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A B S T R A C T

A universal interatomic potential for an arbitrary set of chemical elements is urgently needed in computational
materials science. Graph convolution neural network (GCN) has rich expressive power, but previously was
mainly employed to transport scalars and vectors, not rank ≥ 2 tensors. As classic interatomic potentials were
inspired by tight-binding electronic relaxation framework, we want to represent this iterative propagation
of rank ≥ 2 tensor information by GCN. Here we propose an architecture called the tensor embedded atom
network (TeaNet) where angular interaction is translated into graph convolution through the incorporation of
Euclidean tensors, vectors and scalars. By applying the residual network (ResNet) architecture and training with
recurrent GCN weights initialization, a much deeper (16 layers) GCN was constructed, whose flow is similar
to an iterative electronic relaxation. Our training dataset is generated by density functional theory calculation
of mostly chemically and structurally randomized configurations. We demonstrate that arbitrary structures
and reactions involving the first 18 elements on the periodic table (H to Ar) can be realized satisfactorily by
TeaNet, including C–H molecular structures, metals, amorphous SiO2, and water, showing surprisingly good
performance (energy mean absolute error 19 meV/atom) and robustness for arbitrary chemistries involving
elements from H to Ar.
1. Introduction

A universal interatomic potential for atomistic simulations of arbi-
trary chemical species, structures, transformations and reactions would
considerably extend the reach of computational materials. While his-
torically we have used simple analytical expressions [1–3], machine
learning (ML) interatomic potentials [4–9] are increasingly invoked to
parametrize interatomic interactions.

Deep neural networks (DNN) have proved to be successful in various
ML tasks when large datasets are provided. The convolution operation,
where identical set of weights are used for nodes ‘‘belonging’’ to differ-
ent spatial locations, achieves efficient compression. The convolutional
weight depends on the relative distance, and not the absolute positions
(‘‘translational invariance’’). This idea of parametrizing interactions
by spatial relationships can be generalized to graphs. The field of
graph convolution-based neural networks (GCN) has been expanding
rapidly [10–12], in particular for molecular systems, where atoms and
bonds are represented by the nodes and edges of the graph. Such
network architectures appear natural to both atomistic and electronic-
structure modelers. Indeed, as all the atoms/ions of the same chemical
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type/valence state and isotopic mass are ‘‘indistinguishable particles’’
in quantum mechanics, the GCN weights assigned to atoms/bonds of
the same chemical type(s) but different integer labels 𝑖 or 𝑗, where
𝑖, 𝑗 = 1, 2,… , 𝑁 is the (arbitrarily) assigned index of an atom in the
simulation, should obviously also be identical (‘‘permutational invari-
ance’’). However, sometimes, there can be a ‘‘minus sign’’ issue. Such
‘‘minus sign’’ can show up in some bond-centered quantities, e.g. if
𝐱𝑖𝑗 ≡ 𝐱𝑖 − 𝐱𝑗 , then 𝐱𝑖𝑗 = −𝐱𝑗𝑖, and how to store certain ‘‘bond-centered’’
quantities thus necessitates the usage of notation [𝑖𝑗] where the order
of 𝑖, 𝑗 in the bracket matters, unlike 𝑟𝑖𝑗 ≡ |𝐱𝑖𝑗 | where the order of 𝑖, 𝑗
does not matter, for which we use the notation (𝑖𝑗). So we use notation
𝐱[𝑖𝑗] ≡ 𝐱𝑖𝑗 to denote a vector that belongs to directed edge labeled by
[𝑖𝑗], and 𝑟(𝑖𝑗) ≡ 𝑟𝑖𝑗 to denote a scalar that belongs to undirected edge
labeled by (𝑖𝑗), for ‘‘bond-centered’’ quantities, that can be scalar (rank-
0 tensor), vector (rank-1 tensor), matrix (rank-2 tensor), etc. Note in
this paper we take ‘‘bond’’ to mean 𝑖, 𝑗 pair relations where 𝑟(𝑖𝑗) can
nanometers, and not necessarily the so-called first nearest neighbors.

While GCN architecture exploiting translational and permutational
invariances remove the dependence on an arbitrary observation-frame
vailable online 9 March 2022
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origin and an arbitrary atomic indexing scheme, how ‘‘rotational invari-
ance’’, that is, how arbitrary observation-frame orientations affect or
not affect certain results, needs to be discussed. In any atomistic calcu-
lation of the stress tensor, heat flux vector, etc. based on for instance the
Tersoff potential [13], or in assembling the electronic overlap integral
and Hamiltonian matrix in the tight-binding/linear combination of
atomic orbitals (LCAO) model [14], one has plenty of scalars (rank
0), vectors (rank 1) and matrices (rank 2) in the data flow of a code.
In an iterative electronic relaxation or explicit time-dependent density
functional theory (TDDFT) [15] calculation, this kind of tensorial data
flow can sometime even carry into the (pseudo)time-domain. In all
these calculations, the observation-frame orientation does not really
matter, as all physical quantities are expressed in rank-𝑀 tensors
𝑇̃𝛼1 ,𝛼2 ,…,𝛼𝑀 , with tensor transformation law

𝑇̃𝛼′1 ,𝛼′2 ,…,𝛼′𝑀
= 𝑄𝛼′1𝛼1

𝑄𝛼′2𝛼2
...𝑄𝛼′𝑀 𝛼𝑀 𝑇𝛼1 ,𝛼2 ,…,𝛼𝑀 (1)

where 𝑇̃ is the same physical object read in a different observation
frame, 𝑄𝛼′𝛼 is the rotation matrix between two observation frames, and
Einstein summation rule is used. In this paper we use 𝛼, 𝛽 = 1, 2, 3 to
label Cartesian axes, and 𝑖, 𝑗, 𝑘 = 1, 2,… , 𝑁 to label atoms. Thus, 𝑇 [𝑖𝑗]

𝛼
denotes a rank-1 tensor (vector) that belongs to a bond, or pair of atoms
[𝑖𝑗], where the order matters (directed edge), and 𝑇 (𝑖𝑗)

𝛼𝛽 is a rank-2 tensor
(matrix) that belongs to the bond or pair of atoms (𝑖𝑗) where the order
does not matter. Similarly, 𝑇 𝑖

𝛼 is a rank-1 tensor (vector) that belongs to
the atom 𝑖, and 𝑇 𝑖

𝛼𝛽 is a rank-2 tensor (matrix) that belongs to the atom
𝑖. One could certainly come up with more complex notations like 𝑇 (𝑖𝑗𝑘)

𝛼𝛽

here the permutation orders of 𝑖, 𝑗, 𝑘 does not matter, or something
ike 𝑇 [(𝑖𝑗),(𝑘𝑙)]

𝛼𝛽𝛾𝛿 where 𝑖, 𝑗 order does not matter, 𝑘, 𝑙 order does not matter,
ut (𝑖𝑗) and (𝑘𝑙) order matters. Generally speaking, in this notation the
uperscript denotes the ‘‘owner’’ of the tensor whose Cartesian indices
re in the subscript. In this paper we will only be limited to 𝑀 ≤ 2, and
wners either 𝑖, (𝑖𝑗), or [𝑖𝑗], as these covers the data types of most of
he legacy codes. One can thus imagine these kinds of ‘‘tensor-typed’’
nd ‘‘ownership-stamped’’ data flowing in respective legacy codes to
epresent interatomic or electronic-structure interactions.

In addition to the stable molecular structures, currently several
CN models have also succeeded in reproducing the dynamics of spe-
ific molecules [6,7,16–18]. However, a universal IP describing bond
ormation, bond breaking and recombination for arbitrary structures
ith arbitrary number of elements remains at the developmental stage.

nspired by the nonlinear iterative data flows in a DFT calculation
n achieving charge-density convergence, we believe the performance
f GCN can be significantly improved by allowing 𝑀 ≥ 2 quantities
‘‘tensors’’ in ‘‘tensor embedded atom network (TeaNet)’’) to flow in
he network, in addition to the 𝑀 = 0 (scalars) and occasional 𝑀 = 1
vectors) quantities that flow in conventional GCN.

Physically, embedded atom method (EAM) potential incorporates
he concept of electron density of metal, while Tersoff-type and mod-
fied embedded atom method (MEAM) potentials incorporate the con-
ept of bond order and angular dependence, which can be derived
rom the tight-binding approximation of the electronic wave func-
ion, using local combination of (quasi)atomic orbitals [14]. These IPs
ave been widely used for simulating extended defects, mechanical
eformation and damage, and phase transitions. However, individual
otential parameter set is developed to reproduce a certain systems
e.g. FCC metals, silica, organic molecules, etc.). In this paper, we
ropose a NNIP architecture (see Section 2) that can be considered a
uperset of MEAM potentials while mimicking electronic total-energy
elaxation [19] in a local orbital (tight-binding) basis [14,20,21]. We
all this approach the tensor embedded atom network (TeaNet). We
odify the architecture of GCN with new components (edge-associated

n addition to node-associated variables) that fully represent the corre-
ponding physics-based IP. Rank-2 tensors as well as rank-1 vectors are
ntroduced in the network, so the model can naturally represent prop-
2

gation of orientation-dependent Hamiltonian information. We have F
lso adopted residual NN architecture, with recurrent parameter model
nitially. Such ResNet architecture and recurrent GCN initialization to
ccelerate computations are found to be quite effective in getting rapid
eduction of training error.

Our method is related to previous NNIP efforts. Embedded Atom
eural Network Potential (EANN) [18] extends the EAM potential
sing NN. This model combines physics-based representation (electron
ensity) and NN-based embedding function 𝐹 (𝜌). This physics-related
odel provides excellent accuracy for bulk systems while retaining sim-
licity. There are several works implementing geometric information
nto NN architecture [22–26]. Among them, spherical harmonics-based
odels have been actively proposed and applied to the atomistic simu-

ations [22,23,27,28]. One of the key idea is to use Clebsch–Gordan
oefficients to hold invariances by any rotations in SO(3) group. In
ddition, the idea and the theoretical study of using tensor values in
he interatomic potential was investigated in Moment Tensor Potentials
MTP) [29]. Although the aim is similar to our model, the geometric
nformation is represented in different ways. Further discussion of
he schematic difference and numerical experiences are written in
ppendix A.3.

In Section 4, we show the training results of our model for elements
–18 (H-Ar) on the periodic table, where random combination of
hese elements in mostly highly disordered structures are used as the
raining set. We also performed sensitivity analysis and discussed the
mportance of the different features of our model. In Section 5, we show
he general applicability of our method to a wide range of materials
ncluding chemical reaction processes. We will demonstrate that our
odel performs well for liquid water, amorphous silica as well as

imple metals and hydrocarbons.

. TeaNet architecture

The overview of the TeaNet is shown in Fig. 1. We first introduce
he notation used in our drawings. In the line-drawing figures, values
re illustrated as circles. The filled colors corresponds to the types of
he values, where scalar, vector, and tensor are illustrated as gray, light
lue, and blue circles, respectively. Operations are illustrated as rectan-
les. Here, we write the linear layer as linear(𝑥), the nonlinear activation
ayer as activation(𝑥), the concatenation function as concat(𝑥, 𝑦,…),

vector L2-norm as norm(𝑥), and the cutoff function as cutoff(𝑥). We use
subscript to denote the dimension of stacked variables, for example s128
means 128 scalars, v32 means 32 vectors (total 48 real numbers), and t16

eans 16 matrices, each 3 × 3. The 128, 32, and 16 are called number
f channels. linear(𝑥) is always applied channel by channel. It is noted
hat each linear(𝑥) appeared in the following equations has different
arameters. It is also noted that those parameters are learnable network
arameters like in ordinary neural networks.

While the output of TeaNet is the total energy of the system (a
calar), the network is trained to simultaneously compute the atomic
orces, providing useful data for training. The atomic forces are cal-
ulated by a backpropagation process, and so the training process
ecomes a double backpropagation. The molecular dynamics simula-
ion requires a smooth activation function. In this study, we employed
he integral of the softplus function, which to our knowledge we were
irst to propose as an activation function. The integral is calculated as
ollows:

(𝑥) ≡ ∫

𝑥

−∞
log (1 + exp (𝑡)) d𝑡

= −Li2 (− exp (𝑥)) ,
(2)

here Li2 is a second-order polylogarithm function. This function ap-
roaches 0 as 𝑥 tends to −∞ and approaches the curve of 𝑥2+𝐶 at large
, where 𝐶 is a constant. Using the activation function, we can train
softplus-type network in the second backpropagation process. The

omparison of the second derivative of activation functions is shown in

ig. 2. The effect of this change to the prediction accuracy is presented
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Fig. 1. Overview of the TeaNet NNIP.
Fig. 2. Left: comparison of activation functions. Softplus and ELU (𝛼 = 1) functions [30] are also shown. They are shifted so that 𝑓 (0) becomes 0. Middle: derivative of the
ctivation functions. Right: second derivative of activation functions. In softplus and ELU, second gradient value 𝑓 ′′(𝑥) vanishes when 𝑥 is large.
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n Section 4. In addition, when this function is applied to the edge
rrays, the activation functions are shifted so that 𝑓 (0) becomes 0. Thus

ctivation(𝑥) ≡ 𝑓 (𝑥) − 𝑓 (0). (3)

The cutoff function cutoff(𝑥) is a smoothly decaying function. In
his work, we use the same function as activation(𝑥) shifted by linear
unction,

utoff(𝑥) ≡ activation(linear(𝑥)) + (𝑐1𝑥 + 𝑐0) (4)

here 𝑐0 and 𝑐1 (linear function part) are set to satisfy cutoff(𝑥) and its
erivative are zero when 𝑥 equals to the cutoff distance.

In TeaNet architecture, the inputs are the list of element label and
he list of position of atom. Other predefined information such as
onding or atomic charges are not required. The output value is single
calar value, which corresponds to the energy. The force of the atoms
re calculated using normal back propagation. There are three parts in
eaNet. The first part is preprocess. It receives the input values and
reates various values which is used for the graph convolution layers.
he second part is the internal graph convolution layers which we
all local interaction block. The input values and output values of the
ingle layer have the same shapes. Therefore we can stack the layers by
rbitrary numbers. The last part is postprocess part, which receives the
utput values of the graph convolution layer and output single scalar
alue.
3

.1. Preprocess and postprocessing

.1.1. Preprocessing
Here, we use the character 𝑎 as atom-related values (corresponding

odes) and 𝑏 as bond-related values (corresponding bonds).
Bonds are counted only for pair of atoms whose distance is smaller

han the cutoff distance. In this paper, the cutoff distance is set to be 6
.

There are three types of values for atom-related values which are
calar, vector, and rank-2 tensor. We use the symbols 𝑎𝑠, 𝑎𝑣, and 𝑎𝑡 for

them. It is noted that each types of values have multiple channels. For
example, in this paper, we use 256 dimensions (usually called channels
in neural network context) for scalar value and 16 dimensions for both
vector and rank-2 tensor value. Therefore, if the number of atoms in
the system is 64 and the number of dimension of the space is 3, the
shapes of 𝑎𝑠, 𝑎𝑣, and 𝑎𝑡 are 64 × 128, 64 × 3 × 16, and 64 × 3 × 3 × 16,
respectively (see Fig. 3).

Bonds have scalar and vector values. We use the symbols 𝑏𝑠, 𝑏𝑣 as
ell. In addition, two special constant values for bond-related values
re also introduced. One is relative position vector 𝑟𝑣. It is defined by
he difference of the position of two corresponding atoms. Another one
s bond length 𝑟𝑠, which can be calculated by the l2-norm of 𝑟𝑣. It should

be noted that the sign of 𝑟𝑣 depends on the order of corresponding two
atoms, which is described as ‘‘minus sign’’ issue at the introduction

section. Careful consideration is required to use 𝑟𝑣 in the following
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Fig. 3. Preprocess and postprocessing.
Table 1
List of the input values of 𝐧𝑠.

Element 𝐧𝑠
H [0.5, 0, 0, 0, 0, 0, 0, 0, 0]
He [1, 0, 0, 0, 0, 0, 0, 0, 0]
Li [1, 0.5, 0, 0, 0, 0, 0, 0, 0]
Be [1, 1, 0, 0, 0, 0, 0, 0, 0]
B [1, 1, 0.5, 0, 0, 0, 0, 0, 0]
C [1, 1, 1, 0, 0, 0, 0, 0, 0]
N [1, 1, 1, 0.5, 0, 0, 0, 0, 0]
O [1, 1, 1, 1, 0, 0, 0, 0, 0]
F [1, 1, 1, 1, 0.5, 0, 0, 0, 0]
Ne [1, 1, 1, 1, 1, 0, 0, 0, 0]
Na [1, 1, 1, 1, 1, 0.5, 0, 0, 0]
Mg [1, 1, 1, 1, 1, 1, 0, 0, 0]
Al [1, 1, 1, 1, 1, 1, 0.5, 0, 0]
Si [1, 1, 1, 1, 1, 1, 1, 0, 0]
P [1, 1, 1, 1, 1, 1, 1, 0.5, 0]
S [1, 1, 1, 1, 1, 1, 1, 1, 0]
Cl [1, 1, 1, 1, 1, 1, 1, 1, 0.5]
Ar [1, 1, 1, 1, 1, 1, 1, 1, 1]

calculations since the output value should not depend on the order of
atoms. We use the character 𝑖 and 𝑗 for the label of those two atoms.

Atom scalar 𝑎𝑠 is initialized by look-up table. To imitate the oc-
upancy of electron orbitals, the values corresponding to the atomic
umber are divided by 2 and packed by 1 from the top of the array.
he list is shown in Table 1. The remaining channels are set to zero.
tom vector 𝑎𝑣 and rank-2 tensor 𝑎𝑡 are initialized by zero.

Bond scalar 𝑏𝑠 are initialized by Eq. (5),

𝑏𝑠 = exp
{

−linear
(

𝑟𝑠
)}

+
(

𝑐′1𝑟𝑠 + 𝑐′0
)

, (5)

where 𝑐′0 and 𝑐′1 (linear function part) are set to satisfy 𝑏𝑠 and its
derivative with respect to 𝑟𝑠 are zero when 𝑟𝑠 equals to the cutoff
distance. Eq. (5) is expected to behave like the distance term of the
Morse-style IP.

Bond vector 𝑏𝑣 is also initialized by zero. Unlike 𝑟𝑣, we make 𝑏𝑣 does
ot depend on the order of atom 𝑖 and 𝑗. The example of physical value
orresponding 𝑏𝑣 is local electric dipole.

To reiterate, in the preprocess part, 𝑎𝑠, 𝑎𝑣, 𝑎𝑡, 𝑏𝑠, 𝑏𝑣, 𝑟𝑠, and 𝑟𝑣 are
initialized.
4

2.1.2. Postprocessing
For the postprocessing part, only 𝑎𝑠 and 𝑏𝑠 are used to calculate

energy. It is noted that 𝑎𝑠 and 𝑏𝑠 have multiple channels (multiple scalar
values for single atom and single bond). First, single scalar values for
each atom and bond are calculated by,

𝑎last = linear(𝑎𝑠), 𝑏last = linear(𝑏𝑠), (6)

where the number of channels of 𝑎last and 𝑏last are one.
Then, 𝑎last and 𝑏last are summed along all atoms and bonds. The

obtained single scalar value is the output value (total energy 𝐸) of this
model.

𝐸 =
∑

atoms
𝑎last +

∑

bonds
𝑏last . (7)

2.2. Local interaction block: overview

This section shows the overview of the calculation flow of local
interaction block. The detail of each calculation block will be described
in the later sections.

First, several operations are applied to the atom-wise inputs (𝑎𝑠, 𝑎𝑣,
𝑎𝑡) and the bond-wise inputs (𝑏𝑠, 𝑏𝑣). Those newly created values during
the local interaction block are named 𝑎𝑠1 or 𝑎𝑣1.

Then, atom-wise values are distributed to the corresponding bonds.
It is noted that there are always two atom-wise values for single bond.
Those distributed values are concatenated with bond-wise values with
keeping required invariances. The bond shape values (𝑟𝑠, 𝑟𝑣) are also
used here. Then, the new bond-wise value named 𝑦tot is created using
those values (see Fig. 4).

After that, new atom-wise variables and bond-wise variables are
created using 𝑦tot . Those values are added to the atom input values and
bond input values. Finally, the same shapes of values as the input values
(𝑎𝑠, 𝑎𝑣, 𝑎𝑡, 𝑏𝑠, 𝑏𝑣) are returned.

2.3. Local interaction block: preprocessing

As described before, the local interaction block receives 𝑎𝑠, 𝑎𝑣, 𝑎𝑡,

𝑏𝑠, and 𝑏𝑣 as inputs. First, several linear and nonlinear functions are
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Fig. 4. Local interaction block: overview.
Fig. 5. Local interaction block: preprocessing.
applied for each values.

𝑎𝑠1 = linear(activation(linear(concat(𝑎𝑠, norm(𝑎𝑣))))),

𝑎𝑣1 = linear(𝑎𝑣),

𝑎𝑡1 = linear(𝑎𝑡),

𝑏𝑠1 = activation(linear(concat(𝑏𝑠, norm(𝑏𝑣)))).

(8)

Here, concat means the values are concatenated along the channel
axis (see Fig. 5).

For linear channel mixing, the linear operation is not applied along
the space dimension axis but along the channel axis. It is noted that the
raw components of vector and tensor values should not be summed,
multiplied independently, or combined with other scalar values since
the those components depend on the basis vectors of the coordina-
tion system. On the other hand, linear function along channel axis,
scalar multiplication, inner product (including vector norm), and tensor
product are allowed operations.
5

In this paper, vector norm means the L2-norm of vector along
dimension axis. The result values can be treated as the scalar values.

2.4. Local interaction block: distribution

The atom-wise variables 𝑎𝑠1, 𝑎𝑣1, and 𝑎𝑡1 are distributed to the
corresponding bonds. It is noted that there are always two atom-wise
values for single bond. We labeled them by 𝑖 and 𝑗 as described before
(see Fig. 6).

To clarify that the distributed values corresponds to the bonds, we
name the distributed atom-type values as 𝛽𝑠1, 𝛽𝑣1, and 𝛽𝑡1. Since there
are two corresponding atoms (𝑖 and 𝑗) for single bond, there are two 𝛽
values such as 𝛽𝑠1𝑖 and 𝛽𝑠1𝑗 . We write 𝛽𝑠1{𝑖,𝑗} when the same operations
are applied along 𝑖 and 𝑗.

We now have 𝛽𝑠1{𝑖,𝑗}, 𝛽𝑣1{𝑖,𝑗}, 𝛽𝑡1{𝑖,𝑗}, 𝑏𝑠1, and 𝑏𝑣. Independently, we
have 𝑟 and 𝑟 . All of those values are bond-wise values.
𝑠 𝑣
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Fig. 7. Create bond-wise values: preparation.
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.5. Create bond-wise values: preparation

Tensor value 𝛽𝑡1{𝑖,𝑗} is squashed into vector values by taking inner
roduct with 𝑟𝑣, and then summed to 𝛽𝑣1{𝑖,𝑗}.

𝛽𝑣2{𝑖,𝑗} = 𝛽𝑣1{𝑖,𝑗} ±𝑖𝑗 𝛽𝑡1{𝑖,𝑗} ⋅ 𝑟𝑣. (9)

It is noted that the sign of 𝑟𝑣 depends on the order of the atomic
abel (𝑖 or 𝑗). Therefore, to keep the 𝑖 − 𝑗 order invariance, the sign
hould be flipped when the operation is applied to 𝑗-related values. We
se the symbol ±𝑖𝑗 for that case. In the figure, the 𝑖 − 𝑗 order sensitive
6

alues are highlighted as blue characters and lines (see Fig. 7). a
.6. Create bond-wise values: create various intermediate values

Various bond-type scalar values are calculated by taking the inner
roducts of vector values.

0{𝑖,𝑗} = 𝛽𝑠{𝑖,𝑗}cutoff(𝑟𝑠),

1{𝑖,𝑗} = ±𝑖𝑗𝛽𝑣2{𝑖,𝑗} ⋅ 𝑟𝑣cutoff(𝑟𝑠),

2{𝑖,𝑗} = 𝛽𝑣2{𝑖,𝑗} ⋅ 𝑏𝑣,

𝑥3 = 𝛽𝑣2𝑖 ⋅ 𝛽𝑣2𝑗cutoff(𝑟𝑠).

(10)

It is noted that ±𝑖𝑗 is used for 𝑟𝑣 part again. The cutoff function
utoff(𝑟𝑠) is multiplied for 𝑥0{𝑖,𝑗}, 𝑥1{𝑖,𝑗}, and 𝑥3 to ensure that all values

re zero when the bond distance equals to the cutoff distance. It does
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Fig. 8. Create bond-wise values: create various intermediate values.
Fig. 9. Create bond-wise values: concatenation.
not be applied to 𝑥2{𝑖,𝑗} since bond-related value 𝑏𝑣 is assumed to have
the same nature (see Fig. 8).

2.7. Create bond-wise values: concatenation

The goal of this section is to create the unified bond-wise value
𝑦tot from the previously created values. The obtained scalar values are
𝑥0{𝑖,𝑗}, 𝑥1{𝑖,𝑗}, 𝑥2{𝑖,𝑗}, 𝑥3, and 𝑏𝑠1.

The thing left to be done is to eliminate 𝑖 − 𝑗 order dependence. It
is noted that the values of 𝑥0{𝑖,𝑗} swap if we swap atom 𝑖 and 𝑗. In this
architecture, we first calculate the summation and difference (𝑥0𝑖 + 𝑥0𝑗
and 𝑥0𝑖−𝑥0𝑗). The former one does not have order dependence and the
latter one has order dependence only on its sign. Therefore, applying
the even function for the latter one removes the order dependence.
7

Here, we use the square function. The same treatment is carried out
for 𝑥1{𝑖,𝑗} and 𝑥2{𝑖,𝑗}.

𝑦sym = linear(concat(𝑥0𝑖 + 𝑥0𝑗 , 𝑥1𝑖 + 𝑥1𝑗 , 𝑥2𝑖 + 𝑥2𝑗 , 𝑥3, 𝐞𝑠1)),
𝑦asym = linear(concat(𝑥0𝑖 − 𝑥0𝑗 , 𝑥1𝑖 − 𝑥1𝑗 , 𝑥2𝑖 − 𝑥2𝑗 )),

𝑦tot = activation(𝑦sym) +
(

𝑦asym
)2 ,

(11)

where
(

𝑦asym
)2 means element-by-element square. 𝑦tot is considered to

represent the state of the bond (see Fig. 9).
In the figure, we highlighted the order-sensitive calculation flow as

blue characters and lines.

2.8. Local interaction block: create atomic values for update

Using 𝑦tot , various values which will be accumulated to atom-

wise values and bond-wise values are created. Atom-type variables are
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Fig. 10. Local interaction block: create atomic values for update.
Fig. 11. Local interaction block: create bond values for update.
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calculated by (see Fig. 10),

𝛽𝑠3{𝑖,𝑗} = linear(𝑦tot ),

𝛽𝑣3{𝑖,𝑗} = linear(𝑦tot )linear(𝑏𝑣) ±𝑖𝑗 linear(𝑦tot )𝑟𝑣,

𝛽𝑡3{𝑖,𝑗} = linear(𝑦tot )𝑟𝑣 ⊗ 𝑟𝑣 ±𝑖𝑗 linear(𝑏𝑣)⊗ 𝑟𝑣.

(12)

2.9. Local interaction block: create bond values for update

In the same manner to the atom-wise values, bond-wise values are
calculated using 𝐲tot .

𝑏𝑠3 = linear(𝑦tot ), (13)
8

𝑏𝑣3 = linear(𝑦tot )linear(𝑦asym)𝑟𝑣 + linear(𝛽𝑣2𝑖 + 𝛽𝑣2𝑗 )cutoff(𝑟𝑠).
For creating bond vector value 𝑏𝑣3, 𝑦asym is introduced to eliminate
the 𝑖 − 𝑗 order dependence (see Fig. 11).

2.10. Local interaction block: aggregation

𝛽𝑠3{𝑖,𝑗}, 𝛽𝑣3{𝑖,𝑗}, 𝛽𝑡3{𝑖,𝑗} are intended to update the atom-wise values.
owever, those values are still bond-wise values and needed to be
ggregated to the corresponding atoms. This is done by taking the
ummation of neighboring bond-wise values to the atoms. This is the
nverse calculation flow to the distribution described in Section 2.4

We name the summed atomic values as 𝑎𝑠3, 𝑎𝑣3, and 𝑎𝑡3 (see Fig. 12).
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Fig. 12. Local interaction block: aggregation.

Fig. 13. Local interaction block: output 1.

Fig. 14. Local interaction block: output 2.
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Fig. 15. Local interaction block: output 3.
2.11. Local interaction block: create output values

Finally, node and edge variables are updated by ResNet-style bypass
function (see Figs. 13–15).

𝑎̃𝑠4 = 𝑎𝑠 + linear(𝑎𝑠) + linear(𝑎𝑠)𝑎𝑠3,

𝑎̃𝑣4 = 𝑎𝑣 + linear(𝑎𝑣) + linear(𝑎𝑠)𝑎𝑣3,

𝑎̃𝑡4 = 𝑎𝑡 + linear(𝑎𝑡) + linear(𝑎𝑠)𝑎𝑡3 + linear(𝑎𝑠)I,

𝑏̃𝑠4 = 𝑏𝑠 + linear(𝑏𝑠) + 𝑏𝑠3,

𝑏̃𝑣4 = 𝑏𝑣 + linear(𝑏𝑣) + 𝑏𝑣3,

(14)

where 𝐈 is the identity tensor which is used as the bias term. The first
term is a residual part and the second term is the structure-independent
value update part.

It is noted that linear(𝑎𝑠) is multiplied to atom-wise update part.
It is considered to work as a node convolution gate function. These
variables are the final output of the interaction block and used as the
input variables of the next block.

Those five values (𝑎̃𝑠4, 𝑎̃𝑣4, 𝑎̃𝑡4, 𝑏̃𝑠4, and 𝑏̃𝑣4) are the output values
of the local interaction block. They are used for the input values of the
next local interaction block or the postprocess layer.

3. TeaNet philosophy and training

With the detailed network laid out in Section 2, we now zoom
out and discuss the underlying philosophy of TeaNet. We would like
to show the correspondence between existing physics-based poten-
tials (EAM and Tersoff-type angular-dependent potentials) and GCN,
in Sections 3.1 and 3.2, respectively. We show that the Tersoff-type
angular-dependent bond-order potential can also be rewritten as the
graph convolution by incorporating the Euclidean tensor variables into
GCN architecture. This means that the rank-2 tensors empower GCN
to treat the spatial information naturally while keeping frame-rotation,
reflection, and translation equivariances. We also show the necessity of
tensor values for transferring spatial information in graph convolution
architecture. Then in Section 3.3, we introduce the constraint which
enables the model to be stacked deeper and to improve the accuracy.
Then we explain the analogy of this constraint with the energy re-
laxation procedure of the charge-transfer-type IP, which is known as
10

charge equilibration (QEq) method [31]
3.1. Rewriting EAM potential as graph convolution

The EAM potential [1] incorporates the concept of electron density
in a shallow 1-layer network. In EAM, the total energy, 𝐸, is calculated
as:

𝐸 = 1
2
∑

𝑖

∑

𝑗≠𝑖
𝜙𝑖𝑗

(

𝑟𝑖𝑗
)

+
∑

𝑖
𝐹𝑖

(

𝜌𝑖
)

,

𝜌𝑖 =
∑

𝑗≠𝑖
𝑓𝑗

(

𝑟𝑖𝑗
)

,
(15)

where 𝑖, 𝑗 are the atom labels and 𝜙𝑖𝑗 , 𝐹𝑖, 𝑓𝑗 , and 𝑟𝑖𝑗 are functions
describing the two-body energy, the embedding energy, the electron
charge, and the interatomic distance, respectively. In EAM potential,
𝜌𝑖 which corresponds to the background electron density at atom 𝑖 is
calculated by the summation of pairwise function. It can be expressed
as a single-layer graph convolution (see Fig. 16).

The EAM potential can be translated as a shallow GCN as follows:
The atomic information (on the nodes) is distributed to the corre-
sponding bonds 𝑟𝑖𝑗 . Then, the bond-wise values (𝜙𝑖𝑗

(

𝑟𝑖𝑗
)

, 𝑓𝑖
(

𝑟𝑖𝑗
)

) are
calculated. A part of them (𝑓𝑖

(

𝑟𝑖𝑗
)

) are summed to the corresponding
atoms and atom-site nonlinear function (𝐹𝑖 (𝜌)) is applied. It is noted
that EAM potential has the required invariances such as permutation,
pair order, and isometry.

The calculation flow of our graph convolution layer follows the idea
of the EAM potential. First, the atom-wise values are calculated. Then,
they are distributed into the corresponding bonds and the bond-wise
values are calculated by combining atom-wise values and bond-wise
values. After that, the calculated bond-wise values are transferred into
the corresponding atoms and update the atom-wise values.

To accumulate the edge information (𝑓𝑗
(

𝑟𝑖𝑗
)

) into nodes, the em-
bedding function (𝐹𝑖) plays an important role. In EAM potential, 𝐹𝑖
represents the interaction between certain atoms and the surrounding
electron density. Therefore, from a physics standpoint, the embedding
function is essential in the network architecture. We call this the ‘‘node
gate’’ function. The effect of the node gate function on prediction
accuracy is presented in Section 4.

3.2. Translating bond angle interaction into graph convolution and embed-
ding vector and tensor values

Generally speaking, atomic interactions depend on the bond angle
between interacting atoms. For example, H2O and NH3 molecules are
stabilized at a certain bond angle. Diamond comprises a tetrahedral
network. These angular dependencies are generated by the interaction

between electron orbitals [14].
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Fig. 16. EAM potential represented as a graph convolution. Left: Schematic of the summation operation. Right: Corresponding network model.
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When embedding spatial information in the network architecture,
atisfying invariance requirements can be challenging. The energy
hould be invariant to the rotation of the basis vectors. Invariance is
andled differently in different models. One solution is to limit the
nput data to only the bond length. SchNet [7] and PhysNet [17] uses
ond length only. Deep tensor neural networks (DTNN) [6] and deep
otential molecular dynamics (DPMD) [16] also maintain the rotational
nvariance by using bond length. However, bond–bond interactions
sually depends on the higher-order geometric information such as
ond angle or dihedral angle, and its relation to the bond length can
e weak. The detailed discussion is in Appendix A.1. Since the solution
f using the raw values of vector components as the input values loses
he rotation invariance, it is not appropriate for a molecular dynamics
imulation.

Many existing IPs involve bond angles directly. For example, the
tillinger–Weber potential [32] has a three-body energy function.
ond-order-type potentials, such as the Tersoff potential [2,33], possess
bond-order term consisting of the three-body angular-dependent

erm. Some machine learning-based models give similar solutions. The
ehler–Parrinello neural network (BPNN) [4] calculates the three-body
ymmetry functions. DimeNet++ [34,35] also utilizes three-body angle
nformation and GemNet [36] incorporates four-body dihedral angle.

However, the bond angles correspond to neither nodes nor edges
ut rather to three-body atom combinations. Therefore, they should
e combined and converted into representative node and edge values
uring the convolution operation, which requires the use of ad-hoc
unctions such as symmetry functions. Another problem is the lack
f long-range interaction in the three-body angle term. In GCN, local
nformation can transfer to farther nodes through the convolutional
ayers. Transfer of the angle information is also desirable. For example,
he directional electronic orbitals of the 𝜋 bonds can be extensively

spread. However, convolution of the angular information at the node
crushes the angle information and prevents its propagation.

Here, we show that the angle-dependent three-body convolution
algorithm can be naturally expressed as a normal node-and-edge convo-
lution operation using Euclidean vector and second-order tensor values.
This means that the model can have local spatial information and
propagate it to farther nodes, and to interact with them at nodes
while keeping rotational invariances. This is achieved by rewriting
the Tersoff-type angle-dependent bond-order function as a convolution
operation.

The Tersoff-type angle-dependent term 𝜁𝑖𝑗 can be written as

𝐸 = 1
2
∑

𝑖,𝑗≠𝑖
𝜙A

(

𝑟𝑖𝑗
)

+ 1
2
∑

𝑖,𝑗≠𝑖
𝑏
(

𝜁𝑖𝑗
)

𝜙B
(

𝑟𝑖𝑗
)

,

𝑖𝑗 =
∑

𝐺
(

𝜃𝑖𝑗𝑘
)

𝐻
(

𝑟𝑖𝑗 , 𝑟𝑖𝑘
)

,
(16)
11

𝑘≠𝑖,𝑗
here 𝑖, 𝑗, and 𝑘 are the atom labels; 𝜃𝑖𝑗𝑘 is the angle between bonds
𝑖𝑗 and 𝑖𝑘; 𝑟𝑖𝑗 and 𝑟𝑖𝑘 are the bond lengths, and 𝜙A, 𝜙B, 𝑏, 𝐺, and 𝐻 are
arious functions. In some Tersoff-type potentials [3,37], the 𝜁𝑖𝑗 term
s expressed as

𝑖𝑗 =
∑

𝑘≠𝑖,𝑗

[

𝑐 + 𝑑
{

ℎ − cos
(

𝜃𝑖𝑗𝑘
)}2

]

𝑓𝑐
(

𝑟𝑖𝑘
)

exp
[

𝜆
(

𝑟𝑖𝑗 − 𝑟𝑖𝑘
)]

, (17)

here 𝑓c is the cutoff function and 𝑐, 𝑑, ℎ, and 𝜆 are the parameters.
fter expanding the factors and converting the parameters, Eq. (17) is

ransformed to

𝑖𝑗 = exp
(

𝜆𝑟𝑖𝑗
)
∑

𝑘≠𝑖,𝑗

[

𝑔0 + 𝑔1 cos
(

𝜃𝑖𝑗𝑘
)

+ 𝑔2 cos2
(

𝜃𝑖𝑗𝑘
)]

𝑓c
(

𝑟𝑖𝑘
)

exp
(

−𝜆𝑟𝑖𝑘
)

= exp
(

𝜆𝑟𝑖𝑗
)
∑

𝑘≠𝑖,𝑗

[

𝑔0 + 𝑔1𝐫̂𝑖𝑗 ⋅ 𝐫̂𝑖𝑘 + 𝑔2
(

𝐫̂𝑖𝑗 ⋅ 𝐫̂𝑖𝑘
)2
]

𝑓c
(

𝑟𝑖𝑘
)

exp
(

−𝜆𝑟𝑖𝑘
)

= exp
(

𝜆𝑟𝑖𝑗
)
∑

𝑘≠𝑖,𝑗

[

𝑔0 + 𝑔1𝐫̂𝑖𝑗 ⋅ 𝐫̂𝑖𝑘 + 𝑔2
(

𝐫̂𝑖𝑗 ⊗ 𝐫̂𝑖𝑗
)

∶
(

𝐫̂𝑖𝑘 ⊗ 𝐫̂𝑖𝑘
)]

× 𝑓c
(

𝑟𝑖𝑘
)

exp
(

−𝜆𝑟𝑖𝑘
)

= exp
(

𝜆𝑟𝑖𝑗
)
∑

𝑘≠𝑖

[

𝑔0 + 𝑔1𝐫̂𝑖𝑗 ⋅ 𝐫̂𝑖𝑘 + 𝑔2
(

𝐫̂𝑖𝑗 ⊗ 𝐫̂𝑖𝑗
)

∶
(

𝐫̂𝑖𝑘 ⊗ 𝐫̂𝑖𝑘
)]

× 𝑓c
(

𝑟𝑖𝑘
)

exp
(

−𝜆𝑟𝑖𝑘
)

−
(

𝑔0 + 𝑔1 + 𝑔2
)

𝑓c
(

𝑟𝑖𝑗
)

= 𝑔0 exp
(

𝜆𝑟𝑖𝑗
)

[

∑

𝑘≠𝑖
𝑓c

(

𝑟𝑖𝑘
)

exp
(

−𝜆𝑟𝑖𝑘
)

]

+ 𝑔1 exp
(

𝜆𝑟𝑖𝑗
)

𝐫̂𝑖𝑗 ⋅
[

∑

𝑘≠𝑖
𝐫̂𝑖𝑘𝑓c

(

𝑟𝑖𝑘
)

exp
(

−𝜆𝑟𝑖𝑘
)

]

+ 𝑔2 exp
(

𝜆𝑟𝑖𝑗
) (

𝐫̂𝑖𝑗 ⊗ 𝐫̂𝑖𝑗
)

∶

[

∑

𝑘≠𝑖

(

𝐫̂𝑖𝑘 ⊗ 𝐫̂𝑖𝑘
)

𝑓c
(

𝑟𝑖𝑘
)

exp
(

−𝜆𝑟𝑖𝑘
)

]

−
(

𝑔0 + 𝑔1 + 𝑔2
)

𝑓c
(

𝑟𝑖𝑗
)

,

(18)

where 𝐫̂𝑖𝑗 and 𝐫̂𝑖𝑘 are the unit vectors. The symbols ‘‘⋅’’, ‘‘∶,’’ and
‘‘⊗’’ denote the inner product, the Frobenius inner product, and the
tensor product (dyad) of two vectors, respectively. Since all summation
terms are written without 𝑗, they can be calculated by the convolution
operation. As a result, the Tersoff-type potential function can be written
as a two-layered neural network. The necessity of the Rank-2 tensors
for the angle interaction using convolution operation and its physical
meaning and comparison with spherical harmonics-based methods are
shown in the Appendix A.2.

Based on this discussion, we introduce both vectors and tensors
into the network. Each node array contains scalar, vector, and tensor

values, whereas each edge array contains scalar and vector values. A
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relative position vector is also provided as an input value. The effects
of tensor values on prediction accuracy are presented in Section 4. See
Section 2.1 for the details of the implementation.

3.3. Improvement of stacked GCN accuracy inspired of iterative energy
minimization process

Like in existing GCNs, the local interaction block can be stacked
multiple times. However, as frequently seen in NN training, we ob-
served the increase of the number of layers always brings the instability
during the learning procedure. Therefore, it was hard to improve the
accuracy by increasing the number of layers of our model in practice.

Here, we found a method to reduce this instability significantly.
The key idea is to initialize and to make a constraint that all middle
layers have the same NN parameters at the initial stage of training. One
can find similarities to the recurrent GCN architecture [10]. Another
essential point is to apply the residual network (ResNet) architecture.
Interestingly, we found that the accuracy was improved by increasing
the number of layers up to 16. (see architectural details in Section 4).
It is said that improving the expression power of GCN is hard by
increasing the depth size [38]. This was also true in atomistic system
in practice. Many GCN models in atomistic system also have up to
6 convolution layers [7,16,17]. In addition, making the constraint to
set the all middle layers have the same parameters can be thought to
enforce them to behave the identical nonlinear transformation, which
seems to reduce the expressive ability of the entire network. Therefore,
it is not strange to think that this method does not contribute to the
accuracy. It is noted that this constraint was came from an analogy
with physics. In this section, we explain the analogy and introduce the
insight why the deeply stacked model can improve the accuracy even
it is GCN.

Limiting the number of GCN layers to one means the node’s informa-
tion can be determined only by the neighboring nodes. In the analogy
with GCN and EAM potential, this corresponds to the assumption that
the electron state (density) of the atom can be calculated only by
surrounding atoms. Although the assumption works well for certain
systems, it is not physically correct picture in general, as seen by the
long-ranged nature of the dielectric response function in DFT [39].
The charge transfer effect plays important roles in chemical reactions.
The actual electron states are determined so that the energy of the
entire system is minimized. DFT calculates the ground state of the
electron density by an iterative procedure. To incorporate such long-
ranged propagation of information, charge-transfer-type IPs [31,37,40,
41], which model the deviation of the electron density and minimize
the energy of the system with respect to the charge distribution, are
being actively developed.

In charge-transfer-type IPs, the energy minimization involves im-
plicit matrix–vector equations solved by matrix inverse calculation
[31,40] or solved by repeatedly updating the charge distribution using
the gradient-based method [41]. If the number of iterations is fixed,
this iterative procedure could be written as a feed-forward data flow
model. It is noted that iterative total energy minimization reproduces
the physically reasonable long-range interactions. A well-known ex-
ample is the Green’s function solution that can be represented by a
matrix–vector equation 𝐀𝐱 = 𝐛: even though 𝐀 is a sparse matrix
local interactions), the inverse 𝐀−1 is dense and resembles long-range
nteractions. However, by iteratively solving 𝐀𝐱 = 𝐛 with Krylov
ubspace method {𝐛,𝐀𝐛,𝐀2𝐛,𝐀3𝐛,… ,𝐀𝑛𝐛}, one can achieve excellent
pproximant to the long-range interaction, which is akin to an 𝑛-layer
eural network with identical weights.

It should be noted the importance of the residual network archi-
ecture in the above discussion. The residual network (ResNet) [42]
ave recently emerged in the fields of image recognition, as have other
achine-learning tasks, including object detection [43], machine trans-

ation [44], and speech synthesis [45]. ResNet’s core idea is to ‘‘bypass’’
12

he output values from the middle layers and add them directly to the
ower layer to avoid gradient disappearance during back propagation.
nterestingly, previous studies interpreted the ResNet architecture as an
xplicit Euler method of ordinary and partial differential equations [46–
8]. In this section, we associated the stack of the local interaction
locks using residual network connection with charge-transfer energy
inimization calculation of IPs.

.4. Data collection

Since our target to develop an universal IP with applicability to
rbitrary structures, the dataset is required to cover the wide range of
hase space as much as possible. One solution is to increase the number
f data points. Another requirement is to secure the diversity of data
oints.

The dataset is created as follows. First, the simulation box is filled
ith tens of atoms. The element type is randomly selected from the

irst three rows of the periodic table (from H to Ar). The number of
lement types and their ratio in one sample is also widely distributed.
he system is heated to high temperature (e.g. 10,000 K), melted
or approximately 100 femtoseconds, cooled to a setting temperature,
hen further annealed for another 100 femtoseconds by classical MD

to obtain a snapshot. The timestep is 1 femtosecond. This process
is repeated for various temperatures (up to 5000 K) and volumes.
Then, the reference energy and atomic forces are obtained by DFT
calculations of the snapshots. We consider that this dataset consists
of highly disordered structures, including many types of local atomic
configurations, and thus presents a challenging task. Furthermore, most
of the configurations are far from stable.

In addition, to include realistic structure, we create another dataset
by heating the structures of the molecular dataset of the Materials
Project repository [49] up to 3000 K. In this work, we merged those
two datasets. The entire dataset contains approximately 294,000 struc-
tures. The size of the dataset at the double backpropagation pro-
cess (the corresponding atomic forces of the 294,000 structures) is
approximately 7,375,000. Two-hundred randomly selected structures
(including 4962 × 3 atomic force data) are used for the test dataset
exclusively.

We used VASP for DFT calculation. To increase the number of data
points, the relatively fast settings were used. GGA-PBE was used for the
exchange–correlation energy. The Gaussian smearing was used. Spin
polarization is considered. The smearing width 𝜎 was 0.2 eV. The PREC
setting in VASP (used to determine energy cutoff) was set to Medium.
One k-point was applied. We used the same settings among structures
to ensure the energy surface is consistent. Further expansion of the
dataset (e.g. increasing the number of elements, increasing the number
of structures, improvement of the computational accuracy) is a future
task.

The details of dataset is shown in Appendix A.8.

3.5. Training procedure

The NN hyperparameters are set as follows. The length of the scalar
node and edge arrays is set to be 128. The length of the vector node,
rank-2 tensor node, and vector edge arrays is each set to 16. The cutoff
distance is set to 6 Å. The minibatch size is 100.

The network is trained by optimizing the combined absolute loss
function (energies and atomic forces) using the Adam optimizer [50].
As the number of layers increased, frequent fluctuations were observed
in the training error. This instability may be explained, at least in part,
by the roughness of the DFT-calculated potential energy surface, which
is the ground truth of this task. Small atomic displacements, such as the
approaching of two neighboring atoms, can potentially cause abrupt
energy increases.

To resolve this problem, we constrained the parameters of all inter-
mediate layers in the network to the same values at the initial stage of
the training, as described in Section 3.3.

Finally, the models were trained by stochastic gradient descent with
a small learning rate (0.1). The numbers of iterations were set to

450,000 (initial), 450,000 (main), and 20,000 (final) in all cases.



Computational Materials Science 207 (2022) 111280S. Takamoto et al.

𝑠
a
o
v
c
f
n

5

b
T
m

5

c
A

Table 2
Regression accuracy of trained networks with various numbers of layers.

# layers # params Test loss function
[unitless]

Energy MAE
[meV/atom]

Force MAE
[eV/Å]

2 87,000 2.54 32.5 0.213
4 235,000 1.92 23.9 0.167
8 529,000 1.65 21.4 0.143
16 1,120,000 𝟏.𝟔𝟐 𝟏𝟗.𝟑 𝟎.𝟏𝟒𝟐

Table 3
Comparison between the baseline and the four-layer network with one removed
component.

Test loss
function

Energy MAE
[meV/atom]

Force MAE
[eV/Å]

Original four layers 𝟏.𝟖𝟒 𝟐𝟐.𝟔 𝟎.𝟏𝟔𝟏
w/o tensor 2.15 25.5 0.190
w/o gate 1.99 24.5 0.174
Softplus 1.89 24.1 0.165

4. Training results

4.1. Dependence of accuracy on the number of NN layers

There are several datasets for atomic systems, without reaction bar-
rier information. For example, QM7 (GDB7-12) [51] and QM9 (GDB9-
14) [52] are composed of equilibrium molecular data. In contrast, to re-
produce the wide range of energy surface, the model should reproduce
a wide range of structures. Therefore, evaluations of highly disordered
structures including dangling bonds, overcoordinated atoms, and var-
ious disordered bond lengths are required. Therefore, we prepare our
own dataset of highly disordered structures using molecular dynamics
simulations. The dataset consists of the first three rows of the periodic
table (from H to Ar). The details of the data preparation are shown in
Section 3.4.

We trained networks of different depths (2, 4, 8, and 16 layers).
The hyperparameters and other settings for training are shown in
Section 3.5. The results are depicted in Table 2. Increasing the number
of layers improved the network accuracy. No overfitting was observed
in any system. In the best-performing network (with 16 layers), the
mean absolute error (MAE) of the energy was 19.3 meV/atom. Our
proposed method enables to construct deeper model which has higher
accuracy in the field of GCN.

For further evaluation, we also trained our model for datasets
of locally stable atomic configurations (QM9 dataset and Materials
Project molecule dataset). In addition, we evaluated the applicabil-
ity of previous works using our dataset. The results are shown in
Appendix A.4.

4.2. Effects of the proposed components of the network

To investigate the effects of the components in our proposed net-
work architecture, we systematically removed their corresponding
functions and checked each component effect. The results are presented
in Table 3.

First, the network was run without inputting the tensor values (‘‘w/o
tensor’’ row in Table 3). To conduct a fair test, the number of scalar
values was increased to maintain the original number of parameters in
the network. Then, the network was run without the node convolution
gate (‘‘w/o gate’’ row in Table 3). The number of scalar values was
again increased to offset the reduction in the number of parameters.
Finally, the proposed activation function was replaced by the softplus
function (‘‘Softplus’’ row in Table 3). A four-layer network without the
initial 450,000 iterations was used for comparison.

The largest decrease in accuracy is seen in the case without a
tensor value. The second largest decrease is in the case where the
node convolution gate was not inserted. Interestingly, the proposed
13

activation function outperformed the softplus function.
Table 4
Top: Structural accuracy on small hydrocarbon molecules. Bottom: calculated lattice
constants and cohesive energies of different phases of Na, Al, and Si. The cohesive
energies corresponding to the most stable structure are shown in bold.

C-C length [Å] C–H length [Å] H-C-C angle [degree]

DFT TeaNet DFT TeaNet DFT TeaNet

Acetylene (C2H2) 1.21 1.21 1.07 1.06 180◦ 180◦

Ethene (C2H4) 1.33 1.34 1.09 1.09 122◦ 121◦

Ethane (C2H6) 1.53 1.53 1.10 1.10 112◦ 112◦

Benzene (C6H6) 1.40 1.40 1.09 1.09 120◦ 120◦

Cyclohexene (C6H12) 1.53 1.55 1.10 1.10 110◦ 110◦

Lattice constant [Å] Cohesive energy [eV/atom]

DFT TeaNet DFT TeaNet

Na FCC 5.30 5.39 𝟏.𝟏𝟎 𝟏.𝟏𝟔
BCC 4.22 4.30 1.09 1.15
Diamond 7.62 7.29 0.76 0.77

Al FCC 4.05 4.11 𝟑.𝟒𝟐 𝟑.𝟒𝟑
BCC 3.23 3.26 3.27 3.38
Diamond 6.05 6.30 2.79 2.75

Si FCC 3.91 4.26 3.97 4.43
BCC 3.17 3.37 3.93 4.40
Diamond 5.47 5.47 𝟒.𝟔𝟒 𝟒.𝟕𝟔

5. Materials applications

5.1. Overview

The universal NNIP should be applicable to arbitrary 3D atomic
configurations with any bond types, crystal/molecular structures, and
element type (up to Ar in this dataset). We have tested various systems
including molecular systems, inorganic crystal structures, water, and
aqueous solutions.

In this section, we used the four-layer version of the neural network
in consideration of the calculation cost of MD simulations. This is
like the embedded-atom potential with embedding applied four times,
and with tensors and vectors propagating inside as well. The same
parameter set is used throughout this section.

5.2. Intramolecular structure

We tested the reproducibility of the structures of small C–H
molecules. The bond lengths and bond angles of typical small hy-
drocarbon molecules were compared, and the results are listed in
Table 4.

Our model can reproduce both the bond lengths and angles with
good accuracy. In particular, a variety of C–C bonding (𝑠𝑝, 𝑠𝑝2, and
𝑝3) is well reproduced. It is noted that ethene forms a planar structure
nd that ethane forms a staggered conformation. This indicates that
ur model captures the dihedral angle (4-node) interactions by passing
ector and tensor information through the C–C bond. In addition, we
onfirmed that benzene forms a planar structure while cyclohexene
orms a chair-type structure, which is a typical difference in bonding
ature between aromaticity and a single bond.

.3. Bulk properties of metal and semiconductor

Metals have delocalized dielectric response, while materials with
andgap can have exponentially localized response [14]. Table 4 shows
eaNet predictions of Na, Al, and Si. Several crystal structure poly-
orphs of the same element were evaluated.

.4. Amorphous silicon dioxide

Since SiO2 amorphous structure has various bond angles and various
oordination numbers, it is treated as a benchmark of the IPs [37,53].
morphous SiO configuration including 648 atoms is obtained by
2
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Fig. 17. Top left: obtained SiO2 amorphous structure. Top right: comparison of partial radial distribution function of amorphous SiO2 with DFT [54] and conventional IP [37].
Bottom left: snapshot of water. Bottom right: partial radial distribution function of water at 300 K. The experimental data is derived from the merged X-ray and neutron scattering
data [56]. It is noted that the intramolecular bonds of H2O (within 1.20 Å for O–H and 1.77 Å for H–H) are not shown. For O–O, ReaxFF potential result [57] is also shown.
Fig. 18. Snapshots of hopping of H between H2O molecules. H, 2-coordinate O, and 3-coordinate O are shown by blue, yellow, and green spheres, respectively. (Left): In water,
H in H2O and H3O are oriented to neighboring O atoms. (Left to middle): An H in H3O hopped to another O. (Middle to right): Another H in the H3O molecule hopped to the
other H2 O molecule. As a whole, these events were considered as the Grotthuss diffusion of H.
a melt-quench process. The obtained structure and the partial radial
distribution functions are shown in Fig. 17. The result is in good
agreement with those of previous studies [37,54]. Detailed compar-
ison for silica polymorphs with the other IPs [53,55] are shown in
Appendix A.6.
14
5.5. Properties of water

Water is ubiquitous in chemistry and biochemistry. Atomistic simu-
lation of polar and protic solvent is, therefore, essential for chemistry,
biochemistry and electrochemistry. First, the ice (ice Ih) crystal struc-
ture was created. The calculated density of ice at 200 K was 0.93 g/cm3.
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Second, liquid properties were investigated. As an initial structure, an
MD cell having 512 H2O molecules was prepared. It was melted at
00 K for 1 ps under NVT ensemble and then annealed at 300 K and
bar for 3 ns under NPT ensemble. The density of liquid water was

.00 g/cm3. These values are in good agreement with the experimental
alues (0.92 g/cm3 at 200 K, 1.00 g/cm3 at 300 K), and we confirmed

that the density of water is higher than that of ice [58]. Fig. 17 shows
a snapshot of TeaNet simulation of a system of water molecules at 300
K, and the partial radial distribution function (RDF) of water predicted
by our model compared to the experiment [56]. It is noted that there
are IPs which can reproduce the liquid water and ice structures. For
example, the calculated density of liquid water and ice using ReaxFF
potential [57] are 1.01 g/cm3 and 0.96 g/cm3, respectively. In addition,
O–O partial RDF of ReaxFF potential is shown in Fig. 17.

Another important property of water is its high dielectric constant.
In MD simulation, the dielectric constant 𝜖 can be calculated from the
fluctuation of the total dipole moment by [59]

𝜖 = 1 + 4𝜋
3𝑉 𝑘B𝑇

(

⟨

𝑀2⟩ − ⟨𝑀⟩

2
)

, (19)

where 𝑀 , 𝑉 , 𝑘B, and 𝑇 are the dipole moment, volume, Boltzmann
constant, and temperature, respectively. ⟨⟩ corresponds to the time
average operation. The dipole moment of a single H2O molecule is set
to 1.8546 Debye in this simulation. The calculated dielectric constant
was around 52 (Experimental value: 78 at 298 K [58]).

In this simulation, the calculation speed was about 0.14 second/step
for 1536 atoms (512 H2O molecules) using single NVIDIA Titan V GPU.

5.6. Ion dissociation and the Grotthuss proton diffusion mechanism

Next, we investigate ion dissociation, proton transport, and the
Grotthuss mechanism by simulating HCl in H2O. As a result, the HCl
molecule dissociated and a single Cl atom and H3O molecule were
created. Here, Cl and H3O are shown without +∕− signs because
the charge deviation effect cannot be extracted explicitly. After this,
occasionally one H atom in the H3O was observed to hop to another
neighboring O atom, as shown in Fig. 18. This proton transfer process,
known as the Grotthuss mechanism, plays an important role in proton
diffusion. But previously there was no bonded IP that can reproduce the
Grotthuss mechanism. In TeaNet MD, the calculated effective diffusion
coefficient of H3O is 1.5 Å2/ps, which is in good agreement with the
revious DFT study (DFT: 1.3 Å2/ps, experiment: 0.93 Å2/ps [60]). It
hould be noted that ReaxFF potential [57] can reproduce the diffusion
oefficient (1.0 Å2/ps). The figures focusing on the Cl atom is shown
n Appendix A.7.

. Conclusion

In this paper, we provided a unified view of GCN and physics-
ased interatomic potentials. Based on the findings, we proposed a new
etwork model, named the tensor embedded atom network (TeaNet).
n this network, the graph convolution is associated with EAM poten-
ial and the stacked network model is associated with the iterative
lectronic total energy relaxation calculation. The Euclidean vectors
nd tensor values are incorporated into the model to reproduce the
ropagation of orientation-dependent Hamiltonian information. TeaNet
imics the information flow of nonlinear iterative electronic relax-

tions (truncating at 5 iterations at present). The proposed model
hows great performance for the first 18 elements on the periodic table
H to Ar) even for highly disordered structures. We showed that it
an reproduce a diverse range of material properties including C–H
olecular structures, metals, amorphous SiO2, liquid water and ice.
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Fig. A.19. Schematic illustration of the rotation of C–C bond in ethylene. Only H–H
distance corresponding opposite site (illustrated by dotted line) is different.

Table A.5
Model comparison using proposed highly disordered dataset.

Cutoff
[Å]

Geometric
information

# params Energy MAE
[meV/atom]

Force MAE
[eV/Å]

SchNet 6.0 𝑙 = 0 310,000 29.7 0.638
NequIP 4.0 𝑙 = 1 (32 channels) 468,120 305 0.941
NequIP 6.0 𝑙 = 2 (16 channels) 281,208 445 0.946
TeaNet (ours) 6.0 rank-2 tensor 235,000 23.9 0.167

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The raw data and the processed data required to reproduce these
findings are available to download from Code Ocean (https://codeocean
com/capsule/4358608).

Acknowledgments

JL acknowledges support from the US DOE Office of Nuclear En-
ergy’s NEUP Program under Grant No. DE-NE0008751. ST acknowl-
edges support from a Grant-in-Aid for JSPS Fellows, Japan. We thank
Zhe Shi and David Allan Bloore for commenting on the manuscript.

Appendix

A.1. Examples on the weak correlation between bond length and interac-
tions of atoms

With finite radial cutoff distance, using bond length information
only sometimes makes it hard to estimate the interactions of atoms. The
simple example is ethylene. The rotation of C–C bond is fixed because
of pi-bonding. However, with respect to C–C bond rotation, all angles
of the chemical bonds which share the same atom do not change. This
is interpreted as the dihedral angle interaction which has important
role in organic molecules. It is noted that if the cutoff distance is long
enough, there can be seen a difference in H–H distance where two
hydrogen atoms are connected to the other side of C atoms. However,
the change of H–H distance with respect to the rotation of C–C bond
is relatively subtle. In addition, in this case, the length-based method
should represent the pi-bond interaction as the distance of H–H length,
while there is little direct interaction between them (see Fig. A.19).

Another example is small cluster consisting of three atoms arranged
in an equilateral triangle. Accounting the nearest neighbor atoms only,
the numbers of neighbor atoms are identical to the infinite chain
structure. It means that the length-based model with short cutoff dis-
tance cannot tell whether the structure is triangle or chain no matter
how many the convolution layer is, while their bond angles are quite
different. In other words, the length-based model should represent the
angle-dependent interaction by the existence of the second nearest
neighbor atoms (see Fig. A.20).

https://codeocean.com/capsule/4358608
https://codeocean.com/capsule/4358608
https://codeocean.com/capsule/4358608
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Fig. A.20. Schematic illustration of triangle cluster and infinite chain. They have the same connectivity.
Table A.6
Calculated cohesive energy, relative energy to 𝛼-quartz, and density of silica
polymorphs. a-Q, a-C, and b-T correspond to 𝛼-quartz, 𝛼-cristobalite, 𝛽-tridymite,
respectively.

Crystal Cohesive energy
[eV/atom]

Relative energy
[eV/atom]

Density
[g/cm3]

DFT [61] a-Q 7.942 2.48
a-C 7.953 −0.011 2.13
b-T 7.950 −0.008 2.06
stishovite 7.730 0.212 4.11

Tersoff [53] a-Q 6.698 2.42
a-C 6.697 0.001 2.16
b-T 6.696 0.002 2.08
stishovite 6.196 0.502 3.89

ReaxFF [55] a-Q – 2.55
a-C – 0.001 2.22
b-T – −0.006 2.09
stishovite – 0.279 4.29

Ours a-Q 6.720 2.44
a-C 6.717 0.003 2.19
b-T 6.711 0.009 1.92
stishovite 6.466 0.254 4.12

A.2. The necessity of Rank-2 tensors and its physical meaning

Rank-2 tensors are essential to express the edge–edge interaction
through their angle by graph convolution operation. This can be
demonstrated in the following example. Let the nodes and edges
contain only vector values, and suppose that two edges are connected
to a center node, that has point-group symmetry as shown in Fig. A.21.
After the convolution, the summed vector values at the node are always
𝟎, and the node loses its directional information. If the third edge
is connected to the node, no angle dependence is represented. How-
ever, if the second-order tensor values are introduced, the point-group
symmetric edge pairs have identical (no sign reversal) tensor values;
therefore, the directional information can be accumulated on the node.
It should be noted that the vector and tensor values are not merely
mathematical tricks but express various physical quantities related to
the electronic structure. For example, the local charge deviation is
expressed by the electric dipole moment. Since the electron orbit of
a 𝜋 bond extends perpendicularly to the bond direction, the dihedral
bending is prevented. Polarizability can be expressed by tensor as well.
These properties can be naturally expressed using the vector and tensor
variables. Higher-order tensor values can also be introduced in the same
16

manner.
Fig. A.21. Example of the vanishment of directional information when convoluting
with vector values only. If a pair of atoms (shown in dark green circles) having the
same properties are located on opposite sides of the center atom (shown in orange
circle), any vector values summed at the center atom will vanish. Thus, the angular-
dependent interaction between another neighbor atom (shown in white circle) and dark
green atoms, corresponding to 𝜃1 and 𝜃2, cannot be incorporated in the model.

A.3. Relation between tensor values and spherical harmonics-based methods

Recently, graph neural network models which can treat spheri-
cal harmonics-based representation has benn proposed and actively
applied to the atomistic simulations [22,23,27,28]. The tensor-based
model and spherical harmonics-based model have similar trends from
a certain point of view. First of all, they have the ability to represent
the geometric information while holding the rotation and translation
invariances. In addition, they are not limited to the vector representa-
tion but can treat the higher-order geometric information using rank-n
tensor or higher rotation order 𝑙 in spherical harmonics.

However, the geometric information is represented in different
ways. We can observe it in various points. For example, the tensor-
based model has O(𝑛) symmetry while the spherical harmonics-based
model has SO(3) symmetry. In other words, the tensor-based model
has a mirror-symmetry in natural, while the spherical harmonics-based
model can tell mirrored structure. (It is noted that additional restriction
can make spherical harmonics-based model to have mirror symmetry.)
In addition, the tensor-based model uses inner product and tensor
product for spatial information calculation. It means that graphs which
are embedded in more than 3 dimensional space can be treated. The
nonlinearity is also different between tensor operations and spherical
harmonics operations (e.g. Clebsch–Gordan product). It is well known
that the nonlinear operations in neural network have significant impact
for the performance.

Therefore, they have different expression power and cannot be
converted from one model to another. The numerical benchmarks are
taken in the below section.
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Fig. A.22. Illustration of SiO2 crystals (1) 𝛼-quartz. (2) 𝛼-cristobalite. (3) 𝛽-tridymite. (4) stishovite. The optimized structure using TeaNet are shown. It is noted that Si and O
atoms in stishovite have 6 neighboring atoms and 3 neighboring atoms, respectively.
A.4. Numerical experiments of our model for existing dataset

Although our aim is to reproduce the potential energy of highly
disordered atomic configurations and our model and dataset are created
for that purpose, we also evaluated our model for datasets of locally sta-
ble atomic configurations. First, the QM9 dataset was used. Since QM9
contains only stable structures, it is possible to increase accuracy by
retraining. We retrained the four-layer version of the network with the
stochastic gradient descent (SGD) optimizer while gradually decreasing
the learning rate. The mean squared error of the energy was used as
the loss. In this case, we use the original QM9 validation dataset as
the test dataset. The MAE of the energy was 13 meV per molecule
(1.2 meV/atom) among the QM9 validation dataset. This is similar
to the current top scores (14 meV [7], 8 meV [17]), and the other
methods (19–130 meV) [5]. It is noted that the error of the dataset with
locally stable structures is one magnitude smaller than that of highly
disordered structures shown in Table 2.

Second, the Materials Project molecule dataset, which consists of
elements in the first three rows of the periodic table, was used. We
recalculated the energy of the dataset by DFT to adjust the difference
in the method of DFT. We trained the network in the same way as
with QM9. The resulting MAE of the energy was 3.1 meV/atom. Our
model well succeeds in estimating the energy of locally stable atomic
configurations. It is noted that our model does not require the bond
types as the input and that we use a relatively short cutoff distances (6
Å).

A.5. Numerical experiments of other models for our dataset

In the previous section, we evaluated our model with existing
dataset. Conversely, we evaluate the other models using our highly
17
disordered dataset and compare their performance in this section. Our
dataset contains diverse structure because it is not limited to the stable
structure. Therefore, we regard that this task is relatively hard as
compared to the existing stable structure dataset. In this section, we
especially focused on the force reproducibility since it is the main
property for the dynamics simulation task. It is noted that recent
studies proposed to take a large loss coefficient for force side for better
training [28].

We would like to note that symmetry function-based methods
(BPNN [4] and its derivations) is not suitable for this task. Since sym-
metry function explicitly treats the three-body term of each element,
the number of parameters increases dramatically by increasing the
number of elements in the dataset. This behavior makes it hard to train
the model.

The GNN-based model can be applied to this dataset. We select two
architectures here. First, we use SchNet [7] as the current length-based
milestone method. Next, we use NequIP [28] as a representative of the
spherical harmonics and Clebsch–Gordan product based models.

For SchNet, we use SchNetPack for the evaluation. The specified
parameters are below. To align the conditions, we set the number of
layer to 4 (original model: 3 and 6) and the cutoff distance to 6.0 Å.
We set the parameter 𝜌 (weight of losses) for the energy and the force
to 0.001 and 0.999, respectively.

For NequIP, we use the official implementation (https://github.
com/mir-group/nequip). The provided hyperparameters for examples
are also used. The changed points are described below. First, we noticed
that the network parameter initialization does not work for this dataset
(the loss goes above 1035). We found that this can be suppressed by
multiplying 0.1 to the all initial network parameters. The default cutoff
is 4.0 Å. We also evaluated 6.0 Å and with the 2nd rotation order 𝑙

https://github.com/mir-group/nequip
https://github.com/mir-group/nequip
https://github.com/mir-group/nequip
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Fig. A.23. (1), (2), and (3): Snapshots of water in which HCl molecule was inserted. The green sphere corresponds to Cl atom. H3O molecule can be found in the blue box shown
in (2). (4): Close snapshot of (3). H–Cl long-range bonds are also shown (visual cutoff distance for H-Cl was set to 3 Å).
to align with TeaNet settings. In this case, we reduced the number of
channels from 32 to 16 to keep the number of parameters in a certain
range. The loss coefficients are set to 100 for force loss and 1 for per-
atom energy loss (they are recommended values for MD simulation
tasks). We set the max number of epochs to 100 (6259100 iterations
in total).

The result is shown in Table A.5. The result indicates that the force
reproduction task in this dataset is quite difficult as compared to the
previous benchmarks. For example, NequIP for MD17 task shows good
performance for the force reproduction (MAE is less than 0.01 eV/Å for
all molecules). We can point out two possible reasons to this difference.
The first one is that the structures are far from the stable point. It does
not only expand the magnitude of force values but also increase the
anharmonicity, which makes it hard to estimate. In other words, the
target region (phase space) to estimate is quite larger than the previous
datasets. The second one is the difference of the number of element
types. It also expands the number of atomic combinations dramatically,
which would also contribute to the difficulty of the task.
18
The result shows that TeaNet performs best for the force repro-
duction. It indicates that TeaNet makes significant progress for this
kind of task. It is noted that, since the nature of this dataset is far
from the existing ones, there is a chance that the existing models’
hyperparameters were not optimal.

A.6. Silica polymorphs reproducibility

Additional experiments for the reproducibility of silica polymorphs
(𝛼-quartz, 𝛼-cristobalite, 𝛽-tridymite, stishovite) are carried out. The
result is shown in Table A.6. The snapshots are shown in Fig. A.22.
Overall, our model well reproduces the silica polymorphs including the
difference of the energies and the densities. In addition, our model well
estimates the difference of the energy of stishovite, which Tersoff-type
potential estimates two times larger. In stishovite crystal structure, one
Si atom is connected to 6 O atoms and one O atom is connected to 3 Si
atoms. It means that the local environment of each atom is far from the
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Fig. A.24. The structures of the first 20 samples in Table A.7 are shown (order: top left to right). The colors of the atoms correspond to the element number (H: blue, Ar: red).
It is noted that the structures with small box are drawn at a size of 2 × 2. See Table A.7 for the details of component.
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Table A.7
Content of the test dataset. The number of each element in the test dataset is shown. 𝐸 corresponds to the total energy of the system calculated
by DFT. The zero point of the energy is defined as the sum of the energies of atoms separated in a vacuum. The unit of energy is eV.

H He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar 𝐸 𝐸/atom

0 1 1 0 0 3 0 1 3 1 0 0 3 0 0 1 2 2 −32.57 −1.81
1 0 0 0 0 0 0 2 1 0 1 1 0 0 0 1 0 1 −22.14 −2.77
0 1 1 1 2 2 0 2 2 1 0 1 2 0 1 0 0 0 −58.83 −3.68
0 1 1 1 0 1 2 1 1 1 1 1 0 1 1 1 1 1 −53.44 −3.34
0 0 8 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 −30.25 −1.89
0 0 0 0 0 0 3 1 0 1 0 1 0 0 1 0 1 0 −18.42 −2.30
0 0 0 0 1 1 2 0 4 0 0 1 2 1 2 0 1 1 −64.72 −4.05
0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 2 2 1 −22.55 −2.82
0 0 0 0 0 0 0 0 0 9 9 0 0 0 0 0 0 0 0.97 0.05
0 1 0 2 0 0 1 0 1 0 0 1 2 0 1 0 0 1 −25.22 −2.52
0 0 0 0 0 0 0 0 0 2 0 0 0 1 1 0 0 0 −2.54 −0.63
3 0 2 0 0 1 0 0 2 1 0 0 0 1 3 1 2 0 −47.47 −2.97
0 0 1 0 1 0 0 1 1 2 1 4 1 1 0 0 0 3 −26.56 −1.66
0 0 4 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 −2.99 −0.37
2 0 2 0 1 3 0 1 0 0 0 1 1 1 3 0 0 1 −55.86 −3.49
16 0 0 0 0 0 0 0 32 0 16 0 0 0 0 0 0 0 −197.82 −3.09
9 6 10 12 7 12 9 3 7 9 6 10 5 3 3 7 6 4 −394.97 −3.09
0 0 9 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 −62.79 −3.49
0 0 0 2 0 1 1 0 1 0 0 2 0 0 0 1 0 0 −23.62 −2.95
0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 14 0 −28.70 −1.79
0 0 8 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 −58.89 −3.68
2 0 3 1 1 1 1 0 2 0 0 0 3 0 1 1 0 0 −48.22 −3.01
1 2 2 0 0 1 1 1 0 0 0 3 1 0 0 0 2 2 −27.45 −1.72
2 1 2 1 0 0 0 0 3 3 0 0 2 0 1 1 0 0 −41.19 −2.57
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 7 1.25 0.16
0 0 0 0 0 0 0 0 0 1 0 15 0 0 0 0 0 0 −0.22 −0.01
0 0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −28.89 −1.81
10 0 0 0 0 12 2 0 0 0 0 0 0 0 0 0 0 0 −117.52 −4.90
1 1 0 2 1 0 1 2 1 0 2 1 1 1 1 0 1 0 −56.39 −3.52
1 1 0 0 1 0 1 1 1 0 0 0 0 1 2 0 1 0 −36.41 −3.64
1 1 1 0 2 1 0 0 2 1 2 1 0 2 1 1 1 1 −45.35 −2.52
0 3 1 0 0 0 1 3 0 1 0 2 0 0 1 2 2 0 −36.98 −2.31
2 0 2 2 0 2 0 0 1 2 2 0 2 1 2 0 0 2 −34.90 −1.74
0 0 0 0 0 0 0 0 0 9 0 0 0 0 9 0 0 0 −20.54 −1.14
0 0 0 0 1 0 1 1 0 1 0 2 0 1 0 0 1 0 −22.94 −2.87
4 1 2 2 0 0 1 1 1 0 1 1 1 0 1 0 0 0 −35.49 −2.22
1 1 0 1 2 1 1 0 0 1 2 0 1 1 1 2 0 3 −32.36 −1.80
1 0 1 0 0 2 1 0 0 0 1 0 0 0 0 2 0 0 −25.29 −3.16
4 5 2 2 4 5 3 5 1 6 2 4 1 2 2 9 5 2 −220.63 −3.45
0 2 1 1 1 1 0 0 1 1 0 1 0 1 0 0 0 0 −23.16 −2.32
2 0 0 0 0 0 0 1 0 2 0 0 0 0 0 0 2 1 −10.70 −1.34
0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 −3.60 −1.80
1 2 0 0 0 2 2 2 1 1 0 1 1 0 1 0 2 0 −60.44 −3.78
1 2 0 0 0 1 0 0 0 1 0 0 1 0 1 1 0 0 −11.70 −1.46
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 10 0 −41.19 −2.06
0 0 15 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 −31.25 −1.95
0 0 2 2 0 1 1 0 0 0 0 2 3 0 0 1 3 1 −44.95 −2.81
0 0 0 0 4 0 0 0 0 0 4 0 0 0 0 0 0 0 −21.54 −2.69
0 0 0 0 1 0 1 1 0 0 1 0 1 1 0 1 1 0 −26.63 −3.33
0 0 0 0 0 0 0 0 0 8 0 8 0 0 0 0 0 0 −5.74 −0.36
1 0 0 0 1 0 1 0 0 1 0 0 2 1 0 0 1 0 −10.77 −1.35
1 0 0 1 0 2 0 0 1 0 0 0 1 0 1 0 0 1 −25.65 −3.21
1 1 0 1 0 1 2 1 2 0 0 1 0 1 0 0 0 1 −46.32 −3.86
5 5 4 4 3 3 3 6 3 4 4 1 5 1 0 3 4 6 −206.37 −3.22
0 0 0 0 0 16 0 0 0 0 0 0 0 0 0 0 0 0 −22.43 −1.40
0 0 0 0 0 0 0 0 0 0 4 0 0 4 0 0 0 0 −16.87 −2.11
6 0 10 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 −36.95 −1.85
0 0 0 0 1 0 1 0 0 0 0 0 0 2 0 0 0 0 −13.41 −3.35
2 0 1 0 1 1 1 0 1 0 1 0 1 1 0 1 1 0 −34.68 −2.89
0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 9 0 −45.46 −2.53
0 0 0 0 0 0 8 0 0 8 0 0 0 0 0 0 0 0 −41.27 −2.58
0 2 2 2 1 0 2 1 1 2 0 0 1 1 0 0 1 0 −43.28 −2.71
0 0 0 0 8 0 0 0 8 0 0 0 0 0 0 0 0 0 −80.56 −5.03
0 1 2 1 0 0 0 2 0 0 0 0 0 0 0 2 0 0 −24.73 −3.09
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 −1.31 −0.33
0 2 1 0 2 1 0 3 1 1 0 0 2 1 1 1 2 2 −61.66 −3.08

(continued on next page)
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Table A.7 (continued).
H He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar 𝐸 𝐸/atom

0 0 0 0 0 0 0 1 0 0 0 0 0 2 0 0 0 1 −10.50 −2.62
0 0 0 9 0 0 9 0 0 0 0 0 0 0 0 0 0 0 −71.42 −3.97
2 0 0 0 0 1 1 1 0 0 1 0 1 0 2 2 1 4 −42.65 −2.67
0 3 1 3 0 0 0 0 1 0 0 2 2 0 2 1 1 0 −39.80 −2.49
1 0 1 1 0 0 0 1 0 0 2 0 0 1 0 1 0 0 −22.08 −2.76
5 6 7 10 8 12 14 2 9 10 5 6 3 8 6 9 3 5 −427.13 −3.34
0 0 0 0 0 0 0 0 1 0 0 6 0 0 0 0 1 0 −15.13 −1.89
0 0 0 0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 −88.14 −5.51
2 1 1 1 0 1 1 0 2 1 3 0 0 1 0 1 0 1 −39.07 −2.44
0 0 0 1 1 0 0 2 2 0 1 1 1 0 3 0 0 0 −42.05 −3.50
1 1 2 2 3 0 0 0 0 0 1 1 0 0 0 2 2 1 −39.07 −2.44
0 1 1 1 1 0 0 3 0 1 0 0 1 1 0 0 0 0 −32.15 −3.22
8 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 −71.87 −4.49
1 0 1 1 0 3 5 0 1 0 1 1 1 1 1 1 1 1 −66.54 −3.33
1 1 3 1 0 0 1 2 0 1 1 0 0 2 0 1 1 1 −46.73 −2.92
0 1 0 1 0 2 1 1 0 0 1 1 0 0 0 2 1 1 −38.19 −3.18
0 2 1 1 1 1 1 0 2 0 0 1 1 1 0 1 0 3 −46.10 −2.88
0 0 8 0 16 0 8 16 8 8 0 0 16 0 32 8 8 0 −461.06 −3.60
0 0 0 0 0 0 0 0 0 0 0 0 15 0 0 1 0 0 −44.16 −2.76
11 8 8 6 8 11 6 3 5 12 9 6 6 6 6 4 6 7 −374.90 −2.93
0 0 0 0 0 0 0 0 0 0 0 0 16 0 0 0 0 0 −39.70 −2.48
6 0 0 0 0 8 2 0 0 0 0 0 0 0 0 0 0 0 −75.53 −4.72
1 0 0 1 0 1 1 0 2 0 0 0 2 3 1 2 0 2 −56.83 −3.55
1 1 0 0 0 0 1 2 2 1 1 0 0 0 0 2 5 0 −32.44 −2.03
0 0 1 1 1 0 1 0 0 1 2 0 0 0 0 0 0 1 −7.19 −0.90
0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 −40.96 −5.12
0 2 0 1 0 1 1 1 0 1 0 1 2 1 1 0 4 0 −37.51 −2.34
0 0 0 10 0 10 0 0 0 0 0 0 0 0 0 0 0 0 −93.71 −4.69
1 2 3 1 0 1 1 0 0 2 1 1 0 2 0 2 2 1 −44.09 −2.20
4 0 0 0 0 4 2 2 0 0 0 0 0 0 0 0 0 0 −51.94 −4.33
0 0 0 1 2 0 3 0 1 0 0 1 0 1 2 1 0 0 −53.71 −4.48
0 0 0 0 0 0 0 0 0 4 0 0 0 4 0 0 0 0 −11.15 −1.39
0 1 0 0 0 2 1 3 1 2 0 3 0 1 0 0 0 2 −50.47 −3.15
0 0 8 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 −57.67 −3.60
2 2 0 1 2 1 0 0 0 1 1 0 1 2 0 0 1 2 −29.53 −1.85
14 7 4 0 2 5 13 8 8 7 5 10 5 9 11 7 7 6 −378.64 −2.96
0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 9 0 0 −74.44 −4.14
0 1 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 −6.89 −0.86
0 0 0 0 0 0 9 0 0 0 9 0 0 0 0 0 0 0 −46.17 −2.56
4 7 7 4 4 4 7 3 0 5 2 3 3 3 2 2 3 1 −204.67 −3.20
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 6 −2.18 −0.27
0 4 0 0 0 0 0 0 0 0 0 0 0 0 4 4 0 4 −19.82 −1.24
3 3 1 1 1 2 2 3 3 33 2 3 1 1 2 0 0 3 −92.94 −1.45
1 3 1 2 0 2 2 1 1 0 1 1 0 1 0 2 0 2 −51.51 −2.58
0 0 0 1 2 1 2 0 0 0 2 2 2 3 1 0 0 0 −59.71 −3.73
16 8 16 0 0 0 8 8 0 24 0 0 24 8 0 0 8 8 −266.13 −2.08
2 2 1 1 0 1 0 1 0 0 0 1 1 0 3 2 0 1 −45.98 −2.87
0 2 0 0 0 0 0 0 0 0 0 0 0 0 16 0 0 0 −44.08 −2.45
0 1 0 0 2 0 1 0 1 2 0 2 0 1 2 0 0 0 −24.05 −2.00
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 0 0 −47.83 −2.99
8 8 2 8 8 6 10 2 7 8 7 3 11 6 5 9 14 6 −383.19 −2.99
0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 8 0 0 −76.73 −4.80
0 0 2 1 3 1 0 2 1 1 0 0 0 1 1 1 0 2 −59.94 −3.75
0 0 0 0 7 0 1 0 0 0 0 0 0 0 0 0 0 0 −33.89 −4.24
1 0 3 2 1 1 1 0 1 1 0 0 0 0 0 0 1 0 −29.74 −2.48
0 1 0 0 0 0 0 0 0 6 0 0 0 0 1 0 0 0 −0.06 −0.01
7 0 0 0 0 7 0 1 0 0 0 0 0 0 0 1 3 0 −74.36 −3.91
1 0 1 2 2 1 1 0 1 0 1 1 2 2 1 1 1 2 −54.96 −2.75
0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 −22.66 −1.42
0 0 0 0 2 1 1 1 0 1 0 2 1 1 0 0 1 1 −31.12 −2.59
0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 −5.95 −1.98
0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 9 0 −47.85 −2.66
0 0 2 0 1 2 0 0 0 1 2 1 2 1 1 2 1 0 −52.83 −3.30
7 0 0 0 0 0 9 4 0 0 0 0 0 0 0 0 0 0 −60.71 −3.04
0 2 2 0 2 0 1 2 5 2 0 0 0 0 1 0 0 1 −49.48 −2.75
1 2 1 0 1 0 2 1 0 0 0 0 2 1 0 0 1 0 −40.21 −3.35
0 0 16 0 0 0 8 0 8 0 0 8 0 8 0 0 16 0 −185.75 −2.90
1 2 0 2 1 1 1 3 0 2 0 1 2 1 2 0 0 1 −61.69 −3.08
0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 8 0 −59.34 −3.71
0 2 0 0 1 0 0 1 2 1 1 0 2 0 1 1 3 1 −42.74 −2.67
1 0 0 1 0 0 1 3 1 1 2 2 0 0 1 0 1 2 −37.49 −2.34
3 0 1 0 0 1 0 0 0 1 0 1 1 0 2 2 4 0 −39.57 −2.47
0 2 0 0 1 2 2 0 0 1 0 2 0 1 0 0 0 1 −33.80 −2.82
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 15 0 −29.37 −1.84
0 0 0 0 8 0 0 0 0 8 0 0 0 0 0 0 0 0 −39.13 −2.45
1 2 0 2 0 0 1 1 1 0 0 2 0 1 0 2 1 2 −45.19 −2.82

(continued on next page)
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Table A.7 (continued).
H He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar 𝐸 𝐸/atom

0 0 16 0 16 0 0 0 0 0 0 0 0 16 0 0 0 16 −170.52 −2.66
0 8 8 8 16 8 24 8 0 8 16 8 0 8 8 0 0 0 −483.13 −3.77
13 0 0 0 0 7 1 1 0 0 0 0 0 0 0 0 0 0 −88.00 −4.00
0 1 0 0 2 4 0 0 0 1 2 1 1 3 0 1 0 0 −56.86 −3.55
9 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 −38.97 −2.17
0 0 0 2 1 0 1 0 1 1 2 0 1 0 1 1 0 1 −33.08 −2.76
0 1 0 1 0 1 1 0 0 0 0 1 0 0 1 0 0 2 −17.18 −2.15
0 0 1 1 3 1 0 0 2 0 3 1 1 0 1 1 1 2 −45.47 −2.53
0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 9 0 0 −45.55 −2.53
0 0 0 0 1 1 0 0 0 0 0 0 0 2 2 0 0 2 −12.91 −1.61
0 2 0 0 1 1 1 1 1 1 1 3 0 0 1 1 1 1 −44.00 −2.75
9 8 9 8 7 10 8 8 4 6 2 7 8 6 5 10 8 5 −370.09 −2.89
0 0 9 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 −11.95 −0.66
1 0 1 1 2 0 0 0 1 0 0 0 0 0 0 1 1 0 −24.14 −3.02
0 0 0 0 18 0 0 0 0 0 0 0 0 0 0 0 0 2 −83.57 −4.18
0 0 4 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 −31.34 −3.92
0 0 0 0 0 16 0 0 0 0 0 0 32 0 0 0 16 0 −248.64 −3.88
0 6 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 −3.70 −0.46
1 1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 2 −7.90 −0.99
1 2 2 0 1 1 2 1 1 0 0 0 0 4 0 3 2 0 −59.84 −2.99
0 0 1 1 0 0 0 1 1 0 1 0 0 2 1 0 0 0 −27.50 −3.44
0 2 0 0 1 2 1 1 0 1 1 2 2 2 0 0 1 0 −37.31 −2.33
0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 6 0 0 −19.17 −2.40
0 1 0 2 2 2 0 1 1 1 1 0 2 1 1 1 0 0 −56.88 −3.55
8 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 −49.09 −3.07
0 0 1 0 1 1 2 1 1 2 0 0 2 1 0 1 1 2 −49.73 −3.11
0 0 2 1 1 0 1 1 0 1 2 1 0 2 1 1 0 2 −42.56 −2.66
0 0 0 0 0 0 0 18 0 2 0 0 0 0 0 0 0 0 −57.64 −2.88
1 1 0 0 1 1 1 0 2 3 0 0 2 0 1 1 1 1 −39.10 −2.44
0 0 0 4 0 0 0 0 0 0 8 0 4 0 0 0 0 0 −18.93 −1.18
0 0 8 16 16 8 8 16 8 16 0 0 8 16 0 0 0 8 −484.78 −3.79
8 8 0 0 0 16 0 16 0 0 8 16 16 0 0 16 16 8 −414.13 −3.24
0 0 0 0 15 0 0 0 0 0 0 1 0 0 0 0 0 0 −81.78 −5.11
0 2 0 1 0 0 0 2 0 2 0 2 0 2 0 1 3 1 −34.70 −2.17
1 0 3 1 0 0 1 1 0 1 3 1 0 1 1 0 2 2 −35.55 −1.98
0 0 1 0 0 0 0 2 0 0 0 3 3 1 2 2 2 0 −50.47 −3.15
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 1 0 −43.11 −2.69
0 0 0 32 0 0 0 0 0 0 0 0 0 32 0 0 0 0 −230.94 −3.61
5 6 6 7 6 6 7 9 5 13 8 5 12 7 3 5 8 10 −326.74 −2.55
1 0 1 0 2 0 2 2 0 1 4 0 1 1 1 1 1 0 −51.42 −2.86
0 8 0 16 8 0 0 0 0 0 0 0 8 0 0 8 8 8 −138.38 −2.16
0 3 0 0 3 3 3 2 2 4 1 0 0 0 6 1 1 3 −68.00 −2.13
0 0 0 0 0 0 0 0 0 0 0 0 0 32 0 0 32 0 −219.32 −3.43
0 0 0 0 64 0 0 64 0 0 0 0 0 0 0 0 0 0 −796.72 −6.22
1 3 0 2 1 1 1 1 3 0 0 0 1 0 1 0 1 0 −51.38 −3.21
1 0 1 1 1 0 3 0 0 0 0 0 0 1 0 2 0 0 −41.80 −4.18
0 8 16 0 0 8 0 8 0 0 8 16 0 0 0 0 0 0 −130.89 −2.05
0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 8 0 0 −45.30 −2.83
1 0 1 0 0 1 0 0 1 2 2 1 0 0 2 0 2 3 −35.13 −2.20
0 0 0 0 0 0 0 0 0 10 10 0 0 0 0 0 0 0 −7.75 −0.39
1 0 0 3 0 0 0 0 1 0 0 1 0 1 0 0 1 0 −14.94 −1.87
0 8 8 8 8 0 0 0 0 0 0 8 8 8 0 8 0 0 −148.50 −2.32
0 0 0 0 0 0 0 0 4 0 0 0 0 0 4 0 0 0 −24.20 −3.02
1 0 0 1 0 0 1 1 1 1 0 1 0 0 0 0 0 1 −13.42 −1.68
0 0 0 10 0 0 0 6 0 4 0 0 0 0 0 0 0 0 −75.76 −3.79
0 0 4 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 −17.00 −2.13
0 1 1 1 0 0 0 1 0 1 2 1 0 2 1 3 1 1 −42.95 −2.68
0 0 1 1 1 0 1 1 0 0 1 2 2 1 0 0 0 1 −27.97 −2.33
usual tetrahedral silica crystal structures. It indicates that our model is
robust for the change of local environments of atoms.

A.7. Cl atom observation in water

In the simulation of ion dissociation and proton diffusion of water,
one HCl molecule was added into H2O. In this section, the behavior of
Cl atom was observed. The snapshots are shown in Fig. A.23. As the HCl
molecule dissociated in the water, the individual Cl atom was observed
during the MD simulation. The interaction of Cl atom and surrounding
water molecules was also shown. Although they are not bonded strictly,
H atoms in the surrounding water molecule tend to get closer to the Cl
atom. This is in good agreement with the picture of anions in water. It
22
should be noted that those effects were reproduced without preparing
any explicit water–Cl DFT simulations in advance.

A.8. Details of dataset

The details of the test dataset is shown. Since it was made by
randomly selecting from the entire dataset, it can be considered to
reflect the trend of the entire dataset.

Table A.7 shows the amount of each element in the test dataset. The
calculated energy is also shown. The structures of the first 20 samples in
Table A.7 are shown in Fig. A.24. Table A.8 shows the number of pairs
in the test dataset. As described in the main text, the dataset consists

of highly disordered structures.



Computational Materials Science 207 (2022) 111280S. Takamoto et al.
Table A.8
The number of atom pairs in the test dataset.

H He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar

H 981 403 622 300 277 916 684 1002 564 535 438 327 537 341 741 401 469 372
He 455 582 554 518 594 601 527 401 637 384 598 586 477 500 780 539 501
Li 2091 522 705 543 697 1313 662 676 509 902 741 802 502 432 779 460
Be 1208 671 766 929 590 401 606 414 411 621 1391 283 491 385 442
B 3324 505 739 3514 659 886 459 474 625 824 572 751 448 551
C 1333 681 538 393 554 477 599 841 460 396 868 676 490
N 1068 759 536 927 825 586 525 678 576 433 622 416
O 2745 387 758 404 520 625 462 505 414 506 455
F 815 499 520 369 402 415 488 519 503 372
Ne 1201 717 588 668 621 778 350 498 553
Na 741 451 374 393 295 346 527 321
Mg 917 468 489 302 482 630 383
Al 1515 516 475 599 1106 510
Si 1098 297 412 889 451
P 1155 716 408 342
S 1600 738 464
Cl 1413 469
Ar 421
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