed with
which an electron or a hole moves through a semiconductor
under the influence of an electric field) has long been examined
using linear response perturbation theory12. While this approach is
sufficiently powerful to guide the engineering of strained silicon
under small strains, it loses validity for large deformation cases
involving “deep” or nonlinear elastic strains so as to significantly
enhance their electronic or optoelectronic performance character-
istics13. To address the challenge of calculating, analyzing,
archiving, and visualizing material characteristics from high-
dimensional data, such as that related to En(k; ε), recent work
has adopted a data fusion and transfer learning technique to
integrate multiple data sources13. Specifically, we developed a
machine learning (ML) method13 that combined a dataset
extracted from DFT calculations invoking GW correction with
another dataset prepared with Perdew-Burke-Ernzerhof14 (PBE)
exchange functional correlations. This method was adopted to
demonstrate how large elastic strains can be used to make a
semiconductor such as silicon and an electrical insulator such as
diamond become metal-like conductors with zero bandgap15.
While our earlier deep ESE calculations are adequate for rapid

data collection in a highly specialized model13,15, they do not offer
sufficient flexibility and accuracy for optimizing a broader
consideration of physical characteristics such as the effective
mass of electrons and holes, which is a second-derivative of En(k; ε)
with respect to k and a strong sensitivity to noise. Therefore, it is
appropriate at this stage of development of ML to incorporate a
priori physics-informed neural network (NN) architectures into the
calculations in such a way that various performance characteristics
and FoM estimates could be much better optimized through a
judicious combination of DFT and deep learning. Further details of
motivation for this development are articulated in the succeeding
sections. These recent advances enable multi-property optimiza-
tion and Pareto-front type tradeoff analysis.
To accomplish these goals, we present here a physics-

informed, convolutional neural network (CNN) technique that is
more versatile, accurate, and efficient in its capability to facilitate
autonomous deep learning of the electronic band structure of
crystalline solids than the neural network architecture hitherto
employed to address this class of problems. We propose more
advanced algorithms and data representation schemes to
provide markedly improved ML outcomes. The techniques
described here enable detailed analysis of band structures in
the general six-dimensional strain space to optimize select FoM
of interest for specific performance targets. Moreover, our
method achieves sufficient accuracy not only for the deep
analysis of the bandgap and of the shape of the band structure,
but also for capturing the curvature of the band and the
effective mass.

RESULTS
Band structure and physics-informed ML
Our method seeks to develop accurate predictions of the band
structure, by recourse to which many FoMs of technological
interest could be directly estimated. Inspired by the wide adoption
of deep learning in the field of computer vision16, we draw an
analogy between the color spectrum in a digital image and the
band structure, regardless of whether it applies to electronic,
phononic, or photonic band structure.
Using this analogy, we envision energy dispersions as stacked

3D “images”, with the reciprocal coordinates k ≡ (k1, k2, k3)
representing the “voxels” (i.e., 3D “pixels” of a digital image) and
with En denoting the spectrum and intensity of colors (similar to

the RGB or grayscale of an image) at each voxel for a particular 3D
image, where n is the particular band among a total of N bands.
Energy bands are piecewise-smooth functions in the reciprocal
space, and the information within the energy dispersion of a
specific band includes intraband correlations with respect to k. An
illustration of this pictorial view of the band structure can be
found in Fig. 1a. Note that previous ML schemes based on simple
feed-forward NN treated an energy band as a flattened array of
independent values13—thereby neglecting to account for intra-
band correlation.
In prior work13, different bands were analyzed separately by NN

(Fig. 1a, b). Although this approach was sufficient to predict
energy eigenvalues for a specific band or bandgap variations
arising from strain, it could not capture interband physics
accurately for the entire band structure because of limited data.
The energy bands analyzed in the present method, however, are
not “independent” of one another, as shown in Fig. 1, and they
collectively describe the physical characteristics of the crystal. For
example, consider a single electron in a periodic potential
resulting from the interaction of the electron with the ions and
other electrons. Solving the Schrödinger equation provides the
solution for a series of Bloch waves, each of which has a predicted
dispersive form. Through the first-principles method, all the
quantized energy levels are determined. Specifically, the nth band
is not calculated in isolation but is determined from the collective
influence of its neighboring bands, including the adjacent (n− 1)
th and (n+ 1)th bands, as well as other non-adjacent bands. In
other words, information from interband correlation influencing
the nth band is included in the band structure of the crystal.
To reveal the internal structure of the band data in our model,

we incorporate CNN into our ML scheme. CNN is known for its
capability to extract hierarchical patterns in digital images and to
assemble complex patterns by integrating information from
smaller datasets17. Utilizing the digital image analogy for the
band structure, CNN is thus expected to serve as a useful tool for
extracting useful patterns, or intraband/interband correlations.

Model description
The general setup of the proposed model is illustrated in Fig. 2a. It
consists of a fully connected part followed by a CNN part. At the
outset, the strain tensor ε is taken as the input and transformed
into a feature vector through a series of fully connected layers, as
depicted in Fig. 2a. This feature vector has a length of Nm3, where
m3 is the number of k-points sampled in the Brillouin zone, and N
is the number of bands we want to represent. Depending on the
k-mesh density, the feature vector can be adopted as a rich
representation of the intraband information for a band structure.
Currently, this part has four hidden layers with a structure of (6→
128→ 256→ 512→ 512)n, where 512=m3, for n= 1, 2,…, N
separately, totaling ~1.1 million parameters. N is most often taken
to be 4 in this work, sufficient for describing near-CBM/near-VBM
properties of diamond for a particular strain state. Here, the band
energy dispersion for the top valence band (VB, n = nVB), the
lowest conduction band (CB, n = nCB), and their adjacent two
bands (n = nVB − 1 and n = nCB + 1) could all be represented via 4
vectors each of which has a length of m3

. Stacking them together,
we build an m ×m ×m × 4 tensor representation of the band
structure for any individual strain data, as illustrated in Fig. 2b. This
process is similar to the decoding part of an autoencoder18

whereby a representation as close as possible to the band
structure is generated. The resulting tensor is then fed into the
next block of convolution.
The convolutional part consists of several blocks that update

this tensor representation until the final output is determined.
Note that the output tensor retains the same dimension of the
band structure, i.e., m ×m ×m × N. This extraction process
proceeds through many layers to deliver a band structure tensor
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with features that capture deep intra-band and inter-band
information. This output comprising the complete ML inference
represents the band structure obtained by DFT calculations (Fig.
2a–b). In each convolutional block in the CNN part, the
convolution is a two-step sequence. In the first step, a 3 × 3 ×
3 × 1 kernel accounting for the intraband correlation (with
periodical boundary conditions and symmetry) is used. In the
second step, a 1 × 1 × 1 × 3 kernel accounting for the interband
correlation is adopted. The convolution blocks can be stacked up
at one’s discretion. The model yielding the lowest error in our
study has three CNN blocks, totaling ~276,000 parameters. One
can also use a one-step convolution (3 × 3 × 3 × 3) kernel instead
of the aforementioned two-step convolution (3 × 3 × 3 × 1)→con-
volution (1 × 1 × 1 × 3) kernel, with more weights per block but
better accuracy. Also, since 8 × 8 × 8 is still a relatively coarse
k-mesh when performing mink , maxk or k-derivative operations,
we use polynomial interpolation on top of the floating-point 8 ×
8 × 8 representation, before carrying out such operations.
The power of this approach lies in the architecture of the

proposed CNN model, which is tailored to the known physical
structure and exploratory data analysis results (Fig. 2b and
Supplementary Figs 1–2) in order to simplify training and to
speed up inference. In particular, it takes advantage of:

i. The time-reversal symmetry, i.e., Enð�kÞ = EnðkÞ which holds
for the diamond crystal. Corresponding tensor representa-
tion preserves this property.

ii. The correlation between the same k-point of different bands
(interband correlation). An interband convolution between
the bands is applied at each k-point so that bands influence
one another.

iii. The correlation between the energy eigenvalues associated
with adjacent k-points of the same band (intraband
correlation), which ascertains that the band energy is a
piecewise-smooth function of the k-space coordinates. The
intraband convolutions are carried out over several cycles so
that the underlying physics of how energy eigenvalues from
adjacent k-points affecting one another are learned
accurately.

iv. Band structure calculations benefit from the periodic nature
and symmetry of a crystal lattice. The band structure plot
resulting from restricting k to the first Brillouin zone, also
known as the reduced zone scheme, is typically used. This
reciprocal lattice periodicity is represented in our model
using a special technique for the periodic boundary
condition that follows the reduced zone scheme.

Model training
The training of our model is achieved in three parts: preliminary
training, data fusion, and active learning. In the first part,
preliminary training was performed on the large dataset
(~35,000 strain samples) of the computationally cheap DFT-PBE

Fig. 1 Two different views of the band structure. a Different representation of a band structure. In the “flattened” view, a band structure is
represented as N stacked flattened arrays (vectors) and processed like independent values. Each array is m3 in length. In the “digital image”
analogy, the band structure is envisioned as N different 3D images stacked together, each of which has a “voxel” dimension of m ×m ×m. The
eigenvalues on an energy band can then be thought of as the “color-scale” of the voxels. b Comparison of the two different approaches to ML.
We predict the eigenvalues for each energy band separately by utilizing the “flattened” band structure representation to obtain the entire
band structure.
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calculations. After a prescribed level of accuracy (less than 0.5%
relative error) was achieved, in the second part, we performed
training on a much smaller set (~6000 strain-samples) of the
accurate many-body GW calculation, starting from the NN
parameters learned in the previous stage. This approach is known
as knowledge transfer, as some of the knowledge gathered by NN
from the low-fidelity PBE data is exploited to ease the training on
the relatively more costly and reliable GW data. See Fig. 3a for a
schematic of this process and the “Methods” section for
computational details.

Active learning
Another integral part of our training is active learning, which
entails a class of ML algorithms for the automatic assembly of the
training set. Here the goal is to reduce the uncertainty compared
to that generated in a random sampling of strains. It is often
convenient to begin with subsets of the data that offer uncertain
levels of reliability and accuracy. Various uncertainty estimates
have been proposed19. The particular choice of an uncertainty
quantification procedure greatly influences performance in the
active learning part.

Fig. 2 ML model description. a CNN architecture for band structure prediction. The strain components are passed through fully connected
layers, with the last layer reshaped into a rank-5 tensor. After a few convolutional layers with residual connections that improve convergence,
the network produces the band structure as the output, which is fitted against the targeted DFT-computed band structure. A mesh
comprising 8 × 8 × 8 k-points are used. b Tensor representation and physical insights incorporated into the CNN model: time-reversal
symmetry, k-space periodicity, and inter-band and intra-band convolution.

E. Tsymbalov et al.

4

npj Computational Materials (2021)    76 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences



There are three main routes to uncertainty estimation in NN:
ensembling20, variational inference, and dropout-based inference.
Straightforward ensembling requires a few separate models to be
trained, but it imposes additional computational costs to both
training and inference procedures. On the other hand, variational
inference requires the usage of Bayesian neural networks (which
have probability distributions instead of real-valued weights), and
they also lead to costly training and inference steps. Dropout can
be seen as an intermediate solution: it can be applied in a simple
way to the existing NNs with fully connected layers and also has a
theoretical justification in the Bayesian framework21.
Here, we use the dropout uncertainty estimation enhanced with

the Gaussian processes for stability22 to sample the most

“uncertain” strain cases for further improvement of the model.
Specifically, after the first round of the training on the GW data, we
performed a calculation over a large set of random strains in 6D
and chose a small amount of ~200 strain cases with the largest
expected error as evaluated by this intermediate model (uncer-
tainty measurement). These strain cases were added to the
training set for the next round of training, as illustrated in Fig. 3a.
Our study indicates that 5–10 cycles of the above active learning
enable the trained CNN to reach the same level of accuracy with
two to three times fewer data, thus considerably reducing the
total amount of ab initio calculations without compromising the
robustness of our ML model, see Fig. 3b. More details are provided
in Supplementary Note 1 and Supplementary Fig. 3.

Fig. 3 ML accuracy and comparison of the different ML models. a The entire ML scheme involves pre-train, data fusion, and active learning.
The solid arrows show the workflow, and clock symbols indicate the relative time required for ab initio calculations. b Steady improvement of
model performance in terms of mean absolute error (MAE) during active learning with and without uncertainty estimation on PBE data. c
Physics-informed CNN holds significant advantages over band-fitting NN while being able to accomplish prediction tasks, which the feed-
forward NN and KRR do not offer. “Γ gap” is the difference between the conduction band (CB) and valence band (VB) at Γ and it usually does
not coincide with Eg. d Accuracy of CNN and other models for CBM position classification task. e Inference time comparison. The CNN is much
faster than its closest accuracy competitor band-fitting KRR model, providing a reasonable balance between time and accuracy capabilities.
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Model accuracy and performance
The ML framework outlined in Fig. 3a achieves high accuracy in a
variety of tasks compared to existing ML methods. The CNN model
outperforms previous simple feed-forward NN architecture, as well
as an ensemble of kernel ridge regression (KRR) based models for
band structure prediction, achieving a relative error no greater
than 0.5%, as shown in Fig. 3c. The predictions of properties
related to the band structure, such as the bandgap Eg (defined as
the energy difference between the conduction band minimum
(CBM) and valence band maximum (VBM) values), were treated in
previous study13 as an isolated ML regression problem with a
direct fit to the scalar Eg and the estimation of CBM and VBM as
two separate tasks with many repetitive ML runs. The present CNN
model does not have this constraint. It is capable of simulta-
neously predicting intra-band and inter-band property/values,
including Eg, CBM and VBM, and interband electron excitation and
photon emission energy at every k-point (any vertical transition
between any two bands), with a level of accuracy on par with or
better than other models (Fig. 3c, Supplementary Fig. 4 and
Supplementary Tables 1-2).
The current ML framework also achieves high reliability in

locating the band edge k-points. Here, the present machinery
surpasses all the other models by a significant margin, as shown in
Fig. 3d for the specific case of finding the CBM position for
diamond. Locating CBM is a demanding classification problem
due to a large number of classes: there are seven possibilities for
diamond CBM location under 6D elastic strain. Predicting the
entire band becomes inevitable for wide-bandgap materials such
as diamond to achieve a high classification accuracy. Thus, the
present CNN model captures the subtle difference between two
CB k-points.
The proposed framework is also shown to be sufficiently fast in

terms of inference time to perform swift exploration and
optimization in the 6D space of admissible strains. Though
architecturally much more complex, the present model out-
competes KRR-based models by more than two orders of
magnitude in computational speed, as shown in Fig. 3e. The
CNN model has a time complexity comparable to simple NNs. In
the next section, we discuss examples of ESE of a diamond crystal.

DISCUSSION
We now consider the optimization of band structure shape and
curvature and effective electron mass of diamond at certain
k-points. For this purpose, we explore the entire 6D strain space to
identify energy-efficient pathways to metalize diamond by turning
it into an electrical conductor with a 0-eV bandgap while preserving
phonon stability. These results extend our deep learning analytical
capabilities beyond those used previously to identify the conditions
for the metallization of diamond using ESE13,15.
Here we consider bandgap, arguably the most important band

structure feature, as an example of the material property set as a
target for deep ESE. The first objective is to identify the bandgap
limits that can be reached by strained diamond within the
phonon-stable region for ESE. We find the bandgap of the
diamond can be increased to realize better performance in power
electronics and optical applications. It can also be transformed to
resemble the properties of any small-bandgap semiconductors
and to exhibit a complete semiconductor-to-metal transition to
become a metal-like electrical conductor at different strain states.
The next objective is to determine the transitions between direct
and indirect bandgap. Our study shows that the Γ point or the
center of the Brillouin zone is associated with a direct bandgap,
and it is achieved only when the proper shear strain components
are imposed. Among all possible strains in the 6D strain space, the
present model has identified a number of strain states that result
in a direct bandgap in the diamond. These are illustrated in Fig. 4a.

The present calculations explore the entire 6D strain state to
identify optimal pathways for deep ESE within the full spectrum of
theoretical possibilities. The power of ESE is demonstrated not
only in tuning the bandgap value but also in facilitating the
indirect-to-direct bandgap transition that benefits photon emis-
sion and absorption.
In ESE, there would be many possible choices of ε to reach a

certain value of direct or indirect bandgap. Applications of these
strain states, ε’s, require different amounts of strain energy. The

elastic strain energy density is defined as hðεÞ � EðεÞ�E0

V0 ; where V0

is the undeformed supercell volume, E0 and E(ε) are the total
energy of the undeformed and deformed supercell, respectively.
The resultant distribution of available bandgap values Eg plotted
against h represents the “density of states of bandgap”13 as shown
in Fig. 4a. There exist many strain states with an elastic strain

energy density between 35 to 95meV/Å
3
that can reach a direct

3 eV bandgap in the diamond. These strain states lie in the region
bounded by the red dashed line. If one aims for the most energy-
efficient strain case to achieve the goal, one should choose the
left-most strains at a certain bandgap level. An upper-bound and
lower-bound function can also be defined to describe the limits of
reachable bandgap in strained diamond, as indicated by the black
dotted lines in Fig. 4a. A complete ranking of the common crystal
directions with respect to their role in reducing the bandgap can
be found in Supplementary Note 2 and Supplementary Fig. 5.
Similarly, an increase in the bandgap can be explored by following
the upper-bound function (upper black dotted line in Fig. 4a).
This line represents pure triaxial compression, i.e.,
ε11 ¼ ε22 ¼ ε33<0; ε23 ¼ ε13 ¼ ε12 ¼ 0.
Strain cases resulting in the same value of bandgap form an

isosurface12 in the 6D space. For visualization purposes, we show
only a 3D subspace by fixing three of the six strain components.
Figure 4b–d illustrates the situation where only compressive and
tensile normal strains are present (ε23 ¼ ε13 ¼ ε12 ¼ 0). Key
features of this bandgap isosurface in 3D include surfaces that
are piecewise smooth (“carapaces”), ridgelines where two
carapaces meet, and corners where three ridgelines meet. The
multifaceted nature of the bandgap isosurface is attributed to the
switch of the CBM k-space position. As a consequence of strain
tensor and crystal symmetries, this isosurface has the following
features:

● Three carapaces (the hard upper shell exoskeletons of turtles,
tortoises, and crustaceans) labeled in red as Δ1; Δ2; and Δ3
correspond to strain cases with the same value of indirect
bandgap but different CBM positions: (0, 0.375, 0.375), (0.375,
0, 0.375), and (0.375, 0.375, 0), respectively.

● Three ridgelines labeled in green as r1; r2; and r3 correspond
to strain cases with relations ε22 ¼ ε33, ε33 ¼ ε11, and ε11 ¼ ε22,
respectively.

● The corner μ labeled in purple is the intersection of r1; r2; and
r3 and is the most “tensile” hydrostatic strain point on the
bandgap isosurface, i.e., ε11 ¼ ε22 ¼ ε33.

The bandgap isosurface of strain cases where only shear strain
components are present (ε11 ¼ ε22 ¼ ε33 ¼ 0) is plotted in Fig. 4e.
Besides three different indirect bandgap CBM positions at
X1 : ð0; 0:5; 0:5Þ, X2 : ð0:5; 0; 0:5Þ, and X3 : ð0:5; 0:5; 0Þ, three-
shear-strains can also give rise to direct bandgap in diamond
where CBM is at the Γ point. The change from the carapace
labeled X1 to that labeled Γ thus indicates an indirect-to-direct
bandgap transition in diamond (yellow arrow in Fig. 4e). The
corresponding band structures for the indirect and direct bandgap
are shown in Fig. 4f and g, respectively.
The effective mass of an electron is a key parameter that

influences carrier mobility and electrical conductivity in semi-
conductor materials. If we denote the conduction band energy
dispersion as EnCB (k), then the corresponding effective mass tensor
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can be defined in terms of the Hessian matrix H(EnCB (k)) consisting
of second partial derivatives with respect to k. Based on the values
drawn from our ML model, the electron effective mass m� tensor
for an undeformed diamond at CBM is extracted by fitting the
band structure:

m� ¼
1:55me 0 0

0 0:31me 0

0 0 0:31me

2
64

3
75; (1)

where me is the free-electron mass. Given that m* is a second-
order derivative, it reveals not only the shape of an energy band
but also its curvature, thereby providing more detailed informa-
tion on band dispersion. The anisotropy at CBM is characterized by
a longitudinal mass (m�

L = 1.55me) along with the corresponding
equivalent (100) reciprocal space direction and two transverse

masses (m�
T = 0.31me) in the plane perpendicular to the

longitudinal direction. Our results for m�
L and m�

T are close to
both the GW and experimental values (see Table 1), offering more
evidence for the reliability of our electronic band structure
representation. A plot that demonstrates the agreement between
our model and GW calculations for effective mass components
can be found in Supplementary Note 3 and Supplementary Fig. 6.
We also studied the 6D strain space to obtain the conduction-

related properties and the elastic strain energy density as
functions of ε. Here, we adopted our ML model to acquire
the relation between the “conductivity effective mass” for the
conduction electron m�

condðεÞ and hðεÞ, as shown in Fig. 5a. The
values of scalar m�

cond are obtained by averaging individual
longitudinal and transverse effective masses, as in ref. 23. The blue
shading in Fig. 5a reveals the distribution of the available m�

cond,

Fig. 4 Density of states of bandgap and bandgap isosurfaces. a Bandgap values achievable through ESE for various values of elastic strain
energy density h within the strain space. The green shading of the region reflects the distribution of the available bandgap. The boundary of
the strain region where a direct bandgap could occur is indicated by the red dashed line. The lowest h to achieve direct bandgap in diamond
is about 20meV/Å

3
. Inset is the visualization of the direct bandgap strain cases in 6D. Every strain state is represented here as a hexagon with

vertices on the ε11; ε13; ε33; ε23; ε22; ε12 axes. Black webs correspond to random 6D strains; brown webs correspond to the direct bandgap
strains generated by our ML model. The most energy-efficient pathway to decrease the bandgap (i.e., the lower-bound function) and the
upper bound of the attainable bandgap is denoted by the black dotted lines. b–d Bandgap isosurfaces in the ε11ε22ε33 (normal only) strain
space at 2 eV, 3 eV, and 4.25 eV levels, respectively. The carapaces (Δ1; Δ2; and Δ3), ridgelines (r1; r2; and r3), and corner (μ) are indicated in red,
green, and purple letters, respectively. e Bandgap isosurface in the ε23ε13ε12 (shear only) strain space at 3.5 eV. The yellow arrow indicates a
change of carapaces on this isosurface pertaining to indirect-to-direct bandgap transition in the diamond. The corresponding change from
the indirect bandgap structure to the direct bandgap structure of CBM k-space coordinates from X1 (0, 0.5, 0.5) to Γ (0, 0, 0) is shown in band
structure plots (f) and (g), respectively. Red arrows in both plots indicate the CBM.
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with darker shading implying more strains are able to reach a
specific value of m�

cond at a given h.
The cumulative “density of states” of conductivity effective mass

can be defined as

c m�
cond0; h0

� � �
h εð Þ<h0

d6εδ m�
cond0 �m�

cond εð Þ� � ¼
Z

d6εδ m�
cond0 �m�

cond εð Þ� �
Θ h0 � h εð Þð Þ;

(2)

where δð�Þ and Θð�Þ are the Dirac delta and unit step functions,
respectively, d6ε � dε11dε22dε33dε23dε13dε12 in the 6D strain
space. The density of states of conductivity effective mass (g) at
h0 can then be defined by the derivative of cðm�

cond0; h0Þ with
respect to h0:
g m�

cond0; h0
� � � ∂c m�

cond0; h0
� �

∂h0
¼

Z
d6εδ m�

cond0 �m�
cond εð Þ� �

δ h0 � h εð Þð Þ; (3)

The meaning of g is explained by considering in the ðh�
dh
2 ; hþ dh

2 Þ interval all possible elastically strained states and the
resultant distribution of m�

cond arising from these states. Other
plots of the density of states of individual effective mass tensor
components are also available (see Supplementary Fig. 7).
Moreover, the developed framework enables high-quality predic-
tions of the m� tensor components (as well as their averages) for
every k-point at various deformation cases.
Direct bandgap together with a small effective mass within a

semiconductor material is a preferable combination in the design
of radiation detectors and photovoltaic cells that enables the
combination of high conductivity and light yield. Moreover, lower
elastic strain energy density means less effort for reaching the
same property design in ESE. The three objectives, however,
generally cannot be minimized simultaneously, to give the hands-
down best solution; instead, there exists a set of Pareto-efficient
solutions, which do not allow for any member of a triplet (Eg,
m�

cond , and h) to improve (i.e., decrease) without negatively
affecting the other two members. The 3D Pareto front of
minimized Eg, m�

cond, and h, shown in Fig. 5b, indicates a
compromise in simultaneously having a small bandgap and
conductivity effective mass, where h could increase to more than
120meV/Å

3
. It is not possible to achieve, for example, a near-zero

bandgap and m�
cond<0:25me without paying a considerable

penalty in h by straining diamond, as indicated by the “infeasible
region” in Fig. 5b. Also, it is likely to find higher h values that
correspond to the same combination of (Eg, m�

cond). In Fig. 5b, such
elastic strain energy density values are associated with strain cases
in the “feasible region”. In addition, Fig. 5c could serve as a
blueprint to access all possible (Eg, m�

cond) combinations achieved
by straining diamond in order to find the smallest elastic strain
energy density (hmin) for each combination. Note that it includes
more (Eg, m�

cond) combinations and is not a projection of Fig. 5b
onto the Eg �m�

cond plane.
In summary, by recognizing that the band dispersion is

structured and highly correlated in continuous k; ε;and discrete
n, the method presented in this work provides better

approximation and less uncertainty in the estimation of key
figures of interest in scientific and technological applications of
semiconductors. This task is made possible through the imple-
mentation of physics-informed neural network architecture,
synergistic PBE+ GW data sampling, and active learning. Speci-
fically, the CNN-based network structure we developed can
handle the tasks of the fast query of properties of any electronic
materials, including bandgap, band edges, and the energy
difference between electron athermal (phonon-free) band transi-
tion, at accuracy on par with or better than their purpose-specific
counterparts. Direct utilization of this fitting scheme on diamond
reveals the strain levels where indirect-to-direct bandgap transi-
tion and insulator-to-metal transition take place.
To accomplish the task of band structure prediction, our

network offers the capabilities of learning the complex intra-band
and inter-band correlation in a self-directed manner while taking
into account important physical characteristics, such as crystal
periodicity and time-reversal symmetry. For example, the applica-
tion of our method on computing the extremely sensitive energy
dispersion-related properties such as the effective mass tensor
demonstrates that the method can capture the second-order
details of band structure within a level of precision comparable to
that of the underlying calculation method. Multi-objective Pareto
optimizations are also carried out aided by this model. The general
ML framework we propose here thus effectively alleviates the
heavy dependence upon DFT calculation, which takes up about
99% of the model construction time in an otherwise typical first-
principles materials design project without ML. At the same time,
it provides an avenue for deploying physics-informed deep
learning. Finally, active learning technique coupled with data
fusion provides smart and autonomous searching of the vast
region of the 6D strain space for optimizing FoM.

METHODS
The models used in this work are described in detail in the “Results”
section. Additional content regarding first-principles calculation settings
and dataset construction is included here.

First-principles calculation
We used the projector augmented wave method (PAW)24 in our DFT
simulations implemented in the Vienna Ab initio Simulation Package
(VASP)25, with the exchange-correlation functional of PBE14. In all
calculations, the electronic wavefunctions were expanded in a plane wave
basis set with an energy cutoff of 600 eV. An 8 ´ 8 ´ 8 Monkhorst-Pack26

k-mesh was used to conduct the Brillouin zone integration. The maximum
residual force allowed for atoms after structural relaxation is 0.0005 eV Å

�1
.

Computations that invoke GW corrections were conducted on top of the
above PBE settings. We chose to sample the strain cases in a range of
f�0:15 � εii � 0:15; �0:1 � εij � 0:1; ði; j ¼ 1; 2; 3Þg that yields stable
structures, ie. without imaginary phonon frequencies. To identify the
phonon stability boundaries, we performed phonon calculations for
densely sampled strain cases in the 6D space. These calculations were
primarily carried out using the VASP-Phonopy package27. 2 × 2 × 2 super-
cells of 16 carbon atoms were created, and phonon calculations were
conducted with a 3 × 3 × 3 q-mesh. We also took full advantage of the
known symmetries to further reduce the computations needed when
collecting the strain data.

Dataset construction
In the data generation step of database construction, we took the Latin-
Hypercube-sampled28 strain points and adopted the above parameters in
our ab initio calculations to acquire the bandgap, band structures, and
related properties for every deformed structure. To validate our calculation,
we compared it with accessible values obtained in experiments.
Specifically, the undeformed diamond properties are widely available,
and we validated our many-body G0W0 calculation settings by matching
our result at zero-strain with the experimental lattice constant, elastic
properties, dielectric constant, and most importantly, bandgap and band
structure of diamond. Since we have adopted phonon calculations to

Table 1. Longitudinal and transverse electron effective masses at CBM
in undeformed diamond (in units of free-electron stationary mass me).

CNN
(this work)

NN GW0

(this work)
LMTO G0W0 Experiment

m�
L 1.55 1.63 1.44 1.5 1.1 1.4

m�
T 0.31 0.31 0.31 0.34 0.22 0.36

m�
L/m

�
T 5.0 5.16 4.61 4.41 5.0 3.89

The results obtained through our CNN model are compared with
experiments33, our previous feed-forward NN model13, and explicit
calculations using existing methods including GW0, linear muffin-tin-
orbital (LMTO) model34, and G0W0

35.
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eliminate the cases where phase transitions (such as graphitization15,29)
could happen and focused our search on the elastic regime, the diamond
structures which we conducted high-throughput computations are all of
the sp3 hybridization types. Therefore, unlike the Materials Project
database construction30 where separate DFT settings and experimental
references had to be employed for different classes/phases of materials
across a much larger chemical space, it would be enough for us to use the
undeformed diamond as the reference to benchmark the calculations. In
addition, for strain cases of greater interest (such as the near metallization
and direct-bandgap strain cases), we went beyond the single-shot G0W0

method and used partially self-consistent GW0 calculation settings
(allowing Green’s function iterations to acquire more accurate bandgap)
that is known to obtain results better than calculations with hybrid-
functional DFT31 and comparable with experimental measurement for
many semiconductor materials32.

DATA AVAILABILITY
The authors declare that all data supporting the findings of this study are available
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Supplementary Figures 

Supplementary Figure 1. Average Pearson correlation coefficient between the energies in two 

points separated by a given Manhattan distance in 𝐤-space fractional coordinate. Unsurprisingly, 

the correlation is strongest in the case of two adjacent 𝐤 -points. This is exploited by the 

convolution layers in our network, which introduces the correlation of adjacent 𝐤-points (i.e., the 

intraband correlation). 

 
 

Supplementary Figure 2. Average Pearson correlation coefficient between the energies in the 

same points in 𝐤-space but different bands. The correlation is strong in the case of adjacent bands: 

top VB (𝑛 = 𝑛VB), lowest CB (𝑛 = 𝑛CB) and its adjacent band (𝑛 = 𝑛CB + 1). This is exploited by 

the convolutions over the band dimension in the CNN layers, which introduces the interband 

correlation. 
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Supplementary Figure 3. MAE of the bandgap estimation reduces with active learning iterations. 

200 strain values were sampled at each step. The last three iterations did not contribute to the error 

reduction. 

 

Supplementary Figure 4. Physics informed CNN holds advantages against band-fitting NN and 

band-fitting KRR in every front while being able to accomplish predictions tasks the sole-purpose 

NN and KRR cannot do. The “Γ gap” is the difference between CB and VB at Γ and usually does 

not coincide with 𝐸g.  
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Supplementary Figure 5. Bandgap change as a function of strain for uniaxial straining along 

different crystal orientations in (a-b) diamond and (c-d) silicon with relaxed and non-relaxed 

atomic structures, respectively. 

 

Supplementary Figure 6. The reciprocal of the effective mass tensor components at the CBM as 

a function of hydrostatic strain. Predictions made by our ML model are shown in comparison to 

values obtained from GW calculations.  
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Supplementary Figure 7. Distribution of effective mass tensor components (𝑚11
∗ , 𝑚22

∗ , and 𝑚33
∗ ) 

for various ℎ are shown in (a), (b), and (c), respectively. The region enclosed by the red dashed 

line corresponds to direct bandgap cases. 
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Supplementary Tables 

Supplementary Table 1. Accuracy comparison among specialized models. This means that all 

the models (except for the CNN) were trained for the selected task only. RMSE: root mean square 

error; MAE: mean absolute error. 

 CNN NN KRR 

Bandgap prediction 

RMSE, eV 

(relative error, %) 

0.108214  

(2.22%) 

0.096223 

(1.83%) 

0.168535 

(3.21%) 

MAE, eV  

(relative error, %) 

0.072424  

(1.38%) 

0.062605 

(1.19%) 

0.122125 

(2.33%) 

Γ gap prediction 

RMSE, eV  

(relative error, %) 

0.088265 

(1.62%) 

0.085658 

(1.57%) 

0.439139 

(8.05%) 

MAE, eV  

(relative error, %) 

0.053497 

(0.98%) 

0.055520 

(1.02%) 

0.347457 

(6.37%) 

CBM prediction (classification problem) 

Accuracy 98.56% 94.30% 66.20%* 

Inference time 

Time 14.4 ms ± 59.2 µs 1.29 ms ± 14.6 µs 48.8 ms ± 287 µs 

* Linear model was used instead of radial basis function kernel 
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Supplementary Table 2. Accuracy comparison among ensemble models. This means that all the 

models (except for CNN) were trained for the VB and/or CB prediction; other measures were 

inferenced as in the proposed model. 

 CNN NN KRR 

VB prediction 

Mean RMSE, eV  

(relative error, %) 

0.038464 

(0.23%) 

0.052195 

(0.31%) 

0.043643 

(0.26%) 

Mean MAE, eV  

(relative error, %) 

0.031379 

(0.19%) 

0.042052 

(0.25%) 

0.035710 

(0.21%) 

CB prediction 

Mean RMSE, eV  

(relative error, %) 

0.045981 

(0.30%) 

0.111479 

(0.72%) 

0.059352 

(0.38%) 

Mean MAE, eV  

(relative error, %) 

0.035453 

(0.23%) 

0.091714 

(0.59%) 

0.042620 

(0.27%) 

Inferenced bandgap prediction 

Mean RMSE, eV  

(relative error, %) 

0.108214  

(2.22%) 

0.158525 

(3.02%) 

0.101998 

(2.13%) 

Mean MAE, eV  

(relative error, %) 

0.072424  

(1.38%) 

0.120696 

(2.30%) 

0.082020 

(1.56%) 

Inferenced Γ gap prediction 

Mean RMSE, eV  

(relative error, %) 

0.088265 

(1.62%) 

0.149067 

(2.73%) 

0.097539 

(1.79%) 

Mean MAE, eV  

(relative error, %) 

0.053497 

(0.98%) 

0.105048 

(1.92%) 

0.063617 

(1.17%) 

CBM prediction (classification problem) 

Accuracy 98.56% 95.50% 93.75% 

Inference time 

Time 14.4 ms ± 59.2 µs 2.48 ms ± 32.2 µs 25 s ± 105 ms 

 
 
 
 



 8  
 

Supplementary Notes 

Supplementary Note 1.  

The proper uncertainty estimation procedure is a crucial component for the active learning scenario: 

unreliable uncertainty estimates may lead to a random (i.e. similar to random sampling) or even 

sub-random performance. There are three main ways to perform an uncertainty estimation for the 

neural network: ensembling1, variational inference2, and dropout-based inference3.  

Ensembling is a mere stacking of a few similar models, which are trained starting from different 

parameters initialization or on the different subsets of data; various modifications exist4,5. This 

method is not model-specific and yet achieves near state-of-the-art performance in some 

applications6. The main drawback is that one needs to train a number of models and the memory 

consumption, training and inference time are scaling proportionally: an ensemble of 10 models 

will take 10 times more computational resources, which are used only to produce an uncertainty 

estimate. 

Variational inference is a standard Bayesian technique, which relies on the stochasticity 

incorporated within the model in a form of the model's parameters being the random variables2. 

This method produces robust and theoretically bounded uncertainty estimates; however, the model 

needs to be constructed and trained in a special way, which increases the training time. Moreover, 

the variational inference procedure is infeasible for the case of a large number of parameters and 

large datasets without special assumptions and approximations7. 

The utilization of dropout8,9 as an “engineering” way of the model regularization led to better 

results in the number of ML areas. One of the ways to interpret the dropout is Bayesian: indeed, 

the NN with the weights drawn from the Bernoulli distribution is a direct description of dropout3. 

Thus, the dropout-based inference may be seen as a Bayesian approximation of the variance of the 

NN’s output: to get the uncertainty estimate for a given strain one needs to enable the dropout 

during the inference time and then calculate the variance of the few stochastic passes of the same 

sample through the NN. We would like to note that in the case of our CNN model we incorporated 

the dropout into the fully connected part only. The resulting estimate, while being more like an ad-

hoc solution, is still able to improve the active learning procedure: a toy experiment that imitates 

active learning on the PBE data shows that the aforementioned procedure improves the training by 

a considerable amount of samples, see Figure 3b in the main text. 

 

Supplementary Note 2.  

As shown in Supplementary Figure 5, the ranking of common diamond or silicon crystal 

orientations to attain the same target bandgap through uniaxial tensile or compressive straining 

(i.e. constrained straining without allowing for the Poisson effect) can differ at different strain 
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levels. For example, in order to achieve a 5-eV bandgap in diamond, uniaxial tensile straining 

along <100> direction requires a smaller strain magnitude than along <111> direction; whereas to 

achieve 4 eV bandgap in diamond, uniaxial tensile straining along <111> direction requires a 

smaller strain magnitude than along <100> direction, as depicted in Supplementary Figure 5a. It 

is also found that allowing internal atomic relaxation during straining results in evident structural 

reconfiguration, especially in large deformation cases. Some of the diamond straining cases may 

even facilitate graphitization10,11. This section is a complement to the study in the SI Appendix 

Note S3 and Figure S3 of Ref. 12, where only non-relaxed results were given for silicon.  

 

Supplementary Note 3.  

If we denote the conduction band energy as 𝐸𝑛CB
(𝑘1, 𝑘2, 𝑘3), then the corresponding band electron 

effective mass tensor can be defined in terms of the Hessian matrix, H, as  

 𝒎∗−𝟏 = 𝐇(𝐸𝑛CB
(𝑘1, 𝑘2, 𝑘3)) =

1

ℏ2

[
 
 
 
 
 
𝜕2𝐸𝑛CB

𝜕𝑘1
2  

𝜕2𝐸𝑛CB

𝜕𝑘1𝜕𝑘2
 
𝜕2𝐸𝑛CB

𝜕𝑘1𝜕𝑘3
 

 
𝜕2𝐸𝑛CB

𝜕𝑘2𝜕𝑘1
 
𝜕2𝐸𝑛CB

𝜕𝑘2
2  

𝜕2𝐸𝑛CB

𝜕𝑘2𝜕𝑘3
 

 
𝜕2𝐸𝑛CB

𝜕𝑘3𝜕𝑘1
 
𝜕2𝐸𝑛CB

𝜕𝑘3𝜕𝑘2
 
𝜕2𝐸𝑛CB

𝜕𝑘3
2 ]

 
 
 
 
 

. 

These partial derivatives are approximated for 𝒎∗ at a particular 𝐤-point (such as CBM). 
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