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Modeling the full-range deformation behaviors of materials under complex loading and materials conditions is a 
significant challenge for constitutive relations (CRs) modeling. We propose a general encoder-decoder deep 
learning framework that can model high-dimensional stress-strain data and complex loading histories with 
robustness and universal capability. The framework employs an encoder to project high-dimensional input in
formation (e.g., loading history, loading conditions, and materials information) to a lower-dimensional hidden 
space and a decoder to map the hidden representation to the stress of interest. We evaluated various encoder 
architectures, including gated recurrent unit (GRU), GRU with attention, temporal convolutional network (TCN), 
and the Transformer encoder, on two complex stress-strain datasets that were designed to include a wide range of 
complex loading histories and loading conditions. All architectures achieved excellent test results with an root- 
mean-square error (RMSE) below 1 MPa. Additionally, we analyzed the capability of the different architectures 
to make predictions on out-of-domain applications, with an uncertainty estimation based on deep ensembles. The 
proposed approach provides a robust alternative to empirical/semi-empirical models for CRs modeling, offering 
the potential for more accurate and efficient materials design and optimization.   

1. Introduction 

An mm-sized representative volume element (RVE) in an engineering 
continuum mechanics model can physically contain ~1020 atoms, 
~1014 point defects, ~105 m of mobile dislocations, numerous grain 
boundaries, hetero-phases, cracks, etc.   It is clearly impossible to treat 
these degrees of freedoms (DOFs) on-the-fly for modeling and designing 
metal stamping, extrusion, crash-worthiness, etc., at the component 
scale.  So the burden of coarse-graining over all these DOFs, which could 
certainly evolve under stress in a history-dependent manner, falls onto 
the so-called constitutive relations (CRs), as far as the macroscopic re
sponses are concerned. The development of reliable CRs is critical for 
using computational mechanics to support component qualifications in 
automotive, aerospace and nuclear applications. Over the past many 
decades, various empirical/semi-empirical constitutive models have 
been developed. Based on the large strain behavior, plastic constitutive 
relations can be categorized as Voce type, Holomon type, or their 
combinations [1]. While Voce type relations tend to saturate [2–8], 
Holomon (power law) type of constitutive relations are unbounded at 
large strains [9,10]. These physically and phenomenologically based 
models have been widely used for different materials.  However, one 
major limitation associated with these models is the insufficient 

capability to simultaneously describe various deformation stages under 
different conditions [11]. For example, most models only focus on spe
cific stages of the entire deformation process and can only deal with a 
few external conditions (e.g., temperature and strain rate). Depending 
on the scenarios, many separate/modified models need to be con
structed, such as in modeling various hardening behaviors [12–17]. For 
materials experiencing complex dynamic evolutions or materials opti
mization in a high-dimensional parameter space, a robust constitutive 
modeling calls for universal model (e.g., structural materials in nuclear 
applications can be simultaneously subjected to compositional/
structural/environmental changes). 

Artificial neural networks (NN) have long been considered universal 
approximators [18,19], which naturally can serve as a robust alternative 
to empirical/semi-empirical constitutive modeling. The application of 
NN in constitutive modeling is not a new idea; some inspiring attempts 
were made nearly two to three decades ago. For example, Ghaboussi 
et al. [20] first introduced NN to model the mechanical behavior of plain 
concrete that was subjected to both biaxial loading and uniaxial cyclic 
loading. Ghaboussi et al. also proposed an auto-progressive algorithm 
for training NN to learn complex constitutive relations from global 
load-deflection response [21]. Lefik et al. implemented an incremental 
NN representation of constitutive relations that was successfully 
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incorporated into a Finite Element (FE) code [22]. Hashash et al. [23] 
derived a consistent material stiffness matrix to address the numerical 
implementation issues for NN-based FE analysis. Jung and Ghaboussi 
[24] developed a rate-dependent NN visco-elasticity constitutive model 
and implemented it in FE analysis. 

The dramatic boost in computational power and breakthroughs in 
newer NN architectures have led to a resurgence in constitutive 
modeling. Based on the inputs, three types of approaches can be iden
tified for NN-based constitutive learning:  

1 In the first approach, constitutive relations are learned from direct 
stress-strain responses. Such stress-strain data can be obtained from 
uniaxial or multi-axial loadings and include loading histories. For 
example, Gorji et al. developed a recurrent NN (RNN)-based frame
work for modeling the large deformation response of elasto-plastic 
solids subjected to arbitrary multi-axial loading paths [25].  

2 Instead of learning constitutive relations from direct stress-strain 
data, the second approach learns the underlying constitutive re
lations from indirect measurements such as full field load- 
displacement data. For instance, Xu et al. [26] proposed an inverse 
modeling scheme to learn the constitutive relations of viscoelastic 
materials from indirect displacement data. Zhang et al. [27] devel
oped a hybrid FE-NN framework to learn constitutive relations from 
full-field displacement data. Such indirect constitutive learning 
usually needs to consider physical constraints that are often in the 
form of partial differential equations.  

3 The third approach takes advantage of prior knowledge, principles, 
or empirical models. For example, Li et al. [28] replaced the strain 
rate and temperature terms in Johnson-Cook model with a NN to 
describe the non-monotonic temperature dependence. Linka et al. 
[29] developed a CANNs (constitutive artificial neural networks) 
framework that learns a generalized strain energy function to link 
strain and materials information to stress responses. Incorporating 
prior knowledge or principles of mechanics and materials theory 
may reduce training data and achieve better extrapolation. 

The mechanical response of materials is commonly characterized 
using simple, standardized uniaxial tensile test articles. The basic me
chanical properties (elastic modulus, yield stress, ultimate stress, 
rupture strain, and ductility) and plastic constitutive relations (such as 
temperature sensitivity, strain and strain-rate hardening coefficients) 
are deduced from one-dimensional stress-strain curves. As the macro
scopic strain-stress response is an effective and widely used measure of 
material deformation behaviors for engineering design, extensive strain- 
stress data sets are being accumulated from past and present research 
efforts. These data sets are also becoming more complicated as addi
tional manufacturing methods yield additional features for consider
ation, e.g., through 3D printing and high throughput testing [30]. It is 
therefore beneficial to take advantage of strain-stress data to build 
robust constitutive models. In this work, we propose a general 
encoder-decoder deep learning framework to model complex 
high-dimensional stress-strain data. In the proposed framework, an 
encoder first projects the complex high-dimensional input data, such as 
loading histories, loading conditions, and materials information, onto a 
lower-dimensional hidden space. Such hidden representation of input 
information is then mapped to stresses of interest via a decoder. We 
evaluated a series of encoder architectures that are capable of modeling 
temporal data, such as gated recurrent unit (GRU) [31], GRU with 
attention, temporal convolutional network (TCN) [32], and the Trans
former encoder [33]. The decoder was implemented as a fully connected 
network (FCN); however, it can be replaced with sequence modeling 
architectures if a series of stress prediction is needed. We tested all 
encoder architectures on two complex datasets: 1) a one-dimensional 
stress-strain curve with multiple unloading-reloading cycles to include 
complex loading history information; 2) a synthetic dataset based on the 
Johnson-Cook model [34] to include complex loading conditions such as 

temperature and strain rate. All architectures demonstrate excellent test 
results, with a root-mean-squared error (RMSE) well below 1 MPa, 
which is often needed to satisfactorily capture the full-range deforma
tion features. We also explored the capability of different architectures 
on out-of-domain predictions with uncertainty estimation based on an 
ensemble of models [35]. Overall, our proposed general deep learning 
framework demonstrates high accuracy and universal capability for 
modeling various challenging CRs, thus offering a robust alternative to 
conventional CRs modeling for materials design and optimization. 

2. Methods 

2.1. Learning task and general encoder-decoder deep learning framework 

From a fundamental point of view, the stress-strain relation of a 
material stems from the collective interatomic (and/or intermolecular) 
responses upon external loading, which involves various atomistic 
processes on different time-/length-scales. While the objective of our 
deep learning approach is to accurately and efficiently predict stress- 
strain relations in a physics-agnostic way, understanding the underly
ing deformation processes and material features on various spatial and 
temporal scales can be helpful in preparing meaningful training data. 
For example, to effectively model the macroscopic stress-strain re
lations, we may consider time-related data such as loading rate and 
temperature (as in thermally activated processes), and measurable ma
terial information on relevant lengthscale (e.g., chemical composition, 
crystal structure, defect population density). We can denote the 
measurable materials information using a vector m that may include 
composition, grain size, phase fractions, dislocation density, etc.  Then, 
our learning task can be defined as 

σ = NN([m, ε, t ]) (1)  

where NN means the NN model to be learned, σ is the stress, m is the 
measurable material information (note that m represents only the 
measurable part of the material microstructure, as much of the micro
structural details are hidden from view and not measured), ε represents 
loading history, and t includes time-scale information such as strain rate, 
temperature, corrosion rate, radiation exposure, etc. 

In the context of history-dependent NN modeling, the input infor
mation in Eqn. (1) is usually rewritten as a time sequence: 

s =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

xt− n

…

xt− 2

xt− 1

xt

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2)  

where the component xt− i in s is a vector containing input information at 
time t − i, 

xt− i =
[
m1

t− i,…,mN1
t− i, ε1

t− i,…, ε6
t− i, ε̇1

t− i,…, ε̇1
t− i,Tt− i

]
(3) 

Such input at time t − i contains N1 measurable materials informa
tion (although a subscript t-i is used, they are just constants serving to 
distinguish materials), 6 strain components, 6 strain-rate components, 
and temperature. Depending on specific scenarios, Eqn. (3) can be 
expanded/reduced to more/fewer components. For example, in the case 
of a single material (no need to distinguish from others) subjected to 
uniaxial tensile loading, different strain rates, and a range of tempera
tures, Eqn. (3) can be simplified as xt− i = [ε1

t− i, ε̇
1
t− i,Tt− i] . Or if one wants 

to model a single uniaxial stress-strain relation (i.e., a single material at 
a fixed strain rate and temperature), then Eqn. (3) is further reduced to 
xt− i = [ε1

t− i]. The output of a NN model (Eqn. (1)), in general, is a vector 
σ = [σ1,…, σ6] that contains 6 stress components. However, σ can also be 
reduced to less components in cases such as uniaxial loading or two- 
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dimensional loading. 
To tackle the above outlined learning task, we propose a deep 

learning framework consisting of an encoder and a decoder (Fig. 1). The 
framework maps the high-dimensional input sequence data s to a lower- 
dimensional space and then learns to predict stresses of interest based on 
the encoded representation. The encoder plays a critical role in the 

framework by 1) capturing temporal correlations in the loading his
tories, and 2) effectively reducing the dimensionality of the input 
sequence data while preserving the most important information. Several 
popular architectures for handling sequence or temporal data, such as 
long short term memory (LSTM) [36], gated recurrent unit (GRU) [31], 
temporal convolutional network (TCN) [32], and Transformer [33], can 

Fig. 1. The general encoder-decoder deep learning framework for modeling constitutive relations. The input is usually a high-dimensional sequence data that contain 
loading histories, loading conditions, and materials information. The encoder projects the high-dimensional input information onto a lower-dimensional hidden 
space, respecting the temporal correlations. The hidden representation is then mapped to stresses of interest via a decoder. The decoder can be a fully connected 
network or sequence modeling architectures depending on the need. 

Fig. 2. Schematic illustration for GRU-based RNN architecture. (a) RNN consisting of GRU cells. The hidden state ht at time t is updated based on the hidden state 
ht− 1 and current input xt ; an optional output yt can also be generated. (b) A convenient representation for GRU-based RNN. (c) The gating mechanisms underlying a 
GRU cell. The information flow of hidden states and the input at time t are rendered in black and magenta, respectively, while the intermediate information flow is 
colored in yellow. Plus sign, sigma sign, circled dot, and tanh sign represents element-wise summation, sigmoid activation, Hadamard product, and tanh activation, 
respectively. Components associated with the reset gate rt , update gate zt , tentative new hidden states h’

t , and updated hidden state ht are outlined with dashed lines 
rectangles, respectively. (d) An example of RNN consisting of two GRU layers (upper panel) and a convenient representation of multilayer GRU RNN. 
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be used as the encoder. These architectures have already achieved 
impressive results in natural language processing and time series fore
casting. By explicitly imposing the temporal constraint in these encoder 

architectures, the model training will be guided to more physically 
relevant regions in the parameter space, thus potentially improving its 
extrapolation capability. For the decoder, we can use a fully connected 

Fig. 3. GRU-encoder based architecture to model stress-strain responses.  

Fig. 4. GRU-attention based architecture for modeling stress-strain data. The attention layer uses the scaled dot-product attention mechanism, which takes the final 
hidden state from the last GRU layer as a query and previous hidden states (after separate linear transformations) as keys and values, and outputs a context vector. 
The context vector is concatenated with the final hidden state to form a hidden representation which is then fed into the FCN decoder to predict stress of interest. 

Fig. 5. Architecture of temporal convolutional network. (a) Causal and dilated convolutions in a 1D convolutional network. Zero paddings (white cells) are applied 
to ensure the same length for each convolutional layer. (b) Residual block as employed in the TCN architecture. The residual block consists of two dilated causal 
convolutional layers, each of them followed by weight normalization, ReLU activation, and spatial dropout operations. A skip connection is made from the input to 
the output of the second Dropout operation. A 1 × 1 convolution will be used if the residual input and output have different dimensions. More details can be found 
in Ref. [32]. 
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network (FCN) if the output is a single scaler stress, or relevant sequence 
modeling architectures if the output is a series of stresses. The avail
ability of various encoder/decoder architectures provides a rich set of 
tools to choose from and enables the framework to adapt to different 
types of data and modeling objectives. In the following, we briefly 
introduce several encoder architectures relevant to this work. 

2.2. Gated recurrent unit-based framework 

Gated recurrent unit (GRU) [31], a variation of the LSTM network, is 
a type of recurrent neural network (RNN) that can effectively retain 
long-term dependencies in sequential data such as speech and text, and 
has been widely adopted for natural language processing tasks, as well 
as sensing and guiding dynamical actions with policy NN in gaming and 
robotics.  Here we use GRU to process loading history in an RVE. As 

Fig. 6. Temporal convolutional network based architecture to model strain-stress relation. The TCN takes a loading history consisting of a strain sequence as input 
and outputs the hidden states at each time. The hidden state at time t, ht, is then passed to a FCN decoder to predict the stress at time t, σ̂ t . Multiple channels/filters 
can be used in each of the residual block of TCN, thus the hidden state ht is a vector in general. 

Fig. 7. Transformer-encoder based architecture to model strain-stress relation. The transformer-encoder replaces the recurrent neural network for modeling 
sequence data by incorporating positional information through a positional encoder and using a masked attention mechanism to capture important history infor
mation. The output of the transformer encoder is a sequence, from which only the last component is utilized as the hidden representation of input information. The 
hidden representation is then mapped to stresses via a fully connected network. 
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Fig. 8. Experimental tensile tests (a) specimen geometry and (b) experimental setup.  

Fig. 9. Engineering stress and strain curves of (a) monotonically increasing and (b) multiple loading-unloading test specimens.  

Table 1 
Unloading Basic mechanical properties of the aluminum sheet samples derived 
from experimental mechanical tests.  

Test type Yield stress 
(MPa) 

Ultimate tensile 
stress (MPa) 

Total elongation 
(%) 

Monotonically 
increasing load 

253.7 319.3 16.5 

Multiple loading- 
unloading 

251.0a 320.0 17.4  

a based on the first loading portion. 

Table 2 
Plastic strains and stresses at interruptions.  

Plastic strain (-) Stress (MPa) 

0.006 263 
0.0148 275 
0.0345 289 
0.0642 307 
0.094 315  
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shown in Fig. 2(a), in a GRU-based RNN, a GRU cell takes 1) the hidden 
state ht− 1 from previous time t-1, and 2) current input xt as inputs to 
update the current hidden state 

ht = f (ht− 1, xt) (4)  

where f represents the GRU nonlinear activation function. A more 
compact representation of the GRU-based RNN is shown in Fig. 2(b). 
GRU uses gating mechanisms to control information flow between 
recurrent cells. As shown in Fig. 2(c), to compute the hidden state ht, we 

first compute a reset gate rt and an update gate zt, separately, according to 

rt = sigma(Wrxt +Urht− 1 +br) (5)  

zt = sigma(Wzxt +Uzht− 1 +bz) (6)  

where W, U, and b are weight/bias matrices/vectors to be learned 
(subscripts r and z correspond to reset and update gate, respectively), 
and sigma(⋅) is the sigmoid activation function. Then the reset gate rt is 
further used to compute a candidate hidden state h̃t 

h̃t = tanh(W̃xt + b̃x + rt ⊙ (Ũht− 1 + b̃h)) (7)  

where W̃, Ũ, and b̃ are learnable weight/bias matrices/vector and tanh 
is the hyperbolic tangent activation function. Finally, the hidden state at 
the current time t is updated as 

ht = ztht− 1 + (1 − zt)h̃t (8) 

If the reset gate rt ∼ 0, the information from previous hidden states 
will be dropped out and h̃t will be reset with current input information, 
while the update gate zt determines how much information from the 
previous hidden state should be retained. Together, such gating mech
anisms can capture the most relevant information from a long sequence 
of data stream for predicting the quantity of interest. Operations asso
ciated with Eqn. (5)-(8) are outlined in Fig. 2(c) using dashed rectangles. 
One may even stack multiple GRU-based RNNs to form a multilayer 
architecture, as shown in Fig. 2(d). In this case, hidden states for the first 
GRU layer are updated using the same procedure as above. For an in
termediate layer i, the hidden state at time t, hi

t, is updated according to 

hi
t = f

(
hi

t− 1,h
i− 1
t

)
(9)  

where hi
t− 1 is the previous hidden states in layer i and hi− 1

t is the current 
hidden state in previous layer i-1. Such multilayer GRU-based RNN al
lows further abstraction of the raw sequence data. 

Fig. 10. Stress-strain relations from the second datasets. These stress-strain 
curves were generated based on the Johnson-Cook model for AISI 316 L steel 
[34]. Each sampled temperature also cover the stress-strain relations at six 
strain rates,  10− 4 s− 1, 10− 2 s− 1, 100 s− 1, 102 s− 1, 104 s− 1, and 106 s− 1. 

Fig. 11. Schematic illustration of dataset 
splitting and model selection/testing. The 
entire dataset is split into training/valida
tion/test sets at a ratio of 8:1:1. The training 
set is used to train a wide range of models 
using different architectures and different 
hyperparameters. These initially train 
models were then validated using the vali
dation set, to select the optimal model 
hyperparameters. Selected models were 
retrained on the combined training and 
validation set. Finally, the test set was used 
to obtain the model performance. The 
selected models can also be tested on out-of- 
domain tasks to evaluate their predictive 
capabilities.   

Table 3 
Architecture hyperparameters considered in model selection.   

GRU GRU-Attention TCN Transformer  

hidden size GRU layers hidden size GRU layers query/value size channel numbers hidden size encoder layers 

set-1 5 3 5 3 5/5 3 5 2 
set-2 5 6 5 6 5/5 5 5 4 
set-3 5 9 5 9 5/5 8 10 2 
set-4 10 6 10 10 5/10 10 12 2  
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Let us take uniaxial loading as an example to demonstrate how to fit 
GRU into the encoder-decoder framework. To predict the current stress 
σt for a given loading history vector ε = {ε0, ε1, …, εt− 1,εt},  we first 
extract the final hidden state vector hn

t from a n-layer GRU encoder. 
Then hn

t is passed to an FCN that further outputs the predicted stress σ̂ t . 
The entire architecture is schematically shown in Fig. 3. Gorji et al. [25]. 
successfully applied a similar architecture to predict the stress-strain 
responses for materials. 

2.3. GRU-attention based framework 

The GRU-encoder architecture described above only uses the final 
hidden states hn

t from the last GRU layer, and discards all the previous 
hidden states in the same layer. However, all these previous hidden 
states contain valuable historical information and are easily accessible 
from computer memory. By properly retrieving information from these 
stored hidden states, we can obtain useful contextual information. One 
effective way to achieve this is by using an attention mechanism [37]. 
This mechanism allows the decoder to automatically focus on the most 
relevant parts of the previous hidden states.  The scaled dot-product 
attention mechanism [33] has been shown effective in different tasks: 

Attention(Q, K, V) = softmax
(

QKT
̅̅̅̅̅
dk

√

)

V (10)  

where Q is a query, K is the keys interacting with the query, dk is the 
dimension of the query vector and key vectors,  V is the values to be 
summed with a weight factor from the softmax function.  In our case, the 
final hidden state hn

t  serves as a query Q which interacts (via dot- 
product) with all previous hidden states (keys K, which are obtained 
through a linear transformation of previous hidden states),  to determine 
how much information (softmax function) from each previous hidden 
state should be retrieved (values V, which are obtained via another 
linear transformation of previous hidden states). Such attention layer 
outputs a context vector ct , which is then concatenated with hn

t to form 
the hidden representation of input sequence data. This hidden repre
sentation is then mapped to stresses through a FCN decoder. The overall 
architecture is shown in Fig. 4. 

2.4. Temporal convolutional network (TCN) based framework 

Temporal convolutional network (TCN) [32] has been shown as a 
robust method for various sequence modeling tasks [32]. The original 
TCN architecture tries to predict an output sequence y0,…,yT , given an 
input sequence x0,…,xT: 

ŷ0, …, ŷT = f (x0,…, xT) (11) 

Such mapping must satisfy a causal constraint that each of the 
component ytin the output sequence only depends on x0,…,xt, meaning 
that there is no information “leakage” from the future to the past. 
Usually the causality constraint is achieved using causal convolutions in a 
1D fully convolutional network, Fig. 5(a), i.e., the output at time t is 
convolved only with elements up to t in the previous layer. For example, 
in Fig. 5(a), the last element (magenta) in the first hidden layer is 
convolved only with xT− 2, xT− 1, xT if the filter size k = 3. However, such 
simple causal convolution may require very deep network to span a 
sufficiently long history (i.e., the receptive field). To solve this problem, 
dilated convolutions are usually employed to effectively increase the 
receptive field. For example, if a dilation factor d = 2 is used, as shown in 
Fig. 5(a) from the first hidden layer to the second hidden layer, a fixed 
step of 2 will be introduced between two adjacent filter taps. A common 
practice is to exponentially increase the dilation factor d with the depth 
of the network. Overall, the receptive field of TCN depends on the 
network depth, filter size k, and dilation factor d. For very large history 
size (e.g., 103), even if we employ dilation convolution with a relatively 
large filter size k, it may still require a very deep network, which can 
lead to serious stabilization issues of TCN. Therefore, the convolutional 
layer, as shown in Fig. 5(a), is often replaced by a residual block (Fig. 5 
(b)) that learns the residual to the identity mapping of input, which 
benefits deep network learning tasks. In Fig. 5(b), the residual block 
consists of two dilated causal convolutional layers, each of them fol
lowed by weight normalization, the ReLU nonlinear activation, and 
spatial dropout for regularization. See Ref. [32] for more details. We 
note that Ghaboussi and Sidarta [38] in 1998 proposed a nested adap
tive neural network (NANN) architecture to account for loading history 
dependence. In NANN, more distant loading history only has a one-way 
connection to more recent loading history, which also prevents 

Fig. 12. Validation results on different models. (a) Dataset 1 models. (b) Dataset 2 models.  

Q.-J. Li et al.                                                                                                                                                                                                                                     



Acta Materialia 254 (2023) 118959

9

information leakage from the future. 
Fig. 6 shows the overall encoder-decoder architecture using TCN as 

an encoder. As seen in the case of a uniaxial loading, the TCN encoder 
takes a loading history vector ε = (ε0, ε1,…, εt) as input and outputs the 
hidden states associated with each input element, h = (h0, h1, …, ht). 
Then the hidden state ht corresponding to εt is chosen as hidden rep
resentation of the input sequence which is passed to an FCN decoder to 
predict stress σ̂ t. Note that one can use multiple channels/filters for the 
causal dilated convolutional layers in TCN, thus htin general is a vector 
that contains the most relevant loading history information to predict 
the current stress. 

2.5. Transfomer encoder based framework 

The Transformer architecture [33] has become a key component of 
natural language processing and is widely used in applications such as 
machine translation, sentiment analysis, and text generation. Unlike 
recurrent neural networks that process sequences sequentially, the 
Transformer architecture uses a novel self-attention mechanism that 
allows parallel processing of sequence. This achieves faster training and 
inference, as well as better performance on long-range dependences in 
sequence modeling tasks. In this work, we utilize the Transformer 
encoder to learn the hidden representation of input information. 

As illustrated in Fig. 7, our framework first projects all components in 
the input sequences to a higher-dimensional space using a linear layer. 

Fig. 13. The effects of model accuracy on predicted stress-strain curves. (a-c) three GRU models showing relatively large, medium, and small RMSE on the validation 
set. When the validation RMSE converges below 1 MPa, all features, such as elastic deformation, strain hardening, and sharp transitions during unloading-reloading, 
etc., are correctly captured. 
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Then, a positional encoder adds positional information to the linearly 
transformed input. The encoded input sequence is then fed into the 
Transformer encoder layer, which consists of a masked attention layer 
and a feed forward network. The masked attention layer only allows a 
query to attend to all previous components, thereby preventing infor
mation leakage from future components. To stabilize gradients and 
speeds up convergence during training, an “Add & Norm” layer was 
added after the attention layer and feed-forward network to perform 
residual connections and layer normalization. Multiple encoder layers 
can be stacked to carry out iterative attention operations. The encoder 
ultimately outputs a sequence that contains the most relevant historical 
information at each component. 

To obtain the hidden representation of the input sequence, we use 
only the last component from this output sequence, as it contains the 
most relevant historical information from the entire input sequence. 
Finally, we map the hidden representation to stresses via a fully con
nected network. Overall, our framework utilizes the Transformer 
encoder to effectively learn the hidden representation of input infor
mation while leveraging the benefits of the self-attention mechanism. 

2.6. Datasets and model training/validation/testing 

We generate two datasets to test the capability of various encoder- 
decoder architectures. The first dataset was obtained from uniaxial 
tensile tests of aluminum sheet samples. Tensile specimen design was 
based on previous uniaxial tensile specimen design with a gage length- 

to-width ratio greater than 4 [39–41]. The specimen design and exper
imental setup are shown in Fig. 8. 

The test procedure followed the American Society for Testing and 
Materials (ASTM) E8/8M-21 standard [42] for tensile testing of metallic 
materials. While optical metrology data was available, the strain data 
was collected using a pre-calibrated Epsilon extensometer 
(3442–015M-050M-ST SN#E107682), and the load was measured using 
a calibrated 5 kN Instron load cell. Both monotonically increasing and 
multiple loading-unloading tests, as shown in Fig. 9, were performed for 
the constitutive relation determination. Basic mechanical properties are 
listed in Table 1. 

By applying the power law constitutive relationship to the multiple 
loading-unloading data (see Table 1), the strain hardening coefficient 
(n) and the constant (K) were calculated as 0.066 and 366 MPa, 
respectively. The interruption strains for unloading are shown in 
Table 2. 

The use of multiple unloading/reloading paths also made the 
learning task more challenging. The entire dataset consists of ~8500 
stress-strain pairs with a total strain up to ~18%. The loading history 
vector length should be chosen such that all important past points 
should be included to inform current decision. For example, if we want 
to predict the stress during an unloading process, then we should at least 
include the previous load-unload transition region and some strain 
hardening region before the load-unload transition. We used a loading 
history vector that contains 600 strains for each training sample (zero 
padding is properly added for the first zero strain). 

The second dataset was generated from the Johnson-Cook model for 
AISI 316 L steel [34], covering a wide range of loading conditions. 
Specifically, we included the stress-strain relations in a wide tempera
ture range, from 10∘C to 400∘C. For each sampled temperature, we also 
included the stress-strain relations at six different strain rates, i.e., 
10− 4 s− 1, 10− 2 s− 1, 100 s− 1, 102 s− 1, 104 s− 1, and 106 s− 1. See Fig. 10 
for a plot of these stress-strain relations. Each stress-strain curve has 
3230 stress-strain pairs up to a total strain of 30%. We use a loading 
history vector of length 500 and pad zero values for the very first zero 
strain (such that it has the same history length). Thus, each stress-strain 
curve provides 3230 sequence data, each of which contains its own 
loading history, temperature, and strain rate information. 

Both datasets were split randomly into three subsets: a training set, a 
validation set, and a test set, using an 8:1:1 ratio. The training set was 
used to train different models, while the validation set was used to select 
optimal model hyperparameters. After obtaining the optimal model 
hyperparameters, each selected model was retrained on a combined 
dataset consisting of the training and validation sets. Finally, the test set 
was used to evaluate the performance of the models. The data splitting, 
model training/validation/testing process is shown in Fig. 11. 

To ensure that numerical scales did not influence the model training 
process, we performed data normalization. While strains were kept on 
their original scale, the temperature, strain rate, and stress quantities 
were standardized to have a mean of zero and a standard deviation of 1. 
The strain rates were log-transformed before the standardization. It’s 
important to note that all standard scalers were obtained based on the 
training set and then applied to the validation and test tests, as well as 
any unseen data. 

The PyTorch [43] package was used for all architecture imple
mentation and model training.  Dataset 1 models were trained for 1000 
epochs, while dataset 2 models were trained for 200 epochs. An initial 
learning rate of 10− 3 was used for all training processes, which then 
decays every epoch with a multiplicative factor of 0.996. We used the 
Adam optimizer with default hyperparameters. Model training utilized a 
batch size of 100 and model performance was evaluated using the 
root-mean-squared error (RMSE). 

Fig. 14. Testing results for different types of encoders using selected model 
hyperparameters. (a) Testing results on the test set of dataset 1. (b) Testing 
results on the test set of dataset 2. The average RMSE is based on five different 
models and the error bar represents the standard deviation of RMSEs. The 
number in parenthesis means the number of model parameters. 
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3. Results and discussions 

3.1. Model validation and testing 

To determine the optimal set of hyperparameters for each architec
ture, we performed model validation by training various models on the 
training set and evaluating their performance on the validation set. For 
each architecture, we started with a simple model and gradually 
increased its complexity to identify a robust model with a small number 
of model parameters as possible. Table 3 lists the important hyper
parameter choices for each architecture. For the GRU encoder, we 
considered two critical hyperparameters: the size of the hidden state 
vector of the GRU cell and the number of GRU layers. In addition to these 
hyperparameters, for the GRU-attention encoder, we also took into ac
count the query/value sizes, which dictate the sizes of keys/values in the 
attention layer. For the TCN encoder, we set the kernel size and dialation 
base to 2, and only focused on varying the number of channels for the 
causal convolution. Lastly, for the Transformer encoder, we examined 
the hidden vector size resulting from the attention operation and the 
number of encoder layers. The input embedding size and the positional 
encoder size were set to 32. In all cases, we used a uniform FCN decoder 
consisting of two hidden layers. The first hidden layer was twice the size 
of the hidden representation, while the second hidden layer was of the 
same size as the hidden representation. The output layer contained only 
one unit. 

Fig. 12 illustrates the RMSE on the validation sets of dataset 1 and 
dataset 2. We varied the number of model parameters (weights and 
biases) by exploring different hyperparameter sets (set-1 to set-4 in 
Table 3). For each hyperparameter set, we trained 10 different models 

with different parameter initializations. The markers in Fig. 12 indicate 
the average RMSE over these models, and the error bars represent the 
standard deviations of these RMSEs. As expected, the average RMSE 
decreases as the model size increases. However, there are two ways to 
increase model size: 1) making the network deeper, as in the case of GRU 
and GRU-attention encoders, where the first three models (set-1 to set-3 
in Table 3) have the same hidden representation size (5) but different 
numbers of GRU layers; and 2) using larger sizes for hidden represen
tations, as in set-2 and set-4 for both GRU and GRU-attention encoders, 
set-1 to set-4 for TCN encoders, and set-1, set-3, set-4 for the Trans
former encoder. Generally, deeper networks with proper connections 
lead to better performance, while larger hidden representations could 
provide more representation capability. However, increasing model 
complexity should be done cautiously to avoid overfitting when the 
training data is limited. We found that a validation RMSE smaller than 1 
MPa can satisfactorily capture various stress-strain relations,  including 
elastic deformation, strain hardening, and sharp transition during 
unloading-reloading cycles. Fig. 13 shows examples of models with 
different validation errors: the model with the largest validation error 
shows relatively poor prediction on strain hardening and elastic defor
mation, the model with medium validation error predicts strain hard
ening well but falls short in elastic deformation prediction, and the 
model with a validation error below 1 MPa captures all features in the 
full range deformation. Therefore, we stopped increasing the model size 
once the validation error converged below 1 MPa. Based on these vali
dation results, we selected set-4 hyperparameters for each type of 
encoder for the testing and out-of-domain predictions. 

We then performed model testing using the selected set-4 hyper
parameters by retraining five different models for each type of encoder 

Fig. 15. Predictions on uniaxial loading without any unloading/reloading cycles. (a) Prediction from GRU-based models. (b) Predictions from GRU-attention-based 
models. (c) Predictions from TCN-based models. (d) Predictions from the Transformer encoder-based models. Such monotonic uniaxial loading path was not seen 
during model training. For each prediction, the blue solid line is the average prediction from five different models and the shaded band indicates the uncertainty 
(based on the standard deviation of the predictions). Strains are in percentage. 
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with different parameter initializations. We retrained each model on a 
combined dataset consisting of the original training set and validation 
set (see Fig. 11 for the illustration), while the original test sets were used 
to test these retrained models. As shown in Fig. 14, these models 
generally have less than 5000 parameters, but the average testing RMSE 
was below 0.7 MPa and 0.3 MPa for dataset 1 and dataset 2 tasks, 
respectively. Such testing results are comparable to the validation 
RMSEs shown in Fig. 12, thus we believe there is no obvious overfitting. 
For the dataset 1 task, we can see that GRU-based model showed the 
smallest testing RMSE, while GRU-attention-based model showed 
similar performance. The TCN-based model had the largest testing RMSE 
even though it had the largest model sizes, and the Transformer-based 
model showed intermediate testing RMSE. For the dataset 2 task, 
GRU-attention-based model achieved the smallest testing RMSE, 
showing improvements over the pure GRU-based model. The TCN-based 
model showed a similar performance as the GRU-attention-based model, 
followed by the GRU-based and Transformer-based models. The overall 
testing RMSEs for dataset 2 task were smaller than that for dataset 1 
task, which was likely due to the significantly larger dataset size. 

The testing results suggest that different architectures have unique 
strengths in addressing different tasks, and careful choices can achieve 
the most robust performance. Although the overall performances of 
different architectures are close to each other in our demonstrated ex
amples of tasks, two potential scenarios should be kept in mind. Firstly, 
the strength/weakness of different architectures may be exemplified in 
real-world applications that encounter datasets of different sizes and 
even more complex stress-strain relations. Secondly, even small re
ductions in validation/testing errors may lead to qualitative improve
ments in capturing certain features, making model selection worthwhile. 

Additionally, we need to consider the capability of the trained models in 
predicting unseen scenarios, both interpolation and extrapolation. In the 
following Sections, we demonstrate the applications of trained models in 
predicting unseen scenarios. 

3.2. Applications of dataset 1 models in unseen loading scenarios 

In this section, we present two applications of dataset 1 models to 
predict stress-strain behavior for unseen loading paths. The first loading 
path involves uniaxial loading from zero strain to final fracture strain 
without any unloading/reloading cycles. Although our models were 
trained on stress-strain curves with multiple unloading/reloading cy
cles, they should be able to predict a smooth strain hardening behavior 
in the unseen regions where unloadings were initiated, if they have 
learned the physical intuition of stress-strain relations. 

Fig. 15 shows the predictions from various encoder-based models. It 
should be noted that the blue solid line represents the average prediction 
across five different models, and the shaded band indicates the uncer
tainty estimation based on the standard deviations of these predictions. 
All models were able to predict a smooth stress-strain curve, except for a 
few regions immediately after reloading, where predictions slightly 
deviated from the expected trend and showed relatively large un
certainties. The GRU-attention and Transformer encoder-based models 
performed better in these challenging regions. Additionally, the Trans
former encoder-based models provided the most accurate predictions at 
the very beginning of elastic deformations. Overall, these predictions are 
quite satisfactory and demonstrate the models’ capability of capturing 
the underlying physical relations. 

The second loading path involves multiple unloading-reloading 

Fig. 16. Predictions on unseen unloading/reloading cycles. (a) Prediction from GRU-based models. (b) Predictions from GRU-attention-based models. (c) Predictions 
from TCN-based models. (d) Predictions from the Transformer encoder-based models. For each prediction, the blue solid line is the average prediction from five 
different models and the shaded band indicates the uncertainty (based on the standard deviation of the predictions). Dashed lines are experimental stress-strain 
relations. Strains are in percentage. 
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cycles that were not present in the training data. As demonstrated 
earlier, all models seem to have learned the underlying physical re
lations instead of just memorizing the training data pattern. Conse
quently, we expect the trained models to correctly predict the sharp 
transitions, elastic behaviors, and strain-hardening behaviors involved 
in unloading-reloading cycles at any point during the plastic deforma
tion stage, including those not seen in the training dataset. To evaluate 
this, we introduced five unseen initiation points in the plastic defor
mation regime to complete unloading-reloading cycles. Fig. 16 shows 
various models’ performance on this task. The GRU and Transformer 
encoder-based models both exhibit excellent predictions that adequately 
capture the sharp transitions, linearity of elastic deformations, and 
strain hardening behavior near the end of reloading. Although the GRU- 
attention and TCN encoder-based models showed relatively large un
certainties in certain regions, where the predicted curve was not smooth 
enough or deviated slightly from the expected shapes,  they still 
captured the overall trend in a reasonable manner. These predictions on 
challenging unseen tasks suggest that the dataset-1 models indeed 
learned the underlying correlations between stress and strain for various 

loading scenarios. 

3.3. Applications of dataset 2 models in unseen loading scenarios 

In this dataset 2 task, we tested the models’ performance on previ
ously unseen loading conditions. We chose four unseen loading tem
peratures, including 5∘C, 125∘C, 275∘C, and 500∘C, and two unseen 
strain rates (10− 3 s− 1 and 103 s− 1) at each temperature. Note that the 
temperatures 5∘C and 500∘C were out of the training temperature range, 
therefore they represent out-of-domain or extrapolation applications. 
Fig. 17 shows the performance of various models on these unseen 
loading conditions. All models performed excellently in predicting the 
stress-strain curves for temperatures 125∘C and 275∘C, with their pre
dictions (solid curves) almost overlapping with the ground truth (dashed 
lines, from the Johnson-Cook model) and negligible uncertainties. 
Although these temperatures (125∘C and 275∘C) were unseen during 
training, they were contained in the training temperature range, thus 
suggesting excellent interpolation capability. For the out-of-domain or 
extrapolation applications at 5∘C and 500∘C, the Transformer encoder- 

Fig. 17. Dataset 2 models’ predictions on unseen loading scenarios. (a) Predictions from GRU-based models. (b) Predictions from GRU-attention-based models. (c) 
Predictions from TCN-based models. (d) Predictions from the Transformer encoder-based models. Four temperatures were considered, among which 5∘C and 500∘C 
are out-of-domain temperatures. For each temperature, two strain rates, 10–3 s-1 and 103s-1, were tested. Dashed lines are the ground truth from Johnson-Cook model. 
Solid lines are the average prediction across five different models, while shaded bands indicate the uncertainty based on the standard deviations of the five models’ 
predictions. 
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based model exhibited the best performance, with its predicted curves 
nearly overlapping with the ground truth and negligible uncertainties. 
The GRU, GRU-attention, and TCN encoder-based models also showed 
reasonable overall predictions, with slight deviations in some regions 
from the ground truth, indicating relatively low bias. However, these 
models showed relatively high uncertainties in some regions, suggesting 
relatively high variance. Such relatively low bias and relatively high 
variance indicate some overfitting, which could be mitigated by 
reducing the models’ complexity. 

Our framework is not limited to loading conditions such as temper
atures and strain rates; it can also include other input information, such 
as materials processing conditions and materials structural/chemical 
information. This makes the framework useful in materials optimization 
processes, such as in identifying the best processing conditions in ad
ditive manufacturing. By proper model selection and achieving a bias- 
variance balance, the trained model can be used to predict materials 
mechanical behavior under unseen processing conditions and provide 
uncertainty estimation. This predictive capability and uncertainty esti
mation can be used in search strategies, such as Bayesian optimization, 
to effectively search optimal processing conditions. This approach can 
significantly reduce experimental costs, reduce human bias, and accel
erate materials development. 

Summary 

In this study, we developed a deep learning framework for modeling 
constitutive relations under various conditions, using a general encoder- 
decoder architecture with different encoders such as gated recurrent 
unit (GRU), GRU with attention, temporal convolutional network (TCN), 
and Transformer. We tested and validated these models on two datasets 
with complex loading histories and various loading conditions. The 
optimal architectures with a root mean squared error converged below 
1 MPa were selected for best performance in capturing various defor
mation behaviors. All selected architectures demonstrated excellent 
performance in capturing the underlying stress-strain relations, both in 
testing and out-of-domain scenarios. Based on the applications in this 
work, the Transformer encoder-based model demonstrated the best 
overall performance in both dataset tasks. Due to the universal model 
nature and excellent generalization ability, we expect the proposed 
framework to be applicable in a wide range of loading scenarios and 
mechanical behaviors such as fatigue loadings, hysteresis in shape 
memory alloys, etc. Taking advantage of the predictive capability and 
uncertainty estimation from deep ensembles, this framework can 
potentially be integrated into an active learning / Bayesian optimization 
[44] process for materials optimization, which can help reduce experi
mental cost, minimize human bias, and accelerate materials develop
ment (such as identifying optimal material processing/fabrication 
parameters in high throughput additive manufacturing [30,45]). 
Finally, we note that, in addition to robust model architectures, data 
consistency is also crucial for successful constitutive modeling, as 
different sources of stress-strain data often show uncontrolled variabil
ities [46]. 
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