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A B S T R A C T   

Accurate degradation trajectory and future life are the key information of a new generation of intelligent battery and electrochemical energy storage systems. It is 
very challenging to obtain accurate predictions against uncertain application conditions by using only a few known historical data. In this article, we extend the 
widely studied remaining useful life (RUL) prediction to the prediction of charge and discharge capacity trajectories under both fixed and random future operating 
conditions. This is achieved by developing a general deep learning framework cored by recurrent neural network (RNN) which integrates future current plan and few 
early capacity-voltage data as inputs. As a case study, we have experimented with 77 commercial batteries cycled under fixed and random operating conditions. We 
demonstrate that the median root mean square error (RMSE) of prediction can be within 2.4% for NMC/graphite batteries and 2.3% for LFP/graphite batteries by 
using 3.8% of the whole life data only. Compared with the existing methods, the proposed framework predicts more accurately and has a very balanced performance 
for both fixed and random future conditions. This work highlights the promise of actively forecasting the future of batteries based on RNN.   

1. Introduction 

1.1. Literature review 

Lithium-ion batteries (LIB) have been widely applied in a multitude 
of applications such as electric vehicles (EVs) [1], portable electronics 
[2], and energy storage stations [3]. The key metric for battery perfor-
mance is the degradation of battery life caused by many charging and 
discharging events. In this process, the anode, cathode, electrolyte, and 
other components of a battery suffer from gradual degradation, leading 
to capacity and power loss [4,5]. 

Battery capacity loss is a widely accepted metric of battery life 
degradation, and it strongly affects the endurance of devices powered by 
batteries [6], such as the driving range of EVs [7]. Generally, once the 
battery capacity degrades to a certain threshold, i.e., the so-called end of 
life (EOL), the battery is no longer considered adequate to meet the 
requirements of the device and must be replaced [8]. Predicting the 
degradation of battery life plays a critical role in designing batteries and 
their management policies, scheduling battery maintenance, as well as 

screening batteries for pack manufacturing. 
Current battery cell life prediction methods include the end-to-end 

prediction methods and the trajectory prediction methods. The end-to- 
end methods predict the remaining useful life (RUL) by directly map-
ping features to battery life. For example, Zhang et al. [9] mapped the 
collected entire impedance spectra to battery RUL based on Gaussian 
process regression (GPR). Zhang et al. [10] captured some health in-
dicators highly related to RUL from the time-voltage curve of the bat-
teries and built GPR-based mapping among the RUL and health 
indicators to realize RUL prediction. Severson et al. [11] extracted 
several physical features from the operating current, voltage, and tem-
perature data of the first 100 cycles, and established the relationship 
between these features and the battery life based on regularized 
regression. The results demonstrated a prediction error of less than 
9.1%. Compared with conventional machine learning methods, using 
deep learning to predict RUL can help establish high-dimensional 
mapping without feature extraction engineering. Hong et al. [12] uti-
lized a temporal convolutional neural network (CNN) to directly learn 
the battery raw data (current, voltage, and temperature) and predicted 
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RUL and the corresponding uncertainty based on the raw data collected 
within 500–10000 s. The main advantage of the end-to-end prediction 
method is the few requirements of the historical cycle data to imple-
ment, benefiting the early prediction of battery life. However, an evident 
shortcoming is that only a scalar RUL is obtained while the capacity 
trajectory which comprehensively portrays the aging process is 
neglected. 

The trajectory prediction methods extrapolate the capacity degra-
dation trajectory to the EOL to determine the RUL. This is usually ach-
ieved by resorting to a capacity trajectory model. Simple mathematical 
functions, such as the linear function [13], the polynomial function 
[14], and the exponential function [15], can be employed as a trajectory 
model for battery life prediction. Besides, by treating the degradation 
trajectory of capacity as a time series, some recursive models can also be 
applied as a trajectory model, such as the autoregressive integrated 
moving average (ARIMA) model [16,17], GPR model [18], long 
short-term memory (LSTM) recurrent neural network (RNN) [19], etc. A 
key benefit of such methods is that they predict the future trajectories, 
not just a scalar RUL. The capacity trajectory contains more practically 
useful information. For instance, two batteries may have identical RUL 
but a different Ah throughput in remaining life [20]. Thus, trajectory 
prediction methods are more comprehensive to support battery man-
agement. However, limited by the parameter identification of the tra-
jectory model, these methods often need a large amount of historical 
data for training. Studies [19,21] revealed that at least 15–20% of the 
whole-life cyclic data of a battery is needed for rough prediction of ca-
pacity trajectory, which hardly satisfies the demand for early degrada-
tion prediction. 

More importantly, the existing prediction methods primarily focus 
on a very specific use scenario where batteries serve under a fixed 
operating policy of charge and discharge throughout their whole life. 
For example, two battery degradation datasets from the Center for 
Advanced Life Cycle Engineering (CALCE) [14,22] and NASA Prognostic 
Center of Excellence (PCOE) [23] are widely employed to develop life 
prediction methods, but the batteries in these datasets have almost all 
experimented under a fixed charge and discharge policy (charged and 
discharged at constant current) until the EOL. A recent dataset from 
Stanford-MIT [11,12], which covers 124 commercial 18650-batteries, is 
relatively diversified, as 72 different charge policies are utilized. How-
ever, the operating policy of each battery in this dataset is fixed 
throughout its entire life. This does not fit the practical experience of a 
typical battery cell in real-life cell phones, electric vehicles or grid-scale 
energy storage systems, as it may experience multiple user habit re-
gimes. Although NASA PCOE later presents a randomized battery usage 
dataset including 24 batteries cycled under random walk conditions, 
they are almost treated as a fixed policy dataset in the current prediction 
methods [24–26]. Practically, uncertain future operating conditions are 
quite common, and experimental results have already revealed that this 
greatly impacts battery capacity degradation trajectory [27]. 

1.2. Gap analysis and contributions 

The major weaknesses of the existing methods can be summarized as 
follows:  

(1) The existing methods are unable to deal with the future varied 
operating conditions. Most of the prediction methods are devel-
oped on the basis of battery cyclic datasets serving under a life-
long fixed operating condition.  

(2) The existing methods can hardly predict the capacity degradation 
trajectory at an early stage. The end-to-end prediction method 
can achieve early prediction, but it only obtains a scalar RUL, 
while the trajectory prediction method has conventionally 
required large numbers of cycle data for accurate predictions. 

To resolve these problems, this paper proposes a deep learning- 

enabled framework to predict the future degradation trajectories of 
battery charge and discharge capacities under uncertain future service 
conditions. The main contributions of this paper are:  

(1) A large battery degradation dataset covering the fixed and 
random operating conditions has been experimentally acquired 
for 77 commercial lithium-ion batteries, all cycled to respective 
EOL. To our knowledge, this is the first battery degradation 
dataset that accommodates greatly varying working loads for 
each cell. We are providing this dataset (2.26 Gigabytes in total) 
at https://data.mendeley.com/datasets/kw34hhw7xg/2 [28]. 
Open datasets like these will be essential for the battery com-
munity to develop and validate aging prediction methods.  

(2) A general RNN-enabled deep learning framework of long-term 
degradation trajectory prediction that can handle both fixed 
and varied operating conditions is developed. As an example, the 
proposed framework cored by gated recurrent unit (GRU) can 
achieve a median root mean square error (RMSE) of 2.4% for 
predicting both charge and discharge capacities under the 
random policies of LiCoO2 +LiNi0.5Co0.2Mn0.3O2 (NMC)/ 
graphite batteries using data of one cycle only. Besides, a median 
RMSE of 2.3% can be obtained for lithium iron phosphate (LFP)/ 
graphite batteries which survived thousands of cycles using 3.8% 
of the cycle data only. 

1.3. Article organization 

The rest of the article is organized as follows. Section 2 introduces 
the battery experiments and developed dataset. Section 3 describes the 
methodology of battery degradation prediction in detail. Validation and 
discussions of the proposed method are elaborated in Section 4. Limi-
tations and outlooks are given in Section 5. Conclusions are drawn in 
Section 6. 

2. Data generation 

A type of nominally identical high-energy 18650 lithium-ion batte-
ries manufactured by LISHEN is employed as the experimental subject, 
which is composed of a positive electrode of LiCoO2 
+LiNi0.5Co0.2Mn0.3O2 and a negative electrode of graphite. The rated 
capacity is 2.4 Ah, the nominal voltage is 3.7 V, and the lower and upper 
cut-off voltages are 3.0 V and 4.2 V, respectively. Note that even though 
they are brought as new, they have already undergone formation cycling 
and there are certainly also intrinsic variabilities due to uncertainties in 
the material batch and manufacturing process. In our cycling, the cut-off 
current is 0.048 A. 77 batteries are cycled in our degradation tests. All 
tests are conducted at 25 ℃, and the batteries operate within the spec-
ified lower and upper voltage limits. The experimental data-acquisition 
platform is detailed in Supplementary Fig. 1 and Supplementary Note 1. 

In the first stage, 20 preliminary cycles are applied for simulating the 
primary battery application to explore the early prediction of battery 
life. Each preliminary cycle consists of 0.5 C constant-current-constant- 
voltage (CCCV) charging and 2 C constant current discharging. In the 
second stage, to investigate the degradation characteristics under 
different operating policies, the 77 batteries are divided into Group I and 
Group II for further cyclic degradation experiments. Group I consists of 
22 batteries, which are used to perform the cyclic degradation experi-
ments under a specified fixed policy of charge current (1C, 2C, or 3C) 
and discharge current (1C, 2C, or 3C). Group II consists of 55 batteries, 
which undergo cyclic degradation experiments under varied operating 
conditions. Specifically, each operating condition includes a charge 
policy at a random constant charge current (changes randomly every 5 
cycles) that obeys a uniform distribution among three discrete choices of 
1C, 2C, and 3C, and a discharge condition at a specified discharge cur-
rent of 3C. 

The diagram of the experimental design of the batteries is described 
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in Fig. 1. It can be noted the batteries do not show evident degradation at 
the first stage, while the trajectory significantly varies for different 
charge policies at the following stage. In this regard, conventional 
studies [11,12,14,22,23] which assume a fixed operating condition over 
battery life will not work. The arrangements and results of the cyclic 
degradation experiments are detailed in Supplementary Note 2. 

3. Methodology 

3.1. Framework of prediction 

The RNN-enabled deep learning framework of battery degradation 
prediction is described in Fig. 2. It consists of four procedures: the input 
matrix, the RNN layer (the core layer), the fully connected (FC) layer, 
and the output layer. 

The input matrix contains four components filled with different 
colors. The first and second components in blue and orange (component 
I & II) are the current plans designed for users to customize the future 
operating conditions of the battery, which can be formulated as: 
[

Ic
1 Ic

2 ⋯ Ic
n

Id
1 Id

2 ⋯ Id
n

]

(1)  

where I denotes the expectation of planning operation current at each 
future cycle, the subscript 1, 2, …, n represents the number of cycles that 
the battery is planned to work, the superscripts “c” and “d” represent 
charge and discharge, respectively. The joint input of these two policies 
is to simulate the degradation caused by charging and discharging. On 
the other hand, we expect the proposed framework can simultaneously 
predict both charge and discharge capacity trajectories, not just either 
one as done in most literature [29]. The third component filled with grey 
(component III) is the early cycle set, which is a capacity-voltage (Q-V) 
matrix derived from the charging data of initial cycles. Therefore, it can 

provide historical degradation data of a given battery to the network. 
Such data can be easily obtained by cycling batteries a few times, such as 
tests during battery development or screening after manufacturing, 
thereby it does not give rise to many testing efforts. The capacity-voltage 
(Q-V) matrix can be mathematically expressed as: 
⎡

⎢
⎢
⎢
⎢
⎢
⎣

qv1
1 qv1

2 ⋯ qv1
m

qv2
1 qv2

2 ⋯ qv2
m

⋮ ⋮ ⋮
qvl

1 qvl
2 ⋯ qvl

m

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(2)  

where superscript (v1, v2, …, vl) represents discretized voltages equally 
distributed over the voltage range of 3.0–4.2 V, l is the number of the 
grid points and is set to 120 in this work. The subscript (1, 2, …, m) 
represents the number of input cycles. q is the cumulative charge ca-
pacity, which is calculated by: 

qvk
j =

∫ t(vk)

t(v1)

Ic
j dt, k = 1, 2, ..., l, j = 1, 2, ...,m (3) 

As n is generally larger than m, the general sequence padding [30] is 
employed to deal with the fourth component filled with white 
(component IV) to ensure the consistency of the length of the input se-
ries. The padding matrix P can be formulated as: 

P =
(
pij
)

l×(n− m)
, i = 1, 2, ..., l, j = 1, 2, ..., (n − m) (4)  

where the padding value p is set to 0 in the present work. 
A deep learning network comprising RNN and FC layers in series for 

prediction is deployed after the input matrix. It has been widely reported 
that battery capacity degradation is tightly related to the operating 
history [31]. As a powerful tool for processing time series, the RNN layer 
is designed as a core of the proposed framework to learn the time de-
pendency of battery degradation, and its output is treated as the input of 

Fig. 1. Diagram of the experimental design of the batteries.  
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the fully connected layer. 
The final output layer is composed of two neurons to merge the 

output of the last deep learning network into the predicted trajectories of 
both charge and discharge capacity. 

As mentioned earlier, the proposed framework enables simultaneous 
prediction of charge and discharge capacity degradation trajectories. 
More importantly, the proposed framework can predict future capacity 
trajectories under custom future operating conditions as it considers not 
only historical data but also future operating conditions. This offers an 
opportunity to intelligently plan future operations with consideration of 
battery degradation [32]. 

Herein, the proposed framework is evaluated against both fixed and 
random operating conditions. About 30% of the batteries from Group I 
and Group II are selected as the training set (23 batteries), respectively. 
7 batteries are selected from Group I as the training set to cover every 
possible combination of the operating policy. 16 batteries are randomly 
chosen from Group II as the training set. The rest 54 batteries are utilized 
as the validation set. 

3.2. Gated recurrent unit dominated-network 

The GRU network, an advanced RNN that is more efficient than the 
LSTM [33], is employed as an instance to dominate the core of the 
proposed framework. The GRU cell is the basic unit of a GRU network 
and is depicted in Fig. S4. Here, xt is the matrix of the input series at time 
step t, ht-1, and ht are the matrices of the output series at time step t-1 and 
t, respectively. rt is the reset gate for controlling the level of state reset, zt 

is the update gate for controlling the level of state update, ĥt is the 
candidate state for controlling the level of update added to the hidden 
state. σg and σs represent the gate and state activation functions, 
respectively, which can be written as: 
⎧
⎨

⎩

σg(x) =
1

1 + e− x

σs(x) = tanh(x)
(5) 

W, R, and b represent the input weights, recurrent weights, and the 
bias of the GRU cell, respectively, and they are expressed as 

W =

⎡

⎣
Wr
Wz
W

ĥ

⎤

⎦,R =

⎡

⎣
Rr
Rz
R

ĥ

⎤

⎦, b =

⎡

⎣
bWr
bWz
b

W ĥ

⎤

⎦ (6)  

where the subscripts r, z, and ĥ represent that the values of input 
weights, recurrent weights, and the bias belong to the reset gate, the 
update gate, and the candidate state, respectively. The operation of a 
GRU cell can be formulated as: 
⎧
⎪⎪⎨

⎪⎪⎩

rt = σg(Wrxt + bWr + Rrht− 1)

zt = σg(Wzxt + bWz + Rzht− 1)

ĥt = σs(W ĥ
xt + b

W ĥ
+ rt ⊙ (R

ĥ
ht− 1))

ht = (1 − zt) ⊙ ĥt + zt ⊙ ht− 1

(7)  

where ☉ denotes the element-wise multiplication of two vectors. 
Following the GRU network, each FC layer is activated indepen-

dently at each time step, and the output Yt of a fully connected layer at 
time step t can be formulated as: 

Yt = Wf ut + bf (8)  

where ut is the input of the FC layer at time step t. Wf and bf are the 
weight matrix and bias vector of the FC layer, respectively. 

3.3. Training algorithm 

The proposed framework is parameterized based on the experi-
mental data. To this end, the Adam algorithm [34], which has low 
memory requirements for first-order gradient-based optimization of the 
stochastic objective function, is adopted. The Adam algorithm itera-
tively updates the parameters by: 

θκ+1 = θκ −
αηκ
̅̅̅̅vκ

√
+ ε (9)  

where θκ is the parameter vector of the framework at κ-th iteration, α is 
the learning rate and is set to 0.004, ε is a small value to avoid division 
by zero and set to 10− 8, ηκ and vκ are updated by: 

Fig. 2. RNN-enabled deep learning framework of battery life prediction considering varied operating conditions.  
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ηκ = β1ηκ− 1 + (1 − β1)∇E(θκ)

vκ = β2vκ− 1 + (1 − β2)[∇E(θκ)]
2

η̃κ =
ηκ

1 − βκ
1

ṽκ =
vκ

1 − βκ
2

(10)  

where β1 and β2 are decay rates of gradient moving average and squared 
gradient moving average, defined as 0.9 and 0.999, respectively, ῆῆκ and 
ῦῦκ are bias-corrected values of ηκ and vκ, respectively, ▽E(⋅) represents 
the gradient of the loss function E(⋅), which is defined as the half mean 
squared error of the responses of the framework for each time step: 

E =
1
2ς

∑ς

i=1

∑ζ

j=1

(
yij − y′

ij
)2 (11)  

where yij is the i-th target output for response j, y’
ij is the i-th predicted 

output of the framework for response j, ϛ and ζ are the length of the 
sequence and the number of the responses, respectively. 

In this work, the model is trained based on an NVIDIA Quadro P400 
GPU for 200 epochs. 

4. Results 

4.1. Discussion of different input sizes of early cycle set 

The size of the early cycle set determines how much historical data 
are available to the proposed framework. Therefore, it is a critical 
parameter impacting the prediction performance. Here, we vary the size 
of the early cycle set from 0 to 20 cycles to examine the prediction 
performance. The hyperparameters of the framework are detailed in 
Supplementary Note 3. The corresponding results are described in Fig. 3. 
A similar influence of the size of early cycle set can be observed from the 

Fig. 3. The influence of the size of the early cycle set on capacity degradation prediction: (a) RMSE of the charge capacity; (b) RMSE of the discharge capacity.  
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prediction results of charge and discharge capacities. Compared with the 
case of the zero-size early cycle set (i.e., no historical information is 
provided), the RMSE of other cases is dramatically low. This indicates 
that the integration of the current plan and the early cycle set is 
conducive to degradation prediction. The main reason for this is detailed 
in Section 4.5. Another important finding from Fig. 3 is that the pro-
posed framework performs well in the case of a small size early cycle set 
(<9 cycles). In particular, the proposed framework achieves a prediction 
median RMSE of 2.4% using only the first cycle data. Therefore, the 
proposed framework can be used for accurate prediction by using little 
historical data, significantly saving the time to collect battery degrada-
tion data. 

4.2. Comparison with existing methods 

To evaluate the performance of the proposed framework, a 
comparative study involving the existing mainstream methods is con-
ducted on the validation set. Considering that the end-to-end methods 
cannot predict the capacity degradation trajectory, we employ four 
representative trajectory prediction methods as the benchmarks, 
including two methods based on mathematical functions (particle filter 
method [15] and Box-Cox transformation method [21]) and the other 
two based on time series (LSTM RNN method [19] and ARIMA-Empirical 
mode decomposition method [17]). These methods are abbreviated as 
the PF, Box-Cox, LSTM RNN, and ARIMA-EMD methods hereinafter, 
respectively. The key parameters of the four methods are detailed in 
Supplementary Table 3 and Supplementary Note 4. The proposed 
framework is set to the same parameters as Supplementary Note 3. Note 
that the initial model parameters of the PF method and the trans-
formation coefficient of the Box-Cox method are initialized based on the 
training set. Each existing method is evaluated over a wide range of sizes 
of the early cycle set (from 1 cycle to 70 cycles), and the most accurate 
result is selected for the following comparison. 

The comparison results of the fixed and random conditions are 
visualized in Fig. 4. As expected, although existing methods are mostly 
performing well under fixed working conditions, they cannot ensure 
reliable predictions under random conditions. In contrast, the proposed 
framework has a balanced performance for both fixed and random 
conditions. More importantly, the proposed framework shows a 

remarkably high precision by using the one-cycle data only. 
To further analyze the differences between these methods, the pre-

diction results of two batteries cycled under fixed and random condi-
tions are shown in Fig. 5 and Fig. 6, respectively. It is seen that all the 
existing methods seem to achieve effective prediction, but none of them 
can accurately predict the trajectory of the first stage (before the 20th 

cycle). In particular, owing to disturbance of the first stage, the 
recursion-dominated LSTM RNN method performs poorly even in the 
second stage. These results reveal two limitations of the existing 
methods, i.e., the dependence on the fixed historical policy, and the 
assumption of an unchanged policy over battery life. These issues pre-
clude the existing methods from performing reliable predictions under 
time-varying working conditions. By comparison, the proposed frame-
work accurately predicts battery degradation at both the first and second 
stages (before and after the 20th cycle). This is because the introduction 
of the current plan enables the framework to notice the transition be-
tween the two stages. More importantly, the proposed framework 
merely requires as less as one early cycle data for accurate prediction. 

Fig. 6 reveals that the existing methods, as expected, hardly 
approximate the capacity degradation trajectory under the random 
condition. For the PF method and Box-Cox method, the main reason is 
that their low-freedom mathematical functions cannot account for the 
fluctuating capacity degradation trajectory cycled under random con-
ditions. Theoretically, the used time series models in the other two 
methods, particularly in the LSTM RNN method, have high freedom to 
extrapolate the development of capacity degradation and even future 
operating conditions. However, as they only take as input historical 
data, their predictions cannot adaptively accommodate the changes in 
future current plans. Also, their purely recursive prediction mechanism 
might lead to error accumulation. In contrast, the proposed framework 
can map the input of future operating conditions to the capacity tra-
jectory in an end-to-end manner. Thus, it can be observed that the 
proposed framework achieves an excellent prediction under the random 
policy by using few early cycle data. 

4.3. Performance of different core layers 

As a general deep learning-enabled paradigm, the proposed frame-
work is flexible to accept the dominations of different cores. In addition 

Fig. 4. Comparison of capacity prediction under the fixed and random conditions among the proposed framework and the existing methods.  
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to the GRU layer, we evaluate the performance of two extra types of 
layers. One layer composed of FC layers (with the same number of 
trainable parameters as the proposed network) is introduced, where 
tanh-layers are designed following the FC layers to activate the 
nonlinear approximation ability. Another layer using LSTM units [19] 
instead of the GRU units (with the same hyperparameters as the pro-
posed network) is also employed as a benchmark. The key parameters of 
these three layers are detailed in Table S4. An early cycle set of the first 
20 cycles of the batteries is used to construct the Q-V matrix for 
comparison. 

The comparison of the three frameworks dominated by different core 
layers (termed FC framework, LSTM framework, and GRU framework 
hereinafter) on capacity degradation prediction is shown in Fig. 7. 
Compared with the FC framework and LSTM framework, the RMSE of 
the GRU framework in the great majority of the batteries is relatively 
low, as shown in Fig. 7(a,b). To clearly exhibit the differences among the 
three frameworks, Fig. 7(c,d) show the distribution of RMSEs. As ex-
pected, the performance of the FC framework is significantly worse than 
those of the other two frameworks, owing to its intrinsic inability in 
processing time series [35]. By comparison, both the LSTM framework 
and GRU framework show excellent performance thanks to the core of 
the RNN layer. It is generally expected that the LSTM framework could 
outperform the GRU framework because of its higher degrees of 
freedom. However, as shown in the results, the median, quartiles, and 
limits of RMSE of the GRU framework are slightly lower than those of 
the LSTM framework, although resulting in more outliers. Similar results 
have also been reported in [36–38] in other fields, which attribute this to 
the limited data availability [37], the weak contribution of the forget 
gate [36], etc. Nevertheless, it should be underlined here that there is no 
theoretical evidence [39] to support which kind of RNN is better, 
although our work mainly takes the more efficient one, GRU framework, 
as an instance. We purely give an illustrative example here to show that 

the proposed framework can be dominated by different RNN cores. 
In addition, as our method simultaneously predicts the charge and 

discharge capacities, the Coulombic efficiency, a crucial indicator of 
battery degradation [40,41], can be computed as the ratio of discharge 
capacity to charge capacity to further evaluate the performance, as 
shown in Fig. 7(e). It is observed that both the LSTM framework and 
GRU framework perform well, as they did in the prediction of capacity 
trajectory. Hence, the proposed framework is also able to support the 
prediction of Coulombic efficiency. 

4.4. Performance on LFP/graphite batteries 

LFP/graphite batteries have gained in popularity in recent years 
[42], as they outperform most other NMC/graphite batteries in long-life 
services. To evaluate the performance of the proposed framework on 
LFP/graphite batteries, two fast-charging datasets from Stanford-MIT 
[11,43], covering 124 and 45 commercial LFP/graphite batteries, 
respectively, are combined herein for modeling and validation, although 
their fixed policies merely provide unilateral evaluation. The training 
dataset is divided into two groups: one group (80 batteries) accounting 
for approximately 50% of batteries are used to iteratively optimize the 
trainable parameters, and another group (43 batteries) covering about 
25% of batteries is used to evaluate the prediction performance of each 
epoch. The network in the most accurate epoch is chosen as the trained 
framework. The rest 44 batteries are then employed as the validation 
dataset to evaluate the prediction performance of the proposed frame-
work. Two batteries are excluded because of the abnormal discharge 
capacity and service life [11]. The hyperparameters designed on 
NMC/graphite batteries (detailed in Supplementary Note 3) are shared 
here to evaluate the friendliness of the proposed framework. 

We first examine the performance of capacity degradation prediction 
of LFP/graphite batteries with different sizes of the early cycle set, as 

Fig. 5. Comparison of capacity prediction under a fixed condition among the proposed framework and the existing methods.  
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shown in Fig. 8(a). It is seen that the RMSE of cases of the other input 
sizes is relatively low compared with the case of the zero-size early cycle 
set. This trend is similar to the prediction for NMC/graphite batteries. 
Taking the nominal capacity as a benchmark, the proposed framework 
achieves a prediction RMSE of 2.3% (less than 4.5%) using only the first 
30 cycle data (3.8% of the whole-life cyclic data). The RUL prediction 
performance is also investigated as it is concerned by most existing 
studies [9–11]. The RUL can be easily captured from the predicted ca-
pacity trajectories of the proposed framework. Fig. 8(b) shows the 
relative error of RUL prediction with different input sizes of the early 
cycle set. The ‘full’ model from Stanford-MIT is employed as a 
competitive benchmark herein, and the so-called indexing scheme for j 
= 10 in [11] is selected for evaluation. One handmade feature of the full 
model, namely the integral of temperature versus time, is removed 
because of the abnormal temperature collections of some batteries [11]. 
It is seen that the relative prediction error of both methods is at a low 
level after the zero-size of the early cycle set. Besides, due to the lack of 
available early cycles for implementation, the ‘full’ model is ‘on strike’ 
when the input sizes of the early cycle set are less than 20 (shadowed in 
Fig. 8(b)). The ‘full’ model provides an error up to 20% even though the 
early cycles are accumulated to 50 cycles. It is reasonable as the major 
handmade features of the full model proved to deteriorate when few 
early cycles are available [11]. The proposed framework, by compari-
son, achieves a median relative error of 7.2% using only the first 20 cycle 
data, showing excellent early predictability. The reason for this is that 
the proposed deep learning-enabled framework can extract dense 
valuable features from the Q-V matrix (including the major handmade 
feature of the full model). We can also find that, by using the proposed 
framework, only the first 20 cycle data is required for good RUL pre-
diction, while the first 30 cycle data is needed for capacity trajectory 
prediction. Such an early ‘inflection point’ indicates that the proposed 
framework is also competent for RUL prediction. 

Fig. 8(c) further shows the prediction of capacity degradation tra-
jectories of eight batteries with different EOLs, where the long-life bat-
teries (EOL > 1500 cycles) are nearly the representatives of the outliers 
in Fig. 8(a). In the cases of the normal batteries (EOL < 1500 cycles), 
accurate prediction is achieved by using only the first 30 cycle data. In 
the cases of the long-life batteries, it is similar to the normal batteries 
except that marked underprediction occurs at the tail of capacity tra-
jectories. We speculate that there are two major reasons for this: the first 
is the difficulty of long-term prediction caused by the instability and 
higher uncertainty of the close-to-EOL battery; the second is the scarcity 
of such long-life battery samples for training. To further investigate the 
development of this underprediction, we then expand the input size 
from 30 to 50 and 100 to reduce the difficulty of long-term prediction. It 
is found that, by expanding the input size, this underprediction tends to 
be relatively alleviated but still stronger than that of the normal batte-
ries. But for these long-life batteries, we believe such a surpassingly 
advanced prediction is already valuable. In addition, we find a truth that 
can explain why the inflection point of RUL prediction is ahead of that of 
capacity trajectory prediction. That is, the terminal of the trajectory 
(especially for the most long-life battery) is perfectly predicted with 
different input sizes. This gives us reason to believe that understanding 
the high-dimensional capacity trajectory is more challenging than pre-
dicting the scalar RUL. 

Overall, the proposed framework can be applied to predict both ca-
pacity trajectory and RUL of LFP/graphite batteries. Compared with the 
‘full’ model from Stanford-MIT, it is mainly powerful in balancing early 
(<3.8% of early cycle data requirements) and accurate prediction 
(median error < 2.3%@trajectory and <7.2%@RUL) of both charge and 
discharge capacity degradation trajectories. 

Fig. 6. Comparison of capacity prediction under a random condition among the proposed framework and the existing methods.  
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4.5. Rationalization of predictive performance 

To investigate the rationality of the predictive performance, two 
ancillary frameworks derived from the proposed framework are intro-
duced. The first is to build an ancillary framework without the early 
cycle set and padding (merely retaining the component I & II in Fig. 2) to 
decouple the contribution of the current plans. The second is to establish 
an ancillary framework without the current plans (merely retaining the 
component III & IV in Fig. 2) to represent the contribution of the early 
cycle set. For convenience, the first ancillary framework, the second 
ancillary framework and the proposed framework are hereinafter 
referred to as the current framework, the ‘QV’ framework and the ‘full’ 
framework, respectively. 

The prediction performance of the discharge capacity trajectory of 
the three frameworks is described in Fig. 9, where the shaded bar de-
notes that the QV framework is ‘on strike’ due to the lack of Q-V data. We 
observe that, thanks to the integration of current plans and Q-V matrix, 
the errors of the ‘full’ framework (as shown in Fig. 9(a)) are lower than 
those of either of them (as shown in Fig. 9(b,c)), except that at the zero- 

input size (blaming the participation of full-zero Q-V matrix input). It is 
found that the current framework significantly outperforms the QV 
framework, which means that the full framework is dominated by the 
input of future current series. In other words, this proves that the full 
framework, in this case, is mainly committed to learning the relationship 
between the future current and capacity degradation trajectory in an 
end-to-end manner. 

The prediction performance of three frameworks on the fixed-policy 
and random-policy batteries are further separately plotted in Fig. 9(d–i). 
As the main contributor, the current framework has balanced perfor-
mance on the two groups of batteries (as shown in Fig. 9(e,h)). As a 
result, the full framework seems to inherit its advantage as shown in 
Fig. 9(e,g). By comparison, the QV framework has extremely different 
performance on the two groups of batteries (as shown in Fig. 9(f,i)). It is 
logical that the QV framework poorly performs in Fig. 9(f), because the 
Q-V matrix collected under fixed policies hardly benefits the framework 
to understand how the capacity degrades with the random policies, as 
the cases of the LSTM RNN method in Fig. 6. In contrast, the prediction 
of QV framework is also poor but highly scattered on the fixed-policy 

Fig. 7. Comparison of different core layers (FC layer, LSTM layer, and GRU layer) on capacity degradation prediction: (a) RMSE of charge capacity; (b) RMSE of 
discharge capacity; (c) logarithmic boxplot of the RMSE of charge capacity; (d) logarithmic boxplot of the RMSE of discharge capacity; (e) logarithmic boxplot of the 
RMSE of Coulombic efficiency. 
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batteries as shown in Fig. 9(i). It is seen that the maximum error is much 
larger than that of random-policy batteries, while the minimum error is 
close to that of the current framework. The reason for this extreme is that 
some fixed-policy batteries are under a similar policy to the Q-V matrix 
collection policy. This indicates that the RNN of the QV framework can 
recursively deduce the capacity trajectory by learning the degradation 
rate of the historical Q-V matrix, achieving comparable performance to 
the current framework. 

So far, it is of interest to find that although the two ancillary 
frameworks are structurally identical, their prediction mechanisms may 
be very different. Hence, we have reason to believe that there are at least 
two mechanisms included in the full framework: the first is to directly 
learn the relationship between current conditions and capacity degra-
dation trajectories in an end-to-end manner, like the current framework; 

the second is to recursively learn the rate of capacity degradation within 
dense voltage ranges, as the QV framework and the most studies [17,19] 
do. More importantly, with the help of the powerful high-dimensional 
approximation and time series prediction capability of the RNN, these 
two mechanisms can be dynamically weighted by the full framework, 
rather than focusing on either of them. This is, in summary, the answer 
to our question regarding the excellent performance of the integration of 
both the current plan and Q-V matrix. 

We then examine the prediction performance of the three frame-
works on the LFP/graphite batteries, as shown in Fig. 9(j–l). The full 
framework, as expected, outperforms the two ancillary frameworks, 
showing the effectiveness of the integration of both the current plan and 
Q-V matrix. It is seen that there is a close contest between the two 
ancillary frameworks, which implies both two potential mechanisms 

Fig. 8. Result of the proposed framework on LFP/graphite batteries: (a) RMSE of capacity degradation prediction with different input sizes of the early cycle set; (b) 
relative error of RUL prediction with different input sizes of the early cycle set; (c) prediction of capacity degradation trajectories of eight batteries (differ in EOL) 
with different input sizes of the early cycle set. 
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contribute to the full framework. Specifically, the full framework tends 
to be dominated by the current plan at small input size and the Q-V 
matrix at large input size, because the current framework shown in Fig. 9 
(k) performs well at small input size while the QV framework shown in 
Fig. 9(l) begins to excel at large input size. These results are reasonable 
as the employed two LFP/graphite battery datasets from Stanford-MIT 
[11] are generated under fixed policies. At the very beginning, the full 
framework maps the trajectory through the current (i.e., tend to the first 
mechanism), owing to little Q-V evolution information; after a few cy-
cles, since the Q-V matrix expands with the expansion of the input size, 
the full framework recursively deduces the trajectory (i.e., tend to the 

second mechanism) based on the evolution of Q-V matrix within dense 
voltage ranges. Besides, it can be seen in Fig. 9(l) that the QV framework, 
due to its recursion, tends to perform better with the expansion of input 
size, showing a stronger cycle dependence than the first mechanism. 
However, we do not find the obvious cycle dependence of the full 
framework in Figs. 3 and 8(a). This is because, in addition to the second 
mechanism, there is at least the first mechanism to join as one of the 
contributors to the full framework. Driven by these two mechanisms 
with different cycle dependence, the full framework tends to be weakly 
correlated with the cycle. 

In total, introducing the two ancillary frameworks help to rationalize 

Fig. 9. Performance of discharge capacity trajectory of the full frameworks, current framework and QV framework with different input sizes of the early cycle set: (a) 
RMSE of all batteries with the full framework; (b) RMSE of all batteries with the current framework; (c) RMSE of all batteries with the QV framework; (d) RMSE of 
random-policy batteries with the full framework; (e) RMSE of random-policy batteries with the current framework; (f) RMSE of random-policy batteries with the QV 
framework; (g) RMSE of fixed-policy batteries with the full framework; (h) RMSE of fixed-policy batteries with the current framework; (i) RMSE of fixed-policy 
batteries with the QV framework; (j) RMSE of fixed-policy LFP/graphite batteries with the full framework; (k) RMSE of fixed-policy LFP/graphite batteries with 
the current framework; (l) RMSE of fixed-policy LFP/graphite batteries with the QV framework. 
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the observation of the full framework. The characteristics embodied in 
both NMC/graphite and LFP/graphite batteries are consistent. 

5. Limitations and outlook 

The present study can be improved in the future. First, this study only 
involves the policies that randomized operating current. As a deep 
learning-enabled paradigm, the proposed framework does not limit the 
input feature dimensions. Hence, the proposed framework can be 
explored to apply to more generalized random policies, such as tem-
perature, depth of discharge, or other factors [44] leading to degrada-
tion. Second, the proposed framework should be trained by a few 
experimental data, so the potential of such a general deep learning 
framework in transfer learning [45] can be further explored to reduce 
the required data amount. Finally, the proposed framework can be 
explored to apply to big data. As a data-driven approach, the proposed 
framework does not assume specific battery materials or application 
scenarios. The introduction of big data covering the historical real-world 
data distribution [46] might lead to more proper and effective learning. 

6. Conclusion 

In this paper, we firstly present a large battery degradation dataset 
(includes 77 commercial lithium-ion battery cells) covering the fixed 
and random operating conditions (published at https://data.mendeley. 
com/datasets/kw34hhw7xg/2). To our knowledge, this is the first bat-
tery degradation dataset that accommodates greatly varying working 
loads for each cell. We then develop a general deep learning-enabled 
framework to predict the battery capacity degradation trajectories 
under both fixed and random future operating conditions by integrating 
future current plan and few early capacity-voltage data as inputs. Our 
results demonstrate that the median prediction RMSE is within 2.4% for 
NMC/graphite batteries and 2.3% for LFP/graphite batteries by using 
3.8% of the whole life data only. Compared with the existing methods, 
the proposed framework predicts more accurately and has a satisfying 
performance for both fixed and random future conditions. The proposed 
framework is promising to assist with battery rapid development and 
customization of battery management software to prolong battery life, 
and for the intelligent control of many battery cells (“life balancing”) in 
a battery pack. 
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Supplementary Note 1. Battery experimental platform for degradation experiments 

An experimental platform is established for the battery degradation test, as shown in Fig. S1. It 

consists of a LANHE CT2001B battery test system to simulate the battery operating conditions, a 

GDBELL thermal chamber with three chambers to regulate the ambient temperature, and a host 

computer for sending control commands and receiving experimental data. 
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Fig. S1. Battery experimental platform for degradation experiments. 
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Supplementary Note 2. Arrangements and results of the cyclic degradation experiments. 

The workflow diagram and the arrangements of the cyclic degradation experiments are shown 

in Fig. S2 and Table. S1, respectively. The numbers in the matrix of Table. S1 indicates the 

number of tested batteries. Notably, thanks to our design, there is no significant order of magnitude 

gap between the inputs of the proposed framework. Therefore, we do not specifically normalize 

the input and output data before training. 

 

  

Fig. S2. Workflow diagram of the cyclic degradation experiments. 
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Table. S1 Test matrix for the cyclic degradation experiments. 

Charge 

Discharge 
1C 2C 3C 

Random current 

(1C~3C) 

1C - 3 3 - 

2C 4 3 3 - 

3C - 3 3 55 

 

The capacity degradation trajectory of batteries is plotted in Fig. S3, where the charge and 

discharge are abbreviated as CHG and DHG, respectively. Fig. S3 (a) shows the degradation of 

discharge capacity of the batteries from Group I which are charged at different current rates (1C, 

2C or 3C) and discharged at a specified current (2C). Due to the one-time switching of different 

charge current policies, the capacity gap between the lowest and highest charge current at the 120th 

cycle is up to 1.7 Ah (about 90% capacity reduction). The battery degradation characteristics 

dominated by the varied charge policy are well disclosed in this figure, which is prevalent in real 

applications. For instance, the charging rates of EVs may vary for different charging piles [1]. Fig. 

S3 (b) describes the degradation of discharge capacity of the batteries from Group I which are 

charged at a specified current (2C) and discharged at different current rates (1C, 2C or 3C), showing 

a similar phenomenon to Fig. S3 (a). Note that the growing difference among the trajectories is 

much tinier than that in Fig. S3 (a), which reveals the degradation dominated by the varied charge 

policy is more intense than that dominated by the varied discharge policy. The Group II is designed 

to investigate the degradation characteristics dominated by the varied charge policy, as shown in 

Fig. S3 (c) to Fig. S3 (f) along with the Group I. Fig. S3 (c) and Fig. S3 (e) show the distributions 

of average discharge and charge capacity during the preliminary tests, clearly depicting the 
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inconsistency of the experimental batteries in terms of the capacity degradation. Fig. S3 (d) and 

Fig. S3 (f) are the overview of discharge and charge degradation trajectories of the batteries from 

Group I and Group II. It is seen that the shape of each trajectory in Group II is extremely fluctuant 

(up to 1 Ah) compared with that in Group I. Besides, as the capacity degradation of charge and 

discharge show a similar trend, we focus on discharge capacity in the discussion of battery 

degradation trajectory. 
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Fig. S3. Capacity degradation of the batteries in the experiments: (a) discharge capacity 

degradation of batteries charged at 1C, 2C, or 3C, and discharged at 2C; (b) discharge capacity 

degradation of batteries charged at 2C and discharged at 1C, 2C, or 3C; (c) distribution of 

average discharge capacity of the first 20 preliminary cycles; (d) Overview of discharge capacity 

degradation of Group I and Group II; (e) distribution of average charge capacity of the first 20 

preliminary cycles; (f) Overview of charge capacity degradation of Group I and Group II. 
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Supplementary Note 3. Hyperparameters of the proposed framework. 

Table. S2 Hyperparameters of the proposed framework 

Key parameters of the networks 

GRU layer with 256 hidden units ×2; 

Fully connected layer with 32 hidden units ×2; 

Fully connected layer with 2 hidden units ×1. 
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Supplementary Note 4. Key parameters of the existing four methods. 

Table. S3 Key parameters of the existing four methods 

Method Key parameters 

PF method Model: double exponential model; 

Number of particles: 200; 

Covariance of the process noise: 0.00001×diag [1, 1, 1, 1]; 

Covariance of the observation noise: 0.01. 

Box-Cox method Coefficient of transformation: maximum likelihood estimation. 

LSTM RNN method LSTM layer with 100 hidden units ×1; 

Dropout layer with dropout factor of 0.2; 

LSTM layer with 50 hidden units ×1; 

Dropout layer with dropout factor of 0.2; 

Fully connected layer with 1 hidden unit ×1. 

ARIMA-EMD method Tolerance of sift relative: 0.2; 

Model of intrinsic mode functions: ARIMA(3,1,2); 

Model of residual: ARIMA(3,1,1). 
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Supplementary Note 5. Key parameters of the involved networks. 

Table. S4 Key parameters of the involved networks 

Framework Key parameters of the frameworks 

GRU framework 

(The proposed framework) 

GRU layer with 256 hidden units ×2; 

Fully connected layer with 32 hidden units ×2; 

Fully connected layer with 2 hidden units ×1. 

FC framework Fully connected layer with 768 hidden units ×1; 

Tanh layer ×1; 

Fully connected layer with 768 hidden units ×1; 

Tanh layer ×1; 

Fully connected layer with 32 hidden units ×2; 

Fully connected layer with 2 hidden units ×1. 

LSTM framework LSTM layer with 256 hidden units ×2; 

Fully connected layer with 32 hidden units ×2; 

Fully connected layer with 2 hidden units ×1. 
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Supplementary Note 6. Diagram of a GRU cell. 
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Fig. S4. Diagram of a GRU cell. 
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