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Generalized Wilson loop method for nonlinear light-matter
interaction
Hua Wang1,2,3, Xiuyu Tang1, Haowei Xu3, Ju Li 3,4✉ and Xiaofeng Qian 1,5✉

Nonlinear light–matter interaction, as the core of ultrafast optics, bulk photovoltaics, nonlinear optical sensing and imaging, and
efficient generation of entangled photons, has been traditionally studied by first-principles theoretical methods with the sum-over-
states approach. However, this indirect method often suffers from the divergence at band degeneracy and optical zeros as well as
convergence issues and high computation costs when summing over the states. Here, using shift vector and shift current
conductivity tensor as an example, we present a gauge-invariant generalized approach for efficient and direct calculations of
nonlinear optical responses by representing interband Berry curvature, quantum metric, and shift vector in a generalized Wilson
loop. This generalized Wilson loop method avoids the above cumbersome challenges and allows for easy implementation and
efficient calculations. More importantly, the Wilson loop representation provides a succinct geometric interpretation of nonlinear
optical processes and responses based on quantum geometric tensors and quantum geometric potentials and can be readily
applied to studying other excited-state responses.
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INTRODUCTION
Nonlinear light–matter interaction plays a pivotal role in ultrafast
optics1, bulk photovoltaics2, nonlinear optical sensing and
imaging3, optical transistor4, efficient generation of entangled
photon pairs for quantum computing5, etc. In particular,
noncentrosymmetric materials are known to hold even-order
nonlinear photocurrent responses under an external electromag-
netic field. For example, the wave packet of charge carriers can be
displaced in real space upon photon excitation via a second-order
process, resulting in shift current2,6 that accounts for the shift
mechanism for the bulk photovoltaic effect.
Field-dependent nonlinear photocurrent can be obtained by

solving the quantum kinetic equation of density matrix using
perturbation theory. Subsequently, it can be calculated by first-
principles methods such as density-functional theory7–10 and
Wannier interpolation11,12 with sum rules. However, the sum-over-
states approach involves an ad hoc cutoff that induces divergence
at band degeneracy and optical zeros. Moreover, it suffers from
the convergence issue with respect to the number of states. A
direct approach is largely underexplored.
The Wilson loop method was originally proposed by Wilson13 in

1974 for computing gauge field on a closed path. It is ubiquitous to
gauge theories and has been widely used to calculate Berry
curvature, Chern number, and other topological invariants in
condensed matter physics, which are the hallmarks of a rich set of
low-energy transport phenomena governed by the linear response
of intraband process, including quantum Hall effect14, quantum
anomalous Hall effect15, spin Hall effect16, and quantum spin Hall
effect17,18. Unlike the above linear responses, shift current involves
interband transitions and its conductivity tensor is proportional to
the quadratic electric field E2. Young and Rappe19 reformulated the
shift vector using a gauge-invariant discrete expression similar to the
King-Smith and Vanderbilt formalism of electric polarization20.

Recently, Shi et al. represented the photon-drag shift vector with
the Wilson loop formalism, an important geometric quantity in shift
current tensor and photon-drag shift current tensor21. These
motivate us to develop a general approach for nonlinear optical
(NLO) responses by representing interband Berry curvature,
quantum metric, and shift vector in a generalized Wilson loop.
Here we present a physically intuitive gauge-invariant Wilson

loop approach for direct and efficient calculations of NLO responses
with Wilson loop representation, using the shift vector and shift
current conductivity tensor as examples. In the Wilson loop picture,
the geometrical nature of the shift current can be viewed as the
difference in the spontaneous polarization determined by the
interband Berry connection between the valence and conduction
bands upon direct optical transition. Unlike the standard sum-of-
rule method, our Wilson loop approach is free of the convergence
issue with respect to the number of states, and avoids the
cumbersome divergence at band degeneracy and optical zeros
where the dipole matrix element is zero, that is, ramn kð Þ �
m r̂aj jnh i ¼ 0. This quantum geometric approach can be easily
implemented and allow for efficient calculations.
We demonstrate this powerful approach in two representative

cases, including (1) a Rice-Mele model with an extra staggered
onsite potential and (2) monolayer ferroelectric GeS with first-
principles Wannier tight-binding Hamiltonian. The results calculated
by the Wilson loop approach are in excellent agreement with the
exact analytic solutions of the Rice-Mele model and the numerical
results of monolayer GeS with the sum-over-states approach.
Furthermore, we provide a Wilson representation of the geometrical
shift vector where the integral of the Wilson loop results in
polarization difference between two bands upon optical transition,
illustrating the geometrical nature of the shift current. In general,
gauge-invariant geometric quantities, e.g., quantum metric, Berry
curvature, and shift vector, can be all represented by the Wilson loop
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naturally. The generalized Wilson loop approach developed here can
be readily applied to other linear and nonlinear responses and allow
for direct geometric interpretation of these quantities.

RESULTS
Geometrical shift current response
Shift current originates from the difference between the real-
space charge center of the valence and conduction bands upon
optical transition. It is a bulk effect as the separation of
photoexcited electrons and holes does not rely on a p-n junction
with a built-in electric field. Unlike conventional photovoltaics, the
generated open-circuit voltage can go beyond the bandgap,
hence the power conversion efficiency is not limited by
Shockley–Queisser limit for a single p-n junction. Under homo-
geneous linearly polarized light illumination, shift current can be
written as2,6,7,19

Ja 0ð Þ ¼ P
b
2σabb 0;ω;�ωð ÞEb ωð ÞEb �ωð Þ; (1)

σabb 0;ω;�ωð Þ ¼ � πe3

_2

Z
dk

2πð Þd
X
nm

fnmR
a;b
mn kð Þrbnmrbmnδ ωnm � ωð Þ;

(2)

Ra;bmn kð Þ ¼ �∂kaϕ
b
mn kð Þ þ Aa

m kð Þ � Aa
n kð Þ; (3)

where rnm ¼ i n ∂kj jmh i for n≠m and An ¼ i n ∂kj jnh i are interband
and intraband Berry connection for states mj i and nj i, respec-
tively. ℏωnm corresponds to the band energy difference. f is the
Fermi-Dirac distribution with fnm � fn � fm. ϕb

nm kð Þ is the phase of
Berry connection rbnm kð Þ with rbnm kð Þ ¼ rbnm kð Þ�� ��eiϕb

nm kð Þ. Ra;bmn kð Þ is
the well-known shift vector described by the derivative of the
phase and the difference of intraband Berry connection, also
known as the quantum geometric potential22. Although the
difference of Berry connections is gauge dependent, the shift
vector is gauged invariant. We will discuss the gauge transforma-
tion property later.
The geometric aspect of the shift current is related to quantum

metric and Berry curvature through the Christoffel symbols of the
second kind23,24. The local quantum geometric tensor Qab

mn ¼
∂am ~Q

�� ��∂bn� �
was originally proposed by Provost and Vallee25,

where ~Q ¼ 1� ~P and ~P is the ground-state projection operator26.
It indicates that the geodesic quantum distance between two
quantum states in the Hilbert space can be viewed as absorption
strength in the interband optical process, e.g., Qab

mn ¼ ramnr
b
nm . Q

ab
mn

consists of a symmetric quantum metric gabmn and an antisymmetric
Berry curvature Ωab

mn , i.e. Q
ab
mn ¼ gabmn � i

2Ω
ab
mn. Quantum metric gabmn

and Berry curvature Ωab
mn play quite different roles. For example,

the off-diagonal gabmn and diagonal Ωab
mm contribute to the linear

response coefficients of interband and intraband processes,
respectively. In contrast, both quantum metric gabmn and Berry
curvature Ωab

mn play a crucial role in second-order responses. As we
will show below, gauge-invariant geometric quantities such as
quantum metric gabmn, Berry curvature Ωab

mn, and shift vector Ra;bmn can
be all represented by the Wilson loop naturally.

Wilson loop approach of shift vector and shift current
Gauge-invariant single band Berry curvature in a discretized
Brillouin zone can be calculated by Fukui–Hatsugai–Suzuki
method27, Ωc

n kð Þ ¼ Im ln Wn kð Þ, with
Wn kð Þ ¼ ϵabc n; kjn; k þ qah i n; k þ qajn; k þ qa þ qbh i n; k þ qa þ qbjn; k þ qbh i n; k þ qbjn; kh i;

(4)

where qa is an infinitesimal displacement vector along the
corresponding a direction near k point and ϵabc is the Levi-Civita

symbol. Now we derive a Wilson loop formula for the shift current
response by reformulating shift vector with a strategy similar to that
of King-Smith and Vanderbilt20. The intraband Berry connection
reads Am kð Þ ¼ i m; k ∂kj jm; kh i ¼ lim

q!0
∂qIm ln m; k þ qjm; kh i. In

contrast, the interband Berry connection between states mj iand nj i
is given by rmn kð Þ ¼ i n ∂kj jmh i ¼ rmnðkÞj jeiϕmn , where ϕmn is the
phase of interband Berry connection: ϕb

mnðkÞ ¼ Im ln rbmnðkÞ
� �

. For
small q, m; kjm; k þ qh i ¼ e�iq�Am kð ÞþO q2ð Þ , and m; k þ qjm; kh i ¼
eiq�Am kð ÞþO q2ð Þ . Thus, the shift vector can be reformulated as

Ra;bmn kð Þ ¼ �∂kaϕ
b
mn kð Þ þ Aa

m kð Þ � Aa
n kð Þ ¼ �∂ka Im ln rbmn kð Þ� �þAa

m kð Þ � Aa
n kð Þ

¼ �∂ka Im ln rbmnðkÞ
� �� lim

qa!0
∂qa Im ln m; kjm; k þ qah i n; k þ qajn; kh i:

(5)

The first term on the right-hand side can be evaluated using
finite difference around k along direction a,

∂ka Im ln rbmnðkÞ
� � ¼ lim

qa!0
∂qa Im ln m; k þ qa rb

�� ��n; k þ qa
� �

: (6)

Thus,

Ra;bmn kð Þ ¼ � lim
qa!0

∂qa Im ln m; kjm; k þ qah i m; k þ qa rb
�� ��n; k þ qa

� �
n; k þ qajn; kh i:

(7)

Since hn; kjrbjm; ki does not depend on q, we can rewrite
Ra;bmn kð Þ as
Ra;bmn kð Þ ¼ � lim

qa!0
∂qa Im ln m; kjm; k þ qah i m; k þ qa rb

�� ��n; k þ qa
� �

n; k þ qajn; kh i n; k rb
�� ��m; k

� �
:

(8)

We then arrive at the Wilson loop representation of shift vector
Ra;bmn kð Þ as
Ra;bmn kð Þ ¼ � lim

qa!0
∂qa Im ln Wmn k; qa; r

b; rb
� �� � ¼ � lim

qa!0
∂qaarg Wmn k; qa; r

b; rb
� �� �

;

(9)

where Wmn k; qa; r
b; rb

� �
denotes general absorption on a Wilson

loop,

Wmn k;qa; r
b; rb

� � � m; kjm; k þ qah i m; k þ qa rb
�� ��n; k þ qa

� �
n; k þ qajn; kh i n; k rb

�� ��m; k
� �

;

(10)

Wmn k; qa ¼ 0; rb; rb
� � ¼ rbmn kð Þrbnm kð Þ yields linear absorption

strength at k through the direct interband transition. The Wilson
loop can be generalized to

Wmn k; q; ra; rb
� � ¼ m; kjm; k þ qh i m; k þ q raj jn; k þ qh i n; k þ qjn; kh i n; k rb

�� ��m; k
� �

:

(11)

Herein, the interband Berry curvature contributing to nonlinear
injection current10 can also be represented by the Wilson loop

Ωab
mn kð Þ ¼ 2 Im Wmn k; q ¼ 0; ra; rb

� �
: (12)

In fact, Wmn k; q ¼ 0; ra; rb
� �

defined on the Wilson loop is
identical to a quantum geometric tensor, and its real and
imaginary part gives the symmetric quantum metric gabmn and
antisymmetric Berry curvature Ωab

mn at finite crystal momentum k,
respectively.
We can further rewrite the shift current conductivity tensor

using the Wilson loop representation as

σabb ωð Þ ¼ � πe3
�h

R
dk
2πð Þd

P
nm

fnmRa;bmn kð Þrbnmrbmnδ ωnm � ωð Þ

¼ πe3

_2
R

dk
2πð Þd

P
nm

fnm lim
qa!0

∂qa Im ln Wmn k;qa; r
b; rb

� �� �
Wmn k; 0; rb; rb

� �
δ ωnm � ωð Þ

¼ πe3

_2
R

dk
2πð Þd

P
nm

fnmIm lim
qa!0

∂qaWmn k;qa; r
b; rb

� �
δ ωnm � ωð Þ:

(13)
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We then obtain

σabb ωð Þ ¼ πe3

_2
R

dk
2πð Þd

P
nm

fnm lim
qa!0

1
qa
Im Wmn k; qa; r

b; rb
� �

δ ωnm � ωð Þ:
(14)

The above equation is a Wilson loop formula for shift current,
which is only dependent on the imaginary part of the Wilson loop.
This formula avoids the ambiguity in the definition of the argument
around optical zeros where ramn kð Þ � hm; k ĵrajn; ki ¼ 0 and at band
degeneracies where Em= En or ωnm= 0. The Wilson loop represen-
tation of Berry curvature and geometrical shift vector are illustrated
in Fig. 1a, b. In fact, the Wilson loop approach provides an equivalent
expression as the Young-Rappe formula19, which involves a more
complicated Wilson loop, including indirect optical transition matrix
elements as shown in Supplementary Fig. 1.
Gauge invariance is guaranteed on each local Wilson loop in the

discretized Brillouin zone. Under an arbitrary local gauge
transformation un kð Þ ! eiϕn kð Þun kð Þ; or; n; kj i ! eiϕn kð Þ n; kj i, Berry
connections transform as

A0
m kð Þ ¼ Am kð Þ � ∂kϕm kð Þ; (15)

r0mn kð Þ ¼ ei ϕn kð Þ�ϕm kð Þð Þrmn kð Þ: (16)

Shift vector is clearly gauge-invariant

R0a;bmn kð Þ ¼ Ra;bmn kð Þ � ∂kaðϕn kð ÞÞ � ϕm kð ÞÞ � ∂kaϕmðkÞ þ ∂kaϕnðkÞ ¼ Ra;bmn kð Þ:
(17)

Consistently, the gauge transformation of quantum geometric
tensor Wmn k; q; r; rð Þ on the Wilson loop is given by
W 0

mn k;q; r; rð Þ ¼ � m; kjm; k þ qh iei ϕm kþqð Þ�ϕm kð Þð Þ m; k þ q rj jn; k þ qh iei ϕn kþqð Þ�ϕm kþqð Þð Þ

´ n; k þ qjn; kh iei ϕn kð Þ�ϕn kþqð Þð Þ n; k rj jm; kh iei ϕm kð Þ�ϕn kð Þð Þ

¼ � m; kjm; k þ qh i m; k þ q rj jn; k þ qh i n; k þ qjn; kh i n; k rj jm; kh i ¼ Wmn k; q; r; rð Þ:
(18)

Hence, the quantum geometric tensor Wmn k; q; r; rð Þ is also
gauge-invariant. Figure 1c shows the geometrical Berry

curvature and shift vector using a two-band model. The
geometrical meaning of the shift vector in Wilson loop
representation is illustrated in Fig. 1d, which clearly shows it
is related to the difference of the real-space charge center or
spontaneous polarization for the valence and conduction
bands upon direct optical transition. It is also known that the
geometrical shift vector contributes to nonreciprocal
Landau–Zener tunneling28.

Rice-Mele model of a one-dimensional ferroelectric system
To demonstrate the generalized Wilson loop approach, we first
use the one-dimensional Rice-Mele (RM) model of ferroelectric
systems with broken inversion symmetry. The tight-binding
Hamiltonian is illustrated in Fig. 2a, which is given by

HRM ¼ P
i

t
2 þ �1ð Þiδt2

	 

cyi ciþ1 þ h:c:

	 

þ �1ð ÞiΔtc

y
i ciþ1

h i
; (19)

where t is the hoping parameter and δt denotes the dimerization
of the chain related to the distortion with respect to the
centrosymmetric structure with ti ¼ t

2 þ �1ð Þiδt2 . Δt is the stag-
gered onsite potential between two sites. cyi and ci are the fermion
creation and annihilation operators, respectively. The inversion
symmetry is broken when δt ≠ 0 and Δt ≠ 0. It leads to the
following Bloch Hamiltonian

HRMðkÞ ¼
P

j¼x;y;z
djσj ¼ tσx cos ka

2

� �� δtσy sin ka
2

� �þ Δtσz: (20)

where a is the lattice parameter. We use the following parameters
for GeS, which yields a bandgap of 1.9 eV9, t ¼ �1:0eV,
δt ¼ �0:83eV, and Δt ¼ �0:45eV. The shift vector of the two-
band RM model29 has an analytical solution,

Rcv ¼ Δtatδt
2E

δ2t �t2ð Þ 4E2 cos kaþ t2�δ2tð Þ sin2 ka½ �
Δ2
t δ2t �t2ð Þ sin2 kaþ4t2δ2t E

2
� 1

E2�Δ2
t

� �
; (21)

Fig. 1 Wilson loop approach of the Berry curvature and geometrical shift vector. a Berry curvature Ωz kð Þ represented by the overlap matrix
elements between Bloch wavefunctions U at neighboring k-points. The Wilson loop is Wn kð Þ ¼ hU1jU2ihU2jU3ihU3jU4ihU4jU1i. b Shift vector
Rmn kð Þ along q between bandm and n represented by Bloch wavefunctions U at neighboring k-points and transition matrix elements rmn . The
Wilson loop for shift vector Wmn kð Þ ¼ hU1jU2ihU2jrjU3ihU3jU4ihU4jrjU1i is associated with the interband transition. c, d Physical meaning of
shift vector. The integral of the Wilson loops results in the polarization difference between two bands upon optical transition and the relative
shift of the charge center of the wave packet involving a pair of states.
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The conduction and valence band energies Ev;c , as shown in
Fig. 2b, are given by

Ev;c ¼ ± E ¼ ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2cos2

ka
2
þ δ2t sin

2 ka
2
þ Δ2

t

r
: (22)

It is clear that the shift vector is reversed when δt or Δt changes
sign, enabling ferroelectric-driven shift photocurrent switching10.
This is also verified by the Wilson loop approach as shown in
Fig. 2d. Numerically, the shift vector and shift current conductivity
are usually calculated by the sum rule with mass or diamagnetic
term for a tight-binding model. The generalized derivative of
interband Berry connection for shift vector and shift current can
be expressed by using the sum rule as7,30

ranm;b ¼
i

�hωnm
iranm Δb

nm þ irbnm Δa
nm ��h

X
p≠n;m

ranpr
b
pmωnp � rbnpr

a
pmωpm

	 

� wab

nm

" #

(23)

where Δb
nm ¼ vbn � vbm is the group velocity difference and �hωnm ¼

�hωn � �hωm is the band energy difference. The mass term wab
nm ¼

n ∂ka∂kbHj jmh i cannot be neglected for the tight-binding model
because the interband Berry connection is not gauge-covariant
and its generalized derivative in the Hamiltonian gauge involves
the second-order derivative of Hamiltonian31. In a two-band RM
model with m= 1, n= 2, the shift vector using the sum rule at
optical nonzero k-points (i.e. rbnmr

b
mn

�� ��≠ 0) reads

Ra;bnm � Im rbnm;ar
b
mn

rbnmr
b
mnj j ¼ Re wba

nmr
b
mn

rbnmr
b
mnj j�hωmn

: (24)

It shows that the shift vector and shift current are vanishing in
the two-band RM model without considering the mass term. The
calculated shift vector and shift current conductivity with an effective
area of 9.37 Å2 by different methods are shown in Fig. 2c, d. The

results demonstrate that the shift vector and the shift current
calculated by the Wilson loop approach are in excellent agreement
with the analytical solution and the sum-over-states approach.

Wannier tight-binding model of monolayer GeS
Next, we demonstrate the Wilson loop method for real materials
with a symmetrized Wannier tight-binding Hamiltonian. The details
of the first-principles calculations and the constructions of
symmetrized Wannier tight-binding Hamiltonian are described in
Methods. Taking the ferroelectric monolayer GeS as an example, it
has a C2v point group with a mirror plane Mx perpendicular to the
x-axis. The crystal structure and band structure of monolayer GeS
are shown in Fig. 3a, b, respectively. From group theory analysis, the
components σxxx(ω) and σxyy(ω) vanish under linearly polarized light
with in-plane polarization, which was verified in our calculation.
Here, we focus on σyyy(ω) and the corresponding shift vector Ry;ycv .
Figure 3c shows k-resolved shift vector Ry;ycv between the top
valence band and the bottom conduction band across the
bandgap. The shift vector away from optical zeros can be ~10 Å,
much larger than its lattice constant. This is very different from a
spontaneous electric polarization vector constrained within the
lattice constant. Berry curvature of the top valence band is also
calculated by the Wilson loop approach as shown in Fig. 3d. Given
the mirror symmetryMx , we have verified the symmetry properties
Ry;ycv kx ; ky

� � ¼ Ry;ycv �kx ; ky
� �

and Ωz
v kx; ky
� � ¼ �Ωz

v �kx ; ky
� �

. A Berry
curvature dipole along x-direction is generated, which can induce a
similar ferroelectric nonlinear Hall effect32–34 in monolayer GeS. The
intraband Berry curvature of the bottom conduction band and the
interband Berry curvature across the gap are presented in
Supplementary Fig. 2.
Figure 4a shows the calculated frequency-dependent shift

current conductivity σyyy(ω). To convert the sheet conductivity σ2D

to bulk conductivity σ3D, we set the effective thickness l to be

t

-

1 t2

+

t

t

a

(a)
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Fig. 2 Band structure, shift current, and shift vector for noncentrosymmetric Rice-Mele model. a Two-band Rice-Mele tight-binding model
of one-dimensional polarized chain with two sites in each unit cell. b Energy dispersion of the conduction and valence bands. The arrows
denote the optical transition in the edge and center of the first Brillouin zone. c Shift vector calculated by three different methods, including
the analytical solution, the sum rule with the mass term, and the Wilson loop approach. d Shift current calculated by the analytical method,
the sum rule with the mass term, and the Wilson loop approach. “-P” denotes the 1D Rice-Mele model with reversed polarization. The two
peaks are related to the optical transitions indicated as two arrows in b.
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σyyy ωð Þ calculated by the Wilson loop approach with two bands across the gap. Rcv denotes the original shift vector formula and q, 2q, −q
represent the formula using the imaginary part of Wilson loop Wmn k;q; r; rð Þ with different q values. b k-resolved absorption strength rycvr

y
vc

corresponding to quantum metric gyycv in the first Brillouin zone. c, d k-resolved shift current strength Iy;yvc k;ωð Þ at ω ¼ 2:0 and ω ¼ 2:8 eV using
the Wilson loop approach, respectively.
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2.56 Å by σ3D= σ2D/l. We have verified the identity
Wmn k; q ¼ 0; rb; rb

� � ¼ rbmnr
b
nm. The k-resolved absorption strength

between the top valence band and the bottom conduction band
is shown in Fig. 4b. The white region indicates optical zeros and
has no contribution to shift current conductivity. To investigate
the origin of large responses, we calculate the k-resolved shift
current strength Ia;bmn k;ωð Þ at ω= 2.0 and ω= 2.8 eV using the
Wilson loop approach, defined as

Ia;bmn k;ωð Þ ¼ lim
qa!0

1
qa

Im Wmn k; qa; r
b; rb

� �
δ ωnm � ωð Þ: (25)

The results are shown in Fig. 4c, d. The convergence was
carefully checked with respect to the number of bands and
k-point sampling in the first Brillouin zone, as shown in
Supplementary Fig. 3, for shift current conductivity. The calculated
shift current conductivity is well converged with a k-point mesh of
200 × 200 × 1 and two bands below 3 eV. In addition, frequency-
dependent σyxx(ω) for monolayer GeS is shown in Supplementary
Fig. 4. Furthermore, we performed similar calculations with the
Wilson loop approach for a different 2D materials monolayer WS2,
and the results are shown in Supplementary Fig. 5. Our results
clearly demonstrate that the generalized Wilson loop approach is
not only efficient and generally applicable to both effective
models and realistic materials but also avoids the summation over
a large number of intermediate valence and conduction bands,
making it valuable for computing NLO responses.
It should be noted that the geometrical shift vector at optical

zeros cannot be calculated using the sum-over-states approach.
Furthermore, while the large shift vector at optical zeros has no
contribution to shift current response with vertical transitions, it
can contribute to the shift current response when taking into
account the photon-drag effect21 involving indirect transitions or
strong electron-phonon coupling effect. Our demonstration of
geometrical shift vector in real materials will allow for theoretical
investigations of a wide range of geometric effects induced by
quantum geometric potential.

DISSCUSSION
A common challenge with a perturbation theory for NLO responses
in the length gauge is the treatment of the position operator r for
the extended Bloch states. The intraband part of the position
operator is represented by m; k rij jn; k0h i ¼ δmn δ k � k0ð ÞA kð Þþð
i∂kδ k � k0ð ÞÞ. The real-space coordinate r of the wave packet made
from the Bloch wavefunctions is represented by ri ¼ i∂k �A kð Þ.
NLO responses involve the matrix element of the commutator
m; k ½ri;O�j jn; k0h i ¼ iδ k � k0ð ÞOmn;k , where the covariance deriva-
tive Omn;k � ∂kOmn � iOmn Am kð Þ � An kð Þð Þ plays a central role in
many other nonlinear responses. The derivation of the commutator
relation can be found in Supplementary Information. For example,
the generalized derivative of dipole matrix element is written as

ranm
� �

;kb � ∂b ranm
� �� i Ab

n �Ab
m

	 

ranm

¼ �i �∂b ϕa
nm

� �þ Ab
n �Ab

m

	 
h i
ranm ¼ iRa;bmnr

a
nm;

(26)

which is a key physical quantity for second harmonic generation7,35.
Hence, the Wilson loop approach developed here can be readily
applied to other nonlinear optical effects such as second and third
harmonic generation and linear and quadratic electro-optic effects.
The spin–orbit interaction is weak in monolayer GeS, thus it is

not considered in the present calculations. Nevertheless, the
expression can be easily extended to include spin–orbit coupling,
and generalized to the degenerate and near degenerate cases by
considering connected and disconnected band sets and using
k � p perturbation theory to obtain a smooth variation of the Bloch
states between k and k þ δk36. Furthermore, although all the
calculations in this work are performed within the independent

particle approximation, the Wilson loop approach can also be
developed to include many-body effect.
In summary, we presented a gauge-invariant generalized

approach for efficient and direct calculations of NLO responses
with pure Wilson loop representation. This generalized Wilson loop
method avoids the cumbersome issues of the commonly used sum-
over-states approach and allows for easy implementation and
efficient calculation. The Wilson loop representation provides an
elegant geometric interpretation of nonlinear optical processes and
responses based on quantum geometric tensors and quantum
geometric potentials responsible for shift current and Landau–Zener
tunneling. The generalized Wilson loop method developed here can
be readily applied to study other linear and nonlinear responses
such as second and third harmonic generation, linear and quadratic
electro-optic effect, as well as magnetic injection current and
magnetic shift current37.

METHODS
First-principles calculations of atomistic and electronic
structure
First-principles calculations for structural relaxation and quasiatomic
Wannier functions were performed using density-functional theory38,39

as implemented in the Vienna Ab initio Simulation Package (VASP)40 with
the projector-augmented wave method for treating core electrons41. We
employed the generalized-gradient approximation of exchange-correlation
functional in the Perdew–Burke–Ernzerhof form ref. 42, a plane-wave basis
with an energy cutoff of 400 eV, and a Monkhorst-Pack k-point sampling of
10 × 10 × 1 for the Brillouin zone integration.

Generalized Wilson loop approach of shift current using first-
principles tight-binding Hamiltonian
To compute the Wilson loop related quantities, we first construct
quasiatomic Wannier functions and symmetrized first-principles tight-
binding Hamiltonian from Kohn–Sham wavefunctions and eigenvalues
under the maximal similarity measure with respect to pseudoatomic
orbitals43,44. A total of 16 quasiatomic Wannier functions were obtained for
monolayer GeS. Using the developed tight-binding Hamiltonian we then
compute Berry curvature, shift vector and shift current using a dense k-
point sampling of 200 × 200 × 1. Sokhotski–Plemelj theorem is employed
for the Dirac delta function integration with a small imaginary smearing
factor η of 0.02 eV. We checked the convergence of shift current
conductivity tensor with respect to the number of bands and the k-point
sampling as well as different q values of the reciprocal lattice used in the
Wilson loop method. (see Supplementary Figs. 3, 4).

Symmetrization of the tight-binding Hamiltonian
The construction of Wannier functions for crystals may not preserve space
group symmetries. To avoid artificial symmetry breaking, we performed
symmetrization of the tight-binding Hamiltonian. The Hamiltonian is
invariant under symmetry operation g in the group G

8g 2 G : H kð Þ ¼ Dk gð ÞH g�1kð ÞDk g�1ð Þ; (27)

Dk gð Þ ¼ eitg �kD gð Þ; (28)

where Dk gð Þ is k-dependent representation of the symmetry and tg is the
translation vector of the symmetry. We define the symmetrized
Hamiltonian using the group average

~H kð Þ ¼ 1
Gj j
P
g2G

Dk gð ÞH g�1kð ÞDk g�1ð Þ: (29)

To apply the group average to the above tight-binding Hamiltonian with all
crystalline symmetry constraints in real space, we rewrite the hopping
matrices45

~Hij Rð Þ ¼ 1
Gj j
P
g2G

Dil gð ÞHlm S�1
g R� Tml

ij

	 
	 

Dmj g�1ð Þ; (30)

where Sg is the real-space rotation matrix and Tml
ij ¼ Sg rm � rlð Þ � rj � ri , ri

is the position of the localized orbitals in the unit cell. The band structure
of monolayer GeS with and without symmetrization of the Hamiltonian is
shown in Supplementary Fig. 6.
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Supplementary Note 1. Equivalence of our Wilson loop approach and Young and Rappe’s formula 

Shift vector is defined as 

𝑅𝑚𝑛𝑎,𝑏(𝒌) = −𝜕𝑘𝒂ϕ!"	
$ (𝒌) +𝒜!

% (𝒌) −𝒜"
%(𝒌). (1) 

The intraband Berry connection reads	𝓐'(𝒌) = 𝑖⟨𝑚, 𝒌|𝜕𝒌|𝑚, 𝒌⟩ = lim
𝒒→+

𝜕𝒒Im	ln ⟨𝑚, 𝒌 + 𝒒|𝑚, 𝒌⟩. In 

contrast, the interband Berry connection between states |𝑚⟩ and |𝑛⟩ is given by 𝒓',(𝒌) = 𝑖⟨𝑛|𝜕𝒌|𝑚⟩ =
|𝒓',(𝒌)|𝑒-."#, where 𝜙', is the phase of interband Berry connection: 𝜙',/ (𝒌) = Im	ln ;𝑟',/ (𝒌)=. For 

small 𝒒, ⟨𝑚, 𝒌|𝑚, 𝒌 + 𝒒⟩ = 𝑒0-𝒒⋅𝓐"(𝐤)678𝒒$9, and ⟨𝑚, 𝒌 + 𝒒|𝑚, 𝒌⟩ = 𝑒-𝒒⋅𝓐"(𝐤)678𝒒$9. Thus, shift vector 
can be reformulated as 

𝑅',
:,/(𝒌) = −𝜕;𝒂 Im	ln ;𝑟',

/ (𝒌)= +𝒜'
: (𝒌) −𝒜,

:(𝒌). (2) 

Thus, 

𝑅',
:,/(𝒌) = −𝜕;% Im	 ln ;𝑟',

/ (𝒌)= − lim
<%→+

𝜕<%Im	 ln⟨𝑚, 𝒌|𝑚, 𝒌 + 𝒒:⟩⟨𝑛, 𝒌 + 𝒒:|𝑛, 𝒌⟩. (3) 

Since  𝜕;% Im	 ln ;𝑟',
/ (𝒌)= = lim

<%→+
𝜕<%Im 	lnB𝑚, 𝒌 + 𝒒:C𝑟/C𝑛, 𝒌 + 𝒒:D, 

𝑅',
:,/(𝐤) = − lim

<%→+
𝜕<%Im	ln⟨𝑚, 𝒌|𝑚, 𝒌 + 𝒒:⟩B𝑚, 𝒌 + 𝒒:C𝑟

/C𝑛, 𝒌 + 𝒒:D⟨𝑛, 𝒌 + 𝒒:|𝑛, 𝒌⟩ . (4) 

Since B𝑛, 𝒌C𝑟/C𝑚, 𝒌D does not depend on 𝒒, we can rewrite 𝑅',
:,/(𝐤) as Wilson loop as follows, 

𝑅',
:,/(𝒌) = − lim

<%→+
𝜕<%Im	ln⟨𝑚, 𝒌|𝑚, 𝒌 + 𝒒:⟩B𝑚, 𝒌 + 𝒒:C𝑟

/C𝑛, 𝒌 + 𝒒:D⟨𝑛, 𝒌 + 𝒒:|𝑛, 𝒌⟩B𝑛, 𝒌C𝑟/C𝑚, 𝒌D . (5) 

Next let’s revisit Eq. (3). The first term can be rewritten explicitly as follows  

𝜕;% Im	ln ;𝑟',
/ (𝒌)= = lim

<%→+
𝜕<%Im	ln B𝑚, 𝒌 + 𝒒:C𝑟

/C𝑛, 𝒌 + 𝒒:D. (6) 

Taking the first order Taylor expansion of Bloch states 
|𝑛, 𝒌 + 𝒒!⟩ = |𝑛, 𝒌⟩ + )𝜕"!|𝑛, 𝒌⟩+ ⋅ 𝑞!, (7) 
⟨𝑚, 𝒌 + 𝒒!| = ⟨𝑚, 𝒌| + )⟨𝑚, 𝒌|𝜕"!+ ⋅ 𝑞!, (8) 

we then have 

lim
#!→%

𝜕#! 	ln ⟨𝑚, 𝒌 + 𝒒!|𝑟
&|𝑛, 𝒌 + 𝒒!⟩ =

ln 	⟨𝑚, 𝒌|𝑟&	)𝜕"!|𝑛, 𝒌⟩+ + ln 	)⟨𝑚, 𝒌|𝜕"!+𝑟
&|𝑛, 𝒌⟩

⟨𝑚, 𝒌|𝑟&|𝑛, 𝒌⟩
. (9) 

Following the strategy of King-Smith and Vanderbilt 1, we obtain the discretized expression 

							⟨𝑚, 𝒌|	𝑟&)𝜕"!|𝑛, 𝒌⟩+ = ⟨𝑚, 𝒌|𝑟&|𝑛, 𝒌⟩
𝜕
𝜕𝑘!'

=
𝑘𝑎
′ =𝑘𝑎

ln⟨𝑚, 𝒌|𝑟&|𝑛, 𝒌'⟩

= ⟨𝑚, 𝒌|𝑟&|𝑛, 𝒌⟩ lim
#!→%

1
𝑞!
(ln⟨𝑚, 𝒌|𝑟&|𝑛, 𝒌 + 𝒒𝒂⟩ − ln⟨𝑚, 𝒌|𝑟&|𝑛, 𝒌⟩)

= ⟨𝑚, 𝒌|𝑟&|𝑛, 𝒌⟩ lim
#!→%

1
𝑞!
@ln

⟨𝑚, 𝒌|𝑟&|𝑛, 𝒌 + 𝒒𝒂⟩
⟨𝑚, 𝒌|𝑟&|𝑛, 𝒌⟩

A																																	 (10)
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Hence, we arrive at the shift vector formula  
𝑅)*
!,&(𝒌) = −𝜕"𝒂 Im	ln)𝑟)*

& (𝒌)+ +𝒜)
! (𝒌) −𝒜*

!(𝒌)

= lim
#!→%

1
𝑞!
Im@ln

⟨𝑚, 𝒌|𝑟&|𝑛, 𝒌⟩⟨𝑛, 𝒌|𝑛, 𝒌 + 𝒒𝒂⟩
⟨𝑚, 𝒌|𝑟&|𝑛, 𝒌 + 𝒒𝒂⟩

+ ln
⟨𝑚, 𝒌|𝑟&|𝑛, 𝒌⟩

⟨𝑚, 𝒌|𝑚, 𝒌 + 𝒒𝒂⟩⟨𝑚, 𝒌 + 𝒒𝒂|𝑟&|𝑛, 𝒌⟩
A , (11)

 

 
which recovers Young and Rappe’s formula2. We have also verified that the two shift current expressions are 
equavilent numerically. 
 
Supplementary Note 2. Derivation of covariant generalized derivative 
With 

⟨𝑛, 𝒌|[𝒓- , 𝑶]|𝑚, 𝒌>⟩ = 𝑖𝛿(𝒌 − 𝒌>)(𝑶',);𝒌, (12) 

(𝑶,');𝒌 ≡
𝜕𝑶,'
𝜕𝒌 − 𝑖𝑶,'(𝓐, −𝓐'). (13) 

we expand the commutator as follows 

⟨𝑛, 𝒌|[𝒓- , 𝑶]|𝑚, 𝒌>⟩ = ⟨𝑛, 𝒌|𝒓-𝑶−𝑶𝒓-|𝑚, 𝒌>⟩

= O⟨𝑛, 𝒌|𝒓-|𝑙, 𝒌>>⟩⟨𝑙, 𝒌>>|𝑶|𝑚, 𝒌>⟩
@,𝒌((

−O⟨𝑛, 𝒌|𝑶|𝑙, 𝒌>>⟩⟨𝑙, 𝒌>>|𝒓-|𝑚, 𝒌>⟩
@,𝒌((

. (14) 

We then rewrite the first term 

O⟨𝑛, 𝒌|𝒓-|𝑙, 𝒌>>⟩⟨𝑙, 𝒌>>|𝑶|𝑚, 𝒌>⟩
@,𝒌((

=O𝛿,@[𝛿(𝒌 − 𝒌>>)𝓐, + 𝑖𝛻𝒌𝛿(𝒌 − 𝒌>>)]𝛿(𝒌> − 𝒌>>)𝑶@'(𝒌>)
@,𝒌((

=O[𝛿(𝒌 − 𝒌>>)𝓐, + 𝑖𝛻𝒌𝛿(𝒌 − 𝒌>>)]𝛿(𝒌> − 𝒌>>)𝑶,'(𝒌>)
𝒌((

=O𝛿(𝒌 − 𝒌>>)𝛿(𝒌> − 𝒌>>)𝓐,𝑶,'(𝒌>)
𝒌((

+ 𝑖O[𝛻𝒌𝛿(𝒌 − 𝒌>>)]𝛿(𝒌> − 𝒌>>)𝑶,'(𝒌>)
𝒌((

=O𝛿(𝒌 − 𝒌>>)𝛿(𝒌> − 𝒌>>)𝓐,𝑶,'(𝒌>)
𝒌((

+ 𝑖O[𝛻𝒌𝛿(𝒌 − 𝒌>>)]𝛿(𝒌> − 𝒌>>)𝑶,'(𝒌>)
𝒌((

=O𝛿(𝒌 − 𝒌>>)𝛿(𝒌> − 𝒌>>)𝓐,𝑶,'(𝒌>)
𝒌((

+ 𝑖[𝛻𝒌𝛿(𝒌 − 𝒌>)]𝑶,'(𝒌>)

= 𝛿(𝒌 − 𝒌>)𝓐,𝑶,'(𝒌>) + 𝑖𝛻𝒌[𝛿(𝒌 − 𝒌>)]𝑶,'(𝒌>)
= 𝛿(𝒌 − 𝒌>)𝓐,𝑶,'(𝒌>) + 𝑖𝛻𝒌[𝛿(𝒌 − 𝒌>)𝑶,'(𝒌>)]. (15)

 

Using the same strategy, we rewrite the second term 

O⟨𝑛, 𝒌|𝑶|𝑙, 𝒌>>⟩⟨𝑙, 𝒌>>|𝒓-|𝑚, 𝒌>⟩
@,𝒌((

=O𝛿(𝒌 − 𝒌>>)𝑶,@(𝒌>>)𝛿@'[𝛿(𝒌> − 𝒌>>)𝓐' + 𝑖𝛻𝒌((𝛿(𝒌> − 𝒌>>)]
@,𝒌((

=O𝛿(𝒌 − 𝒌>>)𝑶,'(𝒌>>)[𝛿(𝒌> − 𝒌>>)𝓐' + 𝑖𝛻𝒌((𝛿(𝒌> − 𝒌>>)]
𝒌((

= 𝛿(𝒌 − 𝒌>)𝓐'𝑶,'(𝒌>) +O𝛿(𝒌 − 𝒌>>)𝑶,'(𝒌>>)[𝑖𝛻𝒌((𝛿(𝒌> − 𝒌>>)]
𝒌((

= 𝛿(𝒌 − 𝒌>)𝓐'𝑶,'(𝒌>) + 𝑶,'(𝒌)[𝑖𝛻𝒌𝛿(𝒌> − 𝒌)]. (16)
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We also have  

𝑖𝛻𝒌[𝛿(𝒌> − 𝒌)𝑶,'(𝒌)] = 𝑖𝑶,'(𝒌)𝛻𝒌𝛿(𝒌> − 𝒌) + 𝑖𝛿(𝒌> − 𝒌)𝛻𝒌𝑶,'(𝒌), (17) 

𝑖𝑶,'(𝒌)𝛻𝒌𝛿(𝒌> − 𝒌) = 𝑖𝛻𝒌[𝛿(𝒌> − 𝒌)𝑶,'(𝒌)] − 𝑖𝛿(𝒌> − 𝒌)𝛻𝒌𝑶,'(𝒌). (18) 

Using the relation 

𝛿(𝒌 − 𝒌>)𝑶,'(𝒌>) = 𝛿(𝒌> − 𝒌)𝑶,'(𝒌), (19) 

we finally obtain 

⟨𝑛, 𝒌|[𝒓- , 𝑶]|𝑚, 𝒌>⟩ = 𝑖𝛿(𝒌 − 𝒌>)𝛻𝒌𝑶,'(𝒌) − 𝑖𝛿(𝒌 − 𝒌>)𝑶,'(𝓐, −𝓐'). (20) 
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III. Supplementary Figures 
 

 

 

Supplementary Figure 1. Two Wilson loop representations of shift vector. The first loop denoted by red 
arrows was used in the main text, which reads 𝑊',(𝒌) = ⟨𝒰A|𝒰B⟩⟨𝒰B|𝒓|𝒰C⟩⟨𝒰C|𝒰D⟩⟨𝒰D|𝒓|𝒰A⟩. The loop 
indicated by blue arrows reads 𝑊',(𝒌) = ⟨𝒰A|𝒓|𝒰C⟩⟨𝒰C|𝒰D⟩⟨𝒰D|𝒓|𝒰A⟩⟨𝒰A|𝒰B⟩⟨𝒰B|𝒓|𝒰D⟩⟨𝒰D|𝒓|𝒰A⟩.  

 

 

 

Supplementary Figure 2.. (a) Intraband Berry curvature of the lowest conduction band in the first Brillouin 
zone using the Wilson loop approach for monolayer GeS. (b) Calculated interband Berry curvature across 
the gap in the first Brillouin zone using the Wilson loop approach for monolayer GeS.  
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Supplementary Figure 3. Shift current conductivity with different number of bands and k-point sampling. 
The results are converged with k-points of 250×250×1 and 500×500×1 and converged with two bands for 
frequencies less than ~3 eV.  

 

 

Supplementary Figure 4. Calculated shift current conductivity 𝜎EFF(𝜔) by the Wilson loop method with 
two bands across the gap. Rvc denotes the original shift vector formula. q, 2q, and -q represent the numerical 
calculation of the imaginary part of Wilson loop with different q values. 
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Supplementary Figure 5. Nonlinear optical responses of monolayer WS2 with the generalized Wilson loop 
approach.  (a) Calculated k-resolved real and imaginary part of the Wilson loop Re 𝑊',Z𝒌, 𝒒𝒚 → 0, 𝑟E , 𝑟E\ 
and lim

<%→+
	 A
<%
Im	𝑊',Z𝒌, 𝒒𝒚 → 0, 𝑟E , 𝑟E\  with two bands across the gap. (b)k-resolved shift vector and 

Berry curvature. c Shift current conductivity tensor 𝜎EEE with six bands. (c, d) k-resolved shift current 
strength at 𝜔 = 2.8 and 𝜔 = 3.0 eV using the generalized Wilson loop approach, respectively. 

 

 

Supplementary Figure 6. Band structure of monolayer GeS with and without symmetrization of tight-
binding Hamiltonian.  



 8 

Supplementary References 

1 King-Smith, R. & Vanderbilt, D. Theory of polarization of crystalline solids. Phys. Rev. B 47, 1651-1654 
(1993). 

2 Young, S. M. & Rappe, A. M. First Principles Calculation of the Shift Current Photovoltaic Effect in 
Ferroelectrics. Phys. Rev. Lett. 109, 116601 (2012). 

 


	Generalized Wilson loop method for nonlinear light-matter interaction
	Introduction
	Results
	Geometrical shift current response
	Wilson loop approach of shift vector and shift current
	Rice-Mele model of a one-dimensional ferroelectric system
	Wannier tight-binding model of monolayer GeS

	Disscussion
	Methods
	First-principles calculations of atomistic and electronic structure
	Generalized Wilson loop approach of shift current using first-principles tight-binding Hamiltonian
	Symmetrization of the tight-binding Hamiltonian

	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION


