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Chloride electrolyte enabled practical zinc 
metal battery with a near-unity Coulombic 
efficiency
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Rechargeable aqueous zinc batteries are finding their niche in stationary 
storage applications where safety, cost, scalability and carbon footprint 
matter most. However, harnessing this reversible two-electron redox 
chemistry is plagued by major technical issues, notably hydrogen evolution 
reaction (HER) at the zinc surface, whose impacts are often not revealed 
under typical measurement conditions. Here we report a concentrated 
electrolyte design that eliminates this parasitic reaction and enables a 
Coulombic efficiency (CE) of 99.95% for Zn plating/stripping measured at a 
low current density of 0.2 mA cm−2. With extra chloride salts and dimethyl 
carbonate in concentrated ZnCl2 electrolyte, the hybrid electrolyte with a 
unique chemical environment features low Hammett acidity and facilitates 
the in situ formation of a dual-layered solid electrolyte interphase, 
protecting zinc anodes from HER and dendrite growth. Benefiting from  
the near-unity CE, the pouch cell with a VOPO4·2H2O cathode sustains  
500 deep cycles without swelling or leaking and delivers an energy density 
of 100 Wh kg−1 under practical conditions. Our work represents a critical 
step forward in accelerating the market adoption of zinc batteries as an 
energy storage system with higher sustainability.

The widespread commercialization of rechargeable aqueous zinc 
metal batteries (ZMBs) hinges on the sufficiently high Zn plating/
stripping Coulombic efficiency (CE)1–5. The challenges of securing 
high CE of zinc metal anode (ZMA) stem from irreversible hydrogen 
evolution reaction (HER) across the life span and Zn dendrite forma-
tion during plating. Compared with dendrite growth6–13, HER is more 
difficult to restrain because it is a spontaneous parasitic reaction 
between ZMA and water molecules in the electrolyte, which constantly 

consumes the active mass of ZMA and causes a safety concern over the 
generation of flammable H2 gas14. To suppress the HER, one strategy 
is to raise the ZMA oxidation potential, for example, by plating on a 
more stable (0002) lattice plane of zinc7. Another is to improve the 
cathodic stability of water by using water-in-salt electrolytes12,15,16, 
deep eutectic solvents17 and molecular-crowded electrolytes18,19. 
Additionally, various strategies have been reported to stabilize the 
ZMA surface, including forming a solid electrolyte interphase (SEI) 
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HER-free and anticorrosion properties (Supplementary Figs. 4 and 5). 
In addition to the high CE, ZLT-DMC has a lower density of 1.69 g cm−3 
than ZL and ZLT, allowing a smaller mass of electrolyte to wet the cell, 
thereby benefiting the energy density (Fig. 1a). Furthermore, ZLT-DMC 
has a conductivity of 15 mS cm−1, which is higher than those of ZLT and 
ZL (Supplementary Fig. 6).

The unique Zn-ion solvation structure
The near-unity CE of ZMA reflects almost complete suppression 
of the HER (see the gas chromatography results in Supplementary  
Fig. 7). How does ZLT-DMC enable this? First, does ZLT-DMC have a 
low acidity? We measured the Hammett acidity of the electrolytes 
with 4-chloro-2-nitroaniline as an indicator (Supplementary Fig. 8)34. 
Adding TMACl reduces the electrolyte’s Hammett acidity by turning it 
into a weaker proton donor (Fig. 1c). The calculated Hammett acidity 
changes from −2.07 for 30Z and −2.13 for ZL to −1.33 for ZLT. This result 
confirms our postulation that the electrolyte is less acidic when the pri-
mary cations are switched from hydrated Zn2+ to hydrated weak Lewis 
acid cations, that is, TMA+. Moreover, adding DMC further reduces the 
acidity, raising the Hammett acidity value to −0.67. In addition, the 1H 
nuclear magnetic resonance (NMR) spectra of water shift up-field from 
4.62 parts per million (ppm) in 30Z to 4.55 ppm in ZLT-DMC, compared 
with 4.70 ppm in pure water, indicating that the protons of water are 
more shielded with a higher electron density (Fig. 1d). The calculated 
T1 relaxation time of 1H is 0.660 s for ZLT-DMC, much shorter than the 
~4 s for pure water, revealing the weakened interactions between water 
and its environment and corroborating the lowered acidity of the elec-
trolyte (Supplementary Fig. 9).

Second, besides the reduced acidity, how does the local environ-
ment of water change upon adding TMACl and DMC to the electrolyte? 
In the low-frequency region of the femtosecond stimulated Raman 
spectra (FSRS), the peaks at ~380, 293 and 240 cm−1 are attributed to 
the Zn–O vibration in [Zn(OH2)6]2+, the Zn–Cl vibration in [ZnCl4]2− 
and the vibrations of the polynuclear Zn–Cl aggregates bridged by 
Cl−, respectively (Fig. 1e). Increasing the TMACl’s concentration in ZL 
decreases the peak at 380 cm−1 and strengthens the peak at 293 cm−1, 
consistent with the notion of dehydration of [Zn(OH2)6]2+ due to the 
formation of more Zn–Cl complex ions (Supplementary Fig. 10a). 
Moreover, introducing bulky TMA+ cations could depolymerize the 
Zn–Cl aggregates, as indicated by the diminished peak at 240 cm−1. The 
blue shift of water’s bending mode via addition of TMACl in ZL suggests 
the dehydration of Zn ions (Supplementary Fig. 10b). The lowered peak 
intensity represents the decreased polarizability of water. Therefore, 
the Raman results indicate that adding TMACl reduces the presence of 
H2O in the solvation sheaths of Zn2+, which helps strengthen the O–H 
bonds of water.

The O–H stretching for water in the high-frequency range (Fig. 1f)  
can be deconvoluted into three peaks corresponding to different 
hydrogen-bonding environments (Supplementary Fig. 11). From 
pure water to 30Z, most water molecules transition from the double 
donor-double acceptor conformation to the donor-acceptor (DA) 
conformation as part of the Zn2+ hydration shell35,36. Furthermore, the 
DA mode blue-shifts upon addition of LiCl in 30Z and stiffens again 
upon addition of TMACl with lowered peak intensity (Supplementary 
Table 2). This blue shift arises from water molecules being surrounded 
by electron-donating [ZnCl4]2− anions and TMA+ cations—a weaker 
Lewis acid than water. The lowered DA peak intensity again reveals the 
mitigated electric polarizability of water due to an increasing concen-
tration of less-polarizing ions37.

Third, how does DMC affect the chemical environment of the 
electrolyte? DMC is immiscible in water or dilute aqueous electrolytes 
but becomes miscible in concentrated ZnCl2 solutions (Supplementary  
Fig. 12)38. Adding organic co-solvents such as dimethylsulfoxide to 
aqueous electrolytes was previously attempted to improve the CE of 
ZMA, where dimethylsulfoxide enters the Zn2+ solvation sheaths to 

layer10,20–24, modifying the solvation structures of Zn ions16,25,26 and 
stabilizing the local pH27.

Nevertheless, most reported CE values were measured at a current 
density of 1 mA cm−2 or above (Supplementary Table 1). It is known that 
the measured CE is proportional to the applied current density, where 
the high current densities tend to mask the consequences of HER. 
Therefore, the reported high CE values cannot ward off battery failures 
due to cell swelling or electrolyte leaking as hydrogen gas builds up28.  
A stringent test setup to reveal the consequences of the HER is the 
pouch cell that quickly puffs up if gas is evolved; however, prototype 
pouch cells free of HER over long-term cycling are rarely reported.

In this Article, we explore the design principles for the electrolyte 
formula free from dendrite growth and HER (Supplementary Fig. 1). 
The reduced Hammett acidity of the hybrid electrolyte and the forma-
tion of a dual-layered SEI enable an average Zn plating/stripping CE 
of 99.95% measured at 0.2 mA cm−2. Leveraging on the near-unity CE, 
the VOPO4·2H2O||Zn Swagelok cells retain 80% of the initial capacity 
over 4,300 cycles with a negative/positive electrode capacity ratio 
(N/P ratio) of 2, equivalent to a CE of 99.97%. Moreover, the pouch cell 
achieves an energy density of 100 Wh kg–1 based on the mass of both 
electrodes and delivers a stable cycling performance over 500 cycles 
with a limited electrolyte supply of 8.8 ml Ah−1, an N/P ratio of 2.3, and 
a cathode areal capacity of 2.5 mAh cm−2.

Results
Stripping and plating reversibility of ZMA
Aqueous electrolytes containing Zn2+ ions usually exhibit high Brøn-
sted–Lowry (BL) acidity because Zn2+ weakens the O–H bonds of aqua 
ligands. One strategy to lower the acidity of such electrolytes is to 
replace the aqua ligands of Zn2+ with stronger Lewis bases. In particu-
lar, adding chloride to 30 m ZnCl2 (30Z) can transform hydrated Zn2+ to 
Zn–Cl complex ions such as [ZnCl4]2− (refs. 16,25,29). Our previous studies 
showed that mixing LiCl in 30Z can increase the CE of ZMA from 98.0 to 
99.7% tested at 1 mA cm−2, where the screening effect of Li+ suppresses 
dendrite growth during Zn plating16. However, HER was not sufficiently 
suppressed at lower current densities, so when the current density is 
reduced to 0.2 mA cm−2, the measured CE drops to 97.63%. Here, we 
better mimic the conditions of commercial ZMBs to measure the aver-
age CE of a commercial Zn metal foil using a modified galvanostatic 
technique (see Methods for detailed information)30–32.

Starting with the baseline electrolyte of 30 m ZnCl2 + 5 m LiCl 
(referred to as ZL), we first examined the benefits of adding one more 
chloride salt, with the goal of making excess Cl– displace H2O from 
the Zn2+ solvation sheaths. The selection criterion for this additional 
chloride salt was that its cation should be a weak Lewis acid so as not to 
increase the BL acidity of the electrolyte. The methylated ammonium 
chlorides were selected, and in a systematic study of the number of 
methyl groups, trimethylammonium chloride (TMACl) stood out, 
delivering the highest CE (Supplementary Fig. 2a). In particular, the 
CE of ZMA in ZL + 10 m TMACl (ZLT) was the highest among different 
concentrations of TMACl (Supplementary Fig. 2b). As shown in Fig. 1a, 
the average CE of ZLT at 0.2 mA cm−2 is 99.60%, much higher than the 
CEs of 30Z (95.38%) and ZL (97.63%).

Organic molecules may also substitute for H2O in the Zn2+ solva-
tion sheaths and reduce the electrolyte’s Hammett acidity to suppress 
HER25,33. To harness this mechanism, we investigated several organic 
co-solvents (Supplementary Fig. 2c). Among them, dimethyl carbon-
ate (DMC) demonstrated the highest average CE of 99.95% at a current 
density of 0.2 mA cm−2 (Fig. 1b). This near-unity CE at such a low current 
density is unprecedented compared with all previous reported CE 
values of ZMA (Supplementary Table 1). We chose the 5:1 molar ratio of 
water and DMC (referred to as ZLT-DMC) for its optimal CE (Supplemen-
tary Fig. 2d); this water:DMC molar ratio is far more than the flammable 
threshold, rendering it a safe electrolyte (Supplementary Fig. 3). In 
ZLT-DMC, ZMA exhibits excellent cycling stability, rate capability, and 
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suppress HER25. In contrast, the DMC molecules with a lower donor 
number (16.0) barely solvate Zn2+ cations in ZLT-DMC, as revealed by 
our FSRS and ab initio molecular dynamics (AIMD) calculations (Sup-
plementary Fig. 13). The Zn–Cl vibrational modes remain unchanged 
upon increasing the DMC:H2O molar ratio from 1:20 to 1:5, indicating 
that DMC is a weaker Lewis base than either Cl− or water to solvate Zn2+ 
(Fig. 1g). However, DMC does interact with water. The O–C–O stretch-
ing mode of DMC at ~910 cm−1 in Raman studies splits into two peaks 
at ~860 and 925 cm−1, which suggests that the interactions between 
DMC and H2O break the O–C–O symmetry (Fig. 1h), consistent with a 
shortened T1 relaxation time seen in the 1H NMR results. The DMC addi-
tion does not blue-shift the bending and stretching modes of water but 
lowers the Raman peak intensity (Supplementary Fig. 14). Therefore, 
similar to TMACl, DMC further decreases the electric polarizability of 
water molecules (Fig. 1i). As a result, ZLT-DMC exhibits an expanded 
thermodynamic stability window of 2.39 V (Supplementary Fig. 15)15,39. 
A critical question is whether DMC alone is sufficient to transform the 
properties of 30Z in achieving the high CE of ZMA. Nevertheless, adding 

DMC improves the CE of 30Z from 95.38% to 98.36% for 30Z-DMC 
tested at 0.2 mA cm−2, although this is still lower than that of ZLT-DMC.

The structure and morphology of plated ZMA
Ex situ X-ray diffraction patterns confirm that the ZMA surface is free 
of insoluble Zn(OH)2-based precipitation phases after 200 cycles in 
ZLT-DMC (Supplementary Fig. 16)33,40. After cycling, the ZMA surface 
is flat in contrast to the ‘mountainous’ topography generated in 30Z 
(Fig. 2a,b). In ZLT-DMC, the surface of ZMA shows no dendrites, and the 
plated mass contains no holes or cracks, as evidenced by scanning elec-
tron microscopy (SEM) imaging of the cross-section carved by a focused 
ion beam (FIB) (Fig. 2c and Supplementary Fig. 17). Furthermore, using 
in situ optical microscopy, resistance to dendrite formation was further 
investigated by real-time observation of Zn plating at the high current 
density of 10 mA cm−2 (Supplementary Fig. 18 and Supplementary Vid-
eos 1–5). In 30Z, the plated Zn became rough with dendrite formation 
after 40 min of plating (Fig. 2d). In contrast, the ZLT-DMC electrolyte 
enabled flat and compact Zn plating over 120 min (Fig. 2e). The plated 
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Fig. 1 | Reversibility of ZMA and properties of the electrolytes. a, Average  
CE values of ZMA in different electrolytes measured at 0.2 mA cm−2 (red)  
with error bars (blue) and the density of electrolytes (black). For CE values,  
data are presented as mean ± s.d. (n = 3). s.d., standard deviation. b, The GCD 
potential profiles for the average CE measurement in ZLT-DMC at 0.2 mA cm−2. 
Inset: enlarged GCD potential profiles showing the extent of overpotential.  

c, Absorption spectra of 4-chloro-2-nitroaniline indicator in different electrolytes 
for measuring the Hammett acidity. d, Water’s 1H NMR spectra of 30Z (red) and 
ZLT-DMC (blue). e,f, FSRS spectra of ZL with different concentrations of TMACl in 
the low-frequency region (e) and high-frequency region (f). g–i, FSRS spectra of 
ZLT with different H2O/DMC molar ratios in the low-frequency region (g), middle-
frequency region (h) and high-frequency region (i).
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Zn in ZLT-DMC is 35.7 µm in thickness, matching the theoretical 34.2 µm 
corresponding to the plated capacity of 20 mAh cm−2. However, the 
plated Zn in 30Z is around 55 µm thick, indicating porosity and surface 
roughness. We also investigated ZMA plating in 30Z-DMC, ZL, and 
ZLT electrolytes, finding their overall performances to be better than 
that of 30Z but worse than that of ZLT-DMC (Supplementary Fig. 19).

Dual-layered SEI on ZMA
The extremely high CE and dendrite-free morphology indicate that 
an SEI layer forms to passivate the ZMA surface41,42. We examined the 
surface structure of the plated ZMA in ZLT-DMC by observing the 
FIB-prepared cross-section of the surface region with transmission 
electron microscopy (TEM). The cross-section displays a distinct sur-
face layer on top of the bulk Zn substrate (Fig. 3a). The surface layer has 
a uniform thickness below 200 nm, comprising inner and outer layers 
judging from the imaging contrast (Fig. 3b). The energy-dispersive 
X-ray spectroscopy elemental mappings associated with the dark-field 
scanning TEM (STEM) delineate the uniform dispersion of Zn, Cl, and 
O in this layer, where the C signal is characteristic of the outer SEI layer 
(Supplementary Fig. 20).

More quantitative analysis by X-ray photoelectron spectroscopy 
(XPS) revealed the depth-profiled composition throughout the SEI. 
Only the outer SEI layer contains notable C 1s signals, which can be 
deconvoluted into three components (Fig. 3d). The peaks at ~284.8 
and ~286.3 eV are assigned to C–C/C–H and C–O bonds, respectively, 
while the ~289.0 eV peak is ascribed to the carbonate of –OCO2–. We 
attribute the existence of these organic moieties to the reduction of 
DMC (Fig. 3c). After Ar+ sputtering for 1 min, the C 1s peak intensity 
drops to half that on the top surface, and after sputtering for 9 min, the 
peak intensity remains just above the noise level, suggesting that the 
outer SEI layer is ca. 60 nm thick (Fig. 3d and Supplementary Fig. 21).  

The O 1s signal matches the trend of the C 1s signal, where the total per-
centage of O–C and O=C progressively decreases upon Ar+ sputtering, 
but the O–Zn oxygen signal persists until 200 nm deep, beyond which 
the SEI layer transitions to metallic Zn (Supplementary Fig. 22a). Fur-
thermore, the Zn 2p3/2 signal of Zn–Cl at 1,023 eV also persists through-
out the SEI layer, constituting the inner inorganic SEI layer with Zn–O 
species (Fig. 3e). In the Cl 2p spectrum, both Zn–Cl and oxychloride 
are distinct in the outer SEI layer (Supplementary Fig. 22b)22. Deeper 
into the inner SEI layer, the percentage of oxychloride decreases, but 
the Zn–Cl signals still dominate, consistent with the Zn 2p3/2 result  
(Fig. 3e). Pulling together the microscopy and XPS results, we conclude 
that the ZMA’s SEI layer formed in the ZLT-DMC electrolyte comprises 
an outer organic/inorganic composite layer and an inner inorganic 
layer (Fig. 3c). We also collected depth-profiled XPS spectra for ZMAs 
cycled in all the other permutations of electrolytes (Supplementary 
Figs. 21 and 23). Overall, the SEI layers formed in the pure inorganic 
electrolytes of 30Z, ZL, and ZLT are much thicker and contain more 
oxides than those in ZLT-DMC.

The disparity in CE values and composition profiles between 
ZLT-DMC and the other baseline electrolytes suggests that the organic 
moieties are instrumental in passivating the ZMA surface. This begs 
the question: do these moieties have to come from DMC, or could 
other ester carbonates perform an identical role? We tested ZMA’s 
CE with diethyl carbonate (DEC) and ethyl methyl carbonate (EMC) 
added to ZLT with the same 5:1 molar ratio of water and carbonate. At 
a current density of 0.2 mA cm−2, the CE values are 99.86% and 99.82% 
for ZLT-DEC and ZLT-EMC, respectively, which are lower than that of 
ZLT-DMC (Supplementary Fig. 2c). In ZLT-DEC, the cross-sectional 
STEM image displays a much thicker SEI layer ranging from 500 nm to 
1.5 µm (Supplementary Fig. 24). The XPS depth-profiling analysis of 
this SEI displays a quickly diminished intensity of the C 1s peaks along 

d
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e
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Zn substrate 

Plated Zn

Fig. 2 | Physical characterization of ZMA in 30Z and ZLT-DMC electrolytes. 
a,b, SEM images of ZMA after 200 cycles with an areal capacity of 1 mAh cm−2 at a 
current density of 1 mA cm−2 in 30Z (a) and ZLT-DMC (b). Scale bar, 25 µm. c, The 
cross-sectional SEM image of the ZMA surface region collected after 200 cycles 

in ZLT-DMC. Pt coating on the Zn surface was used for the FIB lifting-out process. 
Scale bar, 2 µm. d,e, In situ optical microscopy images of ZMA plating (side view) 
in 30Z (d) and ZLT-DMC (e) at a current density of 10 mA cm−2 and up to 120 min. 
Scale bar, 200 µm.

http://www.nature.com/natsustain


Nature Sustainability

Article https://doi.org/10.1038/s41893-023-01092-x

with Ar+ sputtering, which drops to the noise level after 5 min of sput-
tering (Supplementary Fig. 25). This indicates that the outer organic 
SEI layer of ZLT-DEC is thinner than that of ZLT-DMC despite the entire 
SEI layer being much thicker. The much greater thickness of the SEI 
here suggests that the formative SEI in ZLT-DEC cannot effectively 
passivate the ZMA surface and the parasitic SEI formation reaction 
prolongs the consumption of the ZMA active mass, which explains the 
lower CE values in ZLT-DEC than in ZLT-DMC. Furthermore, compared 
with DMC, the less O–C–O stretching mode split of DEC at ~899 cm−1 
in Raman studies indicates a weaker interaction between DEC and H2O 
molecules in ZLT-DEC electrolyte with a lower Hammett acidity than 
ZLT-DMC, resulting in less generation of organic radicals for outer 

organic SEI layer formation (Supplementary Fig. 26). It is postulated 
that the insufficient SN2 ester cleavage and the steric effect of the 
bulkier sidechains of DEC and EMC inhibit the formation of a dense 
organic layer on the Zn metal surface. Similarly, adding cyclic carbon-
ates, for example, ethylene carbonate and propylene carbon, delivers 
even lower CE values than ZLT (Supplementary Fig. 2c).

To further visualize organic SEI formation, we performed AIMD 
simulations of the ZLT-DMC electrolyte at a ZMA surface under reduc-
ing conditions in which the system was prepared with a CH3OOCO 
radical adjacent to the ZMA surface (Fig. 3f and Supplementary Fig. 27). 
The CH3OOCO interacts with a Zn–Cl complex ion and forms a Zn2Cl3–
O–COOCH3 intermediate compound after 300 femtoseconds (fs), 
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removed from the snapshots (Supplementary Fig. 27).
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which by 800 fs has transformed to ZnCl–O–COOCH3. The simulation 
was continued for another 700 fs, during which the ZnCl–O–COOCH3 
compound remained stable. Another insight from the AIMD simulation 
of the electrolytes is the importance of LiCl and TMACl for the forma-
tion of [ZnCl]+ ions, with the ZLT-DMC electrolyte containing seven 
times as many [ZnCl]+ ions as 30Z-DMC. This suggests that a sufficient 
concentration of [ZnCl]+ cations is critical for forming a high-quality 
organic SEI layer in ZLT-DMC, and this organic layer is essential in pas-
sivating the ZMA and suppressing HER21.

Electrochemical performance of full cells
We further tested the reversibility of ZMA in VOPO4·2H2O||Zn full cell 
with the ZLT-DMC electrolyte20,43,44. The layered VOPO4·2H2O cathode 
can serve as a stable counter electrode to couple ZMA by exhibiting 
excellent cycling stability, near-unity CE, and fast rate capability (Sup-
plementary Fig. 28). With a cathode mass loading of 3 mg cm−2 and an N/P 
capacity ratio of 2, the VOPO4·2H2O||Zn full cells in Swagelok cells deliver 
an energy density of 94 Wh kg−1 based on the mass of both electrodes, 
an average voltage of ~1.1 V and a high round-trip efficiency of ~90% at 
0.2 A g−1 (Fig. 4a). At a higher current rate of 2 A g−1, this full cell retains 

80% of its initial discharge capacity after ~4,300 cycles (Fig. 4b). Next, 
we increased the cathode active mass loading to ~25 mg cm−2, near that 
used by commercial batteries. A VOPO4·2H2O free-standing film was 
paired with 10 µm thick commercial zinc foil to achieve an N/P ratio 
of 1.9. The cell round-trip efficiency decreases to 75%, but the specific 
capacity is not compromised. The cathode delivers an areal capacity of 
~2.9 mAh cm−2, and the full-cell capacity retention is ~80% after 1,600 
cycles at a current rate of 0.3 A g−1 (Fig. 4c). Importantly, suppressing the 
parasitic reactions also enhances the self-discharge performance of full 
cells. The cell capacity retention is ~91.0% after resting at open circuit 
voltage for 240 h in ZLT-DMC at room temperature, compared with 91.2% 
after 24 h in 30Z (Supplementary Fig. 29a,b). The full cell also exhibits 
a stable low-temperature (−20 °C) cycling performance with a specific 
capacity of ~89 mAh g−1 at the current rate of 0.1 A g−1 (Supplementary 
Fig. 29c–e)19,33,45,46. Note that ZLT-DMC exhibits a melting point of −68 °C.

To reveal whether piecemeal HER takes place in ZLT-DMC, we 
tested single-layer pouch cells with an N/P ratio of 2.3 to check whether 
non-rigid pouch cells swell due to gas formation. We controlled the 
electrolyte usage to the level of 8.8 ml Ah−1. The pouch cells operated 
with an areal capacity of over 2.5 mAh cm−2, storing an energy density of 
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Fig. 4 | Electrochemical performance of VOPO4·2H2O||Zn full cells. a, GCD 
potential profiles at 0.2 A g−1 with different cathode mass loadings tested in a 
Swagelok cell configuration. b, Swagelok cell cycling with a VOPO4·2H2O mass 
loading of 3 mg cm−2 at 2 A g−1. c, Swagelok cell cycling with the VOPO4·2H2O 
mass loading of 25 mg cm−2 at 0.3 A g−1. d, Pouch cell cycling with VOPO4·2H2O 
mass loading of 22.5 mg cm−2. Black and red dots represent charge and discharge 

capacity values (left y axis), respectively, and the blue dots represent CE values 
(right y axis). The pouch cell was activated at 20 and 30 mA g−1 for 20 and 10 
cycles, respectively, in the first 30 cycles of cycling. The dashed black line marks 
the 245th cycle, where the current rate was changed from 40 mA g−1 to  
50 mA g−1. Inset: digital image of the pouch cell after 500 cycles. See the side 
image of the same cycled pouch cell in Supplementary Fig. 29f.
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100 Wh kg−1 based on the mass of both electrodes. The pouch cell deliv-
ered excellent cycling performance for 500 cycles over 115 d, with no 
leaking and cell swelling observed (Fig. 4d and Supplementary Fig. 29f).

Discussion
We have developed a hybrid concentrated electrolyte formula that 
delivers a near-unity CE (99.95%) at a low current density of 0.2 mA cm−2. 
The Hammett acidity of our electrolyte is reduced due to the combina-
tion of several changes: (1) excess chloro ligands replacing H2O mol-
ecules in the Zn2+ solvation sheaths by forming Zn–Cl complex ions, (2) 
the presence of a Lewis acid cation of TMA+ weaker than Zn2+ and water, 
and (3) the interactions between DMC and H2O. Furthermore, the DMC 
co-solvent facilitates the in situ formation of an SEI layer comprising 
an organic/inorganic composite outer layer and an inorganic inner 
layer. This SEI layer effectively passivates the ZMA to suppress HER and 
dendrite formation, preventing cell failure and enabling high safety 
with the non-flammable electrolyte. Building upon the near-unity CE, 
the VOPO4·2H2O||Zn full cells deliver an excellent cycling performance 
under practical conditions and the enhanced performance indicates 
a competitively low levelized energy cost of ZMBs. It is worth noting 
that concentrated ZnCl2 electrolytes are corrosive to Cu or Al current 
collectors, and they do not wet the polypropylene separators used in 
Li-ion batteries. Extensive engineering work is necessary for a new Zn 
battery technology using this new electrolyte. However, the develop-
ment of electrolytes free from HER and dendrite growth will go a long 
way in the commercialization of low-cost and high-safety Zn metal 
batteries that contribute to the sustainability of global energy supply.

Methods
Materials preparation
The VOPO4·2H2O powder was synthesized according to the literature47. 
The vanadium (V) oxide (>97.0%) and phosphoric acid (ACS reagent, 
≥85 wt% (percentage by weight) in H2O) were purchased from Sigma 
Aldrich. Typically, 4.8 g of V2O5 was mixed with 26.6 ml of 85 wt% H3PO4 
and 115.4 ml of deionized water. The suspension was sonicated for 
30 min before refluxing at 110 °C for 16 h. The as-prepared yellow-green 
colour VOPO4·2H2O powder was centrifuged, washed with deionized 
water and kept under ambient conditions (Supplementary Fig. 30). For 
electrolyte preparation, the TMACl (>97.0%) and anhydrous lithium 
chloride (>98.0%) were purchased from Tokyo Chemical Industry, 
and the zinc chloride (metals basis, 99.95%), anhydrous ethanol (HPLC 
grade), acetone (>99.0%), and water (HPLC grade) were ordered from 
Alfa Aesar. The DMC, diethyl carbonate, ethyl methyl carbonate, pro-
pylene carbonate, ethylene carbonate, and acetonitrile were purchased 
from BASF (battery grade).

Materials characterization
The surface morphology of cycled Zn metal anodes was viewed 
using FEI NOVA 230 field-emission scanning electron microscopy. 
The FIB-SEM was employed to obtain the cross-section samples on a 
Helios 650 Ultra Resolution Dual Beam FEG SEM, and the SEI layer was 
investigated using the FEI Titan 80–300 high-resolution TEM with four 
embedded Bruker SDD detectors. The in situ optical microscopy meas-
urements were conducted with an optical micro zoom inspection sys-
tem (Scienscope, MZ7A). The beaker cell was connected to the Gamry 
electrochemical workstation for the galvanostatic plating process 
(current density of 10 mA cm−2 at 25 °C), where Zn foils (100 µm) were 
used as both working and counter electrodes. The chemical bonding 
environments were probed by XPS via a PHI VersaProbe III Scanning 
XPS Microprobe. The system’s energy scale was calibrated to Cu 2p3/2 
at 932.6 eV and Au 4f at 84.0 eV, where the base pressure of the system 
was 3 × 10−7 Pa. XPS was performed using monochromatized Al Kα 
radiation (hν = 1,486.6 eV, at 50 W and 200 µm beam diameter). The 
electron analyser pass energy was set to 69 eV with an emission angle 
of 45°. The specimens were neutralized using a combination of an 

electron flood gun set to 0.6 eV at 20 µA and an ion flood gun set to 
0.1 kV. The XPS data were charge corrected to the C 1 s aliphatic carbon 
binding energy at 284.8 eV. The XPS profiling was performed using a 
monoatomic argon ion beam at a 2 kV accelerating voltage and 1 µA 
of current, with a raster area over 2 mm × 2 mm. The sputterring pro-
file data were acquired with a pass energy of 140 eV with an emission 
angle of 45°. The depth-profiling Ar+ sputtering rate was estimated to 
be ~6.8 nm min−1, and the SEI compositions were analysed by fitting 
the whole XPS spectra using CasaXPS software. X-ray diffraction was 
conducted on a Rigaku Ultima IV diffractometer with Cu Kα radiation 
(λ = 1.5406 Å). 1H NMR spectra were collected on a Bruker Ascend 500 
NMR spectrometer at a 1H frequency of 500 MHz, with t-butanol as the 
internal reference. For Hammett acidity measurements, a ultraviolet–
visible spectroscopy spectrum Lambda 1050 with an integrated sphere 
was used to detect the concentration of the indicator in different elec-
trolytes. We evaluated the extent of HER for different electrolytes by 
running Zn||Zn symmetric beaker cells with a PerkinElmer Clarus 480 
gas chromatograph (GC). The GC was equipped with a 5 Å molecular 
sieve column with Ar as the carrier gas and with a thermal conductiv-
ity detector. The beaker cells were first purged with Ar gas before a 
constant current density of 1 mA cm−2 was applied for 3 h, where one Zn 
electrode was plated and the other Zn electrode was stripped. The GC 
measurements were conducted using ultra-pure Ar as a carrier gas. The 
gaseous sample of 200 µl was taken from the headspace of the beaker 
cell and injected into the GC48. Differential scanning calorimetry (DSC) 
was conducted using Netzsch DSC 200 F3 in the procedure of cooling 
to −150 °C with a cooling rate of 10 °C min−1, holding at −150 °C for 5 min 
and heating to 25 °C with a heating rate of 5 °C min−1.

Ground-state (GS)-FSRS measurements
The GS-FSRS setup was built upon a mode-locked Ti:sapphire oscilla-
tor (Mantis-5, Coherent) seeded regenerative amplifier (Legend Elite 
USP-1K-HE, Coherent) with a fundamental laser pulse train output of 
~800 nm centre wavelength, 35 fs duration, 3.6 W average power at 
1 kHz repetition rate. The picosecond (ps) Raman pump was generated 
through a home-built three-stage noncollinear optical parametric 
amplifier system49. The fs Raman probe was produced by focusing a 
small portion of the 800 nm fundamental pulse on a 2-mm-thick quartz 
cuvette (Spectrosil 1-Q-2, Starna Cells) filled with deionized water and 
was temporally compressed through a chirped mirror pair (DMC-9, 
450–950 nm, Laser Quantum)50. The Raman pump and probe pulses 
were then focused by a reflective parabolic mirror onto a 1-mm-thick 
quartz cuvette containing various electrolyte samples. Past the sample, 
only the probe was collimated, refocused and dispersed by a reflective 
grating inside a spectrograph (IsoPlane SCT-320, Princeton Instru-
ments), and finally imaged on a CCD array camera (PIXIS:100F, Prince-
ton Instruments). During data collection, the Raman pump was tuned to 
510 nm with a power of ~3 mW before the phase-stable optical chopper. 
For the low-frequency (below 2,000 cm−1) and high-frequency (above 
3,000 cm−1) spectral data collection, respective gratings with 1,200 and 
600 grooves per mm, and blaze wavelengths of 300 nm and 500 nm 
were used. For subsequent data analysis, the pure water spectrum was 
subtracted from the low-frequency data before a smooth baseline 
was drawn and removed to dissect the water H–O–H bending region. 
In contrast, only the spectral baseline correction was performed for 
the high-frequency data analysis of the water O–H stretching region.

Theoretical calculations
AIMD simulations were performed to investigate the solvation struc-
ture of ZnCl2-based electrolytes, together with the SEI formation 
process in the ZLT-DMC electrolyte. The Vienna ab initio simulation 
Package (VASP) with projector augmented wave pseudopotentials 
and the generalized gradient approximation of Perdew-Burke-Ernzerh 
were used for the exchange-correlation function. The energy cut-off 
was 600 eV using a 1 × 1 × 1 Monkhorst-Pack reciprocal space grid of 
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k-points for a single-unit cell. All systems were monitored for 8 ps with 
a step size of 0.5 fs, and H was modelled as deuterium. AIMD simula-
tions of SEI were run at 300 K with a 0.5 fs time step for approximately 
2 ps by relaxing the ZLT-DMC electrolyte on the surface of the Zn slab. 
Before adding the Zn slab into the system, the ZLT-DMC electrolyte 
system was generated with homogeneous mixing of all components at 
a designed molecular ratio and relaxed for 8 ps to reach the equilibrium 
of the system. The molecular ratio of ZnCl2:LiCl:TMACl:H2O:DMC was 
6:2:1:10:2. The volume of the computed cell was calculated on the basis 
of the experimental electrolyte density.

Electrochemical measurements
For pouch cells, the VOPO4·2H2O cathode comprises 87.5 wt% active 
mass, 2.5 wt% single-walled carbon nanotube, and 10 wt% polyvi-
nylidene fluoride binder, which is coated on Ti foils with an active mass 
loading of ~22.5 mg cm−2. For Swagelok cells, the low-areal-capacity 
electrodes were composed of 80 wt% active mass, 10 wt% Ketjenblack, 
and 10 wt% polyvinylidene fluoride coated on carbon fibre paper cur-
rent collectors with an active mass loading of ~3 mg cm−2; meanwhile, 
the high-areal capacity electrodes were self-standing films comprising 
60 wt% active mass, 30 wt% Ketjenblack, and 10 wt% polytetrafluoro-
ethylene binder with an active mass loading of ~25 mg cm−2. Zn metal 
foils with different thicknesses were directly used as anode (100 µm 
and 10 µm foils were purchased from Thermo Fisher and Alibaba, 
respectively). For the cathode with a low mass loading (~3 mg cm−2), Zn 
metal pre-deposited on the Ti foil served as the anode with an estimated 
area capacity of ~0.69 mAh cm−2 and a thickness of ~1.2 µm. The pouch 
cells were assembled and sealed using an MSK-11A-S vacuum sealer 
with a cathode, anode, and electrolyte mass ratio of 1:0.23:1.5. The 
amount of ZLT-DMC electrolyte used for the pouch cells was 8.8 ml Ah−1 
(15 g Ah−1). The galvanostatic charge-discharge (GCD) tests were con-
ducted at room temperature on a Landt CT3002AU system and ana-
lysed by LAND software. The accuracy of the Landt CT3002AU is 0.05% 
at the current range of 1 mA, corresponding to 0.5 µA. The constant 
current applied for the CE tests was 0.217 mA based on the current 
density of 0.2 mA cm−2; thus, the accuracy for each cycle equalled 
0.5 A

0.217mA
= 0.23%. When we tested 50 cycles to measure the average CE, 

the instrument error was much smaller than 0.23%, whereas if a power 
law of the square root was applied, the error for the CE values was 
0.23%
√50

= 0.033%. The capacity values of the cathode were calculated on 
the basis of the active mass of the VOPO4·2H2O cathode; however, the 
energy density of the full cells was derived from the total mass of both 
electrodes. Cyclic voltammetry and electrochemical impedance spec-
troscopy were performed on a VMP-3 multichannel workstation, and 
data were analysed using EC-lab and Zview, respectively. The cycled 
ZMA samples were achieved by employing Zn metal as both the working 
electrode and counter electrode in a beaker-type symmetric cell. Before 
ex situ measurements, the electrodes were carefully rinsed in deionized 
water and dried under vacuum.

We conducted a modified galvanostatic technique to evaluate the 
key factors affecting Zn reversibility and reveal the accurate Zn plating/
stripping CE. We used a Zn foil as the reservoir with a specific areal 
capacity ((Qt = theoretical capacity × utilization%). The utilization % of 
the Zn metal anode (96.14%) was measured by a complete stripping 
process compared to the theoretical capacity based on the Zn mass. 
The number used in this paper was calculated from the average value 
of ten trials (Supplementary Fig. 5a). In the tests, a fixed fraction of Qs 
was directly stripped from the Zn reservoir, followed by plating of the 
equal capacity (Qc). After running several cycles (n), the final stripping 
process was conducted to a preselected upper cut-off potential, which 
corresponds to the remaining Zn (Qs). The average CE can be calculated 
according to equation (1):

CE = n ×Qc +Qs
n ×Qc +Qt

(1)

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available in the 
Article and its Supplementary Information.
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