Thermoelectric power generation in the core of a nuclear reactor

Nicholas Kempf a,1, Mortaza Saeidi-Javash a,1, Haowei Xu b,1, Sheng Cheng c,d, Megha Dubey c,d, Yaqiao Wu c,d, Joshua Daw e, Ju Li b,2, Yanliang Zhang a,*,1

a Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
b Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
c Microson School of Materials Science and Engineering, Boise State University, Boise, ID 83725 USA
d Microscopy and Characterisation Suite, Center for Advanced Energy Studies, Idaho Falls, ID 83401 USA
e Measurement Sciences Laboratory, Idaho National Laboratory, Idaho Falls, ID 83415, USA

A B S T R A C T

Thermoelectric energy converters offer a promising solution to generate electrical power using heat in the nuclear reactor core. Despite significant improvements in thermoelectric efficiency of nanostructured materials, the performance of these advanced materials has yet to be demonstrated in the harsh radiation environment of a reactor core. Herein, we demonstrate a thermoelectric generator (TEG) made from nanostructured bulk half-Heusler (HH) materials generating stable electrical power density > 1140 W/m² after 30 days in the MIT Nuclear Research Reactor under an unprecedented fast-neutron (>1 MeV) fluence of 1.5 × 10²⁰ n/cm². Despite an initial degradation due to irradiation damage when operating under relatively low temperatures, our TEG showed a 20-fold increase in power output when operating under high temperature due to in-situ annealing and resulting thermoelectric property recovery. First-principles modeling indicates that a chemically disordered metallic phase was formed under irradiation at lower temperatures, resulting in a drastic degradation in thermoelectric properties, while at sufficiently high temperatures the system returned to the initial chemically ordered HH phase and the thermoelectric properties recovered. Transmission electron microscopy and electron diffraction demonstrated that the chemically disordered phase was formed upon ion irradiation, confirming the prediction from first-principles simulations. The results suggest that with proper control over the TEG operating temperatures, the nanostructured bulk TEGs could produce stable electrical power and operate indefinitely in the core of a nuclear reactor.

1. Introduction

Nuclear reactors are among the energy sources that will continue to be implemented as the world tends toward carbon-neutral electricity production [1,2]. The safety of nuclear power plants can be increased by monitoring critical nuclear fuel parameters like fuel thermal conductivity and temperature. However, such monitoring requires sensors, which in turn require electrical power. Herein we demonstrate the application of a state-of-the-art thermoelectric generator (TEG) as an energy scavenging device that may be used to power sensors and instrumentation in the core of a nuclear reactor, thereby increasing power plant safety without the need for costly data and power cables. Solid-state TEGs are highly scalable energy converters of heat into electrical power through the Seebeck effect [3,4]. While most current thermoelectric research focuses on increasing material performance [5–13], there are relatively few studies on applications of thermoelectric materials and devices in extreme environments. Nuclear fission reactors provide heat flux rich conditions that can be harvested to power primary loop sensors, instrumentation, and other critical equipment during both normal operations as well as during an extended loss of power condition, such as a station blackout event [14]. Radioisotope heated TEGs are already used in deep space exploration where there is insufficient solar irradiance [15], and could also be used in nuclear waste monitoring using the heat generated during long-term decay. While there have been some studies of the irradiation effect on thermoelectric performance of bulk thermoelectric materials like germanium telluride, silicon–germanium, etc. [16–18], they were typically exposed to neutron fluences between 10¹³ to 10¹⁸ n/cm² [15,19]. The combination of thermal and fast neutron irradiation at relatively low temperature (<200 °C) created point defects in these materials, reducing carrier mobility and lowering thermoelectric performance. There are no reports on the in-situ power generation and performance of thermoelectric materials in the core of a nuclear reactor while under extreme radiation exposure.

Thermoelectric material performance is determined by the thermoelectric figure of merit ZT = σ²T/(κₑ + κ₊), where σ is the Seebeck coefficient, σ is the electrical conductivity, T is the absolute temperature,
In-situ performance of the TEG in the reactor core was continuously measured for 30 days. Fig. 2a shows the TEG peak power and the TEG hot- and cold-side temperatures for the duration of the in-core test, while Fig. 2b shows the TEG electrical resistance and the effective Seebeck coefficient, which is defined as the TEG open circuit voltage upon the
The reactor initially ramped to full power (5.7 MW) and the TEG power output quickly reached a maximum value of 1.5 W while the TEG hot-side and cold-side temperatures were 378 °C and 110 °C, respectively (to clearly show the change in power for the duration of the experiment, some transient data during the first 2 days, including the peak to 1.5 W, is omitted from Fig. 2a). Over the following 6 days of in-core testing, the reactor power was intermittently lowered to 3.2 MW, resulting in the 5 drops in TEG hot-side temperature shown in Fig. 2a. During this period, the TEG was operating at relatively low temperatures and the TEG output power experienced a severe drop to 6 mW due to a significant decrease in Seebeck coefficient while electrical resistance sharply increased. This increase in TEG electrical resistance is attributed to the accumulation of irradiation-induced defects that act as scattering centers for charge carriers, lowering carrier mobility and thus electrical conductivity. It is expected that these defects also act to scatter phonons, reducing thermal conductivity. This is supported by Scanning Thermal Microscopy [36] (SThM) which will be discussed in a later section. The reactor was brought back to full power on day 7 and remained at 5.7 MW for the remainder of the test with the exception of two temporary shutdowns for maintenance on days 10 and 15 (some of the transient data from these shutdowns and startups are omitted from Fig. 2). The increase in reactor power on day 7 resulted in a rapid yet slight increase in the TEG hot- and cold-side temperatures from 333 °C and 120 °C to approximately 555 °C and 192 °C, respectively. Within a matter of hours, the TEG open-circuit voltage increased by over 400% despite relatively modest increases of 30% and 70% in mean TEG temperature and the temperature difference across the TEG, respectively (in these temperature ranges, the open-circuit voltage is approximately proportional to the temperature difference for a TEG operating in normal conditions outside of a nuclear reactor core). Even though TEG resistance increased 28% during this transient period, the TEG peak power output showed a 1,926% increase compared to the power output on day 6.5 just before the reactor went to high power. Such a dramatic revival of TEG performance indicates in-situ healing of irradiation induced damage, and the detailed mechanisms will be presented in the following sections which discuss post irradiation examinations and theoretical modeling to explain the changes in thermoelectric material properties.

3. Ion irradiation and post-irradiation examination

To simulate neutron irradiation damage without rendering the thermoelectric materials radioactive, the n- and p-type half-Heusler materials were irradiated with 4.5 MeV alpha particles from an ion beam accelerator. In preparation for irradiation, the bars were polished and copper shields were used to block alpha particles in selected regions of the bar (Supplementary Fig. S3). Each bar had sections separated by shields and each region was irradiated to a dose of 0.005, 0.05, or 0.5 displacements per atom (dpa). After irradiation, the copper shields were removed and SThM [36] was used to simultaneously measure the Seebeck coefficient and thermal conductivity of irradiated and non-irradiated regions at the same time, eliminating uncertainties introduced by measuring the samples at different times, such as oxidation and contamination. The SThM results of the selectively irradiated sample, shown in Fig. 3, indicate an exponential decay in Seebeck coefficient with increasing irradiation dose beyond 0.005 dpa in both the n- and p-type materials. Upon ion irradiation to a dose of 0.05 dpa, the Seebeck coefficients of the n- and p-type materials decreased by 46% and 59%, respectively. At 0.5 dpa, Seebeck coefficient fell by 91% and 99%, respectively. On the other hand, at 0.05 dpa there was a sharp reduction of 61% and 48% in thermal conductivity, respectively, but a partial recovery corresponding to reductions of only 48% and 40% at 0.5 dpa. The reductions in thermal conductivity at the low and intermediate doses are attributed to irradiation-induced defects (Fig. 4 and Supplementary Fig. S4 for HHN and HHP, respectively) that act as phonon scattering centers, while the increase in conductivity at the highest dose is expected to be due to an increase in the electronic component of thermal conduction that outweighs the reduction in conductivity due to defect scattering, as would be expected after the phase change to the disordered metallic phase (see the Phase Change Mechanism section). Additional details about the SThM measurement can be found in the Supplementary Materials.

To uncover the irradiation-induced compositional and microstructural changes, Transmission Electron Microscopy (TEM) and Selected Area Electron Diffraction (SAED) were performed on the irradiated and non-irradiated HHN and HHP samples. The TEM images in Fig. 4a-c and Supplementary Fig. S4a-c show a significant difference in grain sizes between the non-irradiated and irradiated regions of HHN and HHP, respectively. These indicate that ion irradiation provided the kinetic facilitation for grain coarsening to occur in both materials. The original HHN and HHP were synthesized and sintered from solid powders, with a wide distribution of initial grain sizes. After radiation to 0.5 dpa, many of the smallest grains have disappeared while the larger grains grew somewhat. Furthermore, in HHN sub-10 nm radiation defects (dislocation loops and voids) appeared between 0.05 and 0.5 dpa, decreasing the crystallinity of the sample.

Also shown in Fig. 4a-c and Supplementary Fig. S4a-c is a difference in the apparent crystallinity and/or defect density among the regions,
which is highlighted further at increased magnification (Fig. 4d-f, and Supplementary Fig. S4d-f). In the case of the n-type material, the non-irradiated specimen in Fig. 4a,d shows a relatively high density of nanoscale precipitates within a matrix of highly crystalline grains when compared to the specimen irradiated to 0.05 dpa shown in Fig. 4b,e. The precipitates are attributed to the presence of Zirconium and Hafnium-rich secondary phases. As shown in Fig. 4c,f,i the density of these precipitates is lower in the 0.5 dpa sample, which indicates irradiation induced dissolution of these pre-existing Zirconium and Hafnium-rich secondary phases. However, the specimen irradiated to 0.5 dpa also has a very high density of other nanoscale defects, which are a uniform distribution of nanoscale cluster defects such as dislocation loops, which are also seen in the p-type material (Supplementary Fig. S4c,f). Some voids can also be seen in e.g. Fig. 4c and Fig. S4c. Additionally, the insets in Fig. 4d-f show that with increasing irradiation dose, the family of distribution of nanoscale cluster defects such as dislocation loops, which confirm that the irradiation induced a phase change in the n-type material. The forthcoming discussion considers the n-type material from the native semi-conducting half-Heusler phase $A_B B C D_0$ to a metallic phase of the form $A_1 B_1 C_1 D_0$, as described in the following section and in Supplementary Fig. S5. The same change is observed in the SAED patterns of the p-type material (Supplementary Fig. S4d,e), but to a lesser extent. Note that SAED patterns could not be obtained for the HHP sample irradiated to 0.5 dpa because the sample became amorphous upon thinning in preparation for TEM.

4. Phase change mechanism

As described above, the TEG electrical power output dropped significantly during the first week while the reactor was kept at low power and TEG temperatures were relatively low. The TEG power recovered rapidly when the reactor was brought to full power and the temperature increased on day 7. The drastic recovery of the TEG performance indicates atomic level phase change. The forthcoming discussion considers n-type $H_{0.25}Zr_{0.75}NiSn$ only; however, the same phenomena are predicted for the p-type material $Nd_{0.75}Ti_{0.25}FeSb$ and the analogous calculations and figures can be found in the Supplementary Information (Supplementary Fig. S6). The dopant $Sb_{0.01}$ is not included in the simulations due to the limited computational power. The atomic structure of $H_{0.25}Zr_{0.75}NiSn$ is shown in the inset of Fig. 5a. The sites occupied by Zr (Hf), Ni, and Sn are labeled as A, B, and C, respectively. There are also vacancy sites between A and C sites, which are called D sites. When all Ni atoms occupy B sites, one has the pristine half-Heusler structure. Ab initio calculations reveal the system is semi-conducting (Fig. 5b) and the Seebeck coefficient is on the order of 100μV/K, which agrees with experimental results (135 ~ 142μV/K at the measured carrier concentration of 2.65 × 10^20cm^-3 in the case of the n-type material). Under irradiation, the atoms are knocked around and some of the sites which are normally vacant (D sites) become occupied. One may expect that Zr (Hf)/Ni/Sn atoms would randomly occupy A/B/C/D sites. On the other hand, calculations indicate that such an entirely random structure is highly energetically unstable, and the resulting material would spontaneously become structurally disordered (amorphous). This contrasts with the SAED patterns which indicate a crystalline structure that is only partially chemically disordered. After careful examination, we found that if some Ni atoms move from B to D sites while Zr (Hf)/Sn atoms stay on the A/C sites, the structure is stable at sufficiently low temperature and will remain crystalline. Remarkably, the thermo-electric properties of the system change dramatically when some Ni atoms move from B to D sites (A$_1$B$_1$C$_1$D$_0$ occupation). A 12-atom $Hf_2Zr_2Ni_4Sn_4$ supercell was used with one Ni atom on the D site ($x = 0.25$). In this case, the system becomes metallic (Fig. 5b). The Seebeck coefficient is reduced to the order of 10μV/K, smaller by a factor of 10 compared to the native structure when all Ni atoms are on the B sites. This explains the sharp drop in Seebeck coefficient and thermoelectric voltage of the TEG when the reactor is first operating at relatively low power during the first week. As the temperature rose on day 7, the system quickly annealed and the increased temperature provided the activation energy necessary for Ni atoms to jump back to their original B sites, which is energetically favorable (Fig. 5a). Nudged Elastic Band (NEB) calculations [37] indicate that the energy barrier for Ni atoms to jump back from D to B sites is about 1.75 eV (Fig. 5a). From transition state theory, the transition rate for each nickel atom from D to B is about 0.01 s$^{-1}$ at 600 K, which is sufficiently fast considering the experimental timescale is on the order of hours/days.

Based on the mechanism proposed above, Ni atoms jumped from B to D sites during the first week and the system became increasingly metallic; however, the TEG electrical resistance initially increased, which is contrary to this prediction. This can be explained as follows: During the first week, irradiation-induced defects such as interstitial loops and vacancy clusters were generated in addition to the order-to-disorder phase change. These defects act as charge carrier scattering centers, increasing electrical resistance. Additionally, after some Ni atoms jump from B to D sites, those Ni atoms may be considered defects that can scatter charge carriers. This suppresses electron lifetime and in turn increases the electrical resistance. However, the Seebeck coefficient

![Fig. 3. SThM results showing thermal conductivity and Seebeck coefficient of the ion-irradiated (a) HHN and (b) HHP materials.](image-url)
is less sensitive to electron lifetime so the Seebeck coefficient would be expected to decrease during the entirety of the first week at low temperature, which is indeed the case (Fig. 2b). In the case of electrical resistance, the scattering effect introduced by irradiation-induced defects outweighs the effect of the phase transition during the first half of the first week at low temperature when the electrical resistance is increasing; however, the phase transition effect becomes dominant as the change in electrical resistance levels off and subsequently begins to decrease on day 4 (Fig. 2b). The recovery from the chemically disordered phase to the original ordered phase after day 7 explains the initial sharp increase in TEG electrical resistance after the switch to high power on day 7. This is consistent with our model: When the temperature rises, the annealing effect drives Ni atoms back to B sites and the system becomes semiconducting again. The higher temperature also provides the activation energy necessary for the ongoing annealing of irradiation induced defects, leading to the steadily decreasing TEG electrical resistance for the remainder of the time in the reactor.

This phase change mechanism is also consistent with the SAED patterns shown in Fig. 4. The electron diffraction pattern was simulated for $A_{1}B_{1-x}C_{x}D_{x}$ and the intensities of $(2n-1, 2n-1, 2m-1)$ spots diminish as x increases (Supplementary Fig. S5). Comparing experimental and simulated SAED patterns, we obtain rough estimations of $x \sim 0.1$ under 0.05 dpa, and $x \sim 0.3$ under 0.5 dpa. The fact that x and dpa are close to each other supports the mechanism we proposed above. For example, if there are 0.5 displacements per atom, then (approximately) half of the Ni atoms have the chance to displace to the D sites, which would lead to $x \sim 0.5$.

![Fig. 4. Transmission Electron Microscopy of the n-type material: (a-i) Bright-field TEM of HHN (Hf$_{0.25}$Zr$_{0.75}$NiSn$_{0.99}$Sb$_{0.01}$) from the (a, d, g) non-irradiated region, (b, e) the region irradiated to 0.05 dpa, and (c, f, h, i) the region irradiated to 0.5 dpa with insets in (d-f) showing SAED patterns along the [1 1 0] zone axis. The center of each image corresponds to a depth of approximately 3 μm from the sample surface.](image-url)
5. Conclusions

A state-of-the-art nanostructured bulk TEG module was inserted into the core of the nuclear power reactor at MIT and the in-situ thermoelectric performance was monitored for 30 days. The reactor was brought to full power (5.7 MW) on the first day and the TEG quickly reached a peak power output of 1.5 W. The TEG temperatures were then decreased and held relatively low for the remainder of the first week, during which time the thermoelectric power output fell severely due to significantly diminished Seebeck voltage and increased electrical resistance. Immediately upon bringing the TEG to moderately high temperature on day 7, the power output increased by a factor of 20 due to a significant recovery in the Seebeck coefficients of the thermoelectric materials comprising the TEG. The TEG power output continued to increase for the remainder of the time in the reactor due to steadily increasing Seebeck voltage (continued recovery to the native chemically ordered phase) and decreasing electrical resistance (continued annealing of irradiation-induced defects that were introduced during the first week at low temperature).

The same materials comprising the TEG were selectively irradiated with alpha particles to uncover the effect of irradiation dose on material properties. Post irradiation examination revealed that defects (dislocation loops, vacancy clusters) were generated under irradiation. Such defects act as scattering sources for charge carriers, lowering mobility and increasing electrical resistance. A chemical order-to-disorder phase transition was also induced under irradiation. Specifically, the Ni (Fe) atoms jump to vacancy sites, rendering the HHN (HHP) system metallic. Simulations show that such a chemically disordered phase has significantly lower Seebeck coefficient than the native phase, consistent with experimental results. When the TEG was brought to high temperature, thermal energy provided the kinetic facilitations necessary for the Ni (Fe) atoms to jump back to their original sites, restoring the semiconducting nature of the thermoelectric materials comprising the TEG. The proposed phase transition mechanism and respective calculations are supported by SAED and SThM measurements.

This work provides new knowledge and understanding on the atomic/nanoscale origin of irradiation induced structure and property changes in nanostructured thermoelectric materials and is expected to expedite innovations and applications of nanostructured materials with enhanced radiation tolerance for nuclear energy applications. In particular, current high-ZT thermoelectric materials are clearly not optimized for in-radiation service, and there is a need for further materials explorations that would enable more advanced radiation-to-electrical energy conversions.

6. Methods

Thermoelectric generator fabrication. To construct the TEG device, n-type and p-type nanostructured bulk half-Heusler elements of sizes 1.8 × 1.8 × 2 mm were brazed to copper electrodes at 825 °C in vacuum using a silver and copper-based brazing alloy (Incusil-ABA). The TEG module consists of 28n-type and p-type HH elements.

In-situ measurements. A current source and nanovoltmeter were used to measure the TEG electrical resistance, while a DC load and programmable multimeter were used to periodically perform current sweeps to measure the TEG power as a function of load resistance. Since

Fig. 5. Atomic phase change of Hf_{0.25}Zr_{0.75}NiSn: (a) the transition path for Ni to jump from B site to D site; (b) density of states when all Ni atoms are on B sites (red curve) and one of four Ni atoms is on D site (blue curve); (c, d) Seebeck coefficient with different carrier concentrations when all Ni atoms are on B sites (c) and one of four Ni atoms is on D site (d). For calculations in (b-d), a 12-atom Hf_{1}Zr_{3}Ni_{4}Sn_{4} supercell is used.
the hot- and cold-side temperatures of the TEG begin to change immediately upon pulling current, the peak power measured with the DC load was typically ≤ 4% of the peak power predicted by theory \(P_{\text{max}} = V_{\text{oc}}/4R \), where \(V_{\text{oc}} \) is the open-circuit voltage of the TEG and \(R \) is the TEG electrical resistance. The TEG Seebeck voltage was monitored continuously with the programmable multimeter.

Scanning thermal microscopy. Microscale Seebeck coefficient and thermal conductivity were measured using a custom in-house fabricated STM\&M probe [36].

Modeling. The first-principles calculations are based on density functional theory (DFT) [38,39] as implemented in the Vienna ab initio simulation package (VASP) [40,41]. The exchange–correlation interactions are treated by a generalized gradient approximation (GGA) in the form of Perdew-Burke-Ernzerhof (PBE) [42]. Core and valence electrons are treated by projector augmented wave (PAW) method [43] and plane-wave basis functions, respectively. Then a tight-binding (TB) Hamiltonian is constructed from DFT results with the help of the Wannier90 package [44]. The TB Hamiltonian is utilized to calculate the Seebeck coefficients on a finer \(k \)-mesh. The \(k \)-mesh convergence for BZ integration is well tested.

CRediT authorship contribution statement

Nicholas Kempf: Conceptualization, Methodology, Software, Validation, Formal analysis, Investigation, Resources, Data curation, Writing – original draft, Writing – review & editing, Visualization, Supervision, Project administration.

Yanliang Zhang: Conceptualization, Resources, Writing – review & editing, Supervision, Project administration, Funding acquisition.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

This work was supported by the U.S. Department of Energy under award DE-NE0008812. The authors would like to acknowledge Dr. David Carpenter at the MIT Nuclear Reactor Lab for providing support on the in-core irradiation of the thermoelectric generator, and Dr. Gary Was and Dr. Ovidiu Toader at Michigan Ion Beam Laboratory for providing support on the ion irradiation of the thermoelectric materials. JL acknowledges support by DTRA (Award No. HDTRA1-20-2-0002) Interaction of Ionizing Radiation with Matter (IIRM) University Research Alliance (URA).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.enconman.2022.115949.

References

Electronic Supplementary Information

Thermoelectric Power Generation in the Core of a Nuclear Reactor†

Nicholas Kempfa,‡ Mortaza Saeidi-Javash,a‡ Haowei Xu,b‡ Sheng Cheng,cd Megha Dubey,cd Yaqiao Wu,cd Joshua Daw,c Ju Li,b,** and Yanliang Zhang,a,***

a Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
b Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
c Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725 USA
d Microscopy and Characterization Suite, Center for Advanced Energy Studies, Idaho Falls, ID 83401 USA
e Measurement Sciences Laboratory, Idaho National Laboratory, Idaho Falls, ID 83415, USA
*Email: yzhang45@nd.edu
†Electronic supplementary information (ESI) available. See [to be determined]
‡,** These authors contributed equally to this work

Test capsule

A model of the test capsule that contained the TEG and tungsten susceptor inside the nuclear reactor is shown in Fig. S1.

Fig. S1. Solidworks half-model of the test capsule showing the graphite shell (black), titanium support beams (silver/gray and light green), susceptor (red), and spring (yellow). The TEG is mostly hidden by the heater, shown in dark green.
The test capsule shown in Fig. S1 contains a primary graphite shell that houses the TEG, susceptors, thermocouples, and a spring. Graphite was chosen due to its low neutron-activation cross-section as well as its low thermal excitation by gamma rays. The graphite shell is held together partially by the titanium rods shown in Fig. S1 and partially by a metal tube through which the entire test capsule is fed (not shown in Fig. S1).

The partially assembled test capsule shown in Fig. S2 serves several purposes. First, it applies pressure between the susceptor and the hot side of the TEG as well as between the cold side of the TEG and the graphite shell of the test capsule. The grooves seen running along the length of the test capsule are where a cooling gas (a mixture of Helium and Neon) flows to provide the cold side and thus the temperature difference across the TEG. Finally, the metal fixtures seen on the top of the capsule provide an anchor point to eliminate any mechanical stress on the electrical wires that connect to the TEG.

Fig. S2. Photograph of the partially assembled graphite and titanium test capsule. The plastic zip-ties are temporary and are cut off before the test capsule is fed into the tube that is placed in the reactor core.

Not completely visible in Fig. S2 is a tungsten susceptor which provides 75 W of heating power, generating the temperature gradient across the TEG.
Thermoelectric generator in-core performance measurement

The voltage of the TEG was continuously monitored with an Agilent 34970A data acquisition/switch unit. The TEG electrical resistance R_{TEG} was measured approximately every 2 to 4 minutes with a Keithley 6221 current source and a Keithley 2182A nanovoltmeter. Delta resistance measurements were performed to eliminate the influence of thermoelectric voltages on the resistance measurement. The TEG power output as a function of load resistance was measured approximately every 2 to 4 minutes by varying the load resistance with a B&K Precision 8500 DC load while the voltage was measured using the Agilent 34970A during the current sweep. Each current sweep consisted of approximately 10 current steps and the time at each current was minimized. The TEG hot- and cold-side temperatures were allowed to restabilize before the subsequent electrical resistance and power measurement.

Ion irradiation and scanning thermal microscopy

Shown in Fig. S3 are the n- and p-type bars prepared for ion irradiation with copper shields suspended over selected regions of the bars.

Fig. S3. Thermoelectric bars prepared for ion irradiation. Photograph of the two polished half-Heusler bars prepared for irradiation with copper bridges suspended above selected regions of the bars.

After irradiation, the copper shields were removed and microscale Seebeck coefficient and thermal conductivity were measured using a novel surface-sensitive scanning thermal microprobe described elsewhere [1]. The SThM probe was scanned back and forth along the length of the bar with 200 µm spacing between measurement locations.
Transmission electron microscopy and electron diffraction of the p-type material

The TEM with SAED of the ion irradiated HHP material is shown in Fig. S4.

Fig. S4. Transmission Electron Microscopy of the p-type material: (a-f) Bright-field TEM of HHP (Nb$_{0.75}$Ti$_{0.25}$FeSb) from the (a, d) non-irradiated region, (b, e) the region irradiated to 0.05 dpa, and (c, f) the region irradiated to 0.5 dpa with insets in (d-f) showing SAED patterns along the [110] zone axis. The center of each image corresponds to a depth of approximately 3 µm from the sample surface.

Atomic-level modeling

The simulated SAED patterns of HHN in Fig. S5 show that with increasing level of chemical disorder, there is decreasing spot intensity for the family of planes of the form $(2n - 1, 2n - 1, 2m - 1)$, where $n, m = 1, 2, ...$
Fig. S5. Simulated SAED patterns of the n-type half-Heusler material for various irradiation doses. a-c, Simulated SEAD pattern of Hf$_{0.25}$Zr$_{0.75}$NiSn with AB$_{1-x}$CD$_x$ occupations: $x=0$ (a), $x=0.25$ (b), and $x=0.5$ (c).

The results of the ab initio calculations for the p-type material (HHP) are shown in Fig. S6.

Fig. S6. Atomic phase change of Nb$_{0.75}$Ti$_{0.25}$FeSb: (a) The transition path for Fe to jump from B site to D site; (b) Density of states when all Fe atoms are on B sites (red curve) and one of four Ni atoms is on D site (blue curve); (c, d) Seebeck coefficient with different carrier concentrations when all Fe atoms are on B sites (c) and one of four Fe atoms is on D site (d). For calculations in b-d, a 12-atom Nb$_3$Ti$_1$Fe$_4$Sb$_4$ supercell is used.
References