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Light-induced static magnetization: Nonlinear Edelstein effect
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Light can interact with magnetism in materials. Motivated by the Edelstein effect, whereby a static electric
field can generate magnetization in metals, in this work we theoretically and computationally demonstrate that
static magnetization can also be generated through light in semiconductors. Such an effect is essentially a
second-order nonlinear response and can be considered as a generalization of the Edelstein effect. This nonlinear
Edelstein effect (NLEE) applies to semiconductors under both linearly and circularly polarized light, and there
are no constraints from either spatial inversion or time-reversal symmetry. With ab initio calculations, we reveal
several prominent features of NLEE. We find that the light-induced orbital magnetizations can be significantly
greater than the spin magnetizations, in contrast to standard intrinsic magnetism where the orbital magnetic
moment is strongly quenched under crystal field. We show that in multilayer (multisublattice) materials, different
ferromagnetic and ferrimagnetic structures can be realized under photon pumping, depending on the interlayer
(intersublattice) symmetry. It is also possible to switch the magnetic ordering in antiferromagnetic materials. The
relationship between NLEE and other magneto-optic effects, including the inverse Faraday effect and inverse
Cotton-Mouton effect, is also discussed.
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I. INTRODUCTION

The generation and manipulation of magnetization is the
basis of magnetic information storage and spintronics [1,2].
Conventionally, one uses an external magnetic field to read
and write magnetism. However, since the magnetic coupling
is weak, a strong magnetic field is usually necessary. For
example, recent experimental works show that ∼1 T magnetic
field is required to flip the CrI3 bilayer from antiferromagnetic
into ferromagnetic ordering [3]. Furthermore, in contrast to
electric fields or light beams, it is hard to spatially confine
and focus the magnetic fields. Modern spintronics requires
fast and precise control of magnetization, and one may have
to resort to electrical or optical approaches. Physically, it
has been demonstrated that an optical or electric field with
moderate strength could induce sufficient effective magnetic
field and control the magnetism in both bulk materials and
thin films efficiently [4–7].

Maxwell’s equations in vacuum couple electric field with
magnetic field in a standard way, but it would be desirable to
further couple magnetization with electric fields by interacting
with materials. Indeed, a static electric field can generate
and manipulate magnetization. A typical example is the lin-
ear Edelstein effect (LEE). LEE is essentially a conversion
between electric field and magnetization: In a noncentrosym-
metric metal, a static magnetization M can be generated when
a static electric field E is applied, and one has Mi = ζ i

aEa,
where ζ i

a is the response function, while i and a indicate the
magnetization and the electric field directions, respectively.

*Corresponding author: liju@mit.edu

LEE was first theoretically proposed [8] and then experimen-
tally realized [9,10]. Recently, there has been growing interest
in LEE [5,11–13], and it was suggested that LEE can po-
tentially switch the magnetic orderings of magnetic materials
[5,13]. However, LEE only exists in metallic systems, and the
electric field also generates a charge current (Ohm current).
As a result, sometimes the Edelstein effect is also described as
the conversion between charge current and magnetization. As
we will elaborate later, the Edelstein effect and Ohm current
have a similar physical origin and can be regarded as cousin
processes. Another effect that can convert an electric field to
magnetization is the magnetoelectric effect [14], which can
also be described by Mi = αi

aEa. The magnetoelectric effect
works in insulating materials, but it requires the breaking
of both time-reversal and spatial inversion symmetry. In the
following we focus more on nonmagnetic materials, i.e., with
time-reversal symmetry, at the ground state.

Besides a static electric field, we will show how light
can be used to manipulate magnetization. As electromag-
netic waves, light has alternating electric and magnetic field
components, both of which can interact with magnetization.
The first observation of the interaction between light and
magnetism (magneto-optical effect) dated back to the 1840s,
when Faraday experimentally discovered that the polarization
plane of a linearly polarized light would be rotated when light
propagates in magnetic materials. This phenomenon, dubbed
the Faraday effect (and a related magneto-optic Kerr effect in
reflection mode), vividly demonstrates that magnetism has an
influence on light, and then finds wide applications, such as
the measurement of magnetism. In recent years, as lasers with
high intensity become available, the inverse effects start to at-
tract great attention, which may have applications in ultrafast
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spintronics and data storage, etc. The magnetic field com-
ponent can directly interact with magnetic moments through
Zeeman coupling [15]. However, the Zeeman coupling is usu-
ally weak, so of greater interest is the coupling between the
electric field component with magnetization. For example,
Ref. [16] made use of the inverse Faraday effect (IFE) and
showed that a circularly polarized light (CPL) can generate an
effective magnetic field, which can nonthermally manipulate
the magnetization of magnetic materials. Later, it was shown
[17] that even a linearly polarized light (LPL) can cause
coherent spin excitations through the inverse Cotton-Mouton
effect (ICME). The optical controls over magnetism are being
extensively studied these days [4,7]. In this work, we develop
a computational approach to this problem.

The LEE is a first-order response to the electric field
(δM ∝ E ). In this work, we generalize LEE into the second-
order nonlinear Edelstein effect (NLEE). For NLEE, a static
magnetization δM ∝ E (ω)E (−ω) is generated under light.
E (ω) is the Fourier component of the oscillating electric field
of the light at angular frequency ω. Just as LEE and Ohm
currents are cousins, NLEE is the cousin process of the bulk
photovoltaic effect [18–20], via which a static charge current
is generated under light. We find that the NLEE can induce a
larger effective magnetic field than that of LEE at moderate
electric field strength (E � 10 MV/m). The strength of the
magnetization generated by NLEE depends linearly on the
light intensity, and can be detected by quantum sensors [21]
such as SQUID, NV centers, etc., even if the light intensity
is mild so that the magnetization generated is too small to be
detected by conventional approaches such as magneto-optical
Kerr rotation. From symmetry considerations, NLEE is not
constrained by either spatial inversion P or time-reversal T
symmetry, whereas LEE vanishes in P-conserved systems. In
addition, since light can induce electron interband transitions,
NLEE can exist in semiconductors and insulators, whereas
LEE only exists in metallic systems. Hence, NLEE can be
active in many more materials compared with LEE. Notably,
magnetization can be generated under LPL in nonmagnetic
materials. This is somewhat counterintuitive, as magnetization
requires T breaking while LPL cannot break T . We attribute
this effect to the breaking of T by energy dissipation due to
interband transitions. Furthermore, as an optical effect, NLEE
enjoys many salient merits of optical approaches, as it can
be noncontact, noninvasive, and ultrafast. These factors ren-
der NLEE a potentially effective method for generating and
manipulating magnetic structures, including ferro-, ferri-, and
antiferromagnetism.

In the following, we first introduce the physical mechanism
and theory of NLEE. Then to illustrate some prominent prop-
erties of NLEE, we perform ab initio calculations in different
material systems, including nonmagnetic transition metal
dichalcogenides (TMDs) and antiferromagnetic CrI3 bilayers.
We incorporate orbital magnetic moments, as well as spin
magnetic moments. Remarkably, we find that the orbital con-
tribution can be stronger than the spin contribution, especially
in conventionally nonmagnetic systems. This is opposite to
the behavior of the spontaneous magnetization of magnetic
materials, where the spin contribution usually dominates. In
bilayer MoTe2, NLEE is sensitive to the stacking pattern of
the two MoTe2 layers, and various optomagnetic orderings,

including antiferromagnetic (AFM) and ferromagnetic (FM),
are achievable and controllable. Finally, we discuss the possi-
bility of switching the AFM ordering in the CrI3 bilayer with
NLEE, making use of the spatially varying magnetization.
The relationship between NLEE and IFE and ICME is also
addressed. Specifically, IFE and ICME are incorporated by
NLEE, and NLEE also points out the possibility to generate
magnetization in nonmagnetic materials under LPL, which is
not captured by IFE or ICME.

II. RESULTS

A. Mechanisms and theory

The electron magnetic moment m has both the spin (S)
and orbital (L) angular momentum contributions, and one
has m = μB(2S + L)/h̄, where μB is the Bohr magneton and
the factor of 2 for S is the g factor of the electron spin.
The total magnetization of an electron ensemble is the total
magnetic moments of all electrons. For example, in nonmag-
netic materials, the magnetic moments of all electrons sum up
to zero, and the equilibrium magnetization M0 is thus zero.
However, when the electrons are driven out of equilibrium,
the electron distribution function would be changed, and a net
magnetization δM may arise. A simple example is, in a system
where the magnetic moments of all electrons cancel out, if
somehow one electron flips its magnetic moment, then the
system would acquire a net magnetization. One can see that
for the total magnetization to be nonzero, each electron should
have a specific magnetic moment (i.e., spin texture and orbital
texture). If the magnetic moments of the electrons are random,
then the total magnetization would always be zero, no matter
what the distribution function looks like. For the spin part,
the spin texture could be created by, e.g., spin-orbit coupling
(SOC) or magnetic ordering. For the orbital part, the orbital
texture is ubiquitous in multiorbital systems, and a nonzero
orbital magnetization generally exists.

Various mechanisms can drive the electrons out of equilib-
rium, thus changing the magnetic state. For the LEE, it is the
electric field E that drives the electrons out of equilibrium.
Indeed, electrons would move under the electric field, leading
to a change in the distribution function. This effect is schemat-
ically illustrated in Fig. 1(a): Region X (Y ) of the Brillouin
zone will have fewer (more) electrons under E , which tilts
the Fermi surface. If electrons in X and Y have different
spin/orbital polarizations mX �= mY , then a net magnetization
change δM ∝ mY − mX would arise. One can see that the LEE
is an intraband process and only electrons near the Fermi level
contribute—thus the LEE applies only to metals. LEE has a
similar physical origin to the Ohm current. At equilibrium,
the velocities of all electrons sum up to zero; thus the net
charge current is zero, but the electrons in regions X and Y
have different velocity vX �= vY . As a result, when the electric
field is applied, the velocities of all electrons do not sum up
to zero anymore, and a net charge current j ∝ vY − vX would
be generated.

We now extend from a static electric field to an optical
alternating electric field and generalize the first-order LEE
to the second-order NLEE. The magnetization induced by an
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FIG. 1. Simplified physical pictures of (a) linear Edelstein effect and (b) nonlinear Edelstein effect. The blue shading indicates electron
occupation. For linear Edelstein effect, the static electric field modifies electron distribution in a single band (intraband process). For nonlinear
Edelstein effect, light excites interband transitions between different bands (labeled with l, m, n). The three-band process in Eq. (2) is illustrated
by the dashed arrows on the left side of (b), while the two-band process in Eq. (4) is illustrated by the solid arrow on the right side. (c) Local
vortices of the photocurrent (blue curved arrows) and the associated orbital magnetization (blue straight arrows) under light (red wavy arrow)
illumination.

alternating electric field can be expressed as

δMi,β =
∑

�=±ω

χ
i,β
ab (�)Ea(�)Eb(−�). (1)

Here a, b, and i indicate the directional component of the
electric field and the magnetization, respectively. E (ω) is the
Fourier component of the electric field at angular frequency
ω. χ

i,β
ab (ω) is the nonlinear response tensor. Superscript β

indicates either spin (β = S) or orbital (β = L) degree of
freedom, and a total (β = T ) magnetic moment is δMi,T =
δMi,S + δMi,L . Equation (1) suggests that when the ω and
−ω frequency components of the light’s electric field are
combined, a static magnetization is generated. This is similar
to the difference frequency generation and bulk photovoltaic
effect. For the difference frequency generation, two photons
with frequencies ω1 and ω2 are combined, and a third photon
with frequency ω1 − ω2 is generated. For the bulk photo-
voltaic effect, the ω and −ω frequency components of the
electric field are combined, and a displacement of electrons in
real space (charge current) is generated. For NLEE, instead of
a third photon or an electron displacement, a static magnetic
moment is generated. The NLEE magnetization is character-
ized by the response function χ

i,β
ab , which will be the focus

in the following. The formula of χ
i,β
ab can be obtained from

quadratic response theory [18,22–24] (also see Supplemental
Material [25] and Refs. [18,22,26–33]). Within the indepen-
dent particle approximation, it can be expressed as

χ
i,β
ab (ω) = −μBe2Vu.c.

h̄2ω2

∫
dk

(2π )3

×
∑
mnl

flmva
lm

ωml − ω + i
τ

(
β i

mnv
b
nl

ωmn + i
τ

− vb
mnβ

i
nl

ωnl + i
τ

)
. (2)

We have omitted the k dependence of the quantities in
the integrand. μB, e, and h̄ are the Bohr magneton, electron
charge, and reduced Planck constant, respectively. Here we
multiply unit cell volume (Vu.c.), so that χ

i,β
ab corresponds to

the magnetization in a unit cell, rather than a magnetization
density. flm ≡ fl − fm and h̄ωlm ≡ h̄(ωl − ωm) are the dif-
ference between equilibrium occupation number and band
energy between bands |l〉 and |m〉, respectively. vnl = 〈n|v̂|l〉
is the velocity matrix. For the spin and orbital contribu-
tions, one can set βmn = 2Smn = 2〈m|Ŝ|n〉 and βmn = Lmn =
〈m|L̂|n〉, where Ŝ and L̂ are spin and orbital angular momen-
tum operators, respectively. The carrier lifetime τ is assumed
to be a constant for all electronic states and is set as 0.2 ps
in the following. The dependence of χ

i,β
ab on τ can be found

in the Supplemental Material [25]. We define symmetric real
and asymmetric imaginary parts of χ

i,β
ab as

η
i,β
ab ≡ 1

2 Re
{
χ

i,β
ab + χ

i,β
ba

}
,

ξ
i,β
ab ≡ 1

2 Im
{
χ

i,β
ab − χ

i,β
ba

}
.

(3)

Note that η
i,β
ab and ξ

i,β
ab correspond to the response function

under LPL and CPL, respectively.
From Eq. (2) one can see that light can excite (virtual)

interband transitions of electrons, as illustrated in Fig. 1(b).
The virtual transition between band m and l is mediated by
n. At equilibrium, the electron tends to occupy states with the
lowest energy, so they should reside on the lth band. Under
light illumination, the electron can (virtually) transit to the
mth band, which has higher energy. If on a k point, differ-
ent bands have different spin/orbital polarization, then a net
magnetization change δMi can be established. Similarly, the
(virtual) electron interband transition is also the foundation of
difference frequency generation and bulk photovoltaic effect.
One could use symmetry analysis to examine the response
explicitly. Under spatial inversion P , axial vectors M, S, and
L are even, while polar vectors E and v are odd. From both
Eqs. (1) and (2), one can deduce that the NLEE does not
require P breaking. This is in contrast to LEE, difference
frequency generation, or the bulk photovoltaic effect, which
vanish in P-conserved systems. It is more intriguing to study
the NLEE under time-reversal operation T . Under T op-
eration, M, S, L, and v are odd, while E is even. From
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Eq. (1) one may deduce that the NLEE should vanish in a
T -conserved system under LPL: T M = −M and T E = E ,
leading to T χ = −χ ; thus χ needs to be zero to preserve
time-reversal symmetry. However, Eq. (2) would yield a con-
trary conclusion: T does not enforce a zero χ

i,β
ab (see detailed

analysis in the Supplemental Material [25]). Intuitively, LPL
induces photocurrent with vorticity as it flows past atoms
with chiral neighboring surroundings (crystal field), like an
eddy when water flows past rocks in a stream. The vortex
currents generally lead to a net magnetization. In P-broken
systems, the vortex currents do not exactly cancel, and lead
to a net charge current in the bulk, which is the bulk photo-
voltaic effect. In P-conserved systems, the net charge current
should vanish in the bulk, but there is still a net current on
the surfaces, where P is naturally broken. The contradiction
between Eqs. (1) and (2) can be resolved if one considers the
dissipation. Light with above-band-gap frequencies can be ab-
sorbed by electron interband transitions and then be dissipated
as heat. Such dissipation breaks T of the light-matter sys-
tem, according to the second law of thermodynamics. Similar
reasonings apply to the Ohm current. Under T , the charge
current is odd (T j = − j), while the electric field is even.
But the Ohm current does exist. This is because the Joule
heat breaks T , even if the material possesses T in equilib-
rium. Actually, the LEE does not require explicit T breaking
either, and the conversion between charge current and mag-
netization can happen in nonmagnetic materials. This is also
because the Joule heat associated with the charge current
breaks T .

Here we would like to discuss further the role of the car-
rier lifetime τ . In the hypothetical “clean limit” where no
dissipation exists (τ → ∞), the NLEE tensor should be zero
under LPL in a T -symmetric system, based on the symmetry
analysis in Eq. (1). Technically, this is also manifested in
Eq. (2), and the reason is as follows. Under time-reversal
T operation, one has T vmn(k) = −v∗

mn(−k) and T βmn(k) =
−β∗

mn(−k), where ∗ indicates the complex conjugate. Thus
the numerator, which is Nmnl = vmnvnlβlm, would behave as
T Nmnl (k) = −N∗

mnl (−k). After the summation over ±k, the
numerator would be purely imaginary. If τ = ∞ and i

τ
= 0,

then the denominator would be purely real. Therefore, the
whole formula is purely imaginary, and cannot contribute to a
static magnetization, which should be a real number. From this
point of view, Eqs. (1) and (2) are mathematically equivalent
even in the “clean limit.” However, in practice, τ cannot and
should not go to infinity. Mathematically, Eq. (2) may experi-
ence a divergence problem if one sets h̄

τ
= 0, so a finite h̄/τ

is necessary. Such phenomenon is common in, e.g., quantum
field theory, where one adds a small but finite imaginary
term in the propagator to avoid the divergence at the singular
point. Physically, in interacting systems h̄/τ has a physical
meaning of (effective) self-energy, and τ is the lifetime. The
electrons are never free particles in a solid-state system, and
their linewidth (h̄/τ ) is always finite. Even if the sample is
a perfect crystal, there are still electron-electron interactions,
electron-phonon interactions, etc. Besides, the application of
Eqs. (2) and (4) in the following requires extra care. One
should treat Eqs. (2) and (4) as low-order perturbation theory
and should not apply them when the system is strongly out of
equilibrium.

In the following, we perform ab initio calculations to il-
lustrate NLEE in various two-dimensional (2D) materials that
have a large surface area to volume ratio and are easily ac-
cessible with optical pumping. We first use monolayer TMDs
as an example to show that the orbital contribution to the
magnetic moment can be significantly greater than the spin
contribution in intrinsic nonmagnetic systems. Then we use
bilayer TMDs to show that different magnetic orderings can
be obtained under LPL, depending on the interlayer stacking
symmetry. Finally, we take 2D AFM material CrI3 to discuss
the possible AFM order manipulation under NLEE. We use
2D materials because they are simpler than three-dimensional
(3D) materials and various features of NLEE can be better
illustrated. The theory of NLEE applies to 3D materials as
well, and can generate a larger total magnetic moment in, e.g.,
thin films and conventional 3D bulks.

B. Monolayer MoTe2: Spin and orbital contributions

For the spontaneous magnetization in magnetic materials,
the contribution from the orbital angular momentum L is
usually weaker than that from the spin angular momentum
S. Typically the orbital contribution is less than 10% of the
total magnetization m = μB(2S + L)/h̄ [34]. This is due to
the orbital quenching by a strong crystal field. On the contrary,
for the nonequilibrium magnetization, we will show that the
orbital angular momentum could contribute more significantly
than the spin angular momentum, due to the chirality of the
same strong crystal field.

As an example, we use TMDs (MoTe2) in the 2H phase,
which exhibit many peculiar properties and have been widely
studied in recent years. Monolayer 2H TMDs possess mirror
symmetries Mx and Mz, as indicated by the dashed lines in
Figs. 2(a) and 2(b). Notably, Mz enforces Zeeman type (out of
plane) spin/orbital texture. Here we need to examine the con-
straints on NLEE from mirror symmetries. The polar vector
E satisfies M jEa = (−1)δ ja Ea, where δ ja is the Kronecker
delta. That is, the jth component of E is flipped under M j .
On the other hand, the spin or orbital angular momentum β is
an axial vector; thus under M j , only the jth component of β is
not flipped, and one has M jβ

i = −(−1)δ jiβ i. One can show
that in systems with M j , the NLEE response χ

i,β
ab vanishes

if δ ji + δ ja + δ jb is an even number. Specific to monolayer
MoTe2, with in-plane electric field (Ex or Ey), the only nonva-
nishing component of the NLEE tensor is χ z,β

xy , indicating that
the magnetization induced by NLEE is along the out of plane
direction. Note that if Mz is broken (e.g., by an electric field
or in a Janus structure), then in-plane magnetization should
exist.

Here we focus on CPL responses of monolayer MoTe2 and
plot ξ z,β

xy [Fig. 2(b)]. A prominent feature is that the orbital
part ξ z,L

xy is about 25 times greater than the spin part ξ z,S
xy .

In other words, under CPL, the NLEE magnetization comes
mostly from the orbital contribution, which is opposite to
the behavior of equilibrium magnetization M0 in magnetic
materials, where ML

0 � MS
0 . This phenomenon can be better

understood when we assume a sufficiently long relaxation
time (h̄/τ much smaller than the band gap of the material)
and use the two-band approximation; then we can simplify
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FIG. 2. (a), (b) Top and side view of monolayer MoTe2. The mirror symmetries are indicated by the dashed line. The red arrows in (b)
denote the magnetization under CPL. (c) Orbital (blue) and spin (red) contributions to the total nonlinear Edelstein effect under circularly
polarized light. The dash red curve is ξ z,S

xy amplified by 25 times for ω < 2.2 eV. The magnetization is shown for a primitive cell. (d) Schematic
spin and orbital projected band structure of MoTe2 near the K point. Blue (red) indicates spin up (down) states, while the valence and conduction
bands have a major contribution from d−2 and d0 orbitals, respectively. I–IV denote four possible interband transitions.

Eqs. (2) and (3) as (see Supplemental Material [25])

ξ
i,β
ab (0; ω,−ω)

= τ
πμBe2Vu.c.

2h̄2

∫
dk

(2π )3

×
∑
m �=l

flm
[
ra

lm, rb
ml

](
β i

mm − β i
ll

)
δ(ωml − ω). (4)

Here [ra
lm, rb

ml ] = ra
lmrb

ml−rb
lmra

ml is the interband Berry curva-
ture, while β i

ml = β i
mm−β i

ll is the difference between the
spin/orbital polarization on band m and l . This formalism
is illustrated on the right side of Fig. 1(b): Light pumps
transitions between bands m and l , and the transition rate
R is determined by R ∝ [ra

lm, rb
ml ]δ(ωml − ω). The pumping

process is compensated by the relaxation from band l back to
band m, which is characterized by the relaxation time τ . In
steady state, the occupation number of the conduction band
m is δ fm,l ∝ Rτ . Equation (4) simply states that the mag-
netization induced by light is δM ∝ δ fm,lβ i

ml . MoTe2 has
a direct band gap at K/K′ points, and we schematically plot
the band structure of MoTe2 near the K valley in Fig. 2(c),
while the K′ valley can be similarly analyzed. The valence
bands and conduction bands have major contributions from
d−2 = 1√

2
(dx2−y2 − idxy) and d0 = dz2 orbitals of Mo atom,

respectively [25]. Each of the valence and conduction bands
is twofold degenerate without SOC, and the degeneracy is
broken by spin-orbit coupling (SOC). The Zeeman type spin
splitting (up and down along the z direction) induced by
SOC is indicated by the red (spin up) and blue (spin down)
color. Note that the orbital character is mostly determined by
crystal field; thus SOC does not significantly change it. There
are four possible interband transitions, indicated by I–IV in
Fig. 2(d). II and III have sizable Sz, while I and IV have
Sz ≈ 0. However, Sz of II is opposite to that of III, so
the contributions from II and III tend to cancel each other
and one has ξ z,S

xy ∼ II − III. As for the orbital part, all four
transitions I–IV contribute to Lz, and their contributions are
the same (Lz ≈ 2 for d−2 → d0) and should be summed

up; thus ξ z,L
xy ∼ I + II + III + IV. Furthermore, since II and III

flip spin, their transition rate should be much lower than that of
I and IV. Therefore, in general one would have ξ z,L

xy � ξ z,S
xy . In

fact, light directly interacts with the orbital degree of freedom
of the electrons, and leads to nonzero ξ z,L

xy with the orbital
texture. The interaction is then transmitted to the spin degree
of freedom by SOC, which leads to a finite ξ z,S

xy [35]. Also, the
spin texture in MoTe2 is created by SOC. Thus, one should
naturally expect that the orbital contribution to the magnetiza-
tion should be much greater if SOC is not too strong. Actually,
without SOC, the spin-rotation symmetry is conserved, and
the two valence bands and conduction bands are degenerate
(no spin splitting). In this case, ξ z,S

xy vanishes, whereas ξ z,L
xy

persists [25].
We now briefly compare the magnitudes of NLEE and

LEE. The peak value of ξ z,T
xy is on the order of 103 μB/( V

Å )
2

[Fig. 2(c)]. We have also calculated the LEE response function
ζ i

a of MoTe2, which exists only when the electron Fermi
level EF is tuned into the valence or conduction bands, so
that the system becomes metallic. When EF is 0.2 eV in-
side the valence or conduction bands, ζ i

a is on the order of
0.1 ∼ 1 μB/V

Å [25]. This indicates that with E � 10 MV/m,
the NLEE strength would exceed that of LEE (indicated by
ξE2 > ζE ). Here we would like to remark that the NLEE
magnetization can be detected by a pump-probe scheme: One
first applies a strong pulsed laser to induce the magnetism
in the system, then use a second weaker laser to detect the
magnetism with magneto-optical effects, such as Faraday ro-
tation, or Kerr rotation. Generally, the NLEE response tensor
is on the order of 100 μB/( V

Å )
2

(except for nonmagnetic ma-
terials under linearly polarized light). Therefore, when the
electric field from the light is on the order of 1 V/nm, the
NLEE magnetization would be on the order of 1 μB per
unit cell, which is magnitudewise comparable with that of
common magnetic materials, and is readily detectable. An
electric field of 1 V/nm corresponds to a light intensity of
1.3 × 1011 W/cm2, which is an experimentally accessible
intensity, especially with pulsed lasers.
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FIG. 3. The nonlinear Edelstein effect under linearly polarized light of bilayer MoTe2 with AA (left), AA′ (middle), and AB (right column)
stacking patterns. (a), (d), (e) are schematic plots of the stacking pattern. (b), (e), (h) show the magnetic order under linearly polarized light
with the green arrows indicate the magnetization from the nonlinear Edelstein effect. Pink: Mo; cyan: Te. (c), (f), (i) show the response function
ηx,T

xx = −ηx,T
yy for the upper layer and the lower layer.

C. Bilayer MoTe2: Stacking dependent magnetic orders.

As described in the previous section, the NLEE magnetiza-
tion of monolayer MoTe2 is the same for all unit cells, which
can be considered as in-plane FM ordering. On the other
hand, in multilayer or multisublattice systems, the different
layers or sublattices may have different chemical/structural
environments, and the local NLEE magnetizations associated
with these layers (sublattices) do not have to be the same. As
a result, various magnetization orderings, including AFM and
FM, can be realized.

Here we use bilayer MoTe2 as an example. Two mono-
layer MoTe2 are stacked along the z direction, and there can
be many different stacking patterns. Three high symmetry
stacking patterns of bilayer MoTe2 are shown in Fig. 3. In
AA stacking [Fig. 3(a)], Mo (Te) atoms of the upper layer
sit directly above the Mo (Te) atoms of the lower layer,
and the two layers are mirror images of each other, with
a horizontal mirror plane Mz [dashed line in Fig. 3(a)]. In
AA′ stacking [Fig. 3(d)], Mo (Te) atoms in the upper layer
are above the Te (Mo) atoms in the lower layer, and there
is an interlayer inversion symmetry P; the inversion center
is indicated by the black box in Fig. 3(d). Finally, the AB
stacking [Fig. 3(g)] can be obtained by shifting the upper
layer of the AA stacking by a vector of 1

3 (a1 + a2), where
a1 and a2 are lattice vectors [Fig. 3(a)]. Note that AB stack-

ing has neither Mz nor P . According to our first-principles
calculations, the AA′ configuration has the lowest energy,
and AB has slightly higher energy (0.018 eV per unit cell),
whereas AA has much higher energy (0.163 eV per unit
cell).

Although the van der Waals interaction between the two
MoTe2 layers is weak, the stacking pattern strongly affects
the NLEE magnetization pattern. Here we calculate the layer-
resolved (see Methods) response function ηx,T

xx = −ηx,T
yy for

all three stacking patterns. In Fig. 3, η for the upper (lower)
layer corresponds to the NLEE magnetization of the upper
(lower) layer under light. One can see that the NLEE mag-
netization patterns are distinct for the three stacking patterns:
For AA stacking, ηT on the upper and lower layers are ex-
actly opposite [Fig. 3(c)]; thus under light illumination, the
NLEE magnetization on the upper and lower layers would be
antiparallel, which is AFM ordering. Note that the total mag-
netization of the upper and lower layers is exactly zero, but
the local magnetization on each layer does exist, reminiscent
of the AFM order. For AA′ stacking, the two layers exhibit
parallel magnetization [ηT on the upper and lower layers are
equal, Fig. 3(f)], which can be considered as an FM ordering.
Finally, for the AB stacking, ηT on the upper and lower layers
do not exhibit a simple relationship [Fig. 3(i)], and different
NLEE magnetization on upper and lower layers (staggered
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FIG. 4. (a) Reciprocal space local spin/orbital
texture Plβ

x
mm(k)Pl for the highest valence band on

the upper and lower layer of bilayer MoTe2. The left
(right) column is the spin (orbital) texture. (b) Real-
space magnetization texture on a moiré pattern. The
blue and pink arrows indicate magnetization on the
upper and lower layers, respectively.

magnetism) is thus expected. The magnetic orderings of dif-
ferent stacking patterns come from symmetry constraints. For
example, in AA stacking the interlayer mirror operation Mz

swaps the two layers and flips Mx. Consequently, local Mx

associated with the two layers must be the opposite to preserve
the mirror symmetry of AA stacking. Actually, this effect
is also manifested in the layer-projected k-space spin/orbital
texture Plβ

x
mm(k)Pl (see Methods), as shown in Fig. 4(a) for

the highest valence band. One can see that for any k point, the
textures on the upper and lower layers are exactly opposite to
each other. In equilibrium states, the spin/orbital polarizations
of all occupied states sum up to zero; hence local spin/orbital
polarizations are hidden [36]. However, when the system is
driven out of equilibrium, the hidden magnetization emerges,
and an AFM magnetization appears. Similar reasonings apply
to the AA′ stacking pattern, where the inversion symmetry
P enforces FM ordering. As for AB stacking, there are no
interlayer symmetry constraints; hence the magnetizations
on the two layers are not directly correlated. Interestingly,
when the two layers are twisted to form a moiré pattern, a
real-space spin texture can be created. The moiré pattern has
spatially varying stacking patterns, which leads to spatially
varying magnetic orderings with NLEE [Fig. 4(b)]. Besides,
the nonequilibrium magnetization can be either (anti-) parallel
or perpendicular to the electric field, which may lead to in-
teresting physical phenomena. Particularly, the (anti-) parallel
electric and magnetic field can be regarded as a nonlinear
axion coupling [37].

D. CrI3: AFM order manipulation

Until now, we have been discussing nonmagnetic materi-
als, where the spontaneous magnetization M0 is zero, and a
nonequilibrium magnetization δM is generated under light.
This can be considered as a nonmagnetic to magnetic transi-
tion. On the other hand, in magnetic materials, there is already
finite spontaneous magnetization M0 in equilibrium. Light
illumination could induce an additional NLEE magnetization
δM. This δM can be considered as an effective magnetic field
Heff , which exerts torques on M0. Previous studies based on
LEE suggest that this Heff can cause the precession of mag-

netic moments, and a magnetic phase transition may occur
when Heff is strong enough [4,38,39]. Recently, the AFM
spintronics [7,40,41] has attracted great interest. Compared
with FM materials, using AFM materials has several advan-
tages, such as the insensitivity to external magnetic fields,
the absence of stray fields, and the fast dynamics with tera-
hertz frequency, etc. Manipulating the magnetic ordering of
AFM materials requires that the torques on the two mag-
netic sublattices are opposite so that no net magnetization
is induced. Obviously, this cannot be achieved with a static
external magnetic field. A few approaches have been proposed
to manipulate AFM ordering, such as electrical approaches
based on LEE [5,12,42], and optical approaches [7] based on
IFE [43].

Here we propose that NLEE can be an alternative method-
ology for manipulating AFM ordering. Compared with LEE,
NLEE applies to semiconductors, and the choice of light
frequency, polarization, and intensity could provide good flex-
ibility. Furthermore, the ultrafast ultrastrong pulsed lasers
render it possible to manipulate the AFM ordering, and even
trigger AFM order switching (i.e., M0 → −M0) on a picosec-
ond timescale. To illustrate the NLEE in magnetic materials,
we take bilayer CrI3 as an example. The magnetic ground
state of bilayer CrI3 is AFM with the magnetization M0 along
the z direction [44]. To be specific, we assume that M0 on
the upper (lower) layer point downwards [upwards, inset of
Fig. 5(a)]. The layer-resolved response functions η and ξ

under this configuration are plotted in Fig. 5, where a positive
(negative) value of η/ξ indicates a δM = ηE2/ξE2 along the
+z (−z) direction. One can see the under CPL that δM on
the two layers are parallel to each other, whereas under LPL
they are (approximately) antiparallel. Notably, for ω � 3 eV,
η on the upper (lower) layer is negative (positive), so δM is
opposite to M0, which can be utilized to swap the magnetiza-
tion and trigger an AFM order switching. The opposite NLEE
magnetizations on the upper and lower layers are beneficial
since it would keep the total magnetization zero, so that the
system stays AFM. We estimate the effective magnetic field
from Heff = δMJex

(μB )2 , where Jex is the exchange energy between
carrier spin and the local magnetic moment, and is estimated
to be ∼1 eV from band structures (see the Supplemental
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FIG. 5. Nonlinear Edelstein effect of antiferromagnetic CrI3 with magnetization along the z axis. Under (a) linearly and (b) circularly
polarized light, the light-induced magnetizations are antiparallel and parallel on the two layers, respectively. Inset of (a): atomic strcuture of
bilayer CrI3. The green arrows indicate the equilibrium magnetization.

Material [25]: For an order of magnitude estimation, here we
assume that carrier orbital and spin magnetization have iden-
tical exchange energy with local magnetic moment). From
Fig. 5(a) one can see that η is on the order of 100 μB/( V

Å )
2
,

yielding Heff ∼ 106 T/( V
Å )

2
. Therefore, an electric field E ∼

0.1 MV/cm (corresponding to light intensity ∼ 27 MW/cm2)
could generate an Heff ∼ 1 T, which is a strong enough co-
ercive field to trigger a magnetic-order transition in CrI3 [3].
The temperature increase under such light illumination is es-
timated to be on the order of 10 K [25]; thus CrI3 can be kept
below its Néel temperature, which is around 45 K [44,45].

III. DISCUSSION

First, we would like to discuss the relationship be-
tween NLEE and IFE [46–48] and ICME [49–51], which
also generate an effective magnetic field H eff under CPL
and LPL, respectively. The light-matter interaction through
the electric field can be described by the Hamiltonian
Hint = ∑

ab
1
2εabEaE∗

b , where εab is the dielectric function.
Phenomenologically, IFE and ICME come from the deriva-
tive of Hint with respect to magnetization; i.e., H eff

k =
∂Hint
∂Mk

= ∑
ab

1
2

∂εab
∂Mk

EaE∗
b . The dielectric function εab depends

on the magnetic state of the system. Due to the sym-
metry constraints [52], to the lowest order ε satisfies
ε

(a)
ab = ∑

k αabkMk
0 and ε

(s)
ab = ε0

ab + 1
2

∑
kl βabkl Mk

0 Ml
0, where

ε0 is vacuum permittivity, while ε(a)/ε(s) are the asymmet-
ric/symmetric part of ε. αabk and βabkl are phenomenological
parameters. Thus, after the derivative with respective to
M one has H IFE

k ∝ ∑
ab αabk (EaE∗

b − EbE∗
a ) and H ICME

k ∝∑
abl βabkl Ml

0(EaE∗
b + EaE∗

b ). Consequently, in nonmagnetic
materials (M0 = 0), IFE can exist, while ICME must vanish.
On the other hand, NLEE, which generates nonequilibrium

magnetization δM, can be understood as the derivative of Hint

with respect to magnetic field; i.e., δMk = ∑
ab

1
2

∂εab
∂Hk

EaE∗
b .

Since H and M are conjugate variables, NLEE and IFE/ICME
can be regarded as two complementary perspectives on the
same magneto-optic effect. Notably, our quantum theory pro-
vides an approach to calculate the response function χ

i,β
ab

with ab initio calculation, whereas αabk and βabkl are more
difficult to calculate directly. In addition, we clarify that the
magnetization δM, or equivalently the effective field H eff ,
can be generated under LPL in nonmagnetic materials if the
frequency of the light is above the band gap of the material, in
contrast to the conclusion from the phenomenological analy-
sis above, which suggests that H ICME

k should be zero when Ml
0

is zero. The reciprocity is broken by energy dissipation and
the NLEE can be regarded as a nonreciprocal process.

Second, the spin dynamics in AFM materials such
as CrI3 under NLEE remains to be studied. Note that
under LPL, one (approximately) has δMk ∝ H ICME

k ∝∑
abl βabkl Ml

0(EaE∗
b + EaE∗

b ). When the magnetic anisotropy
is not too strong, it is reasonable to assume that the off-
diagonal terms (k �= l) of βabkl are much smaller the diagonal
terms (k = l); thus H should be approximately (anti-) parallel
to M0, which is verified by our ab initio calculations [25]. The
spin dynamics under H with such a pattern shall be studied
carefully to determine whether it is possible to trigger AFM
order switching, and if possible, to determine the optimal light
pulse intensity, polarization, and duration.

IV. CONCLUSION

In conclusion, we have developed a quantum theory of
the nonlinear Edelstein effect, which is the generation of
magnetization under light illumination. Based on symmetry
analysis, we demonstrate that the NLEE is not constrained by
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either spatial inversion symmetry or time-reversal symmetry,
and is thus widely applicable to many materials systems in
a noncontact manner. Particularly, we elucidate that orbital
and spin magnetization could emerge even in conventionally
nonmagnetic materials under linearly polarized light, which
is counterintuitive. We attribute this to the breaking of time-
reversal symmetry by the energy dissipation of photocurrents
under light illumination. Then we demonstrate various fea-
tures of the NLEE. First, we illustrate that the contribution
from the orbital degree of freedom to the total NLEE magne-
tization can be much higher than that from the spin degree of
freedom, which is opposite to the common notion for equilib-
rium (intrinsic) magnetizations. Then using bilayer MoTe2 as
an example, we show that different optomagnetic orderings,
including ferromagnetic and antiferromagnetic orderings, are
realizable in multilayer or multisublattice systems, depending
on the symmetries that the system possesses. Finally, with
bilayer CrI3 as an example, we demonstrate that the mag-
netization induced by NLEE may also effectively manipulate
magnetic ordering in semiconducting and insulating magnetic
materials, unlike the linear Edelstein effect which is appli-
cable only in metals. Magnitudewise, the NLEE can lead to
larger magnetization than the LEE when the electric field
strength is greater than 10 MV/m. Experimentally, a (pulsed)
laser with electric field strength on the order of 1 V/nm would
be able to generate a magnetization on the order of 1 μB per
unit cell, which is readily detectable. The NLEE provides a
convenient way to generate magnetization with light, and may
find applications in, e.g., ultrafast spintronics and quantum
information processing.

V. METHODS

Density functional theory and Wannier calculations

The Vienna ab initio simulation package (VASP) [53,54]
is used for the first-principles calculations based on density
functional theory (DFT) [55,56]. The exchange-correlation
interactions are treated by the generalized gradient approxi-
mation (GGA) in the form of Perdew-Burke-Ernzerhof (PBE)

[57]. Projector augmented wave (PAW) method [58] and
plane-wave basis functions are used to treat the core and
valence electrons, respectively. For DFT calculations, the first
Brillouin zone is sampled by a �-centered k mesh with a
grid of 25 × 25 × 1 for MoTe2 and 15 × 15 × 1 for CrI3. The
DFT+U method is adopted to treat the d orbitals of spin
polarized Cr atoms in CrI3 (U = 3.0 eV). Tight-binding
orbitals are generated from Bloch waves in DFT calculations,
using the WANNIER90 package [59]. The tight-binding Hamil-
tonian is then used to interpolate the band structure on a much
denser k mesh to calculate the LEE and NLEE response func-
tions, which is 512 × 512 × 1 for MoTe2, and 320 × 320 × 1
for CrI3. The k-mesh convergence is well tested. In order
to calculate the real-space local magnetization, we define a
projection operator Pl = ∑

i∈l |ψi〉〈ψi|, where l denotes the
spatial region (e.g., lth layer in a multilayer system, or the
lth sublattice in a multisublattice system), while |ψi〉 is the
tight-binding orbital belonging to region l . Then the operator
PlβPl is to replace β operator in Eq. (2). We simply used
atomic orbitals (s, p, d , etc.) to calculate the orbital angular
momentum (β = L), so only the contribution from the intra-
atom term 〈nR|r × p|mR〉 is included, while the contribution
from the interatom term 〈nR|r × p|mR′〉 is neglected. The
model assumptions of (a) a uniform carrier lifetime τ for
all electronic states, and (b) only atomic orbitals (s, p, d ,
etc.) 〈nR|r × p|mR〉 contributing to the total orbital angu-
lar momentum, while neglecting interatomic 〈nR|r × p|mR′〉
contributions, can certainly be systematically improved in fu-
ture works.

The MATLAB code for calculating the NLEE magnetization
is available at [60].
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1 Derivations of Response Functions of Linear and Nonlinear

Edelstein Effect

In this section we derive response function of the linear and nonlinear Edelstein effect (LEE and

NLEE) from linear and quadratic response theory. The derivations are in a similar fashion to that in

Refs. [1, 2], and largely follows the derivations in Ref. [3].

1.1 General Response Theory

The Hamiltonian of the system can be written as

H = H0 + V (S1)

where H0 is the unperturbed Hamiltonian, while V is a perturbation. Without the interaction term V ,

the equilibrium density matrix should be

ρ0 =
1

Z
e−βH0 (S2)

where β = 1/kBT , with kB as the Boltzmann constant and T as the temperature. Note that [ρ0, H0] = 0.

The interaction V will lead to a change in density matrix δρ. When V is weak, perturbation theory

can be applied and δρ can be expanded in the power of V , δρ = ρ(1)(V ) + ρ(2)(V 2) + . . . , where ρ(n) is

proportional to V n and can be obtained iteratively, as we will show below.

The von Neumann equation describes the dynamics of density matrix ρ(t),

∂ρ

∂t
= − i

~
[H, ρ]− ρ− ρ0

τ
(S3)

The last term −ρ−ρ0
τ

is a dissipation that describes the interaction between the system and the heat

bath: the system always has the tendency to return to the equilibrium state ρ0.
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Let ρ̃(t) = e
t
τ ei

H0
~ tρ(t)e−i

H0
~ t, it is straightforward to verify that

∂ρ̃

∂t
= − i

~
[Ṽ , ρ̃] +

ρ0

τ
e
t
τ (S4)

where Ṽ (t) = ei
H0
~ tV (t)e−i

H0
~ t. Then the differential equation Eq. (S4) can be integrated, yielding

ρ̃(t) = ρ̃(0)− i

~

∫ t

0

dt′[Ṽ (t′), ρ̃(t′)] +
ρ0

τ

∫ t

0

dt′e
t′
τ

= ρ0 + ρ0

(
e
t
τ − 1

)
− i

~

∫ t

0

dt′[Ṽ (t′), ρ̃(t′)]

= ρ0e
t
τ − i

~

∫ t

0

dt′[Ṽ (t′), ρ̃(t′)]

= ρ0e
t
τ − i

~

∫ t

0

dt′

[
Ṽ (t′), ρ0e

t′
τ − i

~

∫ t′

0

dt′′[Ṽ (t′′), ρ̃(t′′)]

]

= ρ0e
t
τ − i

~

∫ t

0

dt′[Ṽ (t′), ρ0e
t′
τ ]− i

~

∫ t

0

dt′

[
Ṽ (t′),− i

~

∫ t′

0

dt′′[Ṽ (t′′), ρ̃(t′′)]

]
= · · ·

(S5)

By iteratively putting ρ̃(t) into the bracket on the rightmost of the equation above, we can obtain

ρ̃(0)(t) = ρ0e
t
τ

ρ̃(n+1)(t) = − i
~

∫ t

0

dt′[Ṽ (t′), ρ̃(n)(t′)]
(S6)

Noticing ρ(t) = e−
t
τ e−i

H0
~ tρ̃(t)ei

H0
~ t, we have

ρ(0) = ρ0 (S7)

and

ρ(n+1)(t) = e−
t
τ e−i

H0
~ tρ̃(n+1)(t)ei

H0
~ t

= − i
~

∫ t

0

dt′e−
t
τ e−i

H0
~ t[Ṽ (t′), ρ̃(n)(t′)]ei

H0
~ t

= − i
~

∫ t

0

dt′e−
t−t′
τ e−i

H0
~ (t−t′)[V (t′), ρ(n)(t′)]ei

H0
~ (t−t′)

=
i

~

∫ t

0

dt′e−
t′
τ e−i

H0
~ t′ [V (t− t′), ρ(n)(t− t′)]ei

H0
~ t′

(S8)

Next we shall go from time domain to the frequency domain by Fourier transformations. Using
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V (t− t′) =
∫

dω
2π
V (ω)eiω(t−t′), ρ(1) can be calculated as

ρ(1)
nm(t) =

〈
n
∣∣ρ(1)(t)

∣∣m〉
=
i

~

∫ t

0

dt′
〈
n
∣∣∣e− t′τ e−iH0

~ t′ [V (t− t′), ρ0]ei
H0
~ t′
∣∣∣m〉

=
i

~

∫
dω

2π
〈n|[V (ω), ρ0]|m〉 eiωt

∫ t

0

dt exp

(
i

~

[
(Em − En) +

i~
τ
− ~ω

]
t′
)

=
i

~

∫
dω

2π
Vnm(ω)(fmm − fnn)eiωt

exp
(
i
~

[
(Em − En) + i~

τ
− ~ω

]
t
)
− 1

i
~

[
(Em − En) + i~

τ
− ~ω

]
=

∫
dω

2π
eiωt

fnmVnm(ω)

Emn − ~ω + i~
τ

(S9)

Obviously, in the frequency domain one has

ρ(1)
nm(ω;ω) =

fnmVnm(ω)

Emn − ~ω + i~
τ

(S10)

where fnm = 〈n|ρ0|m〉 is the equilibrium distribution function, and Vnm = 〈n|V |m〉. Then, the second

order ρ(2) is

ρ(2)
nm(t) =

〈
n
∣∣ρ(2)(t)

∣∣m〉
=
i

~

∫
dω′

2π
eiωt

∫ t

0

dt′ exp

(
i

~

[
(Em − En) +

i~
τ
− ~ω′

]
t′
)∑

l

(
Vnl(ω

′)ρ
(1)
lm(t− t′)− ρ(1)

nl (t− t′)Vlm(ω′)
)

=

∫
dω

2π

∫
dω′

2π
ei(ω+ω′)t 1

Emn − ~(ω + ω′) + i~
τ

∑
l

(
flmVnl(ω

′)Vlm(ω)

Eml − ~ω + i~
τ

− fnlVnl(ω)Vlm(ω′)

Eln − ~ω + i~
τ

)
(S11)

We have

ρ(2)
nm(ω + ω′;ω, ω′) =

1

Emn − ~(ω + ω′) + i~
τ

∑
l

(
flmVnl(ω

′)Vlm(ω)

Eml − ~ω + i~
τ

− fnlVnl(ω)Vlm(ω′)

Eln − ~ω + i~
τ

)
(S12)

For an arbitrary operator θ, the thermal expectation value of θ should be

〈θ〉 = Tr(θρ) (S13)

The equilibrium value is 〈θ〉(0) = Tr(θρ0), while the first order response is

〈θ〉(1)(ω;ω) =

∫
dk

(2π)3

∑
mn

θmnρ
(1)
nm(ω;ω)

=

∫
dk

(2π)3

∑
mn

fnmθmnVnm(ω)

Enm − ~ω + i~
τ

(S14)

Here we use the Bloch waves |nk〉 as basis functions, and the explicit dependence on k is omitted. The
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the second order response is

〈θ〉(2)(ω + ω′;ω, ω′) =

∫
dk

(2π)3

∑
mn

θmnρ
(2)
nm(ω + ω′;ω, ω)

=

∫
dk

(2π)3

∑
mnl

θmn

Emn − ~(ω + ω′) + i~
τ

(
flmVnl(ω

′)Vlm(ω)

Eml − ~ω + i~
τ

− fnlVnl(ω)Vlm(ω′)

Eln − ~ω + i~
τ

)

=

∫
dk

(2π)3

∑
mnl

flmVlm(ω)

Eml − ~ω + i~
τ

(
θmnVnl(ω

′)

Emn − ~(ω + ω′) + i~
τ

− Vmn(ω′)θnl

Enl − ~(ω + ω′) + i~
τ

)
(S15)

The last equity can be obtained with an interchange of dummy variables as (n→ l, l→ m,m→ n).

1.2 Linear Edelstein Effect

In treating the light matter interaction, there are two different but equivalent approaches. One

uses the so-called length gauge, and V is treated as

V = −er ·E (S16)

The other uses the velocity gauge, which we will describe in the next section. These two gauges are

equivalent, as discussed in Refs. [4, 5].

For the LEE, one needs to study metallic systems with vanishing bandgap, and it is more convenient

to use the length gauge. In a infinite periodic system, it is ambiguous to defined the position operator

r. A standard approach is to divide r into an interband (e) and an intraband (i) part [6],

r = r(e) + r(i) (S17)

The interband terms (m 6= n) are well-defined and should be

r(e)
mn = (1− δmn)〈mk|r|nk′〉 = (1− δmn)δkk′

vmn
iωmn

(S18)

However, it is not straightforward to get the diagonal terms (m = n). Because for a infinite periodic

system, the wavefunction spreads in the entire space and 〈nk|r|nk〉 should be divergent. An alternative

is to use

r(i)
mn = δmn〈mk|r|nk′〉 = δmnδkk′(ξnn + i∇k) (S19)

where ξnn(k) = 〈unk|i∇k|unk〉 is the Berry connection, where |unk〉 is the cell-periodic part of the

wavefunction. Note that ξnn(k) is well-defined and does not suffer from divergence problem. When r(i)

is multiplied with any function g, the derivative with respect to k leads to an additional term ∇kg after

5



an integration by part. It is easy to check that for any operator O which is diagonal in k, one has

〈mk|[r(i), O]|nk′〉 = iδkk′(O)mn;k (S20)

where (O)mn;k is the generalized derivative of O and is defined as

(O)mn;k = ∇kOmn − i(ξmm − ξnn)Omn (S21)

When we use the length gauge, the interband part can be dealt with as a normal operator. On the

other hand, the intraband part contains a derivative ∇k and needs extra care. It is better to start from

the operator form in Eq. (S8), rather than the explicit matrix component form in Eqs. (S10, S12). One

has

ρ(1)
nm(t) =

〈
n
∣∣ρ(1)(t)

∣∣m〉
=
i

~

∫ t

0

dt′
〈
n
∣∣∣e− t′τ e−iH0

~ t′ [V (t− t′), ρ0]ei
H0
~ t′
∣∣∣m〉

=
−ieE(ω)

~

∫
dω

2π

〈
n
∣∣[r(e)(ω) + r(i)(ω), ρ0]

∣∣m〉 eiωt ∫ t

0

dt exp

(
i

~

[
(Em − En) +

i~
τ
− ~ω

]
t′
)

=
−ieE(ω)

~

∫
dω

2π
〈n|[r(e)(ω) + r(i)(ω), ρ0]|〉eiωt

exp
(
i
~

[
(Em − En) + i~

τ
− ~ω

]
t
)
− 1

i
~

[
(Em − En) + i~

τ
− ~ω

]
= −eE(ω)

∫
dω

2π
eiωt

{
(1− δmn)rnm(ω)(fmm − fnn) + iδmn(ρ(0))nm;k

}
Emn − ~ω + i~

τ

= −eE(ω)

∫
dω

2π
eiωt

{
(1− δmn)

fnmrnm(ω)

Emn − ~ω + i~
τ

+ δmn
i∇kfn

Emn − ~ω + i~
τ

}
(S22)

where we have

ρ(1,e)
mn (ω) = (1− δmn)

−eE(ω)fnmrnm(ω)

Emn − ~ω + i~
τ

= (1− δmn)
ieE(ω)~fnmvnm(ω)

Emn(Emn − ~ω + i~
τ

)

ρ(1,i)
mn (ω) = δmn

−ieE(ω)∇kfn

Emn − ~ω + i~
τ

(S23)

corresponding to the interband and intraband contributions, respectively. The response function for an

arbitrary operator θ should be

σθa =
ie

~

∫
dk

(2π)3

{∑
m 6=n

fnmθmnv
a
nm

ωmn(ωmn − ω + i/τ)
−
∑
n

θnnv
a
nn

−ω + i/τ
δ(En − EF )

}
(S24)
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where we have used the zero-temperature distribution function fn = H(En − EF ) and

∂fn
∂ka

=
∂fn
∂En

∂En
∂ka

= vannδ(En − EF )

(S25)

with EF as the Fermi level. Here H(x) and δ(x) are the Heaviside step function and Dirac function,

respectively.

For metallic systems under static field ω = 0, the major contribution comes from intraband term,

and one has

σθa = − iτe
~

∫
dk

(2π)3

∑
n

θnnv
a
nnδ(En − EF ) (S26)

Replacing θ with gµBβ, where g is the g-factor, we obtain the response function for LEE

ζi,Ba = − igµBτeVu.c.

~

∫
dk

(2π)3

∑
n

βinnv
a
nnδ(En − EF ) (S27)

where we have included the volume of a unit cell Vu.c..

1.3 Nonlinear Edelstein Effect

For NLEE, it is more convenient to use the velocity gauge. The light-matter interaction is included

by replacing p with p− eA, which is the canonical momentum. If p only appears in the kinetic energy

term p2

2m
in the Hamiltonian, then the light-matter interaction can be treated with

V (ω) = −e
N∑
i=1

vi ·A(ω)

=
ie

ω

N∑
i=1

vi ·E(ω)

(S28)

After a second quantization, we have Vnm(ω) in the basis of Bloch waves

Vnm(ω) =
ie

ω
vbnmEb(ω) (S29)

Putting Eq. (S28) back into Eq. (S15), and replacing θ with gµBβ, one obtains the response function

for NLEE,

χi,βbc (0;ω,−ω) = −gµβVu.c.e
2

~2ω2

∫
dk

(2π)3

∑
mnl

flmv
b
lm

ωml − ω + i
τ

(
βimnv

c
nl

ωmn + i
τ

− vcmnβ
i
nl

ωnl + i
τ

)
(S30)

where we have replaced Emn with ~ωmn, and included Vu.c.. Eq. (S30) is exactly the same as Eq. (2) in
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the main text.

1.4 NLEE under CPL in T -conserved Systems

Under CPL in T -conserved Systems, the formula Eq. (S30), which involves three-band transitions,

can be simplified into a two-band formalism.

First, we need to factorize the denominators of Eq. (S30) with1

D1 =
1

ωmn + iδ
=

P

ωmn
− iπδ(ωmn)

D2 =
1

ωml − ω + iδ
=

P

ωml − ω
− iπδ(ωml − ω)

(S31)

where P stands for the Cauchy principal value in k integration. As discussed in the main text, under

T operation, one has T βi(k) = −βi∗(−k) and T va(k) = −va∗(−k). Therefore the numerator of Eq.

(S30), N iab(k) = βi(k)va(k)vb(k), transforms as T N iab(k) = −N iab∗(−k). Since the denominators are

invariant under T , one has Niab(k)
D1(k)D2(k)

= − Niab∗(−k)
D1(−k)D2(−k)

. Consequently, after a summation over ±k,

only the imaginary part of N iab(k) would contribute to the final result, and thus we can ignore the real

part of N iab(k) and treat it as a purely imaginary quantity.

Under CPL, Ea and Eb has a phase difference of i. Since the static spin polarization should be a

real quantity, and the numerator N iab(k) can be regarded as purely imaginary, one needs to pick up

the real part of the denominator D1(k)D2(k), which is

Re(D1D2) =
P

ωmn(ωml − ω)
− π2δ(ωmn)δ(ωml − ω) (S32)

One can see that the first and second term in Eq. (S32) corresponds to m 6= n and m = n, respectively.

In case that τ → 0, the contribution from the first term is much smaller than the second term and thus

we only consider the second term.

Putting m = n (n = l) in the first (second) term of Eq. (S30), and taking the asymmetry part

(ab↔ −ba), one obtains the response function under CPL,

ξi,βab (0;ω,−ω) = τ
πµBe

2Vu.c.

2~2

∫
dk

(2π)2

∑
m6=l

flm
[
ralm, r

b
ml

] (
βimm − βinn

)
δ(ωml − ω) (S33)

This is exactly Eq. (4) in the main text.

One can see that ξi,Bab is approximately proportional to the lifetime τ , which is numerically verified

in Fig. S1b. Actually, for non-magnetic materials under linearly polarized light, it can be similarly

shown that the NLEE response tensor is approximately independent of τ , which is numerically verified

1Here we only study the first term in the bracket of Eq. (S30), the second term can be treated in a similar fashion.
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in Fig. S1a.

Figure S1: The NLEE response tensors as a function of carrier lifetime τ under (a) linearly polarized light and (b)
circularly polarized light.

2 Supplementary Materials for Monolayer MoTe2

2.1 Spin and Orbital Contributions

As discussed in the main text, in monolayer (ML) MoTe2, the spin-orbit coupling (SOC) leads to

Zeeman-type spin splitting. And around K-point of the Brillouin zone (BZ), the valence and conduction

band (VB and CB) have major orbital contributions from d−2 and d0 orbitals, respectively. These

statements are supported by the spin/orbital projected band structure in Fig. S2.

The spin/orbital textures, i.e., Smm(k) and Lmm(k) are plotted for the two highest VB and two

lowest CB in the whole BZ, as shown in Fig. S3. One can see that the spin textures are anti-parallel

for both the VBs and the CBs, while the orbital textures are parallel.

We have compared the spin texture from the tight-binding Hamiltonian and that from the plane

waves of DFT, and the results are shown in Fig. S4. One can see that they agree well with each other.

Note that due to the limit on the computational power, only a 64× 64× 1 k-mesh is used for the DFT

calculation, so the resolution is lower in Fig. S4a.

As described in the Method section in the main text, we only used the intra-atom angular mo-

mentum matrix elements when calculating 〈mk|L|nk〉. Rigorously speaking, the inter-atomic angular

momentum matrix elements should not be neglected, and in many cases their contributions are on the

order of a few percent of in the total magnetization. However, the computation of these inter-atomic

angular momentum matrix is rather complicated, and to the best of our knowledge, there is no stan-

dard way to do this. There is a modern theory of magnetization [7, 8, 9, 10], which can be applied
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Figure S2: The projected band structure of ML MoTe2 for d0 and d−2 orbitals (upper panels), and spin up and
down states (lower panels). The thin blue curves are the unprojected band structure, while the size of the red dots
indicates the contribution for each spin/orbital.

to rigorously calculate the diagonal element (intraband, m = n) of orbital magnetization in a solid

state system. We have used this modern theory of magnetization to calculate the intraband orbital

texture Ln(k) = 〈nk|L|nk〉 with the WannierBerri package [https://wannier-berri.org/], and the results

for the highest valence band are shown in Fig. S5a. The same texture calculated from the intra-atomic

angular momentum (the methodology used in the current paper, omitting inter-atomic contribution) is

shown in Fig. S5b. One can see that qualitatively they agree well with each other. Quantitatively, the

average of the absolute value of Lz in the first Brillouin zone, 〈Lzn(k)〉 = S
(2π)2

∫
d2k|Lzn(k)|, is 0.77 ~

from modern theory of magnetization (Fig. S5a), and is 0.71 ~ when only the intra-atomic angular

momentum matrix elements are involved (Fig. S5b). Such a mismatch (inter-atomic contribution) on

the order of 10 % is consistent with the results in e.g. Ref. [11]. In the current work, the inter-band

(off-diagonal, m 6= n) contribution 〈mk|L|nk〉 is required , which cannot be obtained from the modern

theory of magnetization. Therefore, considering computational and theoretical complexity, we use the

intra-atomic orbital magnetic moment to perform our calculations.

When SOC is turned off, there are no spin-splittings, the two VB and CB will be degenerated

and there are no specified spin texture. Hence the spin contribution to the total magnetization would

vanish, while the orbital contribution persists. This is verified with our ab initio calculations, as shown

in Fig. S6.
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Figure S3: The spin (upper row) and orbital (lower row) textures of ML MoTe2 for the second highest VB (first
column from the left), highest VB (second column), lowest CB (third column) and second lowest CB (fourth column).
The black boxes indicate K/K′ points.

Figure S4: The spin texture of the highest valence band of monolayer MoTe2 from (a) the plane waves of DFT and
(b) tight-binding model.

11



Figure S5: The orbital texture of the highest valence band of monolayer MoTe2. (a) is calculated from the modern
theory of polarization, while (b) is from the intra-atomic angular momentum matrix elements.

Figure S6: The NLEE response function of ML MoTe2 without SOC. The spin contribution is zero.
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Figure S7: LEE response function ζia as a function of Fermi Level EF for ML MoTe2. VB maximum (VBM) and
CB minimum (CBM) are indicated by the two vertical lines. At T = 0, when EF is inside the bandgap, ζia should be
zero. The finite value of ζia shown in the figure is due to a smearing factor in the numerical computation.

2.2 Linear Edelstein Effect of Monolayer MoTe2

Since MoTe2 is a non-magnetic semiconductor, there should be no LEE for MoTe2 when its Fermi

level EF is inside the bandgap. In order to compare the strength of NLEE and LEE, we manually vary

the Fermi level, and calculate the LEE response function ζia as a function of EF , which is shown in Fig.

S7. One can see that ζia is on the order of 0.1 ∼ 1 µB/
(
V
A

)
when EF is 0.2 eV inside VB or CB.

2.3 Other Contributions to the Nonlinear Magnetization

Besides dipole contribution in the perturbation Eqs. (S16, S28), there could also be the quadruple

interaction, and the Hamiltonian from the quadruple term is Vquad = Qab · ∇aEb, where Q is the

quadruple of the atom and ∇E is the electric field gradient. Basically, the quadruple interaction is

weaker than the dipole interaction by a factor of δE/E0, where δE is the change in the electric field

strength over a length of ∼ 1 Å (size of an atom), and E0 is the (average) strength of the electric

field. In the long wavelength limit (for optical light, the wavelength is 103 ∼ 104 Å), δE/E0 is on

the order of 10−4 ∼ 10−3. For a second-order nonlinear process such as NLEE, the contribution

from the quadruple interaction should be weaker than that from the dipole interaction by a factor of

(δE/E0)2 ≈ 10−8 ∼ 10−6, which is safely negligible.

The contribution from the Zeeman splitting term VZeeman = µBS · B is also very weak. For a

free electron moving in a plane light wave, the interaction with the magnetic field is weaker than that

with the electric field by a factor of v/c, where v is the velocity of the electron and c is the velocity

of light. In a solid state system, similar reasonings apply. One should expect that for NLEE, which

is a second-order nonlinear effect, the contribution from µBS ·B is smaller than that from er · E by

13



a factor of F = (v/c)2, where v the band velocity in the solid system, and is usually on the order of

105 ∼ 106 m/s. Thus, one has F ∼ 10−7, and generally the contribution from the Zeeman term can be

safely neglected as well. We have also directly calculated the contribution from the Zeeman term as

δM i =
gµ2

BVu.c.

~2

∫
dk

(2π)3

∑
mnl

flmS
a
lm

ωml − ω + i
τ

(
βimnS

b
nl

ωmn + i
τ

− Sbmnβ
i
nl

ωnl + i
τ

)
BaBb (S34)

and the result for monolayer MoTe2 under circularly polarized light is shown in Fig. S8. Here we have

converted the magnitude of magnetic field B in a plane wave to the electric field E, making use of the

relationship B = E/c. That is, we use δM i = χiab,BB
aBb =

χiab,B
c2

EaEb and then plot χiab,E = χiab,B/c
2

in Fig. S8. Compare Fig. S8 and Figure 2c in the main text, one can observe that the contribution from

the magnetic field induced Zeeman term is indeed smaller marginal by a factor of ∼ 10−8.

Figure S8: The nonlinear magnetization contributed from the Zeeman splitting term (µBS ·B). The magnitude of
the magnetic field has been converted to that of the electric field by B = E/c

3 Supplementary Materials for Bilayer MoTe2

In the main text we show the total magnetization ηT of BL MoTe2 under LPL. Actually, under

LPL the spin and orbital parts have comparable contributions to the total magnetization. Whereas

under CPL, the orbital part has much greater contribution, similar the situation in the ML MoTe2 case.

Here we take AA stacking as an example, and the results for LPL and CPL as shown in Figs. S9 and

S10, respectively.

In addition, under CPL the magnetization are mostly along the z axis for all three stacking patterns

AA, AA’ and AB, as shown in Fig. S11.
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Figure S9: Spin (left column) and orbital (right column) contributions to the total magnetization of AA stacking
MoTe2 under LPL. The two contributions are comparable.

Figure S10: Spin (left column) and orbital (right column) contributions to the total magnetization of AA stacking
MoTe2 under CPL. The orbital contribution is much greater than the spin contribution.
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Figure S11: NLEE under CPL for AA, AA’ and AB stacking patterns of BL MoTe2. The magnetization is mostly
along z axis for all three stacking patterns.
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4 Supplementary Materials for Bilayer CrI3

4.1 NLEE of Bilayer CrI3 with different magnetic orientations

From phenomenological analysis in the main text, under LPL the NLEE magnetization should

be approximately (anti-)parallel to the equilibrium magnetization. This is verified by our ab initio

calculations with BL CrI3. We manually fix the equilibrium magnetic moment along x = (1, 0, 0),

y = (0, 1, 0) and n = 1√
3
(1, 1, 1) directions, and the NLEE magnetization is found to be mostly along

x, y and n, respectively, as shown in Fig. S12.

Figure S12: The NLEE magnetization under LPL of BL CrI3 when the equilibrium magnetic moment is fixed along
x = (1, 0, 0) (left), y = (0, 1, 0) (middle) and n = 1√

3
(1, 1, 1) (right) directions

4.2 Estimation of the Exchange Energy

The exchange energy Jex between carriers and local magnetization can be estimated from the spin

splitting of energy bands of a FM system around the Fermi level. We used both FM BL CrI3 and

FM ML CrI3, and the band structures are shown in Fig. S13. An exchange energy of Jex ∼ 1 eV is

estimated.
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Figure S13: The band structure of (a) ML and (b) BL CrI3 with FM ordering. SOC is not included and red and
blue curves are spin up and down states. The horizontal dashed lines indicate the Fermi level. The spin splitting
around the Fermi level is used to estimated the exchange energy between carriers and local magnetization.

4.3 Estimation of the Temperature Rise under Light Illumination

The energy dissipation for BL CrI3 under light illumination can be estimated from the absorbance

A(ω) = 1− exp
[
−ω
c
ε(2)d

]
(S35)

where ε(2) is the imaginary part of the dielectric function, while d is an effective thickness. The

absorbance of BL CrI3 is shown in Fig. S14. One can see that the absorbance is roughly A(ω) ∼ 5 %

for ω > 3 eV. Under light with intensity P , the energy absorbed by BL CrI3 is AP . If BL CrI3 is put

on substrate with thermal conductivity κ and thickness d, then the temperature rise of BL CrI3 can be

estimated from

∆T = d
AP

κ
(S36)

Let P = 27 MW/cm2 = 2.7× 1011 W/m2, A = 0.05, κ = 100 W ·m−1 ·K−1, and d = 100 nm, one can

see that ∆T is only 13.5 K. Thus the temperature of BL CrI3 can be kept below its Neel temperature

with decent thermal management.
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Figure S14: The absorbance of BL CrI3.
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