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Abnormal nonlinear optical responses on the surface of
topological materials
Haowei Xu1, Hua Wang1 and Ju Li 1,2✉

The nonlinear optical (NLO) responses of topological materials are under active research. Most previous works studied the surface
and bulk NLO responses separately. Here we develop a generic Green’s function framework to investigate the surface and bulk NLO
responses together. We reveal that the topological surface can behave disparately from the bulk under light illumination.
Remarkably, the photocurrents on the surface can flow in opposite directions to those in the bulk interior, and the light-induced
spin current on the surface can be orders of magnitude stronger than its bulk counterpart on a per-volume basis. We also study the
responses under inhomogeneous field and higher-order NLO effect, which are all distinct on the surface. These anomalous surface
responses suggest that light can be a valuable tool for probing the surface states of topological materials. Besides, the surface
effects should be prudently considered when investigating the optical properties of topological materials.
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INTRODUCTION
In recent years, nonlinear optical (NLO) effects such as the bulk
photovoltaic (BPV) effect have attracted substantial interest, owing
to their potential applications in e.g., photodetection1–4, energy
harvesting5–10, and material characterization11–14. The interplay
between topology and NLO properties is particularly intriguing.
Certain NLO effects are closely related to topological quantities
such as the Berry curvature and quantum metric tensors, thus the
NLO responses can be utilized as a probe of these bulk topological
properties11–13,15–19. On the other hand, the topological nature
can boost the NLO responses2,20,21, thus the efficiency of
applications such as photodetection could be enhanced by using
topological materials.
Regarding NLO properties in topological materials, most works

hitherto studied the bulk1–4,11–29 and surface30–36 responses
separately. Only a few works studied the NLO responses of the
surface and bulk together. Actually, even in normal materials, the
surface and bulk responses can be substantially different. A typical
example is that surface naturally breaks the inversion symmetry,
which forbids even-order responses. Hence even-order responses
are always allowed on the surfaces, even if the bulk possesses
inversion symmetry. In addition, in topological insulators, when
the Fermi level is within the bulk bandgap, some NLO responses
are zero in the bulk when the light frequency is below the bulk
bandgap. In contrast, the surface always has non-zero responses
due to the gapless topological surface states. These considerations
necessitate careful inspections of the surface effects in NLO
processes. Typically, a slab model with finite thickness is used to
study the surface effects. This approximate model omits a few
essential interactions: the surface electrons should interact with all
the bulk electrons, and the bulk should be (nearly) infinite in
depth in many experimental scenarios. Besides these concerns
pertinent to surface effects, previous studies on the NLO effects
are mostly based on the non-interacting single-particle framework
(independent particle approximation), and the many-body effects
are ignored. Indeed, many-body effects such as electron-phonon

coupling37,38, excitonic effect39,40, and strong correlations41 can
greatly influence the optical responses.
In this work, we develop a generic many-body framework for

computing the NLO effects based on the Green’s function
formalism, which can naturally incorporate various many-body
effects. In the Supplementary Note 2.4, we study strong electron-
electron correlations as an example to showcase the merit of the
Green’s function framework. Besides second-order responses such
as BPV, our Green’s function formalism can be systematically and
conveniently extended to handle higher-order NLO effects and
inhomogeneous light fields. We apply our framework to the
surface states of topological materials, whose Green’s functions
are obtained with the iterative Green’s function (IGF) method42,43.
This approach enables a rigorous treatment of the surface-bulk
interactions. We take type-II Weyl semimetal Td-WTe244,45 as an
example. The bulk of Td-WTe2 is non-centrosymmetric and
gapless, which is similar to the surface from a symmetry or
bandgap point of view. However, the NLO responses on the
surface are distinct from those in the bulk interior. Specifically, the
BPV charge current on the surface and in the bulk can flow in
opposite directions (Fig. 1). This striking behavior demonstrates
that surface effects in topological materials can be significant. We
clarify that this is mainly a topological effect and can be absent in
normal materials. Also, the surface bulk spin photovoltaic
(BSPV)46,47 conductivity is colossal and can be larger than its bulk
counterpart by a factor of 10 on a per-volume basis. Hence the
surface of topological materials can be efficient platforms for
spintronics applications, particularly when 2D materials or
nanoscale thin films are required. In addition, we show that the
responses under inhomogeneous fields and higher-order NLO
effects are all distinct between the surface and the bulk. These
anomalous responses on the surfaces indicate that the NLO effects
can be utilized to probe the surface atomic structure. On the other
hand, the surface responses should be prudently considered when
investigating the NLO properties of topological materials. This is
particularly important when the penetration depth of the light is
shallow or when the material is thin, like less than 102 monolayers

1Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. 2Department of Materials Science and Engineering,
Massachusetts Institute of Technology, Cambridge, MA 02139, USA. ✉email: liju@mit.edu

www.nature.com/npjcompumats

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

1
2
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-022-00782-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-022-00782-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-022-00782-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-022-00782-y&domain=pdf
http://orcid.org/0000-0002-7841-8058
http://orcid.org/0000-0002-7841-8058
http://orcid.org/0000-0002-7841-8058
http://orcid.org/0000-0002-7841-8058
http://orcid.org/0000-0002-7841-8058
https://doi.org/10.1038/s41524-022-00782-y
mailto:liju@mit.edu
www.nature.com/npjcompumats


(~50 nm) thick. Given the semiconductor industry has generally
moved to sub-10 nm technology nodes, now is an opportune time
that such surface effects are addressed theoretically.

RESULTS
General theory
To calculate the responses under light, one needs the thermo-
dynamic and quantum average of an observable θ, which can be
formulated as48

hθi ¼ �i
Z

ddk

2πð Þd
dE
2π

Tr θG< k; Eð Þf g: (1)

Here θ can be various observables, such as charge current (θ ¼
�ev with v as the velocity operator), spin current [θ ¼ 1

2 vsþ svð Þ
with s as the spin operator], etc.

R
ddk
2πð Þd indicates the integration

over the Brillouin zone in d-dimension. Tr is the trace operation.
G<ðk; EÞ is the lesser Green’s function and plays a role of energy-
resolved distribution function. In non-interacting systems, one has
G<
0 k; Eð Þ� �

mn¼ 2πiδmnfmδ E � Emð Þ; where m and n are band
indices, and fm and Em are the occupation number and energy
of band m at wavevector k, respectively. In this case, one has
�i

R
dE
2π G<

0 k; Eð Þ� �
mn¼ δmnfm and hθi ¼ R

ddk
2πð Þd

P
m θmmfm, which is

the usual thermal average of hθi. When the electrons have
interactions with phonon, defects, other electrons, etc., G< k; Eð Þ
usually does not have a simple expression, but it can be obtained
perturbatively with e.g., Feynman diagrams or non-perturbatively
with other methods48 [see Supplementary Note 2.4 for an
example]. At equilibrium, the expectation of some observables,
such as the charge current, should be zero. However, light can
drive the system out of equilibrium, resulting in nonzero hθi.
Specifically, the interaction with light leads to a change in the
lesser Green’s function δG<, which is dependent on the electric
field E. Then perturbatively one has hθi ¼ AE þ BE2 þ CE3 ¼ ,
where A, B and C correspond to the first-, second- and third-order
optical response functions.
In the following, we use WTe2 in its Td phase (space group

Pmn21, no. 31) as an example to study the NLO response on the

surface and in the bulk of topological materials. The atomic
structure of Td-WTe2 is shown in Fig. 1. The lattice constants are
a ¼ 3:48 Å, b ¼ 6:28 Å and c ¼ 14:0 Å. We define a Cartesian
coordinate with x, y and z along the crystallographic a, b and c
directions, respectively. Td-WTe2 is non-centrosymmetric, but has a
mirror-x symmetry Mx (dashed line in Fig. 1a). The unit cell of Td-
WTe2 consists of two WTe2 layers stacked along z direction (Fig.
1b), which is used as a principal layer (PL). Each PL has interactions
with other PLs, and these interactions can be included in the
equilibrium Green’s function G0

PL using the IGF method42,43.
Electrons on each PL also have interactions with phonons, defects,
etc. These interactions are implicitly represented by a phenom-
enological electron lifetime τ, which is taken to be a uniform value
of 0.2 ps throughout this work unless explicitly stated. Under the
current framework, the influence of τ is incorporated in the non-
interacting Green’s function as G0 Eð Þ ¼ E � H0 þ i�h

τ

� ��1
, where H0

is the non-interacting single-particle Hamiltonian (Supplementary
Note 3). The choice of τ= 0.2 ps is based on experimental results
and should be a conservative value49–53. In Supplementary Note
5.1, we show how NLO responses vary with τ, and demonstrate
that the main conclusions of our work remain valid for a wide
range of τ. In order to demonstrate how our Green’s function
formalism can incorporate other many-body interactions, we also
artificially add a Hubbard U= 3 eV term on the d orbitals of W
atoms, and the Green’s functions of this strongly correlated
system are calculated with the dynamical mean field theory
(DMFT)54–56. We find that even with the artificial Hubbard U term,
the main conclusions of our work remain valid (Supplementary
Note 2.4).
The Green’s function of each PL from the surface into the bulk

can be obtained with the IGF method, and the PL-resolved
responses, defined as the responses localized on each PL, can be
obtained by putting G0

PL in the Green’s function formalism
(Methods). Specifically, the surface and the bulk correspond to
PL-0 and PL-∞, whose Green’s functions are denoted as G0

PL�0 and
G0
PL�1, respectively (Fig. 1 PL-x denotes the x-th PL). In practice,

G0
PL converges with PL\20, and we use G0

PL�50 as the bulk Green’s
function (G0

PL�1 ’ G0
PL�50). We fix the Fermi level EF of Td-WTe2 so

that it is charge neutral (no electron/hole doping) throughout this
paper (Supplementary Fig. 13), and we study the optical responses
in the mid-infrared regime (ω ¼ 0:1 � 0:5 eV). The spin-orbit
coupling (SOC) is included for both the bulk and the surface.

Bulk photovoltaic effect
BPV effect indicates that in non-centrosymmetric materials, a DC
charge current can be generated under photon illumination
without any external bias voltage. The BPV effect can be expressed
as

ja ¼ σabc 0;ω;�ωð ÞEbðωÞEcð�ωÞ; (2)

where ja is the current, while a and b/c are the directions of the
current and the electric field, respectively. Here σa

bc 0;ω;�ωð Þ is
the BPV conductivity and can be expressed as (Supplementary
Note 2.1)

σabc 0;ω;�ωð Þ ¼ � ie3
ω2S

P
k

R
dE
2π Tr vaG< Eð Þf g;

G< ¼ Gr
0 Eð ÞvbGr

0 E þ ωð ÞvcG<
0 Eð Þ

þGr
0 Eð ÞvbG<

0 E þ ωð ÞvcGa
0 Eð Þ

þG<
0 Eð ÞvbGa

0 E þ ωð ÞvcGa
0 Eð Þ

þ ðb $ c;ω $ �ωÞ:

(3)

One can see that the response operator θ in Eq. (1) has been taken
as −ev, which is the charge–current operator. Gr

0; G
a
0 and G<

0 are
the retarded, advanced, and lesser Green’s function of the system
without light illumination, which are calculated with IGF. Here we
assume that the light field is uniform. The k arguments in Eq. (3)

Fig. 1 Illustration of Td-WTe2 under light illumination. a, b Atomic
structure of Td-WTe2. The dashed line in a denotes the mirror-x
symmetry Mx of Td-WTe2. c A sketch of materials under light
illumination. The surface and bulk principal layer (PL) corresponds to
PL-0 and PL-∞, respectively. The optical responses of the surface and
the bulk can be distinct (indicated by the purple arrows). For Td-WTe2,
each PL consists of two WTe2 layer without inversion symmetry as
shown in b.
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are omitted for simplicity. S is the area of the unit cell. ðb $
c;ω $ �ωÞ indicates the simultaneous exchange of b, c and
þω;�ω, which symmetrizes Eb and Ec .
The layer-resolved BPV conductivities of Td-WTe2 under

linearly polarized light with y-polarization are shown in Fig. 2a.
We show σð0;ω;�ωÞ for ω> 0:1 eV because Eq. (3) has a
spurious divergence as ω ! 0, due to the 1

ω2 factor. It is clear that
the surface layer (PL-0) has distinct responses from the other
PLs. The responses on the first (PL-1) and second (PL-2) are also
different from those in the bulk, despite that the differences are
less significant than those in the case of PL-0. This implies that
the surface effects can penetrate three PLs, with a total
thickness of around 5 nm. Remarkably, in some frequency
region σPL�0 has the opposite sign to σPL�1 and σPL�1, indicating
that under photon illumination, the local charge current would
flow in opposite directions on PL-0. This is counter-intuitive, as
PL-0 is directly attached to PL-1. Moreover, in some frequency
regions σPL�1 is close to zero, while σPL�0 has a finite value, thus
the current would flow mostly on the surface. The BPV
conductivities under circularly polarized light are also distinct
for the surface and the bulk (Supplementary Fig. 14). The BPV
responses are closely related with geometric and topological
properties15–17. Thus, the layer-resolved NLO responses can be
harnessed to probe and characterize the topological surface
states. Another interesting observation is that the counter-
propagating currents (Fig. 1) may lead to a magnetic field B
between PL-0 and PL-1, whose magnitude can be estimated
using Ampère–Maxwell law as BðrÞ � 1

2 μ0j ´ d̂, where μ0 is the
vacuum permittivity, j is the current density on a single PL, r is
the spatial location, while d̂ is a unit vector that points from the
PL to r, and is perpendicular to the PL plane. Since j ¼ σE2, the
magnitude of the magnetic field is Bj j � 1

2 μ0 jj j ¼ 1
2 μ0σE2 � 6:3 ´ 10�4E2 ½T�, where σ is taken as 100 nm·μA/V2, and E

is in the unit of MV/cm. Note that this magnetic field B has a
pure orbital-magnetic origin, and the spin contribution is not

included. Specifically, an electric field of 1 MV/cm can generate a
detectable interlayer magnetic field of 6 Gauss. In experiments,
an electric field of 1 MV/cm is readily available and can be below
the material damage threshold if pulsed lasers are used.
Next, we argue that the surface effects described above are

mainly topological effects. First, we look at the k, E-resolved
contribution to σ in Eq. (3). The energy spectrum I Eð Þ �
� ie3

ω2S

P
kTr vaG< Eð Þf g for ω ¼ 0:1 eV is plotted in Fig. 2b, where

one can see that IPL�0 Eð Þ is generally different from IPL�1 Eð Þ.
Besides, although G<ðEÞ should be nonzero for a wide range of E, I
(E) is nonzero only when Ej jtω. This indicates that the shift
current is essentially a resonant interband process: light with
frequency ω can assist the electrons to transit from (k, E) to
ðk; E ±ωÞ, but due to the Pauli exclusion principle, such a
transition is allowed only when fFD Eð Þ 1� fFD E ±ωð Þ½ �> 0, leading
to Ej jtω. Here fFD is the Fermi–Dirac distribution. The k-resolved
contribution defined as I k; Eð Þ � � ie3

ω2S Tr vaG< k; Eð Þf g reveals more
detailed information on the surface effects. I k; Eð Þ for ω ¼ 0:1 eV
at the Fermi level E ¼ EF is plotted in Fig. 2c, d. The difference
between IPL�0 k; EFð Þ and IPL�1 k; EFð Þ is also significant, which can
be inferred from the spectrum function defined as A k; Eð Þ �
iTr Gr

0 k; Eð Þ � Ga
0 k; Eð Þ� �

(Fig. 2g, h). One can see that the
difference between IPL�0 k; EFð Þ and IPL�1 k; EFð Þ lies largely in
the region where the surface Fermi arc is located (labelled in Fig.
2c, g). This indicates that the difference between σPL�0 and σPL�1
is mainly from the topological surface states (see zoom-in plots
around the Fermi arc in Fig. 2e, f). We have also examined Iðk; EÞ
for E ≠ EF, and found that it is generally different for PL-0 and PL-
50 (see e.g., Supplementary Fig. 19), although after the integration
over the Brillouin zone, I(E) can be close in some E-regions, such as
E � EF þ 0:8 eV (Fig. 2b). Note that in Fig. 2c–f there are no odd
parities for +y and −y, i.e., I k; Eð Þ≠ IðMyk; EÞ, where Myk is the
mirror-y image of k.

Fig. 2 BPV conductivity of Td-WTe2. a Layer resolved BPV conductivity for PLs from the surface to the bulk. b Energy-resolved contribution to
the BPV conductivity for the surface and bulk PL for light frequency ω ¼ 0:1 eV. The energy-resolved contribution is defined as
I Eð Þ � � ie3

ω2S

P
kTr vaG< Eð Þf g. c, d k-resolved contribution, defined as I k; Eð Þ � � ie3

ω2S Tr vaG< k; Eð Þf g at ω ¼ 0:1 eV and E ¼ EF for (c) surface PL
and (d) bulk PL. e, f Same as (c, d), but zoomed-in around the Fermi arc. g, h Spectrum function Aðk; EÞ at E ¼ EF for (e) surface and (f) bulk PL.
The Fermi arcs are labelled by the arrows in (c, e). In (c–h) the black and red dots mark the locations of Weyl points with +1 and −1 chirality,
respectively.
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The surface responses can be influenced by non-topological
surface effects as well, such as symmetry effect and surface spin-
orbit coupling. The symmetry effect is the most prominent when
the bulk has inversion symmetry. In this case, the second-order
responses are only present on the surface and are forbidden in
bulk. We also studied Au as an example to show how spin-orbit
coupling can influence nonlinear optical response. As spin-orbit
energy in Au is relatively large (around 0.5 eV per atom), it makes a
non-negligible difference in the NLO responses for ω in the
infrared range. To further distinguish the topological surface
effects from trivial surface effects, we artificially strain Td-WTe2 so
that it becomes topologically trivial. In this case, the differences
between surface and bulk NLO are much less significant,
indicating that the trivial surface effects, including symmetry
effect and surface spin-orbit coupling, are minor in the case of Td-
WTe2. Besides, we investigate topologically trivial materials such as
2H-MoS2 and find that their σPL�0 and σPL�1 are generally close to
each other (Supplementary Note 4). This again suggests the
essential role of topological band effects. Finally, we would like to
remark that topological surface effects have a significant impact
on the NLO response, but it does not necessarily lead to opposite
currents on the surface and in the bulk for all topological materials
under all conditions (see Supplementary Fig. 18 for an example).

Bulk spin photovoltaic effect
Electrons have both charge and spin. When electrons move under
light illumination, their charge degree of freedom leads to a DC
charge current, which is the BPV effect discussed in the previous
section. Concurrently, the spin degree of freedom leads to a DC
spin current, which is called the bulk spin photovoltaic (BSPV)
effect46,47. BPV and BSPV are cousin processes and have similar
physical origins. The microscopic mechanism of the BSPV can be
explained in the following way: when electrons are pumped into
the conduction bands by light, the spin-current operator ja;s

i ¼

1
2 ðvasi þ sivaÞ for electrons on +k and −k would not cancel each
other, and a net spin current can be generated. Here si is the spin
operator. However, since spin is an axial vector, BPV and BSPV
have very different selection rules under symmetry operations.
This can be harnessed for the generation of pure spin
current––the spin current is allowed by symmetry, while the
charge current is forbidden46. As each electron carries a charge of
e and spin of �h

2, one may expect that in the sense of equivalating
�h
2 ¼ ej j, BPV and BSPV should have similar magnitude. However, on
the surface of topological materials such as Td-WTe2, BSPV can be
stronger than BPV by a factor of 10, as we will show below. This
makes the surfaces of topological materials ideal platforms for
spintronics applications.
For spin current traveling in direction a with spin polarization i,

we set the response operator θ in Eq. (1) as ja;s
i ¼ 1

2 ðvasi þ sivaÞ.
The BSPV conductivity σa;s

i

bc ð0;ω;�ωÞ has a similar expression to
the BPV conductivity σa

bc in Eq. (3) (Supplementary Note 2.1). Note

that we divide σa;si

bc by �h
2e so that it has the same unit as σa

bc . The
mirror symmetry Mx of Td-WTe2 forbids some elements of the B
(S)PV conductivity tensor, such as σx

xx and σx;sx
xx . This is because

polar vectors such as Ex; vx flip sign under Mx , while axial vectors
such as sx do not. Under linearly polarized light polarized in x-
direction, the nonzero B(S)PV tensors are shown in Fig. 3a, b (we
do not consider the current along the out-of-plane z-direction). A
prominent feature is that σx;s

y

xx on the surface is almost ten times
larger than its bulk counterpart, and is also ten times larger than
other components such as σyxx . Indeed, hundreds of nm·μA/V2 are
typical values for B(S)PV conductivities in typical topological
materials and 2D materials29,46, while σx;sy

xx on PL-0 is as large as
2000 nm·μA/V2 at ω ¼ 0:1 eV. This indicates that the spin current
generation is exceptionally efficient on the surface of Td-WTe2.
Such a strong spin current comes partially from the Rashba spin-
orbit coupling on the surfaces. In Fig. 3c we plot the spin density

Fig. 3 BSPV conductivity for Td-WTe2. Nonzero elements of the conductivity tensor are shown for the (a) surface PL and (b) bulk PL. c, d Spin
density of states, defined as Dsy ðk; EÞ ¼ iTr sy Gr

0 k; Eð Þ � Ga
0 k; Eð Þ� �� �

at E ¼ Ef for (c) surface PL and (d) bulk PL. In (c, d) the black and red dots
to mark the locations of Weyl points with +1 and −1 chirality, respectively.
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of states of sy (equivalent to the expectation value of sy), defined
as Dsy k; Eð Þ � iTr sy Gr

0 k; Eð Þ � Ga
0 k; Eð Þ� �� �

at E ¼ EF. One can see
that spin-y polarization is stronger around the surface Fermi arc,
while for k-points distant from the Fermi arc, the spin-y
polarization can be weaker. This suggests that BSPV is not solely
determined by the spin polarization, but requires synergy with
other factors, such as band velocities.

Inhomogeneous light field
In the visible or infrared range, the photon wavevector q is much
smaller than the size of the Brillouin zone, thus one usually sets q
= 0 when studying light-matter interactions. In other words, the
light field is assumed to be homogeneous. However, the
electromagnetic wave can be strongly inhomogeneous in the
case of e.g., the Laguerre–Gaussian beam57 with nonzero angular
momentum. Subwavelength-scale variation can also be induced
by plasmonic, polaritonic interactions58,59. In these situations, the
spatial variation of the light field is strong, and q should not be
neglected60. In addition to these practical considerations, finite q
is also conceptually important, as it breaks certain spatial
symmetries, and thus fundamentally alters the selection rules on
optical process.
Our Green’s function formalism provides a convenient way for

incorporating the finite q effect. Here we take the second-order
BPV as an example. Under an inhomogeneous and oscillating
electric field E ω;qð Þ with frequency ω and wavevector q, one has
a spatially homogeneous and temporally static current, which is

ja ¼ σabc 0;ω;�ω;q;�qð ÞEbðω;qÞEcð�ω;�qÞ; (4)

where σabc 0;ω;�ω;q;�qð Þ is the conductivity and can be
calculated with the Green’s function formalism (Supplementary
Note 2.2). We will use σa

bc ω;qð Þ � σa
bc 0;ω;�ω;q;�qð Þ as a

shorthand in the following. Intuitively, an electron in the state
(k, E) can (virtually) absorbs momentum q and energy ω from the
inhomogeneous light field, jump to another state ðk þ q; E þ ωÞ,
then return q and ω to the light field and finally jump back to its
original state (Fig. 4a). During this process, the electron may
displace in real space, resulting in a charge current. Notably, q
identifies a preferred (or unique) direction for such a process,
which could break certain spatial symmetries, including inversion,
mirror, and rotation symmetries.
Td-WTe2 has mirror symmetry Mx . As a result, σx

xx ω;qð Þmust be
zero when q= 0 since it flips sign under Mx . This is different from
σyyy studied in the previous sections, which can be non-zero even
when q= 0. In contrast, if qx ≠ 0, then σx

xx ω;qð Þ can be nonzero,
which is vividly illustrated in Fig. 4b. As a comparison, we keep
qx ¼ 0 and vary qy , and σx

xx ω;qð Þ remains zero as expected

(Supplementary Fig. 17), since qy cannot break Mx . In Fig. 4c, we
show how σx

xx ω ¼ 0:1 eV;qð Þ varies with qx. Again, one can see
that PLs on the surface and in the bulk have distinct behavior.
σxxx ω;qð Þ of the bulk PLs shows a cubic and monotonic relation-
ship with qx. In contrast, σx

xx ω;qð Þ on the surface is non-monotonic
with q, and reverses direction at around qxj j � 0:6 nm�1. This is
somewhat surprising since qxj j determines the extent to which
Mx is broken, and one might expect that σx

xx ω;qð Þ should
increase monotonically with qx. The non-monotonic behavior can
be understood intuitively in the following way. Two competing
factors contribute to the magnitude of the NLO responses: (A)
when qj j is large, spatial inhomogeneity of the light field is
stronger. As a result, different electrons may have stronger
tendencies to jump in the same (rather than the opposite)
directions, which could result in a larger σx

xxðω;qÞ when qxj jis
large; (B) when qj j is large, the wavefunction overlap between
k; Eð Þ and ðk þ q; E þ ωÞ may be smaller, and the probability
(transition rate) for a certain electron to jump between k; Eð Þ to
ðk þ q; E þ ωÞ may be smaller. This would result in a smaller
σxxxðω;qÞ when qxj j is large. The competition between factors (A)
and (B) can result in a non-monotonic relationship between
σxxxðω;qÞ and qx. In Supplementary Note 2.2, we give a more
quantitative explanation of this effect.
Finally, we would like to remark that besides the inhomoge-

neous light field, a finite q can also arise from inhomogeneous
materials, which can be induced by e.g., strain gradient61 or
heterostructures. Inhomogeneous light fields and materials should
conceptually lead to similar results, although methodologically,
the effect of inhomogeneous materials should be incorporated
differently.

Higher-order response
Until now, we have been discussing the second-order optical
responses, which scales as E2. In recent years, higher-order
responses have also attracted great interest34,62–65, and efficient
high-order responses have been demonstrated separately on the
surface34 and in the bulk65 of topological materials. The higher-
order responses can be distinct on the surface and in the bulk
interior as well. Here we consider the third-order response, which
can be characterized by the conductivity σa

bcdðωb þ ωc þ ωd;
ωb;ωc;ωdÞ – that is, three electric fields Eb ωbð Þ; Ec ωcð Þ; EdðωdÞ
with polarizations b; c; dð Þ and frequencies ðωb;ωc;ωdÞ are
coupled, and a current along direction a with frequency ωb þ
ωc þ ωd is generated. The detailed formula to calculate
σabcdðωb;ωc;ωdÞ can be found in Supplementary Note 2.3.
Here we consider a simple but typical example of the third-

order effect. When one applies two laser beams with

Fig. 4 BPV under inhomogeneous light field. a An illustration of the electron transitions under homogeneous (left arrow) and
inhomogeneous (right arrow) field. b BPV conductivity under homogeneous (q ¼ 0) and in inhomogeneous (qx ≠ 0) field. c The relationship
between σxxx ω ¼ 0:1 eV; qxð Þ and qx for surface (blue curve) and bulk (purple curve) PL. The dashed curves are fittings of the solid dots with
cubic functions.
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Eb ¼ 2~Eb cosðωt þ ϕbÞ and Ec ¼ 2~Ec cosð2ωt þ ϕcÞ, a static cur-
rent ja can be generated as

ja ¼ ~E2
b
~Ec σa

bbc 0;ω;ω;�2ωð Þei 2ϕb�ϕcð Þ þ σa
bbc 0;�ω;�ω; 2ωð Þe�i 2ϕb�ϕcð Þ� �

¼ ~E2
b
~EcRe σa

bbc 0;ω;ω;�2ωð Þei 2ϕb�ϕcð Þ� �
;

(5)

where we used σa
bbc 0;ω;ω;�2ωð Þ ¼ σabbc 0;�ω;�ω; 2ωð Þ� ��

,
which is a consequence of the time-reversal symmetry. We
computed σx

xxx 0;ω;ω;�2ωð Þ with the Green’s function formal-
ism, and the results are shown in Fig. 5a, where one can see
that the third-order responses are distinct for the surface and
the bulk as well. Moreover, σa

bbc 0;ω;ω;�2ωð Þ � eiψ σa
bbc 0;ω;ω;ð��

�2ωÞj is a complex number, yielding ja ¼ ~E2
b
~Ec σ

a
bbc 0;ω;ω;ð��

�2ωÞj cos 2ϕb � ϕc þ ψð Þ. Interestingly, since spin flips its
direction under time-reversal symmetry, the spin current

conductivity (Fig. 5b) satisfies σa;si

bbc 0;ω;ω;�2ωð Þ ¼ �½σa;sibbc 0;ð
�ω;�ω; 2ωÞ�� , and the spin current obeys ja;s

i / sin 2ϕbð
�ϕc þ ψsi Þ, where ψsi is the phase factor for the spin current.
Therefore, the magnitude of both charge and spin current can
be controlled by the phase difference 2ϕb � ϕc . Furthermore,
pure spin current without accompanying charge current can be
generated when 2ϕb � ϕc þ ψ ¼ nπ þ π

2 ; n 2 Z. These effects
belong to the so-called two-color quantum interference
control66–69.

DISCUSSION
In this work, we used Td-WTe2 as an example to study the surface
effects in NLO processes. The reason we choose Td-WTe2 is that
the bulk of Td-WTe2 is non-centrosymmetric and semi-metallic,
which is similar to the surface from a symmetry or bandgap point
of view. Our results indicate that even in this case, the surface
responses can still be drastically different from those in the bulk
lattice. We clarify that this is mainly a topological effect, as
topologically trivial materials do not give such drastic differences.
This point is verified with both topologically trivial Td-WTe2 and
2H-MoS2 (Supplementary Note 4).
As discussed before, in materials with inversion symmetry or

nonzero bandgap, the difference between surface and bulk can be
even more dramatic. In centrosymmetric materials, B(S)PV, as a
second-order effect, is forbidden in the bulk interior. Therefore,
under light illumination, the currents are purely on the surfaces,
where the inversion symmetry is broken. As for topological
insulators, the bulk has a finite bandgap and thus has no responses
under light with below-bandgap frequencies (when the Fermi level

is in the bulk bandgap). However, the surface states are gapless and
can have responses under light with (in principle) arbitrarily low
frequencies. These features are illustrated using Bi2Se3 as an
example (Supplementary Fig. 12). Note that in Bi2Se3, the BPV
conductivities on the top and bottom surfaces are opposite, thus the
total current should be zero if the top and bulk surfaces are under
the same light field. However, light with above-bulk-bandgap
frequencies may not reach the bottom surface if the Bi2Se3 is thick
enough. In this case, the total current comes solely from the top
surface and can be directly used to probe the surface states.
In conclusion, we have developed a generic Green’s function

framework for calculating the NLO properties, which can incorporate
many-body effects beyond the single-particle approximation. As an
example, we study the effect of strong electron-electron correlations
represented by a Hubbard U term. In future works, we will use the
Green’s function framework to study NLO effects in other many-
body systems. In this work, the Green’s function framework is used
to study the surfaces of topological materials, and it is found that
under light illumination, the surface can behave distinctly from the
bulk. Therefore, light can be used to probe the surface properties.
On the other hand, when investigating the NLO properties of
topological materials, the surface effects should be carefully
considered, particularly when the light penetration depth is shallow,
or the material has nanoscale dimensions. For example, in
topological (semi-)metals, only tens of PLs (10–100 nm in thickness)
may be active under light, and the surface effect can make a
significant difference in the total responses (see Supplementary
Note 6.1 for a quantitative estimation). This is important when using
light as a probe of topological properties: the desired bulk properties
may be obscured by surface effects, and the experimental results
may deviate from theoretical predictions if the surface effects are
not properly considered. Also, when searching for materials with
large NLO responses for e.g., photodetection or energy harvesting
purposes, it may be insufficient to look at only the bulk properties.
The true responses can be obtained only when the surface and the
bulk are both considered, and the surface can act either positively or
negatively to the total response.

METHODS
Green’s function formalism
Electrons in solid-state systems have interactions with e.g., phonons,
defects, and other electrons. We call the electron system with these
internal interactions the base system and assume that we have full
knowledge of these base systems––we have their Green’s functions G0 in
hand, which can either be rigorously calculated or be approximately
obtained with e.g., perturbative expansions. External fields such as light
illumination are treated as additional interactions, which can drive the

Fig. 5 Third-order conductivity of Td-WTe2. a Charge current and b spin current. Red and green curves are for surface and bulk responses,
respectively. Solid and dashed curves are the imaginary and real parts of the response functions, respectively.
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system out of equilibrium. Such external interactions are described by the
self-energy terms Σ. The Green’s functions with both internal and external
interactions are denoted with G, which can be obtained from G0 and Σ
using Dyson’s equation. Regarding the light-matter interaction, one
has70,71 (Supplementary Note 1)

G< ¼
X1
n¼0

Gr
0Σ

r
� �n" #

G<
0

X1
m¼0

ΣaGa
0

� �m" #
; (6)

where Gr
0/G

a
0/G

<
0 are the retarded/advanced/lesser Green’s function of the

base system. Σrðq;ωÞ ¼ Σaðq;ωÞ ¼ iev � Eω ei q�rþωtð Þ is the retarded/
advanced self-energy, where v is the velocity matrix, while E is the electric
field with wavevector q and frequency ω. Equations (1, 6) provide a
systematic and convenient approach for computing the optical responses
to an arbitrary order: for the N-th order optical response, one simply picks
up all terms with mþ n ¼ N in Eq. (6). The k and E arguments are omitted
in Eq. (6) for simplicity. Note that after each self-energy term Σr=aðq;ωÞ, the
arguments k and E should be shifted by q and ω, respectively,
corresponding to the momentum and energy conservation. When the
base system is non-interacting, Eqs. (1) and (6) can be reduced to the
common single-particle formula. This is verified theoretically and
computationally in the Supplementary Note 1.3 and 1.4.

Ab initio calculations
The ab initio calculations are based on density functional theory (DFT)72,73

as implemented in the Vienna ab initio simulation package (VASP)74,75.
Generalized gradient approximation (GGA) in the form of Perdew-Burke-
Ernzerhof (PBE)76 is used to treat the exchange-correlation interactions.
Core and valence electrons are treated by projector augmented wave
(PAW) method77 and plane-wave basis functions, respectively. For DFT
calculations of Td-WTe2, the first Brillouin zone is sampled by a 15 × 9 × 3 k-
mesh. Then a tight-binding (TB) Hamiltonian is built from DFT results using
the Wannier90 package78 and is used to calculate the NLO responses
within the Green’s function framework. For the localized NLO responses on
each PL, the BZ integration in Eq. (1) is carried out by k-mesh sampling
with

R
dk
2πð Þ2 ¼ 1

S

P
kwk , where S is the area of the 2D unit cell on each PL and

wk is the weight factor. For the NLO conductivity of common bulk
materials, the k-mesh sampling should be

R
dk
2πð Þ3 ¼ 1

V

P
kwk; where V is the

volume of the 3D unit cell. Thus, the conductivities shown in this work
differ from the common definition of conductivities by a factor L, which is
the thickness of the unit cell. For the k-integration in Eq. (1), a k-mesh of
128 × 64 is used for Td-WTe2, while for the E-integration, a trapezoidal
method is used with an energy interval of 10meV. The convergence in
both k and E integrations is tested.
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Supplementary Note 1 Green’s function: general framework

In this section we demonstrate the general framework of using the Green’s functions to calculate

linear and nonlinear optical responses. The derivation is based on Dyson’s equation and is equivalent to

the diagrammatic approach based on Feynman’s diagrams. We also theoretically and computationally

show that the Green’s function formalism can be reduced to the widely-used single-particle formulae in

non-interacting systems.

Supplementary Note 1.1 From the density matrix to the lesser Green’s function

The first issue is how we can get the thermal and quantum average of a certain observable j in

equilibrium (or in steady state) from Green’s functions. In the language of density matrix, one has the

1



average as

⟨θ⟩ =
∫
[dk]Tr {ρkθ} (1)

where ρ is the density matrix. Within the Green’s function formalism, the lesser Green’s function

G<(k,E) plays a similar role to ρ, and one has

⟨θ⟩ = −i

∫
[dk]

dE

2π
Tr {θG<(k,E)} (2)

One can see that G<(k,E) is something like an “energy resolved” distribution function. This point can

be understood from the definition of G<, which is

G<(x1, x2) = i⟨ψ†(x2)ψ(x1)⟩ (3)

where x = (r, t) and ψ is the field operators. This is somewhat similar to the definition of the density

matrix, which is ρmn = ⟨c†mcn⟩. One can also look at the explicit formula for G<(k,E)

G<
0 (k,E) = 2πiρkδ(E −Hk), non-interacting system

G<(k,E) = inFD(E)A(k,E), interacting system
(4)

In the non-interacting case, ρk is the non-interacting density matrix (ρcc = 0 and ρvv = 1 for unoccupied

and occupied bands, respectively), while Hk is the Hamiltonian. Thanks to the delta function, the

integration over E in Eq. (2) directly leads to Eq. (1). In the interacting case, nFD is the Fermi-Dirac

distribution function, while A(k,E) is the spectral function, which is essentially the probability that

the electron is “in state k and with energy E” Note that in multi-band systems, ρk, Hk and A(k,E)

are all matrices.

Supplementary Note 1.2 Perturbative solution to Dyson’s equation

The next step is, of course, to obtain the lesser Green’s function G< under external fields. This

can be achieved with Dyson’s equation. Relevant to the responses under light illumination, one needs

Gr = Gr
0[1 + ΣrGr] (5)

Ga = Ga
0[1 + ΣaGa] (6)

G< = (1 +GrΣr)G<
0 (1 + ΣaGa) +GrΣ<Ga (7)
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where Gr and Ga are retarded and advanced Green’s function, respectively. Σr, Σa and Σ< are the

retarded, advanced, and lesser self-energy, respectively. The self-energies come from the interaction

with the light field and can be treated as perturbations here. Quantities with subscript 0 indicates

their values in the “base” system under no light illumination. We assume that we have full knowledge

about these base systems. As discussed in the main text, there can be interactions in the base system,

but these interactions are handled before the interaction described by Σ is included. For example, the

interaction with impurities, phonons, etc. can be included in G0. G0 can be obtained perturbatively

with e.g., Feynman’s diagram, or some other non-perturbative approaches. In the following we will

show how strong-strong electron correlation can be incorporated in G0 as an example.

Pertinent to the problem of optical responses, the electron interaction with electric field can be

represented with Σr = Σa = −ev ·A and Σ< = 0,1 where v is the velocity matrix, while A is the vector

potential. Then one can perturbatively solve Eqs. (5-7), yielding

Gr = Gr
0

∞∑
n=0

(ΣrGr
0)

n (8)

Ga = Ga
0

∞∑
m=0

(ΣaGa
0)

m (9)

G< =

[
∞∑

n=0

(Gr
0Σ

r)n

]
G<

0

[
∞∑

m=0

(ΣaGa
0)

m

]
(10)

To get the N -th order response, one just need to pick up terms with m + n = N in Eq. (10), and the

first order is

G<
1 = Gr

0Σ
rG<

0 +G<
0 Σ

aGa
0 (11)

the second order

G<
2 = Gr

0Σ
rGr

0Σ
rG<

0 +Gr
0Σ

rG<
0 Σ

aGa
0 +G<

0 Σ
aGa

0Σ
aGa

0 (12)

and the third order

G<
3 = Gr

0Σ
rGr

0Σ
rGr

0Σ
rG<

0 +Gr
0Σ

rGr
0Σ

rG<
0 Σ

aGa
0

+Gr
0Σ

rG<
0 Σ

aGa
0Σ

aGa
0 +G<

0 Σ
aGa

0Σ
aGa

0Σ
aGa

0

(13)

Even higher order responses can be obtained similarly.

Here one needs to be careful with the interpretation of the multiplications of Green’s functions. If

1Here we assume that all photons are external, provided by external sources. The photons do not have their own dynamics,
so their propagators are simply 1. They interact with the electrons through −ev ·A. Since v is a Hermitian matrix with v = v†,
one has Σ< ∝ Σr − Σa = Σr − [Σr]† = 0. If we only consider −ev · A, then Σr = Σa = −ev · A is the only contribution in the
self-energy. There are no other ways to draw inequivalent Feynman diagrams that contribute to the self-energy, since photons
have to be external, while electrons have to be internal in the current framework. In e.g., a tight binding model, the photons

can couple with electrons through high-order terms, such as ∂2H
∂ka∂kb

AaAb, which arise from high-order band dispersion, and

may also contribute to the self-energy. Here we do not consider these contributions, but it is straightforward to include these
terms.

3



one uses real space and real time domain, then C = AB (A,B,C are Green’s functions) actually means

C(r1 − r3, t1 − t3) ≡
∫

dt2dr2A(r1 − r2, t1 − t2)B(r2 − r3, t2 − t3) (14)

which is somewhat like an “inner product” between A and B. If one transform to reciprocal k and

frequency ω domain, then C = AB is simply matrix multiplications without any integrations any more

(convolution theorem). The k arguments of all Green’s function are the same as long as we assume a

uniform/homegeneous system. However, there can be a subtle shift in frequency ω arguments, if the

perturbation Σr = Σa is oscillating in time.

The frequency shift can be illustrated in real time domain. Here we take S = AΣ1BΣ2C as an

example. We assume that

Σ1(t− t′) = Σ(Ω1)e
iΩ1tδ(t− t′),

and

A(t− t′) =

∫
dωA(ω)e−iω(t−t′).

Then S = AΣ1BΣ2C really means

S(t− t′) =

∫
dt1dt2dt3dt4A(t− t1)Σ

1(t1)δ(t1 − t2)B(t2 − t3)Σ
2(t3)δ(t3 − t4)C(t4 − t′) (15)

Due to the time-translation symmetry, we can set t′ = 0 above. The integration over t2 and t4 can be

easily carried out with the delta functions. Then

S(E) =

∫
dteiEtS(t)

=

∫
dteiEt

∫
dt1dt3A(t− t1)Σ

1(t1)B(t1 − t3)Σ
2(t3)C(t3)

=

∫
dtdt1dt3e

iEt

∫
dωAA(ωA)e

−iωA(t−t1)Σ1(Ω1)e
iΩ1t1

∫
dωBB(ωB)e

−iωB(t1−t3)Σ2(Ω2)e
iΩ2t3

∫
dωCC(ωC)e

−iωCt3

=

∫
dωAdωBdωBA(ωA)Σ

1(Ω1)B(ωB)Σ
2(Ω2)C(ωC)

∫
dtei(E−ωA)t

∫
dt1e

i(ωA+Ω1−ωB)t1

∫
dt3e

i(ωB+Ω2−ωC)t1

=

∫
dωAdωBdωBA(ωA)Σ

1(Ω1)B(ωB)Σ
2(Ω2)C(ωC)δ(E − ωA)δ(ωA +Ω1 − ωB)δ(ωB +Ω2 − ωC)

= A(E)Σ1(Ω1)B(E +Ω1)Σ
2(Ω2)C(E +Ω1 +Ω2)

(16)

One can see that in the frequency domain, the argument of the Green’s function should shift by Ω

after each Σ(Ω). This point is actually obvious if one looks at the Feynman diagram: the energy and

momentum should be conserved at each vertex, which leads to the shift in energy and momentum. Note

that if the small but finite momentum of photons is taken into consideration, then the k arguments

should shift as well.
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Supplementary Note 1.3 Responses functions in non-interacting systems

In this section, we deal with the simplest system, where the Hamiltonian Hk of the base system

can be diagonalized, with eigenstates |nk⟩ and eigenenergy Enk. Both the Hamiltonian and the Green’s

functions are diagonal in the basis of |nk⟩. The interaction with external electric field is treated

as perturbations. The Green’s function approach can be reduced to the widely used single particle

formulae.

In this non-interacting case, one has non-interacting Green’s functions as2

[Gr
0(ω)]mn =

δmn

ω − En + iδ
(17)

[Ga
0(ω)]mn =

δmn

ω − En − iδ
(18)

[G<
0 (ω)]mn = 2πiδmnfnδ(ω − En) (19)

where fn is occupation number of band n.

Supplementary Note 1.3.1 Linear responses

For the linear response, Eq. (11) leads to

⟨θ⟩1 = −i

∫
[dk]

dE

2π
Tr {θ (Gr

0Σ
rG<

0 +G<
0 Σ

aGa
0)}

=

∫
[dk]dE

∑
mn

{
θmn

1

E − En + iδ
Σ1

nm(Ω1)fmδ(E +Ω1 − Em) + θmnfnδ(E − En)Σ
1
nm(Ω1)

1

E +Ω1 − Em − iδ

}
=

∫
[dk]

{
fmθmn

1

Emn − Ω1 + iδ
Σ1

nm(Ω1) + fnθmnΣ
1
nm(Ω1)

1

Enm +Ω1 − iδ

}
=

∫
[dk]

fmnθmnΣ
1
nm(Ω1)

Emn − Ω1 + iδ
(20)

where fmn = fm−fn, Emn = Em−En, and Σ1
mn(Ω1) = − e

iΩ1
vmn · E is the self-energy in velocity gauge.

This is exactly what we obtained before from linear response theory.

2The k indices are omitted.
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Supplementary Note 1.3.2 Second-order response

From Eq. (12) one can see that there are three terms contributing to the second-order response,

⟨θ⟩2 = −i

∫
[dk]

dE

2π
Tr{θ[Gr

0(E)Σr(Ω1)G
r
0(E +Ω1)Σ

r(Ω2)G
<
0 (E +Ω1 +Ω2)

+G<
0 (E)Σa(Ω1)G

a
0(E +Ω1)Σ

a(Ω2)G
a
0(E +Ω1 +Ω2)

+Gr
0(E)Σr(Ω1)G

<
0 (E +Ω1)Σ

a(Ω2)G
a
0(E +Ω1 +Ω2)]}

(21)

The evaluations of these three terms are similar, and we take the first term as an example.

⟨θ⟩(I)2 = −i

∫
[dk]

dE

2π
Tr {θGr

0(E)Σr(Ω1)G
r
0(E +Ω1)Σ

r(Ω2)G
<
0 (E +Ω1 +Ω2)}

= −i

∫
[dk]

dE

2π

∑
mnl

θmn
1

E − En + iδ
Σ1

nl(Ω1)
1

E +Ω1 − El + iδ
Σ2

lm(Ω2)2πifmδ(E +Ω1 +Ω2 − Em)

=

∫
[dk]

∑
mnl

θmnΣ
1
nl(Ω1)Σ

2
lm(Ω2)

fm
(Emn − Ω12 + iδ)(Eml − Ω2 + iδ)

(22)

The other two terms can be obtained similarly. For static response, one has Ω1 = −Ω2 = Ω and

Ω12 = Ω1 +Ω2 = 0, and we finally have

⟨θ⟩2 = ⟨θ⟩(I)2 + ⟨θ⟩(II)2 + ⟨θ⟩(III)2

=

∫
[dk]

∑
mnl

θmnΣ
1
nl(Ω1)Σ

2
lm(Ω2)

×
{

fm
(Emn + iδ)(Eml +Ω+ iδ)

+
fn

(Enm − iδ)(Enl +Ω− iδ)
+

fl
(Eln − Ω+ iδ)(Elm − Ω− iδ)

}
(23)

Here the third term in the bracket can be rewritten as

fl
(Eln − Ω+ iδ)(Elm − Ω− iδ)

= − fl
Eml + Eln + 2iδ

(
1

Eln − Ω+ iδ
+

1

Eml +Ω+ iδ

)
= − fl

Emn + 2iδ

(
1

Eln − Ω+ iδ
+

1

Eml +Ω+ iδ

) (24)

If we ignore the difference between 2iδ and iδ,3 then Eq. (23) becomes

⟨θ⟩2 =
∫
[dk]

∑
mnl

θmnΣ
1
nl(Ω1)Σ

2
lm(Ω2)

Emn + iδ

×
{

fm
Eml +Ω+ iδ

− fn
Enl +Ω− iδ

− fl
Eln − Ω+ iδ

− fl
Eml +Ω+ iδ

}
=

∫
[dk]

∑
mnl

θmn

Emn + iδ

{
fmlΣ

1
nl(Ω1)Σ

2
lm(Ω2)

Eml +Ω+ iδ
− fnlΣ

1
nl(Ω1)Σ

2
lm(Ω2)

Enl +Ω− iδ

} (25)

3This would make a difference at frequencies Ω ∼ δ
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The contribution from a similar term with exchanged Ω1 ↔ Ω2, Σ
1 ↔ Σ2 should be added, and one

has

⟨θ⟩2 =
∫
[dk]

∑
mnl

θmn

Emn + iδ

{
fmlΣ

1
nl(Ω1)Σ

2
lm(Ω2)

Eml +Ω+ iδ
− fnlΣ

1
nl(Ω1)Σ

2
lm(Ω2)

Enl +Ω− iδ
+
fmlΣ

2
nl(Ω2)Σ

1
lm(Ω1)

Eml − Ω+ iδ
− fnlΣ

2
nl(Ω2)Σ

1
lm(Ω1)

Enl − Ω− iδ

}
=

∫
[dk]

∑
mnl

θmn

Emn + iδ

{
fmlΣ

2
nl(Ω2)Σ

1
lm(Ω1)

Eml − Ω+ iδ
−flnΣ

1
nl(Ω1)Σ

2
lm(Ω2)

Eln − Ω+ iδ
+
fmlΣ

1
nl(Ω1)Σ

2
lm(Ω2)

Eml +Ω+ iδ
−flnΣ

2
nl(Ω2)Σ

1
lm(Ω1)

Eln +Ω+ iδ

}
(26)

On the second line, the first two terms are exactly what we have obtained with the single-particle

quadratic response theory, and the second two terms are also obtained with the exchange of Ω1 ↔ Ω2,

Σ1 ↔ Σ2.

Supplementary Note 1.4 Computational benchmarks

In this section we show some computational benchmarks of the Green’s function approach described

above. Results from the Green’s function approach are compared against results from the single-particle

formula. We use monolayer MoS2 as an example. The single MoS2 atom layer has no neighbors,

so the electrons can be regarded as truly “free” with well defined intralayer Hamiltonian H00
4 and

Gr
0(ω) =

1
ω−H00+iδ

. In this case, ideally the Green’s function approach and the single-particle approach

should give exactly the same result5, as theoretically proved in Sec. Supplementary Note 1.3. This is

numerically verified for the bulk photovoltaic (BPV) conductivities σy
yy and σx

xy, which correspond to

the shift and the circular current, respectively. The results from the two approaches are shown in Fig.

1, which agree well with each other.

We have also benchmarked our Green’s function formalism with calculations in previous works by

other researchers. We use GeS monolayer studied in Ref. [1] as an example. The BPV conductivities

of GeS monolayer calculated with our Green’s function formalism is shown in Figure 2, in satisfactory

agreement with Figure 2 in Ref. [1], which was calculated with the single-particle formulae.

4The detailed definition of H00 can be found in Sec. Supplementary Note 3.
5except for the smearing factor as described around Eq. (24)
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a b

Supplementary Figure 1: (a) BPV conductivity of monolayer MoS2 under linearly polarized light from Green’s
function approach (red circles) and single particle formula (blue solid curves). (b) Similar to (a), but under circularly
polarized light.

Supplementary Figure 2: BPV conductivity of monolayer GeS, calculated with the Green’s function approach.
The results are in good agreement with those in Ref. [1] (Figure 2 therein)
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Supplementary Note 2 Applications of the Green’s function frame-

work

In this section we discuss how the Green’s function framework can be applied to a variety of

nonlinear optical effects.

Supplementary Note 2.1 Bulk (spin) photovoltaic effect

As discussed in the main text, the bulk (spin) photovoltaic effect [B(S)PV] indicates that under light

illumination, a DC charge (spin) current can be generated in non-centrosymmetric materials. Here we

first assume that the light field is homogeneous, and is varying in time as cos(ωt+ϕ) = ei(ωt+ϕ)+e−i(ωt+ϕ)

2
.

The two self-energy term in Eq. (12) are ie E
ω
ei(ωt+ϕ) and ie E

−ω
e−i(ωt−ϕ), respectively, so that the current

can be static in time.

For BPV effect, the response this ja = −eva, which is the charge current, and one as the conduc-

tivity as

σa
bc(ω,−ω) =

⟨ja⟩
EbEc

= − ie
3

ω2

∫
[dk]

∫
dE

2π
Tr {vaG<} (27)

with

G< = Gr
0(E)vbGr

0(E + ω)vcG<
0 (E) +Gr

0(E)vbG<
0 (E + ω)vcGa

0(E)

+G<
0 (E)vbGa

0(E + ω)vcGa
0(E) + (b↔ c,+ω ↔ −ω)

(28)

For the spin current, the response should be ja,s
i

= 1
2
(vasi + siva), where si is the spin operator. As

discussed in the main text, we divide the BSPV conductivity by ℏ
2e
, so that it has the same unit as the

BPV conductivity. In this case, the BSPV conductivity is

σa,si

bc =
⟨ja,si⟩
EbEc

= − ie
3

ω2

∫
[dk]

∫
dE

2π
Tr

{
1

2
(vaσi + σiva)G<

}
(29)

where G< is the same as that in Eq. (36), while σi = 2si

ℏ is the dimensionless spin operator.
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Supplementary Note 2.2 Inhomogeneous fields

The Green’s function formalism can be easily generalized to deal with inhomogeneous external field

characterized by the wavevector q. In this case the self energy should be

Σ(q, ω) = Σ̃ei(qr−ωt) (30)

As a result, the self-energy will lead to a shift not only in the frequency argument, as shown around

Eq. (16), but also in the wavevector argument. As an example, one has

GrvGrvG< ≡ Gr(k,E)v(k, k + q)Gr(k + q, E − ω)v(k + q, k)G<(k,E) (31)

where [v(k, k + q)]mn = ⟨m, k|v|n, k + q⟩ is the velocity operator between states with wavevector k and

k + q. In order to obtain ⟨m, k|v|n, k + q⟩, it is more convenient to diagonalize H00 and go to the

so-called Hamiltonian gauge. In the Hamiltonian gauge, |mk⟩ and |nk⟩ are the eigenstates of H00 with

eigenevalues Em and En. For small q, one has

|m, k + q⟩ = |mk⟩+ q∇k|m, k⟩,

and the derivative of wavefunction ∇k|m, k⟩ can be obtained from perturbation theory,

∇k|m, k⟩ =
∑
n ̸=m

⟨nk|∇kH|mk⟩
Em − En

|nk⟩ (32)

Except for the shift in wavevector argument as shown in Eq. (31), the BPV conductivity under

light with wavevector q is the same as that in Eq. (27).

In the main text, we demonstrate that the NLO responses such as BPV conductivities can vary

with q in a non-monotonic fashion, and give an intuitive and qualitative explanation. Here we explain

this effect in a more quantitative way. To illustrate some typical features more intuitively, we use the

single particle wavefunctions |m, k⟩. The optical responses are mainly interband transitions, and the

interband transition probability is determined by the transition dipole vmn(k, q) ≡ ⟨m, k|v|n, k + q⟩,

where v is the velocity matrix. The second-order response is a three-band process and involves three

bands m,n, and l. Quantitatively, we need to look at

p
(3)
abc(m,n, l; k; q) ≡ ⟨m, k|va|n, k⟩⟨n, k|vb|l, k + q⟩⟨l, k + q|vc|m, k⟩ (33)

Here a, b, c can be x, y, z. Generally speaking, p
(3)
abc determines the interband transition probability.
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a b c

Supplementary Figure 3: p
(3)
xxx(m,n, l; k, q) for randomly chosen k and (m,n, l) as a function of q. One can see

thatp
(3)
xxx(m,n, l; k; q) can vary with q in a non-monotonic fashion, and can change sign.

When p
(3)
abc is large, an electron with wavevector k can contribute to a larger optical response by doing

(virtual) interband transitions between bands (m,n, l). When calculating the conductivity σa
bc(ω, q),

one needs to sum p
(3)
abc over all possible (m,n, l) pairs and all k-points in the first Brillouin zone. This

is essentially “summing over all possible electron transitions”. p
(3)
abc with different (m,n, l; k) arguments

can have different behavior as a function of q. In Figure 3 we show p
(3)
xxx of Td-WTe2 for three randomly

chosen (m,n, l) at three randomly chosen k-points. One can see that indeed p
(3)
xxx can change non-

monotonically with q, and can have a sign reversal as q varies. This is a quantitative reason why the

BPV conductivities can show a non-monotonic behavior with q with a sign reversal.

Moreover, we can investigate the the scattering of electrons with photons characterized by wavevec-

tor q. These scattering are desirable in the NLO processes, since they assist the interband transitions

of electrons, which are the origins of the NLO responses. The scattering rates are sensitively dependent

on q. In our theory, these scatterings are implicitly but rigorously incorporated by the interband tran-

sition matrix ⟨m, k|v|n, k + q⟩. Generally speaking, the scatterings with photons are faster when the

magnitude of ⟨m, k|v|n, k + q⟩ is larger. The electron-photon scattering can be understood in a more

intuitive way with Fermi’s golden rule in the single particle picture. The coupling between the electron

and the photon is described by the Hamiltonian H = −ev ·A = i e
ω
v ·E, where A is the vector potential,

E is the electric field, while ω is the frequency of the photon. Leaving the constant factor i eE
ω

aside, one

can see the transition rate (or the scattering rate) between two states |m, k⟩ and |n, k+q⟩ is determined

by the transition dipole matrix Mmn(k, q) ≡ |⟨m, k|v|n, k + q⟩|2. In Figure 4 we plot Mmn(k, q) in the

first Brillouin zone for some randomly chosen m,n and q. One can see that Mmn(k, q) is dependent on

all the four parameters (m,n; k, q). These complexities are fully incorporated in our calculations.
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Supplementary Figure 4: Interband transition dipole in the first Brillouin zone, defined as Mmn(k, q) ≡
|⟨m, k|v|n, k + q⟩|2 for randomly selected q points and randomly selected band indices (m,n).

Supplementary Note 2.3 Second-harmonics generation

Previous studies [2] claim that the susceptibility χ of second-harmonic generation (SHG) can be

obtained from nonlinear photoconductivity,

χa
bc(2ω;ω, ω) = i

σa
bc(2ω;ω, ω)

2ϵ0ω
(34)

where ϵ0 is the vacuum permittivity, σa
bc(2ω;ω, ω) is the nonlinear conductivity, which can be obtained

from the Green’s function framework as

σa
bc(2ω;ω, ω) = − ie

3

ω2

∫
[dk]

∫
dE

2π
Tr {vaG<} (35)

with

G< = Gr
0(E)vbGr

0(E + ω)vcG<
0 (E + 2ω) +Gr

0(E)vbG<
0 (E + ω)vcGa

0(E + 2ω)

+G<
0 (E)vbGa

0(E + ω)vcGa
0(E + 2ω) + (b↔ c,+ω ↔ −ω)

(36)

We have calculated χy
yy for surface and bulk principal layers of Td-WTe2, and the results are shown

in Figure 5
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Supplementary Figure 5: Layer-resolved susceptibility of second-harmonics generation of Td-WTe2

Supplementary Note 2.4 Third order responses

Under three electric fields Eb(ωb) = Ẽbeiωbt, Ec(ωc) = Ẽceiωct and Ed(ωd) = Ẽdeiωdt, a charge current

ja = σa
bcdẼbẼcẼdei(ωb+ωc+ωc)t can be generated. The conductivity can be calculated with

σa
bcd =

⟨ja⟩
ẼbẼcẼd

=
e4

ωbωcωd

∫
[dk]

∫
dE

2π
Tr {vaG<} (37)

where G< should be obtained according to Eq. (13). Note that one needs to symmetrize over vb, vc, vd

and ωb, ωc, ωd in the formula above.

Supplementary Note 2.5 Strong electron-electron correlations

In the main text we mention that the Green’s functions in the presence of many-body interactions

can be calculated perturbatively with e.g., Feynman’s diagrams, or non-perturbatively with other ap-

proaches. Here we consider strong electron-electron correlations beyond the density functional theory

(DFT) framework as an example, and demonstrate how our Green’s function formalism can incorporate

many-body interactions.

We artificially add a Hubbard U = 3 eV term on the d-orbitals of W atoms, and the Green’s func-

tions of this strongly correlated system are calculated with the dynamical mean field theory (DMFT),

which is a non-perturbative approach [3, 4]. Note that usually people do not add Hubbard U terms

for WTe2. Here we artificially add this Hubbard U term just to showcase the capability of our Green’s

function formalism.
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a b

Supplementary Figure 6: (a) BPV conductivities of Td-WTe2 with an artificial Hubbard interaction of U = 3 eV
for the d orbitals of W atoms. The red and blue curves are the conductivities for surface and bulk PLs, respectively.
(b) The local self-energy of two selected d orbitals of the W atoms on the real frequency axis.

The Hamiltonian of Td-WTe2 with Hubbard U interaction is

H =
∑
ij,σ

(tσija
†
i,σaj,σ + h.c.) + U

∑
d

nd↑nd↓ (38)

Here a†i,σ and ai,σ are creation and annihilation operators of orbital i with spin σ. σ =↑ or ↓ in-

dicate spin up and down states, respectively. tσij is the hopping amplitude, which can be obtained

with VASP+Wannier90 calculations (see Methods section in the main text for details). h.c. indicates

Hermitian conjugate. ndσ is the number operate of the d orbitals of W atoms. The Hubbard U

term U
∑

d nd↑nd↓ introduces strong electron-electron correlations. We treat the Hubbard U term with

DMFT, from which we obtain the self-energy and the Green’s functions. Finally, the Green’s functions

are used to calculate the NLO responses.

The self-energy Σ(d) of d orbitals of W atoms on the real frequency axis are shown in Figure 6(b).

We only show dxy and dyz orbitals for better visualization. The BPV conductivities on the surface and

in the bulk of Td-WTe2 are shown in Figure 6(a). One can see that in the presence of the artificial

Hubbard U term, the surface and the bulk still have distinct NLO responses for a wide range of light

frequency ω.
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Supplementary Note 3 Surface states

In this section we consider the surface states. Different from the non-interacting system described

in Sec. Supplementary Note 1.3, the surface electrons are not free, as they interact with bulk electrons.

In other words, there is no simple single-particle Hamiltonian that can describe the surface states. We

treat the surface states interacting with the bulk states as the “base” system, whose Green’s functions

Gr
0, G

a
0, and G

<
0 can be obtained with iterative Green’s function method. Then, the optical responses

can be calculated with the Green’s function framework described above.

Here we need a set of basis functions for the surface states, which can be the Bloch waves built from

atomic orbitals localized on the surfaces, as we will show below. Then the surfaces Green’s function G,

velocity matrix v, and the self-energy Σ = −ev · A are all represented in this basis functions set. Note

that these basis functions need not to be the energy eigenstates (and in general cases they are not the

eigenstates).

Supplementary Note 3.1 Iterative Green’s function method

An iterative method for obtaining the surface Green’s function was introduced in Refs. [5, 6]. First,

we define a principal layer as the smallest group of neighbouring atomic planes such that only nearest-

neighbour interactions exist between principal layers (in other words, the principal layer should be thick

enough). The surface+bulk system is just a semi-infinite stacking of the principle layers. We label the

principle layers by n, and n = 0 indicates the surface layer, while n→ ∞ indicates bulk layers (Fig. 7).

The in-plane wavevector k∥ is a good quantum number on the surface. The basis wavefunctions can be

built as

|ψα
n(k∥)⟩ =

1√
N∥

∑
R∥

eik∥·R∥ |ϕα
n(R∥)⟩

where N∥ and R∥ are the number and index of unit cells on the surfaces, respectively. |ϕα
n(R∥)⟩ is the

α-th orbital in the R∥-th unit cell on the n-the principal layer. In the following we will omit k∥.

The the layer-resolved Hamiltonian and Green’s functions are

[Hmn]αβ = ⟨ψα
m|H|ψβ

n⟩ (39)

[Gmn(ω)]αβ = ⟨ψα
m|(ω −H + iδ)−1|ψβ

n⟩ (40)

where H is the Hamiltonian of the surface+bulk system. The iteration for obtaining the surface Green’s
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Supplementary Figure 7: An illustration of the stacking of the principal layers. The Green’s functions on the
two surfaces (top and bottom) are denoted by G00 and Ḡ00. Transfer matrices T, S and T̄ , S̄ can be used to obtain
Green’s function for interior layers, from two opposite directions.

function Gs ≡ G00 is

αi = αi−1(ω − εi−1)
−1αi−1

βi = βi−1(ω − εi−1)
−1βi−1

εi = εi−1 + αi−1(ω − εi−1)
−1βi−1 + βi−1(ω − εi−1)

−1αi−1 (41)

εsi = εsi−1 + αi−1(ω − εi−1)
−1βi−1

ε̄si = ε̄si−1 + βi−1(ω − εi−1)
−1αi−1

with the initialization ε0 = ε̄0 = ε̄s0 = H00, α0 = H01, β0 = H†
01. Iteration of Eq. (41) should be

converged until εn ≃ εn−1 ε
s
n ≃ εsn−1, and ε̄

s
n ≃ ε̄sn−1. The surface and bulk retarded Green’s function

Gr
s(ω) and G

r
b(ω) can be obtained as

Gr
s(ω) = (ω − εsn + iδ)−1 (42)

Ḡr
s(ω) = (ω − ε̄sn + iδ)−1 (43)

Gr
b(ω) = (ω − εn + iδ)−1 (44)

Where Ḡr
s ≡ Ḡ00 is the Green’s function of the bottom surface. Then the surface spectrum function,

advanced and lesser surface Green’s functions can be obtained with

Ga(k, ω) = [Gr(k, ω)]†

G<(k, ω) = inF (ω)A(k, ω)

A(k, ω) = i [Gr(k, ω)−Ga(k, ω)]

(45)
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Supplementary Note 3.2 Green’s function for interior layers

In addition to the Green’s function for the surface layer (the outmost layer), we are also interested

in the Green’s function for interior layers, which can be obtained with the transfer matrices

T = G00H
†
01

S = H01G00

(46)

and the Green’s function of other principle layers can be obtained with (Fig. 7)

Gn,0 = G00H
†
01Gn−1,0 = TGn−1,0

G0,n = G0,n−1H01G00 = G0,n−1S

Gn,n = G00 +G00H
†
01Gn−1,n−1H01G00 = G00 + TGn−1,n−1S

(47)

It is also possible to start from the bottom surface, whose Green’s function is Ḡ00 = Ḡs, and the define

the transfer matrix in the reverse direction, which are

T̄ = Ḡ00H01

S̄ = H†
01Ḡ00

(48)

and in the reverse direction,

Ḡ−n,0 = Ḡ00H01Ḡ−n+1,0 = T̄ Ḡ−n+1,0

Ḡ0,−n = Ḡ0,−n+1H
†
01Ḡ00 = Ḡ0,n−1S̄

Ḡ−n,−n = Ḡ00 + Ḡ00H01Ḡ−n+1,−n+1H
†
01Ḡ00 = Ḡ00 + T̄ Ḡ−n+1,−n+1S̄

(49)

Note that Gb = limn→∞Gn,n = limn→∞ Ḡ−n,−n. This completes the set of Green’s functions that

we may be interested in.

Supplementary Note 4 Trivial surface effects

The surface is in a different environment than the bulk, and there should be trivial surface effects,

which could also influence the NLO responses on the surface. In this section, we argue that these trivial

surface effects are much less significant than the topological effects.
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𝜔 = 0.3 eV
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Supplementary Figure 8: BPV conductivity of strained Td-WTe2. The strained Td-WTe2 is topologically trivial.
(a) layer-resolved BPV conductivity for PLs from the surface to the bulk. (b) energy-resolve contribution to the BPV
conductivity for the surface and bulk PL for light frequency ω = 0.3 eV. The energy-resolved contribution is defined

as I(E) ≡ − ie3

ω2S

∑
k Tr{v

aG<(E)} . (c, d) k-resolved contribution, defined as I(k,E) ≡ − ie3

ω2S
Tr{vaG<(k,E)} at

ω = 0.3 eV and E = EF for surface (c) PL and (d) bulk PL. (e, f) Spectrum function A(k,E) at E = EF for surface
(e) PL and (f) bulk PL. The spectrums in (e, f) are plotted in logarithm scale to give better visualization. Since the
strained Td-WTe2 is topologically trivial, there are no Weyl points or Fermi arcs. But there are still topologically
trivial surface states, which are marked in (e)

Supplementary Note 4.1 Strained and topologically trivial Td-WTe2

To distinguish the topological effects from the trivial surface effects, we artificially strain Td-WTe2

along a and c axis (8 % strain), so that the Weyl points merge and annihilate, and the system becomes

topologically trivial [7]. Then we calculate surface and bulk NLO properties of this topologically trivial

Td-WTe2. Note that applying bi-axial strain does not change any symmetry conditions for either the

surface or the bulk. Hence, the trivial surface effects should be similar for topologically trivial (strained)

and non-trivial (un-strained) Td-WTe2. By comparing topologically trivial and non-trivial Td-WTe2,

the topological effects and trivial surface effects can be better distinguished.

The BPV conductivities of the trivial Td-WTe2 are shown in Figure 8. One can see that the
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Supplementary Figure 9: The shift current conductivity σy
yy of bulk 2H-MoS2. Two atomic layers of MoS2 are

used as a principal layer. The response on the surface is almost the same as that in the bulk.

differences between surface and bulk are much less significant, as compared with that in the case of

topological non-trivial Td-WTe2 (Figure 2 in the main text). The surface and bulk spectrum functions

are shown in Figure 8(e, f), and one can see there are still topologically trivial surface states, as

marked in Figure 8(e). However, these trivial surface states cannot lead to a big difference in the total

NLO responses. From the k-resolved contribution [Figure 8(c, d)], one can see that the trivial surface

states have minor contributions to the total responses. Another remarkable feature is that, when Td-

WTe2 is topologically trivial, the BPV conductivities have much smaller magnitude (on the order of

10 nm · µA/V2) than that of the topologically non-trivial Td-WTe2 (on the order of 100 nm · µA/V2).

Supplementary Note 4.2 Bulk 2H-MoS2

We can also look at bulk 2H-MoS2, which is topologically trivial, as an example to illustrate the

surface effects in topologically trivial materials. Results are shown in Figure 9. One can see that for

bulk 2H-MoS2 the NLO responses of the surface are almost the same as that of the bulk. This again

suggests that the trivial surface effects can be small.

Supplementary Note 4.3 Spin-Orbit Coupling in Au

Spin-orbit coupling (SOC) can influence the BPV responses as well. Here we take Au as an example,

whose SOC is relatively strong since Au is a heavy element. We have calculated the BPV conductivity

σx
xx on the surface PL of Au with and without SOC, and the results are shown in Figure 10 (due to the

inversion symmetry, the conductivities are zero in the bulk of Au). One can see that the influence of
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Supplementary Figure 10: BPV conductivity on the surface of Au. SOC is considered (not considered) for the
red (blue) curve.

SOC is indeed non-negligible. This is because the SOC energy of Au is around 0.5 eV per atom, thus its

influence in the electronic band structure is relatively large when we study responses in the frequency

range of ω < 0.5 eV.

Supplementary Note 5 Comments on the phenomenological car-

rier lifetime

In the main text we use a uniform carrier lifetime of τ = 0.2 ps, which is chosen based on experi-

mental results. In reality, the carrier lifetime may deviate from this value. In this section, we show our

main conclusions are robust for a wide range of τ . Besides, the relationship between NLO conductivities

σ and the carrier lifetime τ give us some clues on the underlying mechanism of the NLO responses.

Supplementary Note 5.1 Relationship between NLO responses and the carrier

lifetime

In Figure 11 we show how the NLO charge and conductivities vary with τ . Generally speaking,

the NLO conductivities get enhanced when the carrier lifetime is longer. This is reasonable: longer

carrier lifetime indicates weaker dissipations in the system, and thus the carriers can have stronger

responses under light illumination. Remarkably, the main conclusions of our work hold true for the

wide range of carrier lifetime studied here. The main conclusions include: (1) the surface and the
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Supplementary Figure 11: NLO charge (a, b) and spin (c, d) conductivities as a function of carrier lifetime τ .
(a, c) are for light frequency ω = 0.1 eV, while (b, d) are for ω = 0.3 eV

bulk can have distinct (even opposite) responses under light for certain light frequencies; (2) the layer-

resolved nonlinear spin conductivity on the surface of Td-WTe2 can be orders of magnitude larger than

that in the bulk.

In the discussions above, we use a uniform phenomenological carrier lifetime. This is usually called

the “constant relaxation time approximation”, which can greatly simplify calculations and is widely used

in works studying NLO effects (e.g., Refs.[8, 9]). In reality, the carrier lifetime should be dependent on

the mode of the carrier, including the wavevector k and the energy E of the carrier. Actually, when

we add a Hubbard U term for the d orbitals of W atoms, there would be a non-uniform self-energy for

the d orbitals of W. The non-uniform self-energy is mathematically equivalent to a mode-dependent

lifetime (lifetime is equivalent to a purely imaginary self-energy Σ = iℏ
τ
). From Figure 6 we can see that

despite of the mode-dependent self-energy, the responses on the surface and in the bulk of Td-WTe2

are still distinct. This again suggests that the main conclusions of our work are solid and robust.
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Supplementary Note 5.2 Underlying mechanisms of the nonlinear photocur-

rents

In the (non-interacting) single-particle formalism, the nonlinear photocurrents can be classified into

different microscopic mechanism, each of which has a simple scaling relationship with τ . For example,

(1) the shift current has conductivities ∝ τ0 (do not depend on τ); (2) the injection current has

conductivities ∝ τ (see e.g., Refs. [10, 11]); (3) the quantum nonlinear Hall current has conductivities

∝ τ [12]; and (4) the nonlinear Drude current has conductivities ∝ τ2 (see e.g., Ref. [13]). In contrast,

in Figure 11 there are no simple scaling relationships between conductivities σ and τ . There are two

main reasons. (A) In our Green’s function formalism, the electrons are not free, due to interactions with

electrons on neighboring layers. As a result, the single-particle picture does not hold here. Intuitively,

the nonlinear current calculated in our work cannot be attributed to a single mechanism but should

be a combination of different mechanisms described above, as we will discuss below. (B) Even in the

single particle formalism, the simple scaling relationship described above requires that the frequency ω

of the light satisfies ω ≫ 1/τ [14]. However, in our work we focus on infrared light with frequencies

ℏω ∈ [0.1, 0.5] eV. This is comparable with the electron lifetime in Figure 11, where one has ℏ/τ ∈

[0.004, 0.2] eV. Thus, the simple scaling relationships do not hold true.

Besides, in the single-particle formalism the second order NLO responses are closely connected to

some topological or geometrical properties [10]. While our Green’s function formalism is equivalent to

the single-particle formalism in non-interacting systems, the topological and geometrical features are

relatively obscured in the Green’s function formalism, and it is not easy to distinguish the underlying

mechanisms (e.g., shift current or injection current). However, by comparing the relationship between σ

and τ shown in Figure 11 and the the scaling relationship described above, we can get some clues on the

underlying mechanisms. For the charge current under linearly polarized light, we believe there should

be shift current + nonlinear Drude mechanism in play. The shift current is generally an interband

transition process: the wavefunction centers of the electrons and holes are different, leading to an

electric dipole upon photon absorption. On the other hand, the Drude mechanism is essentially an

intra-band process, which exists only in (semi-)metallic systems. For the spin current, the injection

mechanism could also come into play. The injection mechanism comes from the fact that the electron

and holes have different velocities, and that the coherent k and −k excitations are imbalanced, leading

to k and −k asymmetry in steady-state population and a net current. Therefore, the currents shown

in the current work should have multiple underlying mechanisms [11].
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Supplementary Note 6 Other supplementary notes and figures

Supplementary Note 6.1 Estimation of the surface contribution to the total

responses

In the main text we argue that the surface contribution to the total NLO responses can be sig-

nificant. Here we do a rough quantitative estimation. From our ab initio calculations, we find the

absorption coefficient of Td-WTe2 to be on the order of 105 cm−1 with light frequency ω ∈ [0.1, 0.5] eV.

This indicates that the penetration depth is on the order of 100 nm. From Figure 2a in the main text,

we can see that at ω = 0.1 eV, the layer-resolved conductivity on the surface is about 250 nm · µA/V2,

while that in the bulk is about −50 nm · µA/V2. On the other hand, one principal layer (PL) is about

1.4 nm thick, therefore there are around 70 PLs within the 100 nm penetration depth. If we arbitrarily

take the total current as the summation of all currents generated on these 70 PLs, then the surface PL

would contribution to a fraction of 250
70×50

≈ 7 %. In other words, the single surface PL makes a 7 %

difference in the total current generated under light, which is not negligible in many situations (note

that the response on the surface layer is opposite to that in the bulk).

Also, we would like to remark that the total current measured in experiments is also influenced by

many practical factors, such as how the electrodes are connected to the samples. If the electrodes are

directly attached on the surface, then the contributions from the surface may play a more significant

role in the total current measured.

Moreover, when nanoscale thin films are used, the contribution from the surface can be even more

significant. For example, if a 10 nm thick film is used, then the contribution from the surface may

exceed 50 %.

Supplementary Note 6.2 NLO responses of Bi2Se3

As discussed in the main text, Bi2Se3, a prototype of topological insulator, is centrosymmetric in

bulk, and has a bulk bandgap ∼ 0.3 eV. Thus second order NLO responses would be zero in the bulk

of Bi2Se3. These arguments are verified by our calculations (Figure 12).

Supplementary Note 6.3 Other supplementary figures for Td-WTe2

In this section we show other supplementary figures for Td-WTe2 (Figure 13-20).
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a b

c d

Supplementary Figure 12: (a) the shift current conductivity σy
yy of Bi2Se3 for PLs from the surface into the

bulk. Three quintuple layers of Bi2Se3 are used as one principal layer. Since Bi2Se3 has inversion symmetry in the
bulk, σy

yy is nonzero only on the surface. While in the bulk, σy
yy is unanimously zero. (b) bulk (spin) photovoltaic

conductivities on the surface PL of Bi2Se3. (c, d) the spectrum function along high symmetry lines for (c) surface
PL and (d) bulk PL. The horizontal line indicates the fermi level used in the calculations.

Supplementary Figure 13: The spectrum function along high symmetry lines in the Brillouin zone for (a) the
surface PL and (b) the bulk PL of Td-WTe2. The surface states in the bulk bandgap is clearly seen in (a). The
horizontal line indicates the Fermi level used in the main text.
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Supplementary Figure 14: The circular current conductivity σx
xy of WTe2 for PLs on the surface and in the

bulk. Similar to the shift current conductivity shown in the main text, the circular current on the surface can also
be opposite to that in the bulk.

a

b

Supplementary Figure 15: The spin-x polarization on (a) surface PL and (b) bulk PL.

Supplementary Figure 16: BPV conductivities of Td-WTe2 for light frequency above 0.5 eV.
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Supplementary Figure 17: The relationship between σx
xx, σ

y
yy of Td-WTe2 and qy. Since qy cannot break Mx,

σx
xx is always zero. The dashed curves are fittings of the solid dots with cubic functions.

Supplementary Figure 18: layer resolved BPV conductivity of Td-WTe2 for PLs from the surface to the bulk.
The Fermi level is tuned to be 0.1 eV below the charge neutral point.
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Bulk

𝐸 = 𝐸𝑓 + 0.08 eV

𝐸 = 𝐸𝑓 + 0.08 eV

a
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Supplementary Figure 19: Same as Figures 2(c,d) in the main text, but for E = EF + 0.08 eV

Supplementary Figure 20: Convergence test of the third-order conductivity. Two meshes with 192 × 96 and
128×64 k-points in the first Brillouin zone are used. The difference is negligible. Similar convergence tests have been
carried out for other responses functions as well.
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