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a b s t r a c t 

Nickel-titanium (NiTi) shape memory alloys (SMA) are widely used, however simulating the marten- 

sitic transformation of NiTi from first principles remains challenging. In this work, we developed a 

neural network interatomic potential (NNIP) for near-equiatomic Ni-Ti system through active-learning 

based acquisitions of density functional theory (DFT) training data, which achieves state-of-the-art accu- 

racy. Phonon dispersion and potential-of-mean-force calculations of the temperature-dependent free en- 

ergy have been carried out. This NNIP predicts temperature-induced, stress-induced, and defect-induced 

martensitic transformations from atomic simulations, in significant agreement with experiments. The 

NNIP can directly simulate the superelasticity of NiTi nanowires, providing a tool to guide their design. 

© 2022 Published by Elsevier Ltd on behalf of Acta Materialia Inc. 
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. Introduction 

Shape memory alloys (SMA) are widely used in aerospace, 

utomotive, and medical applications because of their temper- 

ture induced shape memory and stress-induced superelastic- 

ty/pseudoelasticity behavior [1,2] . The unique properties of SMA 

rise from its diffusionless martensitic transformation that pro- 

ides inelastic strain without triggering ordinary dislocation plas- 

icity (ODP). At zero stress, there are two well-known phases: 

he high-temperature stabilized austenite phase, and the low- 

emperature stabilized martensite phase. When there is stress, 

ransforming to a particular orientational variant of the marten- 

ite phase can be preferred. The temperature-induced martensitic 

ransformation leads to shape memory effects (SME), where arbi- 

rary low-temperature inelastic strain distribution can ideally be 

iped clean by increasing the temperature and driving back to 

he high-symmetry austenite phase. The stress-induced martensitic 

ransformation (SIMT) also leads to superelastic behaviors, where 

he alloy deforms reversibly at the austenite-stablizing temperature 

o high strain [3,4] . As the first SMA utilized in engineering appli- 

ation, the nearly equiatomic Ni-Ti system have attracted exten- 

ive research interests due to its good mechanical properties and 

artensitic transformation temperature close to the room temper- 

ture [4–6] . The martensitic transformation of NiTi is from the 
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ubic B2 phase (high temperature stable) to the monoclinic B19’ 

hase (low temperature stable), whose small free energy difference 

s switched at the transformation temperature. Depending on the 

omposition, Ni-Ti can displays complex microstructural evolution 

nd properties with various metastable phases and deformation 

echanisms [7–9] . Its martensitic transformation can be regulated 

y the concentration gradient [8,10,11] , deformation twinning [12–

5] , and nanostructure [16–18] , providing large engineering free- 

om for SMA design [2] . Extensive research has also focused on 

he atomistic simulation of NiTi martensitic transformation to bet- 

er understand the underlying mechanism and accelerate alloy de- 

ign [19–23] . 

However, simulating the phase transformation in NiTi remains 

hallenging. As the energy difference of relevant phases in NiTi is 

ery small [7] , on the order of a few meV/atom, an accurate de- 

cription of the free-energy profile, which depends sensitively on 

ibrational contributions, is necessary to capture the subtle tem- 

erature effect on phase stability. The density functional theory 

DFT) calculations can provide an accurate description of the po- 

ential energy surface but are limited by its high computational 

ost [24] . Simulating the martensitic transformation-related phe- 

omenons usually requires a large supercell, making it difficult to 

se the DFT level ab initio molecular dynamics (AIMD) [24] . Pre- 

iously, empirical interatomic potentials for NiTi system are de- 

eloped by several methods, including embedded-atom method 

EAM) [25–28] , modified EAM (MEAM) [29–32] , and 2nd nearest- 

eighbor (2NN) MEAM [33,34] . However, these methods cannot si- 

ultaneously describe all phases with high accuracy. Only the 2NN 

https://doi.org/10.1016/j.actamat.2022.118217
http://www.ScienceDirect.com
http://www.elsevier.com/locate/actamat
http://crossmark.crossref.org/dialog/?doi=10.1016/j.actamat.2022.118217&domain=pdf
mailto:liju@mit.edu
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EAM can qualitatively reproduce the general behavior of marten- 

itic transformation, while its accuracy still has significant room 

o improve [33,34] . Alternatively, the recent development of neu- 

al network interatomic potential (NNIP) provides a way to balance 

he accuracy and computational cost [35,36] . Benefiting from the 

igh expressivity of deep neural network, the accuracy and gener- 

lization ability of the NNIP can be successively improved through 

he active learning scheme [37] towards the DFT accuracy. 

In this work, we developed an NNIP for near equiatomic NiTi 

rained on a comprehensive DFT dataset for the first time. This 

mpirical potential exhibits state-of-the-art overall accuracy on 

tomic structure, energy, and elastic modulus for different phases 

f NiTi. The molecular dynamics (MD) simulation produces the 

emperature-induced martensitic transformation consistent with 

xperiments. We then study the microstructure of twin bound- 

ries, where the experimentally observed extended core structure 

s derived in the simulation. Finally, the superelasticity in NiTi 

anowire is directly simulated by the NNIP, confirming its validity 

or nanostructures. The NNIP and DFT database are publicly avail- 

ble at a publicly accessible website (URL: https://www.ctcms.nist. 

ov/potentials Website DOI: 10.18434/m37 ), providing an accurate 

heoretical tool for SMA simulation. 

. Methods 

To implement the supervised learning scheme for the NNIP, a 

FT database is firstly constructed with various configurations of 

i-Ti. The DFT calculations are implemented through the Vienna 

b-initio simulation package (VASP) using the projector-augmented 

ave (PAW) method [38,39] with cut-off energy of 400 eV, and 

he 3p semi-core state of both Ni and Ti treated as valence 

tates. The Perdew-Burke-Ernzerhof (PBE) functional of general- 

zed gradient approximation (GGA) is used for electron exchange- 

orrelation [40] . The k point mesh is set with a separation of 

 . 04 Å
−1 

, and electronic iteration converges to 10 −5 eV. 

The neural network framework is constructed through 

eepMD-kit [36] . The atomic configurations are firstly 

arametrized by the descriptor matrix that naturally preserves 

ermutation and rotation symmetry [35] : 

 

α
i j = 

{
1 

R i j 

, 
x i j 

R i j 

, 
y i j 

R i j 

, 
z i j 

R i j 

}
(1) 

here R i j and x i j , y i j , z i j are the distance and relative coordinates

etween atom i and its neighbor atom j ( α goes from 1 to 4 of the

ist). The atomic environment of each atom i is then represented by 

he n × 4 matrix [ D i ] jα , where j goes through all atoms within the

ut-off radius (set to be 6 Å) of interatomic interactions. We set 

 larger than the maximal possible number of atoms within the 

ut-off radius and fill zeros in the redundant rows. The descriptors 

re then forwarded to a multilayer perceptron (MLP) with three 

idden layer to output the total energy: 

 = 

∑ 

i 

E s (i ) = 

∑ 

i 

L 

out 
s (i ) ◦ L 

2 
s (i ) ◦ L 

1 
s (i ) ( D i ) (2) 

here each mapping L s (i ) contains 480 neurons with hyperbolic 

angent activation function. The loss function consists of the devi- 

tion of both energy and force 

 ≡ p ε

N 

�E 2 + 

p f 

3 N 

∑ 

i 

| �F i | 2 (3) 

here N, �E, and �F i are the number of atoms, standard deviation 

f energy, and standard deviation of force on atom i . The weight 

oefficients are set linearly dependent on the training step t ( t goes 

rom 0 to 10 0,0 0 0) to get better convergence, where the initial and

nal values are: p ε (t = 0) = 0 . 01 eV 

−2 , p ε (t = 50 0 0 0) = 1 eV 

−2 ,
2 
p f (t = 0) = 10 0 0 ( eV / Å) 
−2 

, p f (t = 10 0 0 0 0) = 1 ( eV / Å) 
−2 

. Details

f the neural network algorithm are described in Ref. [35] . 

The sampling of DFT calculations begins from the equilibrium 

tructure of bulk B2, B19’, B19, B33, and R phases [7] , and slab

ith (100) and (110) surfaces of the B2 phase (10 0 0 data points for

ach, sampled by AIMD with 2 × 2 × 3 supercell). Structures with 

light off-stoichiometric compositions are included with one sub- 

titutional defect Ni Ti or Ti Ni in the supercell (10 0 0 data points 

or each). Then, the active learning scheme is employed to in- 

lude structures strongly deviate from equilibrium position (10 0 0 

ata points), with supercell under strain (10 0 0 data points), and 

tacking faults (10 0 0 data points) [37] . Four models are trained si- 

ultaneously, and new structures where the models’ predictions 

how the largest deviation are included in the DFT database for 

einforcement training. The training database eventually includes 

2,0 0 0 configurations where each configuration contains 48 atoms. 

he predicted energy and force are tested by randomly selected ten 

ercents of configurations, and the standard validation error con- 

erges to �E = 4 . 1 meV/atom and | �F | = 0 . 11 eV/ ̊A, respectively. 

Molecular dynamics simulation through the NNIP is carried 

ut by Large-scale Atomic/Molecular Massively Parallel Simula- 

or (LAMMPS) [46] with Nosé-Hoover style thermal statistics [47] . 

he temperature-dependent free energy difference between B2 

nd B19’ phases are computed through the potential-of-mean-force 

hermodynamic integration [4 8,4 9] : 

 (λ2 , T ) − F (λ1 , T ) = 

∫ λ2 

λ1 

< 

∂H 

∂λ
> λ= λ′ dλ′ (4) 

here λ is the reaction coordinate that connects the B2 phase 

 λ1 = 0 ) and B19’ phase ( λ2 = 1 ), and the average of the partial

erivative is calculated through temporal average of the MD tra- 

ectory at each different λ. Here λ denotes the cell shape (strain), 

nd the generalized force is therefore just the stress. 

. Results 

The accuracy of the NNIP on the five phases is examined by 

eometric, energetic, and strain response coefficients at zero tem- 

erature, as shown in Table 1 . The NNIP shows better overall ac- 

uracy than the 2NN MEAM and Finnis-Sinclair model, consistently 

atching the DFT and experimental lattice parameters within 2%. 

pecifically, the atomic configuration of B19’ phase by the 2NN- 

EAM potential in Ref. [34] shows evident deviation from the DFT 

esults, while the NNIP results show consistent agreement. The ac- 

uracy of the NNIP for bulk modulus is consistently within 10% 

or B2, B19’, B19, and B33 phases, where the previous potentials 

ometimes give errors of about 20%. The previous potentials show 

ignificant error in the energy difference of phases (up to 60%), 

hich is critical for the phase transformation behavior. In com- 

arison, NNIP derives energy differences consistent with the DFT 

ithin 10%. The lattice parameters and energy of the R phase from 

he NNIP is also well consistent with the DFT, which has not been 

ested for other empirical potentials. The bulk modulus of the R- 

hase NiTi from the NNIP is 14% larger than that from the DFT re- 

ults. We consider this reasonable, as similar or larger discrepancy 

n bulk modulus is common for existing empirical potentials. 

After being tested reliable for the ground-state configurations 

round every single phase, the potential is then used to study the 

hase transition. The phase transformation from the NiTi austen- 

te to other phases is closely related to the imaginary frequency of 

he B2 phase phonon spectrum [50] . Here we compare the zero- 

emperature phonon dispersion of the austenite derived from the 

NIP and DFT, as shown in Fig. 1 . Specifically, the previous 2NN- 

EAM potential [33] underestimates the imaginary frequency at 

 point by 1.5 THz, and also does not capture the imaginary fre- 

uency along �-R branch, which is another instability mode that 

https://www.ctcms.nist.gov/potentials
https://doi.org/10.18434/m37
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Table 1 

Benchmark of the physical properties of equiatomic NiTi at 0 K calculated from the NNIP compared with the DFT results and previous 2NN 

MEAM potential. The quantities include: the lattice parameters a, b, c ( ̊A), β (monoclinic angle, in degree), cohesive energy E (meV), bulk 

modulus B (GPa), and stiffness tensor C i j (GPa). 

Structure Property DFT EAM/2NN-MEAM NNIP (this work) 

B2 ( Pm ̄3 m ) a 3.01 a,d,e,f 3.00 a , 3.02 b,c 2.99 

B 157.1 - 160 a,f 133.2 a , 295.7 b , 130 c 172.7 

C 11 183 g 146 c 183.7 

C 12 146, 153 g 122 c 167 

C 44 46 g 35 c 42.5 

B19’ ( P2 1 /m ) a 2.92 - 2.94 a,d,e,f 2.88 a , 2.87 b , 2.70 c 2.89 

b 4.03 - 4.05 a,d,e,f 4.13 a , 4.19 b , 4.39 c 4.03 

c 4.69 - 4.80 a,d,e,f 4.66 a , 4.62 b , 4.61 c 4.72 

β 100.0 - 102.4 a,e,f 99.4 a , 97.3 b 101.03 

E B2 − E 41.5 - 43.5 a,d,e,f 34.1 a , 32.9 b , 29 c 38.5 

B 147 - 159 a,f 134 a , 141 c 164.2 

B19 ( P2 1 /m ) a 2.66 - 2.80 a,d,e 2.81 a , 2.88 c 2.74 

b 4.12 - 4.22 a,d,e 4.28 a , 4.36 c 4.25 

c 4.60 - 4.63 a,d,e 4.50 a,c 4.58 

E B2 − E 26.5 - 30 a,d,e 10.6 a , 15 c 25.2 

B 158.9 a 133.7 a 167.5 

B33 ( Cmcm ) a 2.91 - 2.94 a,d,e,f 3.15 a 2.88 

b 4.00 - 4.02 a,d,e,f 3.76 a 4.01 

c 4.92 - 4.94 a,d,e,f 4.98 a 4.84 

β 106.6 - 107.3 a,d,e,f 108.4 a 107.08 

E B2 − E 42 - 50 a,d,e,f 39.7 a 40.1 

B 149 - 157.8 a,f 127.5 a 164.1 

R ( Cmcm ) a 7.25 – 7.22 

c 5.40 – 5.37 

E B2 − E 17.8 – 16.6 

B 152 172.2 

a Ref. [33] . 
b Ref. [41] . 
c Ref. [34] . 
d Ref. [7] . 
e Ref. [42] . 
f Ref. [43] . 
g Ref. [44] . 

Fig. 1. Phonon dispersion of the B2 austenite at zero temperature. The red line is 

derived from the NNIP with 8 × 8 × 8 supercell, and the DFT phonon dispersion is 

reproduced from Ref. [45] . (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 
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iffers from the long-wavelength instability at �. The NNIP re- 

roduces the qualitative features of the DFT phonon dispersion 

nd shows smaller numerical discrepancy. The consistence exam- 

ne that the NNIP can properly reproduce the ab initio atomic vi- 

rations. 

The temperature-induced phase transformation behavior is 

haracterized by the finite-temperature free-energy curve on the 

artensitic transformation pathway shown in Fig. 2 a. With in- 

reasing temperature, the free energy of the B19’ phase is lifted 

elative to the B2 phase, deriving the experimentally observed 

emperature-induced martensitic transformation. The free energy 
3 
ifference of B2 and B19’ phase shows a good linear relationship 

ith temperature from 300 to 450 K ( Fig. 2 b), crossing the zero 

oint at 352 K, which falls in the range of representative trans- 

ormation temperatures of 328–362 K in experiment [1] . Similar 

emperature-dependent free energy curves are also shown in the 

IMD calculation [49] with consistent trend with the free energy 

urves in our simulation. In comparison, Ref. [49] shows a higher 

hase transformation temperature of 500 K. Although the origin 

f the difference can be complicated, our results show better con- 

istency with experiments. We speculate that the difference can 

ome from the supercell size (144-atom supercell in Ref. [49] and 

64-atom supercell in our work) and phase transformation path- 

ay (linear pathway in Ref. [49] and nudged elastic band pathway 

n our work). Also, evaluating (4) using classical MD ignores the 

uantum dynamics effects of Ni and Ti atoms. Although the ori- 

in of the difference could be complicated, our simulation scheme 

ore effectively reproduces the experimental phase transformation 

ehavior 

The temperature- and stress-induced martensitic transforma- 

ion can also be observed through direct MD simulation. In a pe- 

iodic supercell MD calculation, the B2-B19’ phase transformation 

pontaneously happens at 340 K during cooling and the inverse 

hase transformation happens at 600 K during the heating process 

 Fig. 3 a). On the other hand, the B2-B19’ phase transformation hap- 

ens when a tensile stress is applied to the bulk crystal ( Fig. 3 b).

he stress-strain curve shows evident superelastic behavior. Here 

e emphasize that the transition temperature and critical stress 

n the direct MD simulations are not directly comparable with ex- 

eriment due to the spatial-scale and temporal-scale discrepancies 

ith actual experiments [51] . As the martensitic transformation is 

 process of nucleation and growth, both μm-large size and ms- 
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Fig. 2. Temperature-dependent phase stability of NiTi. (a) Helmholtz Free energy profile from the B2 phase (where reaction coordinate equals zero) to B19’ phase (where 

reaction coordinate equals one) with different temperature. The free energy of the B2 phase is set as the zero point. (b) The temperature dependent free energy difference 

between the B19’and B2 phases. 

Fig. 3. (a) MD simulation of the potential energy v s temperature curve in the temperature-induced martensitic transformation. The blue line shows the cooling process while 

the red line shows the heating process. The cooling/heating rate is 2 K/ps, and the simulation box is a 6 × 4 × 4 supercell of the B19’ unit cell. (b) Stress-strain curve of the 

bulk NiTi during superelastic tensile deformation. The simulation box is a 10 × 7 × 15 supercell of the B19’ unit cell, and the loading rate is 13.3 MPa/ps perpendicular to the 

ab-plane of the B19’ unit cell. Periodic boundary condition is applied to both (a) and (b). (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 
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ong (or even longer) time are involved, which cannot be realized 

n direct simulation. In comparison, the thermodynamic integral of 

ree energy in Fig. 2 gives a better prediction to experimental tran- 

ition point. 

Besides temperature, the martensitic transformation is also cou- 

led with deformation twinning, which is proposed as a way 

o control elastic and plastic strain release [12–15] . A recent 

ymmetry-based crystallography theory has predicted that the 

artensitic transformation could appear in the extended core 

tructure of deformation twin boundary [9,52,53] . Using the NNIP 

irect simulation, we verified the prediction that the coupling be- 

ween martensitic transformation and deformation twinning also 

xists in NiTi. The most commonly observed 	9 deformation twin 

oundary in the NiTi austenite is constructed, as shown in Fig. 4 a. 

he MD simulation derives the formation of B19’ phases that ap- 

ear around the twin boundary at 400 K (above the martensitic 

ransformation temperature), as shown in Fig. 4 . The deforma- 

ion twin extends to a nested twin boundary from B2 to B19’ to 

winned B19’ to twinned B2 with a characteristic core width of 

bout 2.5 nm, similar to the core width in the Ti-alloy experi- 

ent [16] . The twinning-induced NiTi B19’ phase is well consistent 

ith a recent transmission electron microscopy (TEM) study [12] , 

s shown in Fig. 4 d. Small B19’ phase regions are identified be- 
4 
ween the B2 and B2 T region from both the real-space image and 

ts Fast Fourier transform. Our MD simulation further shows that 

he core width of the twin boundary is continuously controlled 

y the temperature and external stress. Larger volume of the B19’ 

hase will form at lower temperature or under shear stress. Com- 

ared to the sharp temperature-induced martensitic transforma- 

ion, the twinning-induced martensitic transformation is controlled 

ontinuously by the intensive quantities, leading to low-hysteresis 

artensitic transformation curve. Therefore, this intrinsic coupling 

etween the mechanical twinning and martensitic transformation 

uring plastic deformation provides a mechanism for realizing low 

ysteresis, high strength superelasticity [14,54] . 

The superelasticity of NiTi nanowire is simulated directly by 

D. First, a 3 × 3 nm-cross section NiTi nanowire is constructed 

nd relaxed to equilibrium at 400 K ( Fig. 5 ). Initially, the nanowire

s in the B2 phase. Then, a tensile strain ε is applied to the NiTi

anowire. At ε = 10% , the martensite B19’ phase appears in the 

anowire (the B19’ unit cell’s ab plane is perpendicular to the 

anowire orientation), accommodating part of the tensile strain. 

hen ε approaches 18% , the maximal recoverable tensile strain 

ccording to our simulation, the nanowire completely transforms 

o the B19’ phase. The martensitic transformation accompanies a 

hape change because of the shearing deformation in untwinned 
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Fig. 4. Extended core structure of twin boundary in NiTi from the deep MD simulation. (a) Atomic structure of the 	9 ({114} B2) lamellae deformation twin boundary 

(perfectly arranged), which is used as the initial state of the MD simulation. The structure contains 11,244 atoms with periodic boundary condition. (b) Atomic configuration 

of B2 and B19’ viewed from (110) direction. (c) Atomic structure after 100 ps (20,0 0 0 iterations) of MD steps at 400 K viewed from (110) direction. (d) TEM analysis of the 

extend core structure of the NiTi 	9 twin boundary from Ref. [12] . 

Fig. 5. Direct simulation of superelasticity in NiTi nanowires. (a) 3 × 3 × 12 nm and (b) 6 × 6 × 12 nm nanowires oriented to (B2 unit cell’s) [110] direction are simulated 

with periodic boundary condition in the [110] direction. From left to right in (a), the figure shows the nanowire loaded to ε = 10% and 18% , respectively, unloaded to ε = 10% , 

and finally fully unloaded. The loading rate in the MD simulation is 0 . 6% /ps. In (b), the nanowire is loaded to 17% with a loading rate of 0 . 2% /ps. 
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artensite. When we gradually unload the tensile strain in the 

anowire, the B19’ phase gradually transforms back to the B2 

hase. The B2 phase is partially recovered at ε = 10% and fully re- 

overed when the external strain is further reduced. When the ten- 

ile stress is fully unloaded, the tensile deformation fully recovers 

the residue tensile strain ε � 0 . 1% is within the fluctuation of the

D simulation), with a few horizontal slip traces left. Therefore, 

e predict that the NiTi nanowire exhibits superelastic behavior 

ith a high recoverable strain of 18%. Similarly, high superelastic 

train of 17% is observed in a nanowire with a larger cross sec- 

ion (6 nm × 6 nm ) ( Fig. 5 b), confirming that the superelasticity. 

Different from the bulk superelasticity, the superelasticity of a 

anowire is highly relevant to the surface effect [54] . As the (110) 

nd (001) surface energy of the B2 phase is lower than that of the 

19’ counterparts, the surface energy effect impedes the marten- 

itic transformation. Consequently, the critical stress of marten- 

itic transformation under a given temperature is elevated by the 
5 
urface effect, leading to a higher strains in the nanowire when 

he transformation begins and completes, which contributes to the 

igh overall superelastic strain. This observation is confirmed by 

omparing two nanowires with different cross section areas in 

ig. 5 . As the surface effect in the thin nanowire in Fig. 5 a is more

ignificant, its phase transformation initiates at εi = 9 . 3% and ends 

t ε f = 18 . 0% , larger than those observed for the thick nanowire

 Fig. 5 b) counterparts ( εi = 7 . 7% and ε f = 16 . 3% ). For increasing

anowire size, it is expected that the critical strain of the phase 

ransformation will decrease, leading to a decreasing superelastic 

train that approaches the bulk limit for high nanowire cross sec- 

ion 

The simulation of superelasticity in nano-sized NiTi has also 

een implemented through empirical potentials [55,56] . However, 

s none of these potentials include surface or slab configurations in 

heir fitting process, they can show unphysical results at the sur- 

ace. As 20 0 0 surface configurations are included in our training 
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nd testing database, the NNIP can well reproduce the DFT sur- 

ace energy. Therefore, this NNIP should provide a more reliable 

escription of the surface effects that are essential in nano-object 

imulations. 

Finally, we raise caution on using this NNIP for off- 

quiatomic configurations. As all the training configuration is 

early equiatomic, the NNIP is expected to give increasing extrapo- 

ation error for the increasing composition difference. Despite this, 

he NNIP gives reasonable results for composition within the NiTi 

hase region (without precipitates of Ti 2 Ni and TiNi 3 ) according 

o our tests, which covers the composition range with the shape 

emory behavior [1] . To accurately simulate other alloy compo- 

itions like Ti 2 Ni and TiNi 3 , the NNIP needs reinforcement with 

arger training data set. Further training can derive a general NNIP 

hat reproduces the full phase diagram for Ni-Ti binary alloy, and 

ven chemically complex systems [57,58] , which is left to future 

ork. 

. Conclusion 

In this work, we developed an NNIP for near-equiatomic Ni- 

i with state-of-the-art accuracy. The performance of the NNIP 

s tested for both zero-temperature properties and temperature- 

nduced phase transformation with good consistency with the DFT 

nd experiments. Using the NNIP, the recently observed phase 

ransformation caused by deformation twinning is successfully 

imulated for the first time. Benefiting from the reliable descrip- 

ion of the surface structure, the superelasticity of NiTi nanowire is 

irectly simulated. Our NiTi NNIP is publicly available through the 

nteratomic potential repository (URL: https://www.ctcms.nist.gov/ 

otentials Website doi: 10.18434/m37 ), which interfaces with com- 

only used packages LAMMPS, ASE, and i-Pl through DeepMD-kit. 

ur work provides a high-accuracy method to simulate the mi- 

rostructure, SME, and superelasticity of NiTi, which will poten- 

ially contribute to the computational-guided structural engineer- 

ng of SMA. 
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