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Pure spin photocurrent in non-centrosymmetric
crystals: bulk spin photovoltaic effect
Haowei Xu1, Hua Wang1, Jian Zhou 1 & Ju Li 1,2✉

Spin current generators are critical components for spintronics-based information processing.

In this work, we theoretically and computationally investigate the bulk spin photovoltaic

(BSPV) effect for creating DC spin current under light illumination. The only requirement for

BSPV is inversion symmetry breaking, thus it applies to a broad range of materials and can be

readily integrated with existing semiconductor technologies. The BSPV effect is a cousin of

the bulk photovoltaic (BPV) effect, whereby a DC charge current is generated under light.

Thanks to the different selection rules on spin and charge currents, a pure spin current can be

realized if the system possesses mirror symmetry or inversion-mirror symmetry. The

mechanism of BSPV and the role of the electronic relaxation time τ are also elucidated. We

apply our theory to several distinct materials, including monolayer transition metal dichal-

cogenides, anti-ferromagnetic bilayer MnBi2Te4, and the surface of topological crystalline

insulator cubic SnTe.
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Present-day electronics, which utilize the charge degree of
freedom of electrons, have revolutionized human civiliza-
tion. Besides charge, spin is another intrinsic freedom of

electrons that can be exploited for information processing.
Indeed, spintronics1,2 is promising for next-generation energy-
efficient devices and other novel applications such as quantum
computing3,4 and neuromorphic computation5. One of the core
challenges6 of spintronics is the generation of a spin current, and
particularly, a pure spin current without an accompanying charge
current. Until now, there have been a few approaches, such as the
interconversion between charge and spin currents by (inverse)
spin galvanic effect7,8 or (inverse) spin Hall effect9–12, and the
interconversion between thermal and spin currents by spin See-
beck effect13,14 or spin Nernst effect15,16, etc. These approaches
all require electrode contact and patterning, and the response
time is usually on the order of nanoseconds or longer. In contrast,
optical approaches are noncontact, noninvasive, and can enable
ultrafast response time on the order of picoseconds and below.

Several optical approaches for generating spin currents have
been proposed; however, these approaches typically require spe-
cial ingredients, such as the breaking of time-reversal symmetry
T by introducing magnetic elements or circularly polarized light
(CPL), and/or special device structures. For example, CPL can
selectively couple with spin-up and spin-down states in quantum
wells17, or spin-valley locked systems18, and the imbalanced
population of spin-up and spin-down states could lead to a spin
photocurrent. In magnetic materials, it has also been proposed
that a linearly polarized light (LPL) can generate a spin current
with the shift-current mechanism19–22. Alternatively, a spin
current can be generated with a mechanism reminiscent of
the p–n junction in solar cells23–25, quantum interference26,27, or
the nonlinear Drude current28. Although progress has been made,
the generation of spin currents under light is still under-explored.
In particular, it is highly desirable to introduce new mechanisms
applicable to a broader family of materials.

In this work, we propose a mechanism to generate direct
current (DC) spin current based on the nonlinear optical (NLO)
theory. This mechanism is a cousin of the bulk photovoltaic
(BPV) effect29,30, whereby DC charge currents can be generated
in a uniform crystal under light illumination. The BPV effect,
together with other NLO effects, are under intensive research
recently, but thus far the attention is mainly on the charge cur-
rent, while the spin current has long been neglected. Certainly,
when the charge flows under light, the spin associated with the
carriers are moving as well, which is a spin current. In some
situations, the charge current vanishes due to symmetry, but this
does not indicate that the carriers are frozen in materials. Indeed,
the carriers generally still move under above-bandgap light illu-
mination, which leads to a nonzero pure spin current. A generic
picture here is that electrons with opposite (or at least different)
spin polarizations travel in the opposite directions so that the net
charge current is zero, while the net spin current is nonzero
(Fig. 1). We name this effect the bulk spin photovoltaic (BSPV)
effect. Here the “voltaic” is defined as V"# � ðμ" � μ#Þ=ð�eÞ,
which is the difference between the chemical potential of spin-up
ðμ"Þ and spin-down ðμ#Þ electrons. This should be compared with
the BPV voltage, which may be defined as U � ðμ" þ μ#Þ=ð�2eÞ.
Similar to the BPV voltage U , the BSPV voltage V"# will not be
limited by the bandgap of the material, and the currents will not
be limited by the Shockley–Queisser limit.

In the following, we first introduce a unified theory on NLO
spin (BSPV) and charge (BPV) currents generation. Then, com-
bining theoretical analysis and ab initio calculations, we elucidate
some prominent features of the BSPV. Notably, the only
requirements for BSPV are (a) above-direct-bandgap light

illumination, and (b) the breaking of inversion symmetry P,
regardless of T . There are no need for any special ingredients
such as magnetic materials, special device structures (quantum
wells, junctions, etc.), the interference between two pulses, or
specific light wavelength or polarization. Hence, BSPV has great
convenience in practice and can be readily integrated with
existing semiconductor technologies31,32. These advantages,
together with the flexibilities of optical approaches (dynamic
spatial addressability, tunable intensity, wavelength, polarization,
etc.), provide a large playground to be explored. These results are
useful not only for generating spin currents but also for material
characterization and sensing. Many applications that are not
envisaged before may become possible. In addition, we also clarify
the lattice symmetry requirements for the generation of pure spin
current, and the mechanisms (shift- and/or injection-like) for
spin current generation under different symmetry conditions and
light polarizations.

Results
General theory and symmetry analysis. The NLO charge or spin
current under light with frequency ω can be expressed as

Ja;s
i ¼ ∑

Ω¼ ±ω
σa;s

i

bc ð0;Ω;�ΩÞEbðΩÞEcð�ΩÞ ð1Þ
Here E ωð Þ is the Fourier component of the electric field at angular

frequency ω. σa;s
i

bc is the NLO conductivity, with a; b; c as Carte-
sian indices. a indicates the direction of the current, while b and c
are the polarization of the optical electric field. si with i ¼ x; y; z is
the spin polarization, while s0 represents charge current. The spin
and charge are in the unit of angular momentum _

2 and electron
charge e, respectively. To directly compare the values of the
charge and spin current conductivity, we divide the spin current
conductivity by a factor of _

2e
33. Equation (1) suggests that the þω

and �ω components of the electric field are combined, and

a direct current is generated. We derived the formula for σa;s
i

bc
from quadratic response theory30,34 (see Supplemen-
tary Information). Within the independent particle approxima-
tion, the conductivity can be expressed as

σa;s
i

bc ð0;ω;�ωÞ

¼ � e2

_2ω2

Z
dk

ð2πÞ3 ∑mnl

f lmv
b
lm

ωml � ωþ i=τ

ja;s
i

mnv
c
nl

ωmn þ i=τ
� vcmnj

a;si

nl

ωnl þ i=τ

 !

ð2Þ
Here the explicit k-dependence of the quantities are omitted.
f lm ¼ f l � f m and ωlm ¼ ωl � ωm are the difference of occupa-
tion number and band energy between bands l and m. vnl �
n v̂j jlh i is the velocity matrix element, while τ is the carrier life-
time, and is set to be 0:2 ps uniformly in this paper. The sym-

metric real and asymmetric imaginary part of σa;s
i

bc correspond to
the conductivity under LPL and CPL, respectively. Note that Eq.
(2) uses the velocity gauge, while the well-known shift and
injection charge current formulae35 use the length gauge. These
two gauges are equivalent36,37 (Supplementary Information). An
advantage of the velocity gauge is that the equations are relatively
short and neat, and are easily generalizable to other responses
under light, such as valley currents, static magnetization, etc.

The physical mechanism of BSPV can be better understood
when compared with BPV. In Eq. (2), ja;s

i
with i≠0 is the spin

current operator, defined as38 ja;s
i ¼ 1

2 vasi þ siva
� �

. Here si ¼ _
2 σ

i

is the spin operator with σ as the Pauli matrices. Note that there
are lots of debates on the definition of spin current39–41, see
Supplementary Information for detailed discussions. If we define
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s0 ¼ e, then ja;s
0
would indicate the charge current in BPV. The

unified formula for spin and charge currents indicates that the
DC spin current has a similar physical picture as the BPV, except
that spin is a pseudovector; thus, it has different symmetries and
selection rules from the charge, which is a scalar. When electron
moves, its charge and spin would move simultaneously, leading to
the charge and spin current, respectively. However, unlike charge,
which is always �jej for an electron, spin does not necessarily
have a specified value. A free electron can have equal probability
to have sz ¼ 1

2 or � 1
2. When free electrons move to the right, the

spin-z current associated would have an equal probability to be in
the right (when sz ¼ 1

2) or the left (when sz ¼ � 1
2) direction, and

the net spin current is thus zero42. Therefore, BSPV requires that
the electrons have specified spin polarizations (i.e., a spin texture),
which can be created by either spin–orbit coupling (SOC), or
intrinsic magnetic ordering. Different from the formalism used in
ref. 21, Eq. (2) does not require the spin to be a good quantum
number or treat spin-up and spin-down states separately, so it
can deal with arbitrary spin polarization under SOC. Later, we
will show that treating SOC in such a rigorous way is of
importance.

Next, we consider symmetry constraints on the conductivity
tensor. First, the numerators in Eq. (2) are composed of terms
with the format Niabc

mnl ¼ ja;s
i

mnv
b
nlv

c
lm (i≠ 0) for spin current and

N0abc
mnl ¼ vamnv

b
nlv

c
lm (i ¼ 0) for charge current. Under spatial

inversion operation P, one has Pvamn kð Þ ¼ �vamnð�kÞ,
Psimn kð Þ ¼ simn �kð Þ, and Pja;simn kð Þ ¼ �ja;s

i

mn kð Þ. Thus, PNiabc
mnl kð Þ ¼

�Niabc
mnlð�kÞ for both i≠ 0 and i ¼ 0. On the other hand, the

denominators in Eq. (2) are invariant under P; thus, all

components (including charge and spin) of σa;s
i

bc should vanish
after a summation over ± k in P-conserved systems. Therefore,
the inversion symmetry P has to be broken for both BPV and
BSPV. Regarding time-reversal operation T , one has T vamn kð Þ ¼
�va*mnð�kÞ and T simn kð Þ ¼ �si*mn �kð Þ (i≠ 0. Here �* indicates
complex conjugate of quantity �). For charge current, one has
T N0abc

mnl kð Þ ¼ �N0abc*
mnl ð�kÞ. Thus, the real and imaginary part of

N0abc
mnl are odd and even under T , respectively. The imaginary part

of N0abcðkÞ contributes to the total charge conductivity after the
summation over ± k in a T -conserved system. Similarly, for spin-
i current (i≠ 0), one has T Niabc

mnl kð Þ ¼ Niabc*
mnl ð�kÞ; thus, it is the

real part of Niabc kð Þ that contributes to the total spin conductivity.
For both charge and spin current, T does not need to be broken.
Generally speaking, spin and charge currents should be generated
simultaneously in the absence of P. However, as we will show in
detail later, a pure spin current can be realized if the system
possesses mirror symmetry Md; inversion-mirror symmetry
PMd or inversion-spin rotation symmetry PS. The behavior of
relevant physical quantities under different symmetry operations
is summarized in Table 1.

The carrier lifetime τ plays a rather important role. Here we
use the charge current as the example; a similar analysis applies to
the spin current. The DC photocurrent is basically ja ¼ σabcE

bEc.
If the system is nonmagnetic, and we use LPL, then it seems that
T should be preserved. In this case, seemingly σabc should be zero,
because the ja is odd under T , while EbEc is even. However, in
practice the nonlinear photocurrent does exist, which is the BPV
(shift current). In fact, here T is effectively broken by dissipation
in the thermodynamic second-law sense, characterized by τ. This
is related to the well-known paradox regarding microscopic
reversibility: if particles in a movie satisfy Newton’s equations of
motion, then its rewinding version (t ! �t) would also; thus, the
apparent time-reversal symmetry in the equation of motion.
However, if one watches the two movies (t ! þt and t ! �t)
for long enough time, then the “real” movie is the one with an
overall “neater arrangement” of particles at the beginning of play,
due to asymmetry in the initial condition. In other words, entropy
creation indicates the “arrow of time” and distinguishes between t
and �t. Therefore, it has been rationalized that the electronic
relaxation time τ is indispensable for the shift current, although
the shift-current conductivity σabc is (approximately) independent
of τ35.

Dissipation occurs by the scattering of electrons and holes with
phonons, etc., which lead to electron–hole recombination. The

Fig. 1 A schematic illustration of pure spin and charge current. The light polarizes in the x-direction, while the system has mirror symmetry Mx. In the x-
direction, spin-up and spin-down states travel in opposite directions, so that the net charge current is vanishing, whereas the net spin current goes to the
+x-direction. In the y-direction, spin-up and spin-down electrons travel in the same direction, leading to nonvanishing charge current but vanishing spin
current.
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scattering time τ is usually on the order of (sub)-picoseconds. In
some cases, the spin relaxation time is short, then it can be a
source of dissipation as well. Also, in the presence of scattering
potentials (from e.g., impurities), there could be skew
scattering43,44 and side jump45,46, which lead to extrinsic spin/
charge currents, as compared with the intrinsic currents studied
in this work, that originates from the intrinsic band structure of
the perfect crystal. Here we adopt the constant relaxation time
approximation and use a constant τ ¼ 0:2 ps for all modes (band
index n and wavevector k). In reality τ should be mode dependent
(see Supplementary Information for more discussions) of course.
This however does not affect the qualitative features of the theory.

To illustrate the theory, we investigate three distinct material
systems: (1) monolayer transition metal dichalcogenides (TMD),
which are P-broken but T -preserved; (2) antiferromagnetic
bilayers MnBi2Te4 (MBT), which is P- and T -broken but
PT -preserving; (3) the {0 0 1} surface of cubic SnTe, which is
P-broken, but has double mirror symmetry Mx and My . The
results suggest that BSPV is generic and robust in these distinct
systems. We only show the NLO charge and spin current under
LPL, while the responses under CPL can be found in the
Supplementary Information.

Monolayer TMD. 2H-phase TMDs are well-studied 2D materials
that possess many exotic electronic and optical properties. We
take monolayer 2H MoS2 as an example. The atomic structure of
monolayer 2H MoS2 (space group P�6m2) is shown in the inset of
Fig. 2e, which lacks P, but is invariant under Mx and Mz .
Monolayer TMDs exhibit Zeeman-type (out-of-plane) spin
splitting due to the in-plane anisotropy. This could be understood
with the effective magnetic field from SOC, expressed as
Beff ¼ 1

2mec2
p ´∇V , where me is the electron mass and c is the

speed of light. In monolayer TMDs, the momentum p is in the in-
plane (x–y) direction, while ∇V is also largely in the x–y plane,
due to the mirror plane Mz . As a result, Beff is mainly along the
out-of-plane direction, leading to the Zeeman-type spin splitting.
These arguments are verified by the spin texture simmðkÞ ¼
mk σ i
�� ��mk

� �
from ab initio calculations. Figure 2a, b show szmmðkÞ

for the highest valence band and the lowest conduction band of
MoS2, respectively. One can see that szmm kð Þ ffi ± 1 for nearly all
k-points. Also, szmmðkÞ is opposite near the K and K0 valleys, which
is the spin-valley locking47,48.

Here we need to examine constraints on NLO spin or charge
current from mirror symmetry Md (Table 1). The polar vector
vamn satisfies MdvamnðkÞ ¼ �1ð Þδda vamnðk0Þ, where k0 is the image of
k under Md (only the d-th component flips its sign), whereas the
axial vector simn should satisfy Mdsimn kð Þ ¼ � �1ð Þδdi simnðk0Þ.
Therefore, one has MdN0abc

mnl kð Þ ¼ �N0abc
mnl ðk0Þ when there are

odd number of d within a; b, and c, and the charge current should

vanish in this case. For example, when the system has Mx , then
σx;s

0

xx and σx;s
0

yy should vanish. On the other hand, if d≠i, the spin-i
current should vanish when there are even number of d within
a; b, and c, because the Md operation on si contributes to an
additional sign change if d≠i. Therefore, σx;s

z

xx and σx;s
z

yy could exist

in the presence of Mx . Due to the opposite behavior of N0abc
mnl and

Niabc
mnl under Md , a pure spin current can be generated.
The calculated NLO spin and charge conductivity of mono-

layer MoS2 under different light polarizations are shown in
Fig. 2e, f. One can see that with in-plane polarized light, the
nonzero conductivities are complementary for spin and charge
currents, consistent with the analysis above. In detail, under the
x-polarized light, the charge current is along y-direction

(σx;s
0

xx ¼ 0 and σy;s
0

xx ≠ 0), whereas the spin-z current is along the

x-direction (σx;s
z

xx ≠ 0 and σy;s
z

xx ¼ 0). This indicates that along
x-direction, equal numbers of spin-up and spin-down electrons
are moving oppositely, so the net charge flux is zero, while the net
spin flux is nonzero. Along y-direction, the spin-up and spin-
down carriers move in the same direction, leading to zero spin
current but nonzero charge current (Fig. 1). Similar effects occur
as well in the case of y-polarized light. Interestingly, the spin-z
conductivity can be larger than the charge conductivity (in the
sense of equivalating _

2 ¼ jej). This should be compared with the
linear spin Hall effect, where the spin Hall angle (the ratio
between the spin conductivity to charge conductivity) is usually
on the order of 0:1 and below49. We also plot the k-specific
contribution to the total conductivity, defined as

Ia;s
i

bc ðω; kÞ ¼ Re ∑
mnl

f lmv
b
lm

Eml � _ωþ iδ
ja;s

i
mn v

c
nl

Emn þ iδ �
vcmnj

a;si

nl
Enl þ iδ

� �	 

, in Fig. 2c, d

for σx;s
z

xx and σy;s
0

yy at ω ¼ 2:8 eV. The mirror symmetry kx ! �kx
can be clearly observed.

As discussed before, the generation of spin current requires a
spin texture. For MoS2, the spin texture is generated by SOC.
When SOC is turned off, the spins of electrons are unpolarized,
and the spin current would be zero. This is verified by our ab
initio calculations. We artificially rescale the strength of SOC in
MoS2 by a factor of λ, and λ ¼ 0 (λ ¼ 1) corresponds to no (full)
SOC. The NLO conductivities as a function of λ are shown in
Fig. 2g, h. One can see that when λ ¼ 0, the spin conductivity is
indeed zero. As λ increases, the spins would have more and more
specified polarization, and the spin conductivity increase accord-
ingly. In contrast, the charge conductivity is nearly independent
of λ.

Bilayer antiferromagnetic MBT. Next, we study the bilayer
AFM MBT50,51, where a large NLO charge current has been
reported52,53. Each layer of MBT is a septuple layer (SL) in the
sequence of Te–Bi–Te–Mn–Te–Bi–Te. The Mn atoms possess

Table 1 The behavior of physical quantities under symmetry operations.

vamnðkÞ si kð Þ
ði ≠0Þ

N0abc
mnl kð Þ Niabc kð Þ

ði ≠0Þ
P �vamnð�kÞ simnð�kÞ �N0abc

mnl �kð Þ �Niabc
mnl �kð Þ

T �va�mnð�kÞ �si�mnð�kÞ �N0abc�
mnl ð�kÞ Niabc�

mnl ð�kÞ
PT eva�mnðkÞ �esi�mnðkÞ eN0abc�

mnl kð Þ �eNiabc�
mnl ðkÞ

Md �1ð Þδda vamnðk0Þ � �1ð Þδdi simnðk0Þ ½d; abc� ´N0abc
mnl ðk0Þ � �1ð Þδdi ½d; abc� ´Niabc

mnl ðk0Þ
PMd � �1ð Þδab vamn �k0ð Þ � �1ð Þδdi simnð�k0Þ �½d; abc� ´N0abc

mnl ð�k0Þ �1ð Þδdi ½d; abc� ´Niabc
mnl ð�k0Þ

Heree� indicates � obtained on the PT partner state, which is degenerate in energy with the original state. d; abc½ � is �1 and þ 1 if there are odd and even numbers of d within a; b, and c. For example,
x; xxx½ � ¼ �1, while x; xxy½ � ¼ 1. k0¼Mdk is the mirror image of k (only the dth component of k is flipped).
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magnetic moments 	 5μB, with intra-plane ferromagnetic
ordering. Bulk MBT is composed of van der Waals (vdW)
stacked SLs with inter-plane AFM ordering, and the AFM
nature persists when MBT is thinned down to multiple atomic
layers. In particular, bilayer MBT is a compensated AFM
insulator, whose atomic structure is shown in Fig. 3a. The
ground state magnetic moments are pointing along the
z-direction with a magnetic point group of �30m0. The atomic

structure of bilayer MBT is invariant under P and the inversion
center lies in the vdW gap between the two layers (black square
in Fig. 3a). However, when one considers magnetism, both P
and T are broken. Nevertheless, AFM bilayer MBT is invariant
under the combined operation PT . Similarly, we find that
PMx is also preserved. According to the previous analysis
(Table 1), we know that PMdvamn kð Þ ¼ � �1ð Þδab vamn �k0ð Þ and
PMdsimn kð Þ ¼ � �1ð Þδdi simnð�k0Þ. Then, one can see that when

Fig. 2 NLO spin current of MoS2. a, b The spin-z texture szmmðkÞ for the a highest valence band and b lowest conduction band of MoS2. Nearly all k-points
have szmm kð Þ ffi ± 1. (c, d) k-specified contribution to the total photoconductivity σxs

z

xx and σys
0

yy . The black boxes in (a–d) indicate K and K′ points in the BZ.
e, f The NLO spin-z and charge conductivity. The complementary behavior is clearly observable: the spin and charge currents are in perpendicular
directions. Inset of (e): the atomic structure of MoS2. g, h Peak values of NLO spin (g) and charge (h) conductivity of MoS2 as a function of SOC strength λ.
The spin conductivity grows linearly with SOC strength, while the charge conductivity is almost independent of SOC strength.

Fig. 3 NLO spin current of MBT. a Atomic structure of bilayer MnBi2Te4. The atomic structure has both inversion symmetry P and mirror symmetry Mx.
The inversion center is in between the two layers (black square). The magnetic momentum on Mn is indicated by the red arrows. Considering magnetism,
both P and Mx break. b Band structure of MBT with (black) and without (red) SOC. c, d The NLO spin and charge photoconductivity of bilayer MnBi2Te4
with SOC. Both spin and charge currents have nonzero components and exhibit complementary behavior. e, f The NLO charge conductivity without SOC.
The spin-up and spin-down states are treated separately. The photoconductivity from spin-up and spin-down states are exactly opposite to each other.
Therefore, the total charge conductivity is zero. But the spin-z conductivity is nonzero.
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d≠i, N0abc (Niabc) should vanish after Brillouin zone integration
when there are even (odd) number of d within a; b, and c.
Therefore, one can still obtain a pure spin current in systems
with PMd due to the different selection rule on charge and spin
currents.

The band structures of bilayer MBT with and without SOC are
shown in Fig. 3b. The bandgap is ~0.1 eV and is located at the Γ
point when the SOC effect is included, whereas it is ~0.7 eV and is
indirect without SOC. As shown in Fig. 3c–f, the SOC also makes
a significant difference in the NLO spin and charge conductivity.
When SOC is turned off, sz is a good quantum number. States
with sz ¼ ± 1 are strictly degenerate in an AFM system and can
be treated separately. The NLO conductivities without SOC are
shown in Fig. 3e, f, where one can see that the charge current
from spin-up (j") and spin-down (j#) states are exactly opposite

to each other. Consequently, the total charge current js
0 ¼ j" þ j#

is zero. However, the total spin-z current js
z ¼ j" � j# is nonzero.

Therefore, a pure spin current without any charge current is
predicted, which comes from the inversion-spin rotation
symmetry PS. These results are consistent with those in ref. 19,
where several other well-known AFM materials such as NiO and
BiFeO3 were studied.

However, SOC would break PS, and thus lead to a nonzero
charge current. Due to the PMx symmetry, the charge current is
perpendicular to the spin-z current (Fig. 3c, d). We also
artificially rescale the strength of SOC by a factor of λ, as done
in the MoS2 section (see Supplementary Information). It is found
that the charge conductivity increases with λ. This is because with
a larger λ, the spin and orbital degrees of freedom are coupled
more strongly, and inversion-spin rotation symmetry PS is
broken to a greater extent; thus, the charge conductivity would be
larger. These results suggest that while SOC enables spin current
in nonmagnetic materials such as MoS2, it would adversely hinder
the generation of pure spin current in some cases. Also, SOC
should be treated rigorously when studying both the spin current
and the charge current.

2D surface of 3D topological materials. Topological
insulators54–56 (TIs) and topological semimetals57,58 have
attracted intense interest in recent years. In TIs, the bulk states
are insulating with a finite bandgap, while the surface states are
(semi)-metallic with symmetry-protected vanishing bandgap,
which has potential applications in electronic and spintronic
devices. One salient feature of the surface states is the spin-
momentum locking, which could prevent the electrons from
backscattering and facilitate spin manipulations59–61. In addition,
the inversion symmetry P is naturally broken on the surfaces,
even if the bulk possesses P. Therefore, the NLO charge62 and
spin current can be induced solely on surfaces, while the bulk
remains silent.

Here we take the topological crystalline insulator (TCI)63,64

cubic SnTe as an example. The bulk SnTe has space group Fm�3m,
and is inversion symmetric inside the 3D crystal, which forbids
BPV/BSPV in the bulk interior. But the 2D surfaces of this 3D
crystal would lose the inversion symmetry, and therefore can
support both BPV and BSPV. Here we consider the {0 0 1}
surface, which has a four-fold rotational symmetry and double
mirror symmetries Mx and My (Fig. 4a). The spectrum function
Aðk;ωÞ of the f0 0 1g surface is obtained with iterative Green’s
function method65,66 and is shown in Fig. 4b, c. In Fig. 4b,
Aðk;ωÞ along high-symmetry lines in the BZ is presented, and the
gapless surface states can be clearly observed. In Fig. 4c, Aðk;ωÞ
near �X point in the BZ with selected energy ω ¼ �0:2; 0; and
0:2 eV are plotted. One can see that Aðk;ωÞ can have significant

values on the same k-point with different ω, enabling strong
interband transitions and significant photocurrents. In addition,
the surface spin textures are plotted as black arrows. The nonzero
sx and sy components indicate that one can obtain spin-x and
spin-y currents.

According to our previous symmetry analysis, under in-plane
polarized light ðb; c ¼ x or yÞ, no NLO charge or spin-z current
can be generated on the {0 0 1} surface, due to the double mirror
symmetry Mx and My . However, it is possible to have nonzero
spin-x and spin-y currents, which is verified by our ab initio
calculations. We use a slab model to compute the surface NLO
spin and charge conductivity. To distinguish the contribution
from only one surface of the slab, we define a projection
operator67 Pl ¼ ∑i2ljψiihψij. Here jψii are atomic orbitals
centered on the l-th atomic layer. Then, we replace the current
operator j in Eq. (2) with PljPl , and the resultant conductivity can
be layer distinguished (on the lth layer). Note that there could be
nonzero cross-terms PljPm (with l≠m), indicating the interference
between the lth and mth layer. From our computations, even for
neighboring layers with m ¼ l ± 1, the contribution from PljPm is
quite small (<10%). Here for a conceptual demonstration of our
theory, we only consider Pl¼1jPl¼1 and calculate the contribution
from the out-most layer. NLO spin-x and spin-y conductivities
are plotted in Fig. 4d. One can see that the maximum value of σys

x

yy

can reach 500 nm ´ μV=A2 ´ _
2e. We would like to emphasize

again that under the light field with in-plane polarization, NLO
charge current is absent on this {0 0 1} surface; therefore, a pure
spin current without any charge current can be generated due to
the double mirror symmetries. Such methodology can also be
used to distinguish surface and bulk states and to probe the
surface states. There may be other systems that possess double
mirror symmetries as well, such as monolayer FeSe68, which may
be good candidates for pure spin current generation.

Discussions
Before concluding, we would like to make some remarks. First, it
is well known that BPV has potentially shift and injection current
contributions. The shift mechanism comes from the fact that the
wavefunction center of the electron and hole band states are
different, leading to an electric dipole upon photon absorption.
On the other hand, the injection mechanism comes from the fact
that the electron and holes have different velocities, and that the
coherent k and �k excitations are imbalanced, leading to k and
�k asymmetry in steady-state population and a net current.
These facts are more evident if we transform Eq. (2) into the
length gauge, as shown in Supplementary Information . In a
T -conserved system, the DC charge currents under LPL and CPL
have shift and injection mechanism, respectively35. In contrast,
for the DC spin current, the mechanism under LPL and CPL
should be injection-like and (shift+ injection)-like (see Supple-
mentary information). Here the shift- (injection-) current is
defined by the conductivity scaling relationship as / τ0 (τ1).
Therefore, the spin conductivity in Figs. 2e and 4d can be further
enhanced if a larger τ is used (see Supplementary Information).
The different mechanisms for spin and charge current come from
the different behavior of Niabc

mnlði≠ 0Þ and N0abc
mnl under T -opera-

tion. Note that in T -conserved systems, the shift spin current
should vanish under LPL, consistent with the arguments in ref. 20

We have done similar analyses on mechanisms of current gen-
eration under different symmetry conditions, and the results are
listed in Table 2. These results are also computationally verified
by varying τ (see details in Supplementary Information).

Second, as shown above, a pure spin current induced by mirror
symmetry is usually accompanied by a charge current in the
transverse direction (except for the {1 0 0} surface states of cubic
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SnSe, with double mirror symmetry Mx and My). It is possible
to achieve a pure spin current without any charge current at all, if
the system possesses inversion-spin rotation symmetry PS. One
can see that PSN0abc

mnl kð Þ ¼ �N̂
0abc
mnl ð�kÞ, where �̂ indicates �

obtained on the spin partner state. Therefore, the charge current
should identically be zero in the presence of PS. On the other
hand, PSNiabc

mnl kð Þ ¼ �eiϕN̂mnlð�kÞ, where eiϕ is a phase factor
induced by the spin rotation operation on si. Thus, the spin
current does not have to vanish. In fact, PSz , where Sz flips the
spin-up and spin-down states, is the origin of the vanishing
charge current of MBT when SOC is ignored. In practice, a
skyrmion lattice, or magnetic materials with canted or all-in-all-
out magnetic ordering, can be an ideal platform for the genera-
tion of pure spin current without any charge current.

Third, the NLO conductivity in Eq. (2) is obtained from the
quadratic response theory. It essentially is Tr jð0Þρ 2ð Þ� �

, where jð0Þ is
the current operator independent of the electric field E, while ρ 2ð Þ

is the second-order perturbation in the density matrix and is

proportional to E2. There could be other mechanisms for the
generation of spin/charge current. For example, there could be an
anomalous velocity, which leads to an additional term jð1Þ in the
current operator that is linearly dependent on E. jð1Þ can con-
tribute to an NLO conductivity from Tr jð1Þρ 1ð Þ� �

, where ρ 1ð Þ is the
first-order perturbation in the density matrix. Note that this
contribution should vanish for all the material systems studied in
this work.

Finally, we would like to briefly discuss how the spin current
can be detected. There are well-established approaches for
detecting the spin current generated by, e.g., spin Hall effect9. For
example, with an open-circuit setup (Supplementary Information
and Figure S2a), the spin would accumulate on the ends of the
source material. The spin accumulation can be measured by
magneto-optic effects such as Kerr rotation or Faraday effect69.
Also, in a close circuit setup (Supplementary Information and
Figure S2b), the spin current source is sandwiched between two
metallic leads (e.g., Pt). The light-induced spin current is

Fig. 4 NLO spin current on the (0 0 1) surface of SnTe. a The atomic structure of SnTe. In the left panel the {0 0 1} face is painted in light green, which
possesses double mirror symmetries Mx and My . The dashed box in the right panel indicates the primitive cell on the surface. b The surface spectrum
function Aðk;ωÞ on high-symmetry lines in the BZ. The gapless surface states can be observed. c The surface spectrum function Aðk;ωÞ over the BZ for
selected ω ¼ �0:2; 0; and 0:2 eV. kx and ky are in the unit of reciprocal lattices. The surface spin textures are indicated by the black arrows. Color scheme
(red to blue) in (b, c) represents surface state contribution. The color bars are in logarithmic scale, and the energy is offset to the valence band maximum.
d The NLO spin current conductivity with x and y spin polarizations. Note that all charge and spin-z current components are vanishing due to Mx and My .

Table 2 Mechanisms for NLO charge and spin current generation under different material symmetries and light polarizations.

P-conserved P-broken, T -conserved P-broken, T -broken
PT -conserved

P-broken, T -broken
PT -broken

DC charge current (BPV) No LPL() shift
CPL() injection

LPL() injection
CPL() shift+ injection

LPL() shift+ injection
CPL() shift+ injection

DC spin current (BSPV) No LPL() injection
CPL() shift+ injection

LPL() shift
CPL() injection

LPL() shift+ injection
CPL() shift+ injection

For the shift mechanism, the conductivity contribution is independent of the carrier lifetime τ. For the injection mechanism, the conductivity contribution scales linearly with τ.
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transmitted to the metallic leads. An inverse spin Hall voltage
would be generated transverse to the spin current70–72, and the
spin current can be measured by the inverse spin Hall voltage.
Assuming a spin conductivity of 100 μA/V2 _

2e, an electric field as
small as 100V=m would generate a spin current density of 1 A/
m2 _

2e. Assume a spin Hall angle of 0.1, the current density in the
metallic lead would be 10A=m2, which can be detectable.

In conclusion, we demonstrate a generic picture of spin pho-
tocurrent generation with nonlinear light–matter interactions. By
symmetry analysis, we reveal that this effect does not have any
special requirements, except for the inversion symmetry breaking.
Thus, it applies to a wide range of materials and extended defects
like surfaces, stacking faults, grain boundaries, and dislocations. If
the system possesses mirror symmetry or inversion-mirror sym-
metry, a pure spin current can be realized. Our theory is verified
with ab initio calculations in several material systems, and the
spin current conductivity is found to be comparable or even
bigger than its charge BPV cousin. The predicted BSPV platforms
can be readily integrated with existing semiconductor technolo-
gies. They may find applications in next-generation ultrafast
spintronics and quantum information processing.

Methods
The first-principles calculations are based on density functional theory (DFT)73,74 as
implemented in the Vienna ab initio simulation package75,76. The exchange–
correlation interactions are treated by a generalized gradient approximation in the
form of Perdew–Burke–Ernzerhof77. Core and valence electrons are treated by pro-
jector augmented wave method78 and plane-wave basis functions, respectively. For
DFT calculations, the first Brillouin zone is sampled by a Γ-centered k-mesh with grid
density of at least 2π ´ 0:02A�1 along each dimension. The DFT+U method is
adopted to treat the d orbitals of Mn atoms in MBT (U ¼ 4:0 eV). Then a tight-
binding (TB) Hamiltonian is constructed from DFT results with the help of the
Wannier90 package79. The TB Hamiltonian is utilized to calculate the NLO charge
and spin conductivity according to Eq. (2) on a finer k-mesh. The k-mesh con-
vergence for BZ integration is well tested. In practice, the BZ integration in Eq. (2) is
carried out by k-mesh sampling with

R
dk

ð2πÞ3 ¼ 1
V ∑

k
wk; where V is the volume of the

simulation cell in real space and wk is weight factor. However, for 2D materials, the
definition of volume V is ambiguous, because the thickness of 2D materials is
ambiguously defined80. Thus, we replace volume V with the area S, and the 2D and
3D conductivity satisfy σ2D ¼ Lσ3D, where L is an effective thickness of the material.

Data availability
The authors declare that the main data supporting the findings of this study are available
within the article and its Supplementary information files.

Code availability
The MATLAB code for computing the NLO conductivities is available from the
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1 Derivations of NLO spin current conductivity

In this section we derive the NLO spin current conductivity from quadratic response theory, in a

similar fashion to Refs. [1, 2]. The Hamiltonian of the system can be written as

H = H0 + V (S1)

where H0 is the unperturbed Hamiltonian, while V is a perturbation, from e.g. the interaction between

light and the electrons. Without the interaction term V , the equilibrium density matrix should be

ρ0 =
1

Z
e−βH0 (S2)

Note that [ρ0, H0] = 0. When V is turned on, the equation of motion of the density matrix ρ(t) should

be (von Neumann equation)
∂ρ

∂t
= − i

~
[H, ρ]− ρ− ρ0

τ
(S3)

The last term −ρ−ρ0
τ

is a dissipation that describes the interaction between the system and the heat

bath: the system always has the tendency to return to ρ0. Here we adopted the constant relaxation

time approximation and use a uniform τ for all states. In practice, τ should be different for different

states (e.g., electrons and holes may have different τ). More rigorously, one should use ∂ρ
∂t
|col, which
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incorporates all relaxation processes, such the scattering of the electrons/holes with phonons, impurities,

etc, and the spin relaxation process. But we made simplifications by using ∂ρ
∂t
|col ≈ −ρ−ρ0

τ
.

In order to solve Eq. (S3), we use a trick similar to the transformation between the Schrodinger

picture and the interaction picture. Let ρ̃(t) = e
t
τ ei

H0
~ tρ(t)e−i

H0
~ t, then we have

∂ρ̃

∂t
=

1

τ
e
t
τ ei

H0
~ tρ(t)e−i

H0
~ t + i

H0

~
e
t
τ ei

H0
~ tρ(t)e−i

H0
~ t + e

t
τ ei

H0
~ t ∂ρ(t)

∂t
e−i

H0
~ t + e

t
τ ei

H0
~ tρ(t)(−iH0

~
)e−i

H0
~ t

= e
t
τ ei

H0
~ t

{
ρ

τ
+
i

~
[H0, ρ]− i

~
[H, ρ]− ρ− ρ0

τ

}
e−i

H0
~ t

= − i
~

[Ṽ , ρ̃] +
ρ0

τ
e
t
τ

(S4)

where Ṽ (t) = ei
H0
~ tV (t)e−i

H0
~ t. Then we can integrate Eq. (S4) to get

ρ̃(t) = ρ̃(0)− i

~

∫ t

0

dt′[Ṽ (t′), ρ̃(t′)] +
ρ0

τ

∫ t

0

dt′e
t′
τ

= ρ0 + ρ0

(
e
t
τ − 1

)
− i

~

∫ t

0

dt′[Ṽ (t′), ρ̃(t′)]

= ρ0e
t
τ − i

~

∫ t

0

dt′[Ṽ (t′), ρ̃(t′)]

= ρ0e
t
τ − i

~

∫ t

0

dt′

[
Ṽ (t′), ρ0e

t′
τ − i

~

∫ t′

0

dt′′[Ṽ (t′′), ρ̃(t′′)]

]

= ρ0e
t
τ − i

~

∫ t

0

dt′[Ṽ (t′), ρ0e
t′
τ ]− i

~

∫ t

0

dt′

[
Ṽ (t′),− i

~

∫ t′

0

dt′′[Ṽ (t′′), ρ̃(t′′)]

]
= · · ·

(S5)

By iteratively putting ρ̃(t) into the bracket on the rightmost of the equation above, we can obtain

ρ̃(t) = ρ̃(0)(t) + ρ̃(1)(t) + ρ̃(2)(t) + · · · (S6)

with

ρ̃(0)(t) = ρ0e
t
τ

ρ̃(n+1)(t) = − i
~

∫ t

0

dt′[Ṽ (t′), ρ̃(n)(t′)]
(S7)

Then going back from ρ̃(t) to ρ(t) with ρ(t) = e−
t
τ e−i

H0
~ tρ̃(t)ei

H0
~ t, we have

ρ(t) = ρ(0)(t) + ρ(1)(t) + ρ(2)(t) + · · · (S8)

with

ρ(0) = ρ0 (S9)
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and

ρ(n+1)(t) = e−
t
τ e−i

H0
~ tρ̃(n+1)(t)ei

H0
~ t

= − i
~

∫ t

0

dt′e−
t
τ e−i

H0
~ t[Ṽ (t′), ρ̃(n)(t′)]ei

H0
~ t

= − i
~

∫ t

0

dt′e−
t−t′
τ e−i

H0
~ (t−t′)[V (t′), ρ(n)(t′)]ei

H0
~ (t−t′)

=
i

~

∫ t

0

dt′e−
t′
τ e−i

H0
~ t′ [V (t− t′), ρ(n)(t− t′)]ei

H0
~ t′

(S10)

Next we expand V (t − t′) with a Fourier transformation V (t − t′) =
∫

dω
2π
V (ω)eiω(t−t′). Then ρ(1)

can be calculated as

ρ(1)
nm(t) =

〈
n
∣∣ρ(1)(t)

∣∣m〉
=
i

~

∫ t

0

dt′
〈
n
∣∣∣e− t′τ e−iH0

~ t′ [V (t− t′), ρ0]ei
H0
~ t′
∣∣∣m〉

=
i

~

∫
dω

2π
〈n|[V (ω), ρ0]|m〉 eiωt

∫ t

0

dt exp

(
i

~

[
(Em − En) +

i~
τ
− ~ω

]
t′
)

=
i

~

∫
dω

2π
Vnm(ω)(fmm − fnn)eiωt

exp
(
i
~

[
(Em − En) + i~

τ
− ~ω

]
t
)
− 1

i
~

[
(Em − En) + i~

τ
− ~ω

]
=

∫
dω

2π
eiωt

fnmVnm(ω)

Emn − ~ω + i~
τ

(S11)

Obviously,

ρ(1)
nm(ω;ω) =

fnmVnm(ω)

Emn − ~ω + i~
τ

(S12)

Then, the second order ρ(2)

ρ(2)
nm(t) =

〈
n
∣∣ρ(2)(t)

∣∣m〉
=
i

~

∫
dω′

2π
eiωt

∫ t

0

dt′ exp

(
i

~

[
(Em − En) +

i~
τ
− ~ω′

]
t′
)∑

l

(
Vnl(ω

′)ρ
(1)
lm(t− t′)− ρ(1)

nl (t− t′)Vlm(ω′)
)

=

∫
dω

2π

∫
dω′

2π
ei(ω+ω′)t 1

Emn − ~(ω + ω′) + i~
τ

∑
l

(
flmVnl(ω

′)Vlm(ω)

Eml − ~ω + i~
τ

− fnlVnl(ω)Vlm(ω′)

Eln − ~ω + i~
τ

)
(S13)

We have

ρ(2)
nm(ω + ω′;ω, ω′) =

1

Emn − ~(ω + ω′) + i~
τ

∑
l

(
flmVnl(ω

′)Vlm(ω)

Eml − ~ω + i~
τ

− fnlVnl(ω)Vlm(ω′)

Eln − ~ω + i~
τ

)
(S14)

For an arbitrary operator θ, the thermal expectation value of θ should be

〈θ〉 = Tr(θρ) (S15)
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The first order response is

〈θ〉(1)(ω;ω) =

∫
dk

(2π)3

∑
mn

θmnρ
(1)
nm(ω;ω)

=

∫
dk

(2π)3

∑
mn

fnmθmnVnm(ω)

Enm − ~ω + i~
τ

(S16)

The the second order response is

〈θ〉(2)(ω + ω′;ω, ω′) =

∫
dk

(2π)3

∑
mn

θmnρ
(2)
nm(ω + ω′;ω, ω)

=

∫
dk

(2π)3

∑
mnl

θmn

Emn − ~(ω + ω′) + i~
τ

(
flmVnl(ω

′)Vlm(ω)

Eml − ~ω + i~
τ

− fnlVnl(ω)Vlm(ω′)

Eln − ~ω + i~
τ

)

=

∫
dk

(2π)3

∑
mnl

flmVlm(ω)

Eml − ~ω + i~
τ

(
θmnVnl(ω

′)

Emn − ~(ω + ω′) + i~
τ

− Vmn(ω′)θnl

Enl − ~(ω + ω′) + i~
τ

)
(S17)

The last equity can be obtained with an interchange of dummy variables as (n → l, l → m,m → n).

For the nonlinear spin current effect, the interaction is

V (ω) = −e
N∑
i=1

vi ·A(ω)

=
ie

ω

N∑
i=1

vi · E(ω)

(S18)

where A is the vector potential while E is the electric field. After a second quantization, we have

Vnm(ω) in the basis of Bloch waves

Vnm(ω) =
ie

ω
vbnmEb(ω) (S19)

For the spin current in the a direction with spin component i, we should have θnm = ja,inm = 1
2
{va, si}nm,

where si = ~
2
σi is the spin operator.

Finally, the nonlinear direct spin current is

〈ja,s
i

〉(2)(0;ω,−ω) = − e
2

ω2

∫
dk

(2π)3

∑
mnl

flmv
b
lm

Eml − ~ω + i~
τ

(
ja,s

i

mn v
c
nl

Emn + i~
τ

− vcmnj
a,si

nl

Enl + i~
τ

)
Eb(ω)Ec(−ω) (S20)

And the spin conductivity can be written as

σa,s
i

bc (0;ω,−ω) = − e2

~2ω2

∫
dk

(2π)3

∑
mnl

flmv
b
lm

ωml − ω + i
τ

(
ja,s

i

mn v
c
nl

ωmn + i
τ

− vcmnj
a,si

nl

ωnl + i
τ

)
(S21)
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where we have replaced Emn with ~ωmn. Eq. (S21) is exactly the same as Eq. (2) in the main text.

2 Reproduce the shift and injection charge current formulae

2.1 NLO charge conductivities in the length gauge

In Sec. 1, we adopted the so-called velocity gauge in deriving the NLO spin/charge conductivity,

where the interaction with the oscillating electric field is described by the vector potential and velocity

as in Eq. (S18). A charge current version of Eq. (S21), where one sets ja,s
0

= eva

σabc(0;ω,−ω) = − e3

~2ω2

∫
dk

(2π)3

∑
mnl

flmv
b
lm

ωml − ω + i
τ

(
vamnv

c
nl

ωmn + i
τ

− vcmnv
a
nl

ωnl + i
τ

)
(S22)

has been derived in Refs. [1, 2] and has been used in e.g. Refs. [3, 4]. On the other hand, a different

version of the formulae [5] for calculating the NLO charge conductivity, which uses the length gauge,

seems more popular in literatures. In the length gauge, the interaction with light is described by

V = −er ·E, where r is the position (length) operator. We first give a brief description on the formulae

in length gauge, and then show that they are equivalent with our Eq. (S22).

In a time reversal symmetric system, the NLO charge current is divided into two parts, namely the

shift current and the injection current,

jashift = 2ζabc(0;ω,−ω)Eb(ω)Ec(−ω)

djacircular

dt
= 2ηabc(0;ω,−ω)Eb(ω)Ec(−ω)

(S23)

The shift current conductivity is

ζabc(0;ω,−ω) = − iπe
3

2~2

∫
BZ

d3k

(2π)3

∑
n,m

fnm(rbmnr
c
nm;a + rcmnr

b
nm;a)δ(ωmn − ω) (S24)

where

ranm;b =
∂ranm
∂kb

− i[ξbnn − ξbmm]ranm (S25)

is the generalized derivative of position operator r with respect to k and ξann = i〈unk|∂ka |unk〉, where

|unk〉 is the cell-periodic part of the wavefunction |nk〉. Note that for Bloch waves, it is not straightfor-

ward to define the full matrix of the position operator rmn = 〈m|r|n〉, since the Bloch waves are infinite

6



in space. Usually rmn is defined with only the interband elements

rmn =


vmn
iωmn

, m 6= n

0, m = n

(S26)

But the definition of ξ is valid for intraband elements with m = n as well.

Under a linearly polarized light b = c, Eq. (S24) can be further simplified as

σabb(0;ω,−ω) = −πe
3

2~2

∫
BZ

d3k

(2π)3

∑
n,m

fnmR
a
nm|rbnm|2δ(ωmn − ω) (S27)

where

rbnm = |rbnm|e−iφnm

and

Ranm =
∂φnm
∂ka

+ ξann − ξamm

is called the shift vector.

The injection current response function is

ηabc(0;ω,−ω) =
πe3

2~2

∫
BZ

d3k

(2π)3

∑
n,m

fnm∆a
nm[rcmn, r

b
nm]δ(ωmn − ω) (S28)

where ∆a
nm = vann − vamm and [rcmn, r

b
nm] = rcmnr

b
nm − rbmnrcnm.

The shift current can be induced by a linearly polarized light (b = c), and is a static current. On

the other hand, the injection current cannot be induced by a linearly polarized light, and it should

grow with time, thus it is somewhat like injected into the system. If the carrier lifetime is τ , then there

should be a dissipation term −jinjection/τ . And in the static limit (t→∞),

jinjection = 2τηabc(0;ω,−ω)Eb(ω)Ec(−ω) (S29)

so the effective conductivity should be defined as τηabc(0;ω,−ω). Eqs. (S24, S28) are derived in Ref. [5]

and is widely used in many papers.

Here we would like the remark that the physical mechanism of the shift current and injection

current are more evident in the length gauge format. Eqs. (S27, S28) are reminiscent of the Fermi’s

golden rule. The Dirac functions indicate that light induces resonant interband transitions, and the

transition rate are proportional to |rbmn|2 for LPL, and [rcmn, r
b
nm] for CPL. Then the shift current comes

from the fact that the wavefunction centers of electrons and holes differ by a factor of Ranm, which leads

to a electric dipole eRanm. The time derivative of the electric dipole is the current. On the other hand,

7



the injection current comes from the fact that the electrons and holes have different velocities, and the

net current is determined by the velocity difference ∆a
nm = vann − vamm.

2.2 Equivalence between the velocity gauge and the length gauge

Eq. (S22) and Eqs. (S24, S28) look very different, but they should give the same result in cases

that they are both applicable, because they are dealing with the same physical problem: the charge

current generated under light illumination. The difference is that, Eq. (S22) uses the velocity gauge and

the light coupling with the system is included by replacing p with p− e
c
A, where p is the momentum

operator and A is the vector potential. Whereas Eqs. (S24, S28) use the length gauge and the light

interaction is included by an additional term in the Hamiltonian Hint = −er ·E, where r is the position

operator and E is the electric field. These approaches should be equivalent and lead to the same results,

as discussed in e.g. Refs. [6, 7].

Both velocity gauge and length gauge are applicable regardless time reversal symmetry T . However,

in deriving Eqs. (S24, S28), Ref. [5] assumed a T -conserved system and made some simplifications. Thus

Eqs. (S24, S28) are not valid when T is broken. In the following, we would show that Eq. (S22) and

Eqs. (S24, S28) are equivalent in a T -conserved system. Specifically, under LPL, one should consider

the symmetric real part of Eq. (S22), which is equivalent to the shift current as in Eqs. (S24), while

under CPL, one should consider the asymmetric imaginary part of Eq. (S22), which corresponds to the

injection current as in Eqs. (S28).

In order to show the equivalence, the first step is to factorize the denominator of Eq. (S22) with

Sokhotski-Plemelj Formula. That is, in the limit of τ →∞ (δ = 1/τ → 0), one has1

D1 =
1

ωmn + iδ
=

P

ωmn
− iπδ(ωmn)

D2 =
1

ωml − Ω + iδ
=

P

ωml − Ω
− iπδ(ωml − Ω)

(S30)

here δ(x) is the Dirac delta function and P stands for the Cauchy principal value in k integration.

The next step is to rearrange the numerator of Eq. (S22), which is N0abd(k) = va(k)vb(k)vc(k),

according to their behavior under T operation. As discussed in the main text, one has T N0abd(k) =

−N0abd∗(−k). Since the denominator is invariant under T , one has N0abd(k)
D1(k)D2(k)

= − N0abd∗(−k)
D1(−k)D2(−k)

. Conse-

quently, after a summation over ±k, only the imaginary part of N0abd(k) would contribute to the final

result, and thus we can ignore the real part of N0abd(k) and treat it as a purely imaginary quantity.

Reproduce the shift current. First, we note that the a dc current should be a real quantity.

1Here we focus on the first term in the bracket of Eq. (S22), the second term can be analyzed in the same fashion.
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For a LPL, Eb and Ec has no phase difference and only the real part of the conductivity σabc contributes

to the NLO current. As discussed above, the numerator N0abd(k) can be treated as a purely imaginary

quantity, thus one needs to consider the imaginary part of the denominator, which is

Im(D1D2) = π
P

ωmn
δ(ωml − Ω) + π

P

ωml − ~Ω
δ(ωmn) (S31)

The second term in symmetric with respect to the permutation of m,n (after summation over m,n),

while the imaginary part of vanlv
b
lmv

c
mn is asymmetric with respect to m,n. Therefore only the first

term in Eq. (S31) would not vanish in the final result. Now it’s straightforward to check that that the

integrand in Eq. (S22) is terms with format

∑
mnl

flmv
b
lm

ω2
ml

(
vamnv

c
nl

ωmn
− vcmnv

a
nl

ωnl

)
δ(ωml − ω) (S32)

where we have replaced ω in the prefactor of Eq. (S22) with ωml because of the the delta function.

On the other hand, the integrand of Eq. (S24) is

∑
ml

flm(rbmlr
c
lm;a + rcmlr

b
lm;a)δ(ωml − ω) (S33)

The equivalence between Eq. (S32) and Eq. (S33) can be proved by using Eq. (S26) and plugging in the

sum rule for rblm;a [8]

rblm;a =
ralm∆b

ml + rblm∆a
ml

ωlm
+

i

ωlm

∑
n

(ωnmr
a
lnr

b
nm − ωlnrblnranm) (S34)

Note that the first term in Eq. (S34), F blm;a = ralm∆b
ml+r

b
lm∆a

ml

ωlm
, does not contribute to the final result

because flmr
c
mlF

b
lm;a is asymmetric in m, l.

Reproduce the injection current. For a circularly polarized light, Eb and Ec should have a

phase difference of i. In order to get a real current, we need to consider the imaginary part of σabc. In

this case we need to examine the real part of the denominator of Eq. (S22), which is

Re(D1D2) =
P

ωmn(ωml − Ω)
− π2δ(ωmn)δ(ωml − Ω) (S35)

One can see that the first and second term in Eq. (S35) corresponds to m 6= n and m = n, respectively.

In case that τ → 0, the contribution from the first term is much smaller than the second term and thus

we only consider the second term.
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Putting m = n (n = l) in the first (second) term of Eq. (S22), one has the integrand as

− iτ
∑
ml

flmv
b
lmv

c
ml

ω2
ml

(vamm − vall) δ(ωml − ω)

= iτ
∑
ml

flm (vamm − vall) rblmrcmlδ(ωml − ω)

→ iτ

2

∑
ml

flm∆a
ml

[
rblm, r

c
ml

]
δ(ωml − ω)

(S36)

In the last step we have taken the asymmetry part (bc↔ −cb) of the integrand. One can see that Eq.

(S36) is the same as the integrand of Eq. (S28) plus a τ factor, as expected.

3 Shift- and injection-like mechanisms for the spin current

As discussed in Sec. 2, the well-known shift and injection formulae in a T -conserved system can

be reproduced from the charge current part (ja,s
0

= eva) of Eq. (S21). In this section, we would show

that for the spin current with ja,s
i

= 1
2
{va, si}, i 6= 0, Eq. (S21) can also be broken down into shift-like

and injection-like parts. By shift- (injection-) like, we mean that the conductivity scale with τ0 (τ1),

where τ is the carrier relaxation time.

3.1 P-broken, T -conserved systems

We first study a T -conserved system. As in Sec. 2, we still need to factorize the denominator of Eq.

(S21) with Eq. (S30), and the arrange the numerator according to its behavior under T operation. Unlike

N0abd(k), for the spin current, one has T N iabd(k) = N iabd∗(−k). Consequently, after a summation over

±k, only the real part of N iabd(k) contributes to the total conductivity, in contrast to the charge

current, where the imaginary part of N0abd(k) contributes.

Linearly polarized light. Under a LPL, for the spin current one needs to consider the real part

of the denominator, as in Eq. (S35). And similar algebra to that in Eq. (S36) leads to a integrand for

the NLO spin conductivity as

iτ
∑
ml

flm

(
ja,s

i

mm − j
a,si

ll

)
rblmr

c
mlδ(ωml − ω)

→ iτ

2

∑
ml

flm

(
ja,s

i

mm − j
a,si

ll

){
rblm, r

c
ml

}
δ(ωml − ω)

(S37)
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where we have taken the symmetry part (bc ↔ cb) as
{
rblm, r

c
ml

}
= rblmr

c
ml + rclmr

b
ml because we are

dealing with LPL. One can see that for a T -conserved system under LPL, the mechanism for spin

current generation in actually injection-like. A prominent feature is that the NLO spin conductivity is

(approximately) proportional to the lifetime τ .

Circularly polarized light. Under LPL, one needs to keep the imaginary part of the denominator

as in Eq. (S31). This time the second term in Eq. (S31) would also contribute to the final result because

the real part of ja,s
i

nl v
b
lmv

c
mn is also symmetric in m,n. As a result, under CPL, the contribution to the

spin current has a shift-like part,

∑
mnl

flmv
b
lm

ω2
ml

(
ja,s

i

mn v
c
nl

ωmn
− vcmnj

a,si

nl

ωnl

)
δ(ωml − ω) (S38)

which is independent of τ , plus a injection-like part

−iτ
∑
ml

flmv
b
lmv

c
ml

(ωml − ω)ω2

(
ja,s

i

mm − j
a,si

ll

)
(S39)

which depends linearly on τ .

3.2 P-broken, T -broken, PT -conserved systems

For a PT -conserved system, one needs to study the imaginary part ofN iabd(k) because PT N iabd(k) =

−Ñ iabd∗(−k). With similar analysis as in the previous section for T -conserved system, one can find

that the generation of spin current under LPL (CPL) has shift (injection)-like mechanism, respectively.

The same analysis also applies to charge current in a PT -conserved system, and the results are

listed in Table 2 of the main text.

3.3 P-broken, T -broken, PT -broken system

In this kind of systems, both the real and imaginary parts of N iabd(k) can contribute to the

conductivity for spin and charge currents. As a result, under either LPL or CPL, the shift- and

injection-like mechanisms would both contribute.
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4 The definition of spin current

There are lots of debates on the definition of the spin curren. In the main text we adopted the

conventional definition j1 = 1
2
(vs + sv). But this definition is not entirely correct, although it is

convenient, physically appealing, and extensively employed in many works until today. For example,

this spin current is not conserved. Also, as suggested in Rashba’s work [9], this definition would lead

to a non-zero spin current even if an inversion asymmetric insulator is in equilibrium (under no electric

field, light, etc.). There are lots of debates, and there are also works claiming that we do not need to

modify this definition. See e.g., Ref. [10].

In Ref. [11], the authors proposed another definition, which is j2 = d(rs)
dt

. This definition can be

conserved in some systems. However, it requires that “spin generation in the bulk is absent due to

symmetry reasons”. In other words, it requires the bulk integration 1
V

∫
dV T (r) = 0, where T (r) is

the torque density on the spins. Unfortunately, this is not true under external light, which is necessary

for our bulk spin photovoltaic effect. An intuitive picture is, under a circularly polarized light, the

angular momentum of the photons can be transferred into the electron system, which obviously leads

to 1
V

∫
dV T (r) 6= 0. Therefore, the definition of j2 = d(rs)

dt
is also not perfectly correct if the system

is under light illumination. Particularly, under strong light, the non-conservation of j2 = d(rs)
dt

might

be high. On the other hand, the calculation of the spin current with j2 = d(rs)
dt

is rather involved in

practice (although this definition looks simple). To the best of our knowledge, this definition has only

been applied in simple model systems, and to the linear order response.

Here we roughly estimate the difference between the spin current defined with j1 = 1
2
(vs + sv)

and j2 = d(rs)
dt

. Compared with j1, j2 has an additional term that comes from the torque on the spins

[11, 12]. This term is proportional to [H, s]. Therefore, the relative difference
∣∣∣ j2−j1j1

∣∣∣ can be roughly

estimated from αi = ‖[H,si]‖
‖H‖·‖si‖ , where ‖ · ‖ indicates matrix norm. This can be naively understood in

the following way. We have j2 = d(rs)
dt

= dr
dt
s+ ds

dt
r = 1

2
{[H, r], s}+ 1

2
{r, [H, s]}, where {a, b} = ab+ ba

ensures hermiticity. The first term is just j1, while the second term comes from the torque on the spins.

The ratio between these two terms is (very roughly) αi = ‖[H,si]‖
‖H‖·‖si‖ . Rigorously speaking, the position

operator r needs extra care in infinite solid-state systems.

We have calculated and plotted αz in the first Brillouin zone for MoS2 (Figure S1a) and MnBi2Te4

(Figure S1b). One can see that α is on the order of 0.1 ∼ 0.2. From this point of view, one may

deduce that the difference between j1 and j1 is indeed not negligible, but in general cases, it would not

qualitatively change the main results.
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Figure S1: αz = ‖[H,sz ]‖
‖H‖·‖sz‖ for (a) MoS2 and (b) MnBi2Te4. The black boxes indicate K/K′ points in the Brillouin

zone.

5 Experimental considerations

5.1 Estimation of the temperature rise

For spin current generation, the temperature rise due to the energy dissipation is generally not

significant. Here we take monolayer MoS2 as an example. For the bulk spin photovoltaic effect studied

in this work, the main energy consumption is the photon absorption due to interband transitions

(electron-hole pair generation), and the absorbance is A = 1 − exp
[
− ω
cε0
εi(ω)d

]
≈ σr(ω)

cε0
d, where ε0 is

the vacuum permittivity, εi is the imaginary part of the dielectric function, σr is the real part of the

optical conductivity. d is the thickness of the material, which is taken as 0.6 nm for MoS2. The energy

consumption rate per unit area is

P = AI =
σr(ω)

cε0
d
ε0c

2
E2 =

σr(ω)d

2
E2 (S40)

where I = ε0c
2
E2 is the intensity of the light. From our ab initio calculations, at ω = 3 eV one has

σr(ω) = 4×105 Ω/m. In the main text, we showed that light with electric field strength on the order of

E = 100 V/m would be able to generate a detectable spin current. With this field strength the energy

absorption power is P = 1.2× 10−4 W/cm2, which is rather small. Here we calculate the temperature

rise under an electric field of E = 1 MV/m, which is much larger, but readily available with laser

technology. At this field strength, one has P = 1.2 × 104 W/cm2. Assume that MoS2 is put on a

13



substrate with thermal conductivity κ and thickness lsubs. If a continuous wave (CW) light is used,

then the steady steady-state temperature rise can be roughly estimated from

∆TCW =
P

κ
lsubs (S41)

Assuming that lsubs = 1 µm and κ = 100 W ·m−1 ·K−1, then ∆TCW ≈ 1.2 K, which is not significant.

On the other hand, if a pulse laser is used, then the temperature rise can be estimated from

∆Tpulsed =
τpulsePS

kB
(S42)

Where S is the area of a unit-cell, kB is the Boltzmann constant, while τpulse is the duration of the

pulse, and is taken as 1 ps here. One can find that ∆Tpulsed ≈ 0.7 K, which is also not significant as

well.

We would like to note that, not all energies absorbed by the materials goes to the phonon (lattice)

system. They may be re-emitted as photons when e.g., electrons and holes recombine. Therefore, the

temperature rise in the ion system may be even lower than ∆TCW and ∆Tpulsed estimated above.

5.2 Maximum spin current density

With the MoS2 parameters, when the external field strength is E = 1 MV/m, the spin current

density is 108 A
m2

~
2e

, and the temperature rise in the sample is estimated to be on the order of 1 K,

which is not high. If we further increase the electric field strength, then two main issues will arise.

1) On the experimental side, a strong laser may destroy the sample. This might happen for electric

field strength above 10 MV/m when one uses a continuous wave laser. In this case, the spin current

density is around 1010 A
m2

~
2e

, which is quite large, while the temperature rise can be as high as 100

K. Note that the temperature rise can be mitigated with better thermal management. On the other

hand, the sample may survive in an even stronger electric field if the pulsed laser is used. For example,

with a femtosecond laser, the electric field can be as high as 100 MV/m, with a temperature rise of

10 K. 2) On the theoretical side, the perturbation theory used in the current work may fail when the

electric field is too strong. The external electric field strength should be compared with the intrinsic

interaction strength in the materials, which is usually on the order of 1 V/Å = 104 MV/m. From this

point of view, the perturbation theory may work up to an electric field strength of 100 MV/m. Above

this strength, the error from perturbative expansions may not be ignored and non-perturbation theories

may be required.

In summary, with a pulsed laser, our theoretical picture may work up to an electric field strength

14



Figure S2: Approaches for detecting the spin current. (a) In a close circuit setup, there will be spin accumulations
on both ends of the source material, which can be detected by magneto-optic effects. (b) In an open circuit setup,
the spin current flows into metallic leads, and the inverse spin Hall voltage would be generated.

up to 100 MV/m, when the spin current density can be on the order of 1012 A
m2

~
2e

. This is restricted by

both experimental (sample damage) and theoretical (validity of perturbation theory) concerns. With

a continuous wave laser, one may have to use an electric field strength below 10 MV/m to keep the

temperature rise and sample damage manageable. At this field strength, the spin current density can

be 1010 A
m2

~
2e

with the monolayer MoS2 parameters.

5.3 Detection of the spin current

In the main text we discussed how the spin current can be detected. The schemes are illustrated

in Fig. S2.

6 Computational benchmarks

In this section we provide computational benchmarks on our NLO spin/charge conductivity formula

Eq. (S21).
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Figure S3: NLO charge conductivity of MoS2 under LPL (a) and CPL (b). The solid lines are obtained with Eq.
(S22), which uses the velocity gauge, while the dots are obtained with the well-known shift and injection current
formulae Eqs. (S24, S28), which are in the length gauge. The two curves agree well with each other. There are minor
discrepancies at high frequencies, and the reason is that only a finite number of conduction bands are used in the
computation.

6.1 Numerical comparison between the velocity gauge and length gauge

a. We compare the charge shift and injection conductivity from Eq. (S22), which is in velocity gauge,

and from Eqs. (S24, S28), which is from length gauge. We take MoS2 as an example and the results

are shown in Fig. S3. One can see that the two curves agree well with each other. Note there are

minor discrepancies at high frequency (ω > 3.5 eV), this is because we only use a finite number of

conduction bands in the calculation. The discrepancies should disappear when infinite number of

conduction bands are involved.

b. We reproduce the NLO charge conductivity for monolayer GeS, which was studied in Ref. [13]. Our

results are shown in Fig. S4 . One can see that it is in great agreement with Fig. 2 in Ref. [13].

6.2 NLO conductivity as a function of lifetime τ

The analysis in Sec. 3 demonstrates that under LPL, the charge (spin) currents of MoS2 are shift

(injection) like, while the charge (spin) currents of MBT are injection (shift) like (see also Table 2

in the main text). For shift (injection) like mechanism, the conductivity scales as τ0 (τ1). We have

numerically tested the τ -dependence for MoS2 and MBT. The results can be found in Figs. S5 and S6,

respectively. The expected dependence on τ can be clearly observed.
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Figure S4: The NLO charge conductivity of monolayer GeS obtained with Eq. (S22), in agreement with results in
Ref. [13] (Fig. 2 therein).

Figure S5: NLO spin (a) and charge (b) conductivity of MoS2 under LPL as a function of carrier relaxation time τ .
The spin conductivity is approximately linearly dependent on τ , while the charge conductivity remains a constant.
Such behavior manifests that in a T -symmetric system, the charge current comes from shift-like mechanism, while
the spin current comes from injection-like mechanism under LPL. The conductivities are at ω = 3.8 eV.
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Figure S6: NLO spin (a) and charge (b) conductivity of MBT under LPL as a function of carrier relaxation time
τ . The spin conductivity is approximately independent of τ , while the charge conductivity is approximately linearly
dependent on τ . Such behavior manifests that in a PT -symmetric system, the spin current comes from shift-like
mechanism, while the charge current comes from the injection-like mechanism under LPL. The conductivities are at
ω = 0.6 eV.

6.3 NLO conductivity as a function of SOC strength

In the main text, we argued that in MBT, the NLO charge conductivity should increase with the

SOC strength λ. This is computationally verified in Fig. S7.

Figure S7: Peak values of NLO spin (a) and charge (b) conductivity of MBT as a function of SOC strength. As
discussed in the main text, the spin conductivity is nonzero even when SOC is completely turned off (λ = 0), while
the charge conductivity is zero when λ = 0 due to inversion-spin rotation symmetry and grows with λ. Note that SOC
strongly modifies the band structure of MBT, thus the spin and charge conductivity have relatively more complicated
dependence on λ, as compared that in the case of MoS2.
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7 NLO spin current under circularly polarized light

In the main text, the NLO spin currents under LPL are presented. They correspond to the

symmetric real part of Eq. (S21). In this section we show the spin current under CPL as in Figs.

S8-S10, which correspond to the asymmetric imaginary part of Eq. (S21).

Figure S8: The NLO charge and spin-z conductivity of MoS2 under CPL.

Figure S9: The NLO charge and spin-z conductivity of MnBi2Te4 under CPL.
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Figure S10: (a) Side view of SnTe. The dashed box indicate the out-most layer of SnTe. (b) The NLO spin
conductivity of SnTe under CPL.
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Reviewer #1: 

Remarks to the Author: 

Dear Editors, 

 

The manuscript titled "Pure spin photocurrent in non-centrosymmetric crystals: 

bulk spin photovoltaic effect" shows that "nonlinear optical (NLO) effect can be 

used to generate pure spin currents" "if the 

system possesses additional mirror symmetry or inversion-mirror symmetry". Using 

a computational approach based on second order response, the authors compute a pure spin 

current for a few example materials to show the generation of a photo-spin current that 

significantly exceeds the photo charge current response. 

The authors are motivated by "One of the core challenges of spintronics is the generation of the 

spin current, and particularly, a pure spin current without an accompanying charge current", 

which motivated by Ref 6, they believe "find applications in next generation energy 

efficient and ultrafast spintronics". Despite the somewhat extensive discussion, 

because of the rather extensive work in this field, I am not entirely convinced that 

the motivation for the work reaches the level of impact required for consideration in 

Nature Communications. Below I elaborate the reasons for my concern. 

 

While it hasn't been called "injection current", the idea of generating spin currents 

through photoexcitation of semiconductors such as GaAs has been around for a while. 

This is clear from the fact that Fig 1a of PRL 96, 246601 (2006) has some 

at least superficial resemblance to Fig 1 of the current manuscript though the role of 

mirror symmetry is not as emphasized. As I understand it from the manuscript, the 

mirror symmetry leads to "a pure spin current can be realized, which is highly desirable 

for energy-efficient spintronics." This confuses me because as pointed out in Ref 1, a 

pure spin current does not guarantee lack of dissipation. Specifically, in this case, the 

optical excitation generates electron-hole pairs, which are highly energetically excited. 

I expect the relaxation of this excitation to lead to significant dissipation at some point. 

It seems that the authors are pointing out that TCIs such as SnSe, SnTe have an advantage 

relative to the GaAs example because of the double mirror symmetry, which should be emphasized 

more. 

 

A more serious omission in terms of references in my view is PHYSICAL REVIEW B 102, 081402(R) 

(2020), 

which has proposed an injection-based pure spin photocurrent in the quantum spin-Hall 

edge states of TMDs. The mechanism is quite similar to the one in the present work, though 

this is for a one dimensional edge in a two dimensional system. 

 

Apart from motivational issues that I raised above, I have a few suggestions for the 

presentation of the formalism. The symmetry argument presented between lines 125-135, 

which is one of the main points of the manuscript seems to be a bit sloppy. This is because 

while Eq. 2, whose numerator is being discussed depends on off-diagonal matrix elements of 

the spin and velocity operators, they appear to be treated here as numbers. Also it would be 

good to clarify this. 

 

Another technical aspect is the treatment/interpretation of the scattering time tau, which 

plays a somewhat important role. In the shift mechanism the time tau is a dephasing 

or scattering time for the electron-hole pair rather than the equilibration time suggested 

here. This has been recently clarified in PHYSICAL REVIEW B 101, 045201 (2020), where 

the second order response formula for the charge BVPE is shown to be equivalent to the 

dipole moment of electron hole pairs if tau is interpreted as a scattering time. In this 

sense, the injection mechanism is rather physically different and generates a current 

from a difference of velocities of the different excited charge carriers. This current survives 

for as long as the electrons/holes maintain their direction, leading to a different interpretation 



for tau. I think these subtleties are lost in the second order response formula. Also the 

electron-hole pair interpretation provides a direct understanding of the symmetries in 

table 2. Shift currents occur when the excited pair has a dipole moment. Injection currents 

on the other hand are a result of unequal excitation of carriers of different velocities. 

 

 

In summary, while I think the work is technically interesting, I am not sure I am convinced 

that the authors have clarified the motivation for this work that would lead to a high level 

of impact suggested for publication in Nature Communications. 

 

 



This is a timely work which shows theoretically how the nonlinear optical effect could be used 
to generate pure spin photocurrent in non-centrosymmetric crystals. These findings are 
illustrated on examples from three classes of materials, transition metal dichalcogenides 
(MoS2), antiferromagnetic topological insulator (MnBi2Te4), and the surface state of the 
topological crystalline insulator (SnTe). Both the topic of generating (electrically, or optically) 
spin current and the considered materials classes are actively studied, so the findings of this 
manuscript have potential many implications. Specifically, as noted, for example, in Ref. 1, spin 
current provides an important element for spintronic applications as well as a tool to probe 
materials properties. Methods which would allow for a robust generation of pure spin current 
therefore have broad ramifications. The authors complement well their symmetry analysis and 
conductivity calculations by the materials-specific ab-initio calculations.   
 
To provide a better context of this work and further explain its relevance, it would be helpful to 
give several explanations and clarify its underlying assumptions.  
 
1) Adding a spin degree of freedom can generalize various photovoltaic effects that have been 
studied in common semiconductors and their junctions. See, for example, Appl. Phys. Lett. 79, 
1558 (2001), Phys. Rev. Lett. 88, 066603 (2002), or related experiments, Nat. Commun. 4, 2068 
(2013), which may be helpful to mention. Since the spin current is not conserved it may also be 
important to identify the position at which it is evaluated. Even in a simple p-n junction, 
illuminated by circularly-polarized light, a different voltage dependence of the spin and charge 
currents allows for a generation of pure spin current.   
 
2) This non-conservation of the spin current has led to lots of debates about its definition, when 
the prediction of the spin Hall effect from Refs. 10, 11, was revisited 30 years later. It would 
help to clarify how the employed definition for spin current compares to the one from Phys. 
Rev. Lett. 96, 076604 (2006), which also recalls a cautionary work of Rashba [Phys. Rev. B 68, 
241315(R) (2013)].  
 
3) What are the employed assumptions for loss mechanisms of pure spin photocurrents? For 
example, in a simple situation analyzed in 1) in addition to the spin relaxation, the spin current 
can be lost through carrier recombination. This spin dynamics and spin-orbit coupling for 
electrons and holes are inequivalent. 
 
4) Perhaps some clarification for the points above could be given by moving the p.15 comment 
about focusing only on intrinsic currents to an earlier place in the manuscript. Even in such 
intrinsic regime, how can one understand the corresponding time/length scales for the 
presence of spin photocurrents? 
 
5) For an experimental detection of spin photocurrent, could one use spin extraction [predicted 
in Phys. Rev. Lett. and measured in Nat. Commun. noted above]?  
 
6) References are not given in a uniform style. Some journal names are abbreviated, some not. 
Ref. 10 has typos and repeated authors, extra number appear in Ref. 27, 45, 67. Are Refs. 31, 
40, 47 complete? 
 
This manuscript describes an important opportunity to realize spin photocurrent in a wide 
range of materials.  Following these clarifications, it will be easier to assess its suitability for a 
broad readership and a publication in Nature Communications.   

 

Reviewer #2: 

Remarks to the Author: 
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Reply to Reviewers 

 

Reviewer #1:  

The manuscript titled "Pure spin photocurrent in non-centrosymmetric crystals: bulk spin 

photovoltaic effect" shows that "nonlinear optical (NLO) effect can be used to generate pure spin 

currents" "if the system possesses additional mirror symmetry or inversion-mirror symmetry". 

Using a computational approach based on second order response, the authors compute a pure 

spin current for a few example materials to show the generation of a photo-spin current that  

significantly exceeds the photo charge current response. The authors are motivated by "One of 

the core challenges of spintronics is the generation of the spin current, and particularly, a pure 

spin current without an accompanying charge current", which motivated by Ref 6, they believe 

"find applications in next generation energy efficient and ultrafast spintronics". Despite the 

somewhat extensive discussion, because of the rather extensive work in this field, I am not 

entirely convinced that the motivation for the work reaches the level of impact required for 

consideration in Nature Communications. Below I elaborate the reasons for my concern. 

Reply: We thank the reviewer for these comments. Here we briefly list the motivations and 

novelties of our work: 

1) We derived a unified theory of the generation of spin current under light illumination. 

Nonlinear optical (NLO) approaches have attracted great interest recently, as they can be 

non-contact (without e.g., electrochemical electrode deposition), non-destructive (does not 

induce unwanted impurities), and ultrafast (timescale on the order of picoseconds or even 

femtoseconds). Most previous theoretical and experimental efforts focus on how second-

harmonics waves, charge current, etc. can be generated under light in different materials, 

while our theory points out the possibility of spin current generation with NLO effects. The 

bulk spin photovoltaic effect is the lowest-order NLO effect that can be used to generate dc 

spin current. 

2) Our bulk spin photovoltaic effect is a universal and robust mechanism for spin current 

generation. Particularly, the only requirement to generate spin photocurrent is inversion 

symmetry breaking. There is no need for any special ingredients such as magnetic materials, 
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special device structures (quantum wells, junctions, etc.), the interference between two pulses, 

or specific light wavelength or polarization, which are required in many previous works. This 

would provide great flexibility in practice. Also, our theory applies to semiconductors, thus it 

may be readily integrated with existing semiconductor technologies, which is of significant 

importance as outlined by Albert Fert [Rev. Mod. Phys. 80, 1517 (2008)]. These advantages, 

together with the flexibilities of optical approaches (dynamic spatial addressability, tunable 

intensity, wavelength, polarization, etc.), provide a large playground to be explored. Many 

spintronic applications (e.g., spin injection into semiconductors, spin FET, spin battery, and 

spin-dependent energy-harvesting [Commun. Mater. 1, 24 (2020)]) may be realized in an 

easier fashion with such an optical approach. For example, spin current can be generated in 

bulk GaAs under sunshine, as we do not need circularly polarized light.  

3) We explicitly reveal that the symmetry condition for hosting pure spin current is to possess 

mirror symmetry ℳ, inversion-mirror symmetry ࣪ℳ, or inversion-spin rotation symmetry ࣭࣪. This provides a simple but effective guideline for pure spin current generation under 

light. Particularly, we studied the surface states of a topological material SnTe, whose double 

mirror symmetry indicates that the charge current all vanishes, while the spin current can 

survive on the surfaces. These results are useful not only for generating pure spin currents, 

but also for the probe of surface states properties of topological materials. 

4) We also made several other theoretical advances. For example, we clarify and compare the 

mechanism (shift and/or injection mechanisms) for spin current generation under different 

symmetry conditions (࣮ , ࣮࣪ , etc.) and different light polarizations (linear and circularly 

polarized light). This illuminates the microscopic mechanisms for spin current generation. 

We also clarified the important role of the spin-orbit coupling (SOC). On one hand, it can 

lead to a spin texture in non-magnetic materials, which is necessary for spin current 

generation. But on the other hand, in many cases SOC breaks the inversion-spin rotation 

symmetry ࣭࣪, hindering the realization of pure spin current.  

5) Besides the above advances on the physical mechanism for spin current generation, we also 

computationally studied the bulk spin photovoltaic effect with several different material 

classes that are attracting great interest recently, which may guide the potential applications 

for these materials. It also helps the development of next-generation devices with next-

generation materials.  



3 
 

We have revised several parts of our manuscript to strengthen the motivation and novelties of 

our work, including, 

• On page 4, we added, “Here we would like to emphasize that the only general 

requirement for our NLO spin current is ࣪ breaking, and there is no need for any special 

ingredients such as magnetic materials, special device structures (quantum wells, 

junctions, etc.), the interference between two pulses, or specific light wavelength or 

polarizations. This would provide great convenience in practice and can be readily 

integrated with existing semiconductor technologies. These flexibilities, together with the 

flexibilities of optical approaches (dynamic spatial addressability, tunable intensity, 

wavelength, polarization, etc.), provide a large playground to be explored. Many 

applications that are not envisaged before may become possible.” 

• On page 4, we added, “Particularly, when double mirror symmetries, or inversion-spin 

rotation symmetry ࣭࣪  are present, the charge current would all vanish (even in the 

transverse directions), while the spin current can survive. These results are useful not 

only for generating pure spin currents, but also for material characterization.” 

• On page 4, we added, “We also clarify the mechanisms (shift and/or injection like) for 

spin current generation under different symmetry conditions (࣪	and ࣮) and under light 

with different polarization (LPL and CPL).” 

• On page 4, we added, “……, where the “voltaic” is defined as ↑ܸ↓ ≡ ఓ↑ିఓ↓ି௘ , the difference 

in chemical potential (ߤ) between spin-up (↑) and spin-down (↓) electrons, unlike the 

BPVE voltage that may be defined as ܷ ≡ ఓ↑ାఓ↓ିଶ௘ . Similar to the BPVE voltage ܷ , ↑ܸ↓ will 

not be limited by the bandgap of the material, and the currents will not be limited by the 

Shockley–Queisser limit.” 

• On page 8, we added, “…… The results suggest that our mechanism for spin current 

generation is general and robust in these distinct systems.” 

• On page 13, we added, “These results suggest that while SOC can enable spin current in 

non-magnetic materials such as MoS2, it would, on the other hand, hinder the generation 

of pure spin current in some cases. Also, SOC should be treated rigorously when studying 

both the spin current and the charge current.” 
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• On page 17, we added, “The predicted BSPV and light-induced pure spin current do not 

have special requirements except for inversion symmetry breaking, and can be readily 

integrated with existing semiconductor technologies.” 

Below is our point-to-point response to the reviewer’s comments. 

 

1) While it hasn't been called "injection current", the idea of generating spin currents through 

photoexcitation of semiconductors such as GaAs has been around for a while. This is clear from 

the fact that Fig 1a of PRL 96, 246601 (2006) has some at least superficial resemblance to Fig 1 

of the current manuscript though the role of mirror symmetry is not as emphasized.  

Reply: We thank the reviewer for pointing out this interesting work from A. L. Smirl and H. M. 

van Driel groups. Actually, we have cited a similar but earlier work from the same groups (Ref. 

18, [PRL 90, 136603 (2003)]). These works, together with some other relevant works focusing 

on the charge current, e.g., [PRL 76, 1703 (1996), PRL 78, 306 (1997), etc.], employed the two-

color quantum interference control (QUIC). As we will elaborate on below, this mechanism is 

fundamentally distinct from that in our work, although it is also an optical approach. 

1) A prominent difference is that the QUIC requires two beams with frequencies ߱ and 2߱ 

simultaneously. And the spin/charge current generation is dependent on the relative phases of 

these two beams (quantum interference). On the other hand, our approach requires only one 

beam and does not require stringent phase-matching conditions, which is more convenient in 

practice. 

2) QUIC is a (at least) third-order effect. The charge and spin current originate in the interference 

between the 2߱  beam and the ߱  beam, which is ∝ (߱)ܧ(߱)ܧ(2߱−)ܧ , where ܧ(߱)  is the 

Fourier component of the electric field at frequency ߱. Besides, the optical excitation from the ߱ 

laser beam is a two-photon process and should be a fourth-order effect ∝  These facts are evident in two theoretical papers [PRL 76, 1703 .(߱)ܧ(߱−)ܧ(߱+)ܧ(߱−)ܧ

(1996), PRL 85, 5432 (2000)]. As a higher-order effect, QUIC would generally be less efficient 

and smaller in magnitude than the second-order effect in our work.  

3) Specific to spin current generation, QUIC requires a narrow frequency window “so that there 

are no transitions from the (spin) split-off band” [PRL 85, 5432 (2000)]. Such a window is about 
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0.3 eV in GaAs. On the other hand, our mechanism is applicable for a wide frequency window, 

as shown in Figures 2-4 in the main text.  

On the other hand, QUIC has its own advantages. For example, it does not require inversion 

symmetry breaking (as it being a third-order nonlinear optical process). Besides, the relative 

phase between the two beams could provide another degree of freedom to control the spin and 

charge currents. We agree with the reviewer that the approach for obtaining pure spin current in 

these works is similar to that in our work – once we have counter-propagating electrons with 

opposite (or at least different) spin polarization, then a pure spin current arises. Actually, this 

approach is also used in e.g., spin Hall effect [PRL 95, 226801 (2005)]. However, for spin 

current generation QUIC is a distinct mechanism from the bulk spin photovoltaic effect proposed 

in our work, as we described above. 

 

2) As I understand it from the manuscript, the mirror symmetry leads to "a pure spin current can 

be realized, which is highly desirable for energy-efficient spintronics." This confuses me because 

as pointed out in Ref 1, a pure spin current does not guarantee lack of dissipation. Specifically, in 

this case, the optical excitation generates electron-hole pairs, which are highly energetically 

excited. I expect the relaxation of this excitation to lead to significant dissipation at some point.  

Reply: We thank the reviewer for pointing out this misleading statement. We did not intend to 

claim that the generation of spin current, or the flow of spin current, is free of energy dissipation. 

We intended to express that the pure spin current may be more favorable than a non-pure spin 

current (mixed with charge currents) for spintronic applications. This is because an 

accompanying charge current may lead to undesired side effects such as charge accumulation 

and additional dissipations. We have removed the “energy-efficient” and revised this statement 

as 

“a pure spin current can be realized, which does not carry charge degree of freedom and is more 

favorable than a non-pure spin current for many spintronics applications.” 

We have also revised statements about energy efficiency in several other places in the main text 

to avoid similar misunderstandings. 
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Next, we show that for spin current generation, the temperature rise due to the energy dissipation 

is generally not significant. Here we take monolayer MoS2 as an example. For the bulk spin 

photovoltaic effect studied in this work, the main energy consumption is the photon absorption 

due to interband transitions (electron-hole pair generation), and the absorbance is ܣ = 1 −exp ቂ− ఠ௖ఢబ ߳௜(߱)݀ቃ ≈ ఙೝ(ఠ)௖ఢబ ݀, where ߳଴ is the vacuum permittivity, ߳௜  is the imaginary part of 

the dielectric function, ߪ௥ is the real part of the optical conductivity (one has ߳(߱) = ߳଴ + ௜ఙ(ఠ)ఠ ). ݀ 

is the thickness of the material, which is taken as 0.6	nm	for MoS2. The energy consumption rate 

per unit area is  

 ܲ = =ܫܣ ௥(߱)ܿ߳଴ߪ ݀ ⋅ ߳଴ܿ2 	ଶܧ
= ௥(߱)݀2ߪ  ଶܧ

(R1)

where ܫ = ఢబ௖ଶ ߱ ଶ is the intensity of the light. From our ab initio calculations, atܧ = 3	eV one 

has ߪ௥(߱) = 4 × 10ହ	Ω/m. In the main text, we showed that light with electric field strength on 

the order of ܧ = 100	V/m	would be able to generate a detectable spin current. With this field 

strength, the energy consumption power is only ܲ = 1.2 × 10ିସ	W/cmଶ, which is rather small. 

Here we calculate the temperature rise under an electric field of ܧ = 1	MV/m, which is much 

stronger, but readily available with laser technology. Under this field strength, one has  ܲ =1.2 × 10ସ	W/cmଶ . Assume that MoS2 is put on a substrate with thermal conductivity ߢ  and 

thickness ݈ୱ୳ୠୱ. If a continuous wave (CW) light is used, then the steady-state temperature rise 

can be roughly estimated from  

 Δ େܶ୛ = ߢܲ ݈ୱ୳ୠୱ (R2)

Assuming that ݈ୱ୳ୠୱ = 1		μm  and ߢ = 100	W ⋅ mିଵ ⋅ Kିଵ , then Δ େܶ୛ ≈ 1.2	K , which is not 

significant. On the other hand, if a pulse laser is used, then the temperature rise can be estimated 

from 

 Δ ୮ܶ୳୪ୱୣୢ = ߬୮୳୪ୱୣܲܵ݇஻  
(R3)
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Where ܵ is the area of a unit-cell, ݇஻ is the Boltzmann constant, while ߬୮୳୪ୱୣ is the duration of 

the pulse, and is taken as 1	ps	here. One can find that Δ ୮ܶ୳୪ୱୣୢ ≈ 0.7	K, which is not significant 

as well.   

We would like to note that, not all energies absorbed by the materials go to the phonon (lattice) 

system (non-radiative recombination). They could recombine and re-emit photons. Therefore, the 

temperature rise in the ion system may be even lower than Δ େܶ୛ and Δ ୮ܶ୳୪ୱୣୢ estimated above. 

We have added the discussions above in the Supplementary Materials.  

 

3) It seems that the authors are pointing out that TCIs such as SnSe, SnTe have an advantage 

relative to the GaAs example because of the double mirror symmetry, which should be 

emphasized more.  

Reply: We thank the reviewer for this helpful suggestion. We have emphasized more the unique 

role of double mirror symmetry for generating pure spin current. We have also emphasized more 

on the inversion-spin rotation symmetry ࣭࣪. 

On page 4, we added “Particularly, when double mirror symmetries, or inversion-spin rotation 

symmetry ࣭࣪ are present, the charge current would all vanish (even in the transverse directions), 

while the spin current can survive. These results are useful not only for generating pure spin 

currents, but also for material characterization.” 

On page 15, we added “There may be other systems that possess double mirror symmetries, such 

as monolayer FeSe73. They may also be good candidates for pure spin current generation.” 

We have also explicitly discussed the role of double mirror symmetries in several other places in 

the manuscript, particularly in the Surface States of Topological Materials section.  

 

4) A more serious omission in terms of references in my view is PHYSICAL REVIEW B 102, 

081402(R) (2020), which has proposed an injection-based pure spin photocurrent in the quantum 

spin-Hall edge states of TMDs. The mechanism is quite similar to the one in the present work, 

though this is for a one-dimensional edge in a two-dimensional system. 
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Reply: We thank the reviewer for pointing out this paper [PRB 102, 081402(R) (2020)]. This 

work uses patterned graphene nanoribbons with antiferromagnetic (AFM) edge states. Actually, 

we were aware of the paper when preparing our manuscript. But we decided not to cite this paper 

because: 

1) First, it requires exquisite designing and fabricating processes. As indicated in the paper, the 

graphene nanoribbon needs to be patterned with triangle anti-dots, and it needs to “have opposite 

band structures and anti-symmetrical spin density for the two leads in their ground state”. These 

conditions are stringent. For example, the edge states are not necessarily AFM if a different 

patterning structure is used.  

2) Secondly, a more serious problem is that the “pure spin current” “with spatial inversion 

symmetry” claimed in this paper may be erroneous. As indicated in this paper, the carbon atoms 

on the edges of the anti-dots have AFM spin coupling. Therefore, the system actually does not 

have spatial inversion symmetry, when the magnetism is taken into consideration. Hence, both 

the nonlinear spin current and the nonlinear charge current are allowed, according to our 

symmetry analysis. This is vividly illustrated with AFM bilayer MnBi2Te4 in our work. The 

atomic structure of AFM bilayer MnBi2Te4 also has inversion symmetry, but the anti-

ferromagnetic moments on the upper and lower layers break the inversion symmetry. As shown 

in Figure 3 in our manuscript, if SOC is not taken into consideration, then the total charge 

current would be zero, consistent with the claim in [PRB 102, 081402(R) (2020)]. However, if 

we consider SOC, which transfers the inversion asymmetry in spin degree of freedom to the 

orbital degree of freedom, then the charge current would be non-zero as well. In [PRB 102, 

081402(R) (2020)], the “pure spin current” comes from the fact that SOC is ignored, and that the 

spin up and down states are treated separately. If SOC is rigorously considered, then the charge 

current should appear. 

On the other hand, in the present work, we clarify that mirror symmetry can lead to pure spin 

current (with possible charge current in the transverse direction). Also, in some cases when 

double mirror symmetries exist, the charge current can be totally forbidden (absent even in the 

transverse directions). Besides, we propose that inversion-spin rotation symmetry ࣭࣪  can 

guarantee pure spin current without any charge current as well, which may be realized in e.g., 
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skyrmion systems, or magnetic materials with canted or all-in-all-out magnetic configurations, 

etc. This is based on careful symmetry analysis and is robust even under strong SOC effects. 

Finally, we would like to remark that [PRB 102, 081402(R) (2020)] is not dealing with “the 

quantum spin-Hall edge states of TMDs”, but edge states of graphene nanoribbons. However, we 

could not find a work that studies “injection-based pure spin photocurrent in the quantum spin-

Hall edge states of TMDs”. Thus, we focused on [PRB 102, 081402(R) (2020)]. Two other 

works [PRB 100, 195410 (2019)] and [PRL 115, 166804 (2015)] study the spin currents in 2H 

TMDs (which are not quantum spin Hall insulators). But they are also different from our work. 

Specifically, [PRB 100, 195410 (2019)] requires the proximity effect with magnetic material, 

and the authors did not claim “pure” spin current (actually it should not be pure spin current). On 

the other hand, [PRL 115, 166804 (2015)] requires the 2H-WSe2/2H-MoSe2 heterostructure and 

two spatially varying laser beams applied simultaneously.  

 

5) Apart from motivational issues that I raised above, I have a few suggestions for the 

presentation of the formalism. The symmetry argument presented between lines 125-135, which 

is one of the main points of the manuscript seems to be a bit sloppy. This is because while Eq. 2, 

whose numerator is being discussed depends on off-diagonal matrix elements of the spin and 

velocity operators, they appear to be treated here as numbers. Also, it would be good to clarify 

this. 

Reply: We thank the reviewer for these helpful comments. We have cleared up the confusions 

and explicitly added the matrix indices, and revised these arguments as 

“Next, we consider symmetry constraints on the conductivity tensor. First, we note that the 

numerators are composed of terms with format ܰ௠௡௟௜௔௕௖ = ݆௠௡௔,௦೔ݒ௡௟௕ ௟௠௖ݒ  with ݅ ≠ 0 for spin current 

and use ܰ௠௡௟଴௔௕௖ = ௠௡௔ݒ ௡௟௕ݒ ௟௠௖ݒ  for charge current. Under spatial inversion operation ࣪, one has ࣪ݒ௠௡௔ (࢑) = ௠௡௔ݒ− ௠௡௜ݏ࣪ ,(࢑−) (࢑) = ௠௡௜ݏ (࢑)and ݆࣪௠௡௔,௦೔ ,(࢑−) = −݆௠௡௔,௦೔(࢑). Thus ࣪ܰ௠௡௟௜௔௕௖(࢑) =−ܰ௠௡௟௜௔௕௖(−࢑). On the other hand, the denominator is invariant under ࣪, thus all components 

(including charge and spin) of ߪ௕௖௔,௦೔ should vanish after a summation over ±࢑ in ࣪-conserved 

systems. Therefore, the inversion symmetry ࣪  has to be broken to give nonvanishing ߪ௕௖௔,௦೔ . 
Regarding time-reversal operation ࣮, one has ࣮ݒ௠௡௔ (࢑) = ∗௠௡௔ݒ− ௠௡௜ݏ࣮ ,(࢑−) (࢑) = ∗௠௡௜ݏ−  (࢑−)
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(Here ∙∗  indicates complex conjugate of ∙ ). For charge current, one has ࣮ܰ௠௡௟଴௔௕௖(࢑) =−ܰ௠௡௟଴௔௕௖∗(−࢑) . Thus, the real and imaginary part of ܰ௠௡௟଴௔௕௖  are odd and even under ࣮ , 

respectively. The imaginary part of ܰ଴௔௕௖(࢑) contributes to the total charge conductivity after 

the summation over ±࢑ in a ࣮-conserved system. Similarly, for spin-݅ current (݅ ≠ 0), one has ࣮ܰ௠௡௟௜௔௕௖(࢑) = ܰ௠௡௟௜௔௕௖∗(−࢑), thus it is the real part of ܰ௜௔௕௖(࢑) that contributes to the total spin 

conductivity.” 

We have also added the matrix indices in Table I and several other places in the main text.  

 

6) Another technical aspect is the treatment/interpretation of the scattering time tau, which plays 

a somewhat important role. In the shift mechanism the time tau is a dephasing or scattering time 

for the electron-hole pair rather than the equilibration time suggested here. This has been 

recently clarified in PHYSICAL REVIEW B 101, 045201 (2020), where the second order 

response formula for the charge BVPE is shown to be equivalent to the dipole moment of 

electron hole pairs if tau is interpreted as a scattering time. In this sense, the injection mechanism 

is rather physically different and generates a current from a difference of velocities of the 

different excited charge carriers. This current survives for as long as the electrons/holes maintain 

their direction, leading to a different interpretation for tau. I think these subtleties are lost in the 

second order response formula. Also the electron-hole pair interpretation provides a direct 

understanding of the symmetries in table 2. Shift currents occur when the excited pair has a 

dipole moment. Injection currents on the other hand are a result of unequal excitation of carriers 

of different velocities. 

Reply: We thank the reviewer for these insightful comments. We agree that the scattering time ߬ 

is rather important. Here we would like to use the charge current as an example to illustrate the 

role of ߬, which is more straightforward, while a similar analysis applies to spin current.  

The photocurrent is ݆௔ = ௕௖௔ߪ ௖ܧ௕ܧ . First, we note that a charge current ݆ is odd under time-

reversal symmetry ࣮, while electric field ܧ is even under ࣮. If the system is non-magnetic, and 

we use linearly polarized light (LPL), then it seems that ࣮ should be preserved. In this case, it 

seems that ߪ௕௖௔  should be zero, because the ݆௔	is odd under ࣮, while ܧ௕ܧ௖ is even. However, in 

practice, the nonlinear photocurrent does exist, which is the shift current. Actually, ࣮	is broken 
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by dissipation, which is characterized by ߬. Therefore, the dissipation ߬ is indispensable for the 

shift current, although the shift current conductivity ߪ௕௖௔  is independent of ߬.  

This point can also be verified mathematically. The nonlinear photoconductivity is, 

௕௖௔ߪ  (0; ߱, −߱) = − ݁ଶℏଶ߱ଶ න d(ߨ2)࢑ଷ෍ ௟݂௠ݒ௟௠௕߱௠௟ − ߱ + ݅/߬ ቆ ௠௡௔ݒ ௡௟௖߱௠௡ݒ + ݅/߬ − ௠௡௖ݒ ௠௡௔߱௡௟ݒ + ݅/߬ቇ௠௡௟  
(R4)

Under time-reversal ࣮  operation, one has ࣮ݒ௠௡(࢑) = ∗௠௡ݒ− (࢑−) , where ∗  indicates the 

complex conjugate. Thus, the numerator in Eq. (R4), ܰ௠௡௟ = ௟௠ݒ௡௟ݒ௠௡ݒ , would behave as ࣮ܰ௠௡௟(࢑) = −ܰ௠௡௟∗ ࣮ while the denominator is invariant under ,(࢑−) . After the summation 

over ±࢑, the numerator becomes purely imaginary. No dissipation indicates ߬ = ∞ and 
௜ఛ = 0. In 

this case, the denominator would be purely real. Therefore, under LPL the whole formula is 

purely imaginary, and cannot contribute a static current, which should be a real number. 

Therefore, from a mathematical point of view, a finite ߬ is indispensable.  

These arguments agree with those in [PRB 101, 045201 (2020)]. That is, ߬  describes some 

processes that lead to dissipation, and thus 1) absorb energy from light and 2) break time-reversal 

symmetry. In [PRB 101, 045201 (2020)] ߬ was suggested to be the scattering time with phonon. 

But in our view, it could also be the scattering with impurities, etc. Phenomenologically, one 

should have 
ଵఛ = ଵఛ౦౞౥౤౥౤ + ଵఛ౟ౣ౦౫౨౟౪౟౛౩ + ⋯; that is, ߬ incorporate contributions from all sources of 

dissipations. For convenience, we adopted the constant relaxation time approximation and used a 

constant ߬ for all modes (band index ݊ and wavevector ݇). But in reality, ߬ should be mode-

dependent (e.g., different for electrons and holes) and incorporates the subtleties described above. 

More discussions on ߬ can be found in our reply to the 3rd comment of Reviewer #2 (on page 16-

17 of this document). 

We have added the discussions about the role of ߬ on page 7 of the main text, 

“We would like to briefly discuss the carrier lifetime ߬. It has a rather important role. Here we 

use the charge current as an example to illustrate the role of ߬, which is more straightforward. 

Similar analysis applies to spin current. The photocurrent is ݆௔ = ௕௖௔ߪ  ௖. First, we note that aܧ௕ܧ

charge current ݆ is odd under time-reversal symmetry ࣮, while electric field component ܧ is even 

under ࣮. If the system is non-magnetic, and we use linearly polarized light (LPL), then it seems 
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that ࣮ should be preserved. In this case, it seems that ߪ௕௖௔  should be zero, because the ݆௔	is odd 

under ࣮, while ܧ௕ܧ௖ is even. However, in practice, the nonlinear photocurrent does exist, which 

is the shift current. Actually, ࣮	is broken by dissipation, which is characterized by ߬. Therefore, 

the dissipation ߬ is indispensable for the shift current, although the shift current conductivity ߪ௕௖௔  

is independent of ߬.” 

Regarding the physical mechanisms of shift and injection currents, they are more evident when 

we use the length gauge. In the Supplementary Materials, we showed that the velocity gauge and 

the length gauge are equivalent. In the length gauge, one has (Eqs. (S27, S28) in the SM, Section 

2),  

௔௔௖ߞ  (0; ߱, −߱) = − ଷ2ℏଶ݁ߨ݅ න ଷ෍(ߨ2)࢑݀ ௡݂௠ܴ௡௠;௖௔ ௠௡௔ݎ| |ଶߜ(߱௠௡ − ߱)௡,௠ 	
௔௕௖ߟ (0;߱, −߱) = ଷ2ℏଶ݁߬ߨ න ଷ෍(ߨ2)࢑݀ ௡݂௠Δ௠௡௖ ሾݎ௠௡௔ , ௡௠௕ݎ ሿߜ(߱௠௡ − ߱)௡,௠  

(R5)

Here ߞ௔௔௖  and ߟ௔௕௖  are the shift and injection current conductivity, respectively. |ݎ௠௡௔ |ଶ  and ሾݎ௠௡௔ , ௡௠௕ݎ ሿ are proportional to the interband transition rate (electron-hole pair generation rate) 

under linearly and circularly polarized light, respectively. ܴ௠௡;௖௔ = డథ೙೘డ௞ೌ + ௡௡௔ߦ − ௠௠௔ߦ  can be 

regarded as the dipole moment of the electron-hole pair, with ߦ௡௡௔  as the center of the lattice-

periodic wavefunction of band ݊  (for details see SM). Δ௠௡௖ = ௠௠௖ݒ − ௡௡௖ݒ  is the velocity 

difference between the conduction and valence bands. These length gauge formulae are 

reminiscent of the Fermi’s golden rule. The physical meanings of the shift and injection currents 

are thus evident, which agrees well with the interpretations suggested by the reviewer. Hence, we 

also added these discussions in the last paragraph on page 15 of the main text: 

“The shift current mechanism comes from the fact that the wavefunction center of the electrons 

and holes are different, leading to an electric dipole upon electron-hole pair generation. On the 

other hand, the injection mechanism comes from the fact that the electrons and holes have 

different velocities, leading to a net current. These facts are more evident if we transform Eq. (2) 

into the length gauge, as shown in the SM.” 

The detailed discussions above have been added in the Supplementary Materials.  
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In summary, while I think the work is technically interesting, I am not sure I am convinced that 

the authors have clarified the motivation for this work that would lead to a high level of impact 

suggested for publication in Nature Communications.  

Reply: We thank the reviewer for these comments. We hope that we have appropriately 

addressed the concerns of the reviewer. We believe that our work is of broad impact for 

publication in Nature Communications. 

 

 

Reviewer #2: 

This is a timely work which shows theoretically how the nonlinear optical effect could be used to 

generate pure spin photocurrent in non-centrosymmetric crystals. These findings are illustrated 

on examples from three classes of materials, transition metal dichalcogenides (MoS2), 

antiferromagnetic topological insulator (MnBi2Te4), and the surface state of the topological 

crystalline insulator (SnTe). Both the topic of generating (electrically, or optically) spin current 

and the considered materials classes are actively studied, so the findings of this manuscript have 

potential many implications. Specifically, as noted, for example, in Ref. 1, spin current provides 

an important element for spintronic applications as well as a tool to probe materials properties. 

Methods which would allow for a robust generation of pure spin current therefore have broad 

ramifications. The authors complement well their symmetry analysis and conductivity 

calculations by the materials-specific ab-initio calculations. 

Reply: We appreciate these positive and encouraging comments from the reviewer. 

 

To provide a better context of this work and further explain its relevance, it would be helpful to 

give several explanations and clarify its underlying assumptions. 

1) Adding a spin degree of freedom can generalize various photovoltaic effects that have been 

studied in common semiconductors and their junctions. See, for example, Appl. Phys. Lett. 79, 

1558 (2001), Phys. Rev. Lett. 88, 066603 (2002), or related experiments, Nat. Comm. 4, 2068 
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(2013), which may be helpful to mention. Since the spin current is not conserved it may also be 

important to identify the position at which it is evaluated. Even in a simple p-n junction, 

illuminated by circularly polarized light, a different voltage dependence of the spin and charge 

currents allows for a generation of pure spin current. 

Reply: We thank the reviewer for these helpful comments and references. We have carefully 

read these interesting works. They are based on mechanisms reminiscent of the p-n junctions 

used in solar cells. This is distinct from our work, which is realizable in homogeneous materials 

and does not require hetero-junctions. Also, we do not need circularly polarized light. We have 

cited these works in the first paragraph on page 2 of the revised manuscript:  

“Also, a spin current can be generated with a mechanism reminiscent of the p-n junction in solar 

cells25–27.” 

 

2) This non-conservation of the spin current has led to lots of debates about its definition, when 

the prediction of the spin Hall effect from Refs. 10, 11, was revisited 30 years later. It would help 

to clarify how the employed definition for spin current compares to the one from Phys Rev. Lett. 

96, 076604 (2006), which also recalls a cautionary work of Rashba [Phys. Rev. B 68, 241315(R) 

(2013)]. 

Reply: We thank the reviewer for these insightful comments. Indeed, the definition of spin 

current is still under some debate. The conventional definition ଔଵ̂ = ଵଶ ݏො̂ݒ) +  ො) is indeed notݒݏ̂

well defined, although it is convenient, physically appealing, and extensively employed in many 

works until today. When SOC is taking into account, spin component is not a good quantum 

number, and this spin current is not conserved. Also, as suggested in Rashba’s work [PRB 68, 

241315(R) (2003)], this definition would lead to a non-zero spin current even if an inversion 

asymmetric insulator is in equilibrium (no electric field, light, etc.). There are lots of debates, and 

there are also works claiming that we do not need to modify this definition [e.g., PRB 77, 035327 

(2008)]. 

The definition in [PRL 96, 076604 (2006)], which is ଔଶ̂ = ௗ(௥̂௦̂)ௗ௧ , can be conserved in some 

systems. However, it requires that “spin generation in the bulk is absent due to symmetry 
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reasons”. In other words, it requires the bulk integration 
ଵ௏ ׬ dܸॎ(ݎ) = 0, where ॎ(ݎ) is the 

torque density on the spins. However, this is not true under external light, which is necessary for 

our work. An intuitive picture is, under a circularly polarized light, the angular momentum of the 

photons can be transferred into the electron system, which obviously leads to 
ଵ௏ ׬ dܸॎ(ݎ) ≠ 0. 

Therefore, the definition of ଔଶ̂ = ௗ(௥̂௦̂)ௗ௧ 	is also not correct if the system is under light illumination. 

Particularly, under strong light, the non-conservation of ଔଶ̂ = ௗ(௥̂௦̂)ௗ௧  might be high. On the other 

hand, the calculation of the spin current with ଔଶ̂ = ௗ(௥̂௦̂)ௗ௧  is rather involved in practice (although 

this definition looks simple). To the best of our knowledge, this definition has only been applied 

in simple model systems, and to the linear order responses. 

 Here we roughly estimate the difference between the spin current defined with ଔଵ̂ = ଵଶ ݏො̂ݒ) +  (ොݒݏ̂
and ଔଶ̂ = ௗ(௥̂௦̂)ௗ௧ . Compared with ଔଵ̂,  ଔଶ̂ has an additional term that comes from the torque on the 

spins [PRL 96, 076604 (2006), see also PRL 97, 236805 (2006)]. This term is proportional to ሾܪ෡, ሿ. Therefore, the relative difference ቚఫ̂మିఫ̂భఫ̂భݏ̂ ቚ can be roughly estimated from ߙ௜ ≡ ฮൣு෡,௦̂೔൧ฮ‖ு෡‖⋅ฮ௦̂೔ฮ, 

Figure R1	ߙ௭ ≡ ‖ሾு෡,௦̂೥ሿ‖‖ு෡‖⋅‖௦̂೥‖ for (a) MoS2 and (b) MnBi2Te4. 
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where ‖ ⋅ ‖ indicates matrix norm1. We have thus calculated and plotted ߙ௭ in the first Brillouin 

zone for MoS2 (Figure R1a) and MnBi2Te4 (Figure R1b). One can see that ߙ௭ is on the order of 0.1 ∼ 0.2. From this point of view, one may deduce that the difference between ଔଵ̂ and  ଔଶ̂ is 

indeed not negligible, but in general cases, it would not qualitatively change the main results.  

As described above, ଔଶ̂ is not a perfect definition of spin current in the presence of external light, 

either. It might be possible to find a better definition of the spin current that is conserved even 

when the system is under light illumination. But this is beyond the scope of the current work, and 

we would like to leave this for future work.  

In the first paragraph on page 6 of the main text, we added, 

“We would like to remark that there are lots of debates on the definition of spin current40-42, see 

SM for detailed discussions.” 

Detailed discussions above, including Figure R1, have been added in the Supplementary 

Materials.  

 

3) What are the employed assumptions for loss mechanisms of pure spin photocurrents? For 

example, in a simple situation analyzed in 1) in addition to the spin relaxation, the spin current 

can be lost through carrier recombination. This spin dynamics and spin-orbit coupling for 

electrons and holes are inequivalent. 

Reply: We thank the reviewer for these insightful comments. The loss of the spin photocurrents 

should come from the scattering with phonons, etc., which leads to the recombination of 

electron-hole (e-h) pairs. As also pointed out by reviewer #1, the shift mechanism comes from 

the fact that the electron-hole pair has non-zero electric dipole ݌  in non-centrosymmetric 

materials. However, such dipole would be lost when the electron and hole recombine. Assuming 

an e-h pair generation rate of ܴ, and a scattering/recombination time of ߬, then the steady-state 

polarization is ܲ =  The current, which is the polarization generation rate, can be obtained .߬݌ܴ

                                                            
1  This can be naively understood in the following way. We have ଔଶ̂ = ௗ(௥̂௦̂)ௗ௧ = ௗ௥̂ௗ௧ ݏ̂ + ݎ̂ ௗ௦̂ௗ௧ = ଵଶ ൛ൣܪ෡, ,	൧ݎ̂ ൟݏ̂ +ଵଶ ൛̂ݎ, ,෡ܪൣ ,൧ൟ, where ሼܽݏ̂ ܾሽ = ܾܽ + ܾܽ ensures hermiticity. The first term is just ଔଵ̂, while the second term comes from 

the torque on the spins. The ratio between these two terms is (very roughly) 
‖ሾு෡,௦̂ሿ‖‖ு෡‖⋅‖௦̂‖. Rigorously speaking, the 

position operator ̂ݎ needs extra care in infinite solid-state systems.  
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from ݆ ∝ ௉ఛ =  and is independent of ߬. On the other hand, the injection mechanism comes ,݌ܴ

from the different velocities of electrons and holes, which is Δ௘௛ = ௘௘ݒ − ௛௛ݒ . The velocity 

difference leads to a current of ݆ ∝ ߩ Δ௘௛, whereߩ = ܴ߬ is the steady-state e-h density. Thus, the 

injection current conductivity is linearly dependent on ߬. Some more discussions can be found in 

our reply to the 6th comment of Reviewer #1 (on page 10-11 of this document).  

One can see that both the shift and injection mechanism are dependent on the scattering 

processes of the electrons and holes. Usually, the scattering time ߬  is on the order of sub-

picoseconds. On the other hand, the spin relaxation time is usually longer, on the order of (sub-

)nanoseconds. For example, in [Nat. Phys. 11, 830 (2015)] it was shown that TMD has a spin 

relaxation time on the order of ns. Similar arguments can also be found in [Appl. Phys. Lett. 80, 

1558 (2001), Nat. Comm. 4, 2068 (2013), etc.]. Thus, usually the main loss mechanism should be 

the scattering of electrons/holes, which leads to the momentum relaxation and the recombination 

of e-h pairs. Of course, in some cases, the spin relaxation time may be shorter (for example, 

holes usually have shorter spin relaxation time, and the spin relaxation time may be shorter in the 

presence of magnetic impurities.). In these cases, we are in a different regime and the spin 

relaxation would be the main loss mechanism. Approximately, one may expect that  
ଵఛ =ଵఛ౩ౙ౗౪౪౛౨౟౤ౝ + ଵఛ౨౛ౢ౗౮౗౪౟౥౤ , where ߬ୱୡୟ୲୲ୣ୰୧୬୥  is the e/h scattering time, while ߬୰ୣ୪ୟ୶ୟ୲୧୭୬  is the spin 

relaxation time. 

Regarding the difference spin dynamics of electrons and holes, we note that in principle ߬ should 

not be a constant, but varies with different band ݊ and wavevector ݇. The difference between 

electrons and holes shall be included by using a mode-dependent ߬. More rigorously, one should 

use 
డఘడ௧ |ୡ୭୪୪	that includes scatterings, spin dynamics, etc., in the von Neumann equation (Eq. S4 in 

the Supplementary Materials). One has 

ݐ߲ߩ߲  = − ℏ݅ ሾܪ, ሿߩ + ݐ߲ߩ߲ |ୡ୭୪୪  
(2) 

However, for convenience, we adopt the constant relaxation time approximation and use డఘడ௧ |ୡ୭୪୪ ≈ − ఘିఘబఛ . We would like to remark that including these subtleties would not change the 

essence of the results in our work.  
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In the last paragraph on page 7 of the main text, we added, 

“The main dissipation mechanism here is the scattering of electrons and holes with e.g., phonons. 

The scattering time ߬ is usually on the order of (sub)-picoseconds. In some cases, when the spin 

relaxation time is short, it can be the main loss mechanism as well. Also, in the presence of 

scattering potentials (from e.g., impurities), there could be skew scattering and side jump, which 

lead to extrinsic spin/charge currents, as compared with the intrinsic currents discussed in this 

work, which originates in the intrinsic band structure.  Another point we would like to mention is 

that, here we adopt the constant relaxation time approximation and use a constant ߬ for all modes 

(band index ݊ and wavevector ݇). But in reality, ߬ should be mode-dependent. (see SM for more 

discussions)” 

Detailed discussions above are added in the Supplementary Materials.  

 

4) Perhaps some clarification for the points above could be given by moving the p.15 comment 

about focusing only on intrinsic currents to an earlier place in the manuscript. Even in such 

intrinsic regime, how can one understand the corresponding time/length scales for the presence 

of spin photocurrents? 

Reply: We thank the reviewer for these helpful comments. As discussed above, the shift and 

injection mechanisms rely on the fact that electrons and holes carry different spins and velocities. 

Such a process would stop once the electrons or holes scatter and recombine. Thus, the relevant 

time scale here should be the scattering time ߬, which is usually on the sub-picosecond scale. 

Regarding the length scale, the group velocities of electrons and holes are usually on the order of ݒ = 10ହ ∼ 10଺	m/s. Thus, the length scale here should be ݈ =  which on the order of tens of ,߬ݒ

nanometers. This should be compared with the mechanism based on junctions, as presented in 

[Appl. Phys. Lett. 80, 1558 (2001), Nat. Comm. 4, 2068 (2013)]. In these works, the electrons 

and holes move diffusively, and the relevant length scales are relatively larger, on the order of 

micrometers.  

We have moved the discussions on page 15 to page 7 of the revised manuscript, as shown in our 

reply to the previous question.   
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5) For an experimental detection of spin photocurrent, could one use spin extraction [predicted in 

Phys. Rev. Lett. and measured in Nat. Comm. noted above]? 

Reply: We thank the reviewer for these comments. In our understanding, spin injection and 

extraction describe the following processes. A nonmagnetic semiconductor forms a junction with 

magnetic material. When the carriers flow from the magnetic material to the nonmagnetic 

semiconductor, they can be spin-polarized, because there are a different number of spin up and 

down carriers in the magnetic material. This process is dubbed “spin injection” since the spin 

polarization is kind of “injected” into the semiconductors from the magnetic material. On the 

other hand, carriers originally in the semiconductor can also flow into the magnetic material. 

During this process, spin up and down carriers have different probabilities to enter the magnetic 

materials. This is somewhat similar to the giant magnetoresistance effect. It was also pointed that 

either the spin up or spin down carriers can have a higher probability to enter the magnetic 

materials, depending on the actual condition of the junction [Science 309, 2191 (2005), PRL 98, 

046602 (2007)]. If the spin up (down) electrons have a higher probability to enter the magnetic 

materials, then the semiconductor will be left spin down (up), and thus becomes spin-polarized. 

This process is dubbed “spin extraction” since the spin polarization is kind of “extracted” from 

the magnetic materials.  

We believe that a similar mechanism can be used to detect the spin photocurrent. We can 

consider a heterojunction using MoS2 with a ferromagnetic material. When we shine light on 

MoS2, a spin current will be generated. The carriers will tunnel into the magnetic material and 

lead to a current in it. This current would have a different magnitude if the magnetic moment of 

the magnetic material is parallel or anti-parallel to that of the spin current. We can monitor this 

effect by switching the magnetic moment with an external magnetic field, or switching the spin 

polarization of the spin photocurrent by using a light with different polarization (see Figure 2e of 

the main text). However, it might be improper to call this effect “spin extraction”. Because spin 

extraction describes a process that the carriers in a semiconductor become spin-polarized 

because of the junction with magnetic materials. But for the process described above, the 

electrons in the semiconductor are already spin-polarized before entering the magnetic materials.  
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6) References are not given in a uniform style. Some journal names are abbreviated, some not. 

Ref. 10 has typos and repeated authors, extra number appear in Ref. 27, 45, 67. Are Refs. 31, 40, 

47 complete? 

Reply: We thank the reviewer for these careful observations. We have carefully checked all our 

references, and manually edited the incorrect renderings of the Mendeley plugin.  

 

This manuscript describes an important opportunity to realize spin photocurrent in a wide range 

of materials. Following these clarifications, it will be easier to assess its suitability for a broad 

readership and a publication in Nature Communications.  

Reply: We thank the reviewer again for these positive and encouraging comments. We hope that 

we have appropriately addressed the comments of the reviewer. 

 



Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

Dear Editors, 

 

The manuscript titled "Pure spin photocurrent in non-centrosymmetric crystals: 

bulk spin photovoltaic effect" has been revised by the authors in response to the comments from 

both referees. With their response, the authors have addressed most of the main concerns of the 

referees. Specifically, I am now convinced that their conclusion 

that "nonlinear optical (NLO) effect can be 

used to generate pure spin currents" "if the 

system possesses additional mirror symmetry or inversion-mirror symmetry" is novel and 

interesting enough to be published in Nature Communication. 

 

In reviewing the background, I only noticed one issue in the introduction. The following paper 

PHYSICAL REVIEW B 95, 224430 (2017) discusses spin currents in inversion broken but time-

reversal preserving spin photocurrents at second order in electric field. This appears quite relevant 

to the current manuscript and should be cited. However, I agree with the authors that pure spin-

currents haven't been discussed. 

 

Apart from this change, I would recommend publication in Nature Communication. 

 

 



The authors have provided a balanced and detailed response to both reviewers and made 
related changes in the main text and Supplementary Information. These changes and additional 
calculations now provide more accurate statements. For example, it was helpful to downplay 
the low-dissipation aspect of pure spin currents, improve the symmetry arguments, clarify the 
novelty of the work, or explain possible loss mechanisms for pure spin current.  
 
Even with these changes one can argue (and the authors mention that) that the fully accurate 
picture of the underlying phenomena is not yet available. In realistic systems with spin-orbit 
coupling there remain subtleties about the definition of the spin current. This is mentioned in 
Ref. 41 and the changes with different definition of spin current are further explored in the 
present work, including new Fig. S1. Additionally, Ref. 41 notes that there are subtleties in spin 
currents with the choice of boundary conditions, mentioning an example in spin Hall effect [PRB 
72, 241303(R), (2005)], which may also pertain to the present work due to nonuniform 
illumination or spatially-dependent absorption. However, in the revised manuscript what the 
authors present about the description of spin current already matches the current state-of-the 
art and I expect will provide a valuable guidance for a broad readership interested in studies of 
nonlinear optical effects in a growing number of materials. Therefore, while the knowledge of 
spin current will continue to evolve, these findings are likely to motivate both emerging 
applications and probing surface-state properties of topological materials.  
 
With the interest in verifying these predictions, it may help to discuss more when this picture 
will break down. For example, at the level of a simple estimate as given in Eqs. (R1)- (R3) and 
using MoS2 parameters, what is the maximum magnitude of spin current? Will the predicted 
NLO behavior qualitatively change with an increase in illumination, or the sample will first be 
destroyed?  These estimates can serve as a guidance analogous to gate-controlled effects in 
spintronics, which are limited by the characteristic breakdown fields and thus limit the 
generated excess carrier density.  
 
I expect that the implications of these findings to get intriguing effects from light illumination 
will become relevant in a growing number of materials. I recommend this manuscript for a 
publication in Nature Communications.   

 

Reviewer #2: 

Remarks to the Author: 
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Reply to Reviewers 

 

Reviewer #1:  

The manuscript titled "Pure spin photocurrent in non-centrosymmetric crystals: bulk spin 

photovoltaic effect" has been revised by the authors in response to the comments from both 

referees. With their response, the authors have addressed most of the main concerns of the 

referees. Specifically, I am now convinced that their conclusion that "nonlinear optical (NLO) 

effect can be used to generate pure spin currents" "if the system possesses additional mirror 

symmetry or inversion-mirror symmetry" is novel and interesting enough to be published in 

Nature Communication. 

Reply: We thank the reviewer for reviewing our paper again and for all these encouraging 

comments.  

 

In reviewing the background, I only noticed one issue in the introduction. The following paper 

PHYSICAL REVIEW B 95, 224430 (2017) discusses spin currents in inversion broken but time-

reversal preserving spin photocurrents at second order in electric field. This appears quite 

relevant to the current manuscript and should be cited. However, I agree with the authors that 

pure spin-currents haven't been discussed. 

Reply: We thank the reviewer for pointing out this relevant paper. We have cited this paper in 

our introduction as Ref. 28, 

“Alternatively, a spin current can be generated with a mechanism reminiscent of the p-n junction 

in solar cells23–25, quantum interference26,27, or the nonlinear Drude current28.”  

 

Apart from this change, I would recommend publication in Nature Communication. 

Reply: We thank the reviewer for recommending the publication of our paper. 
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Reviewer #2:  

The authors have provided a balanced and detailed response to both reviewers and made related 

changes in the main text and Supplementary Information. These changes and additional 

calculations now provide more accurate statements. For example, it was helpful to downplay the 

low-dissipation aspect of pure spin currents, improve the symmetry arguments, clarify the 

novelty of the work, or explain possible loss mechanisms for pure spin current. 

Reply: We thank the reviewer for reviewing our paper again and for all these encouraging 

comments.  

 

Even with these changes one can argue (and the authors mention that) that the fully accurate 

picture of the underlying phenomena is not yet available. In realistic systems with spin-orbit 

coupling there remain subtleties about the definition of the spin current. This is mentioned in Ref. 

41 and the changes with different definition of spin current are further explored in the present 

work, including new Fig. S1. Additionally, Ref. 41 notes that there are subtleties in spin currents 

with the choice of boundary conditions, mentioning an example in spin Hall effect [PRB 72, 

241303(R), (2005)], which may also pertain to the present work due to nonuniform illumination 

or spatially dependent absorption. However, in the revised manuscript what the authors present 

about the description of spin current already matches the current state-of-the art and I expect will 

provide a valuable guidance for a broad readership interested in studies of nonlinear optical 

effects in a growing number of materials. Therefore, while the knowledge of spin current will 

continue to evolve, these findings are likely to motivate both emerging applications and probing 

surface-state properties of topological materials. 

Reply: We thank the reviewer for these careful and insightful observations. Indeed, the 

definition of the spin current remains an issue to be explored and is attracting research interest 

until today. We will study these issues in future works. 

 

With the interest in verifying these predictions, it may help to discuss more when this picture 

will break down. For example, at the level of a simple estimate as given in Eqs. (R1)- (R3) and 

using MoS2 parameters, what is the maximum magnitude of spin current? Will the predicted 
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NLO behavior qualitatively change with an increase in illumination, or the sample will first be 

destroyed? These estimates can serve as a guidance analogous to gate-controlled effects in 

spintronics, which are limited by the characteristic breakdown fields and thus limit the generated 

excess carrier density. 

Reply: We thank the reviewer for these insightful comments. With MoS2 parameters, when the 

external field strength is ܧ = 1	MV/m, the spin current density is 10଼ 	 ୅୫మ ℏଶ௘, and the temperature 

rise in the sample is estimated to be on the order of 1	K, which is not high. If we further increase 

the electric field strength, then two main issues will arise. 1) On the experimental side, a strong 

laser may destroy the sample, as pointed by the reviewer. This might happen for electric field 

strength above 10	MV/m when one uses a continuous wave laser. In this case, the spin current 

density is around 10ଵ଴ 	 ୅୫మ ℏଶ௘, which is quite high, while the temperature rise can be as high as 100	K. Note that the temperature rise can be mitigated with better thermal management. Also, 

the sample may survive in an even stronger electric field if a pulsed laser is used. For example, 

with a femtosecond laser, the electric field can be as high as 100	MV/m, with a temperature rise 

of 10	K. 2) On the theoretical side, the perturbation theory used in the current work may fail 

when the electric field is too strong. The external electric field strength should be compared with 

the intrinsic interaction strength in the materials, which is usually on the order of 1 ୚Å = 10ସ ୑୚୫ . 

From this point of view, the perturbation theory may work up to an electric field strength of 100	MV/m. Above this strength, the error from perturbative expansions may not be ignored and 

non-perturbation theories may be required.  

In summary, with a pulsed laser, our theoretical picture may work up to an electric field strength 

up to 100	MV/m, when the spin current density is on the order of 10ଵଶ 	 ୅୫మ ℏଶ௘. This is restricted 

by both experimental (sample damage) and theoretical (validity of perturbation theory) concerns. 

With a continuous wave laser, one may have to use an electric field strength below 10	MV/m to 

keep the temperature rise and sample damage manageable. At this field strength, the spin current 

density can be 10ଵ଴ 	 ୅୫మ ℏଶ௘ with the monolayer MoS2 parameters. 

We have added the discussions above in the Supplementary Materials.  
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I expect that the implications of these findings to get intriguing effects from light illumination 

will become relevant in a growing number of materials. I recommend this manuscript for a 

publication in Nature Communications. 

Reply: We thank the reviewer again for these positive comments and the recommendation for 

the publication of our paper. 
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