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Thousands of conductance levels in 
memristors integrated on CMOS

Mingyi Rao1,2,5, Hao Tang3,5, Jiangbin Wu4,5, Wenhao Song4,5, Max Zhang1, Wenbo Yin1, 
Ye Zhuo4, Fatemeh Kiani2, Benjamin Chen2, Xiangqi Jiang1, Hefei Liu4, Hung-Yu Chen4, 
Rivu Midya2, Fan Ye2, Hao Jiang2, Zhongrui Wang2, Mingche Wu1, Miao Hu1, Han Wang4, 
Qiangfei Xia1,2, Ning Ge1, Ju Li3 & J. Joshua Yang1,2,4 ✉

Neural networks based on memristive devices1–3 have the ability to improve 
throughput and energy efficiency for machine learning4,5 and artificial intelligence6, 
especially in edge applications7–21. Because training a neural network model from 
scratch is costly in terms of hardware resources, time and energy, it is impractical to 
do it individually on billions of memristive neural networks distributed at the edge.  
A practical approach would be to download the synaptic weights obtained from the 
cloud training and program them directly into memristors for the commercialization 
of edge applications. Some post-tuning in memristor conductance could be done 
afterwards or during applications to adapt to specific situations. Therefore, in neural 
network applications, memristors require high-precision programmability to 
guarantee uniform and accurate performance across a large number of memristive 
networks22–28. This requires many distinguishable conductance levels on each 
memristive device, not only laboratory-made devices but also devices fabricated  
in factories. Analog memristors with many conductance states also benefit other 
applications, such as neural network training, scientific computing and even ‘mortal 
computing’25,29,30. Here we report 2,048 conductance levels achieved with memristors 
in fully integrated chips with 256 × 256 memristor arrays monolithically integrated  
on complementary metal–oxide–semiconductor (CMOS) circuits in a commercial 
foundry. We have identified the underlying physics that previously limited the 
number of conductance levels that could be achieved in memristors and developed 
electrical operation protocols to avoid such limitations. These results provide 
insights into the fundamental understanding of the microscopic picture of 
memristive switching as well as approaches to enable high-precision memristors  
for various applications.

Memristive-switching devices are known for their relatively large 
dynamical range of conductance, which can lead to a large number of 
discrete conductance levels. Different approaches have been developed 
to accurately program the devices31. However, only devices with fewer 
than 200 conductance levels have been reported so far22,32. There are 
no forbidden conductance states in the dynamical range of the device 
because a memristor is analog and can, in principle, achieve an infinite 
number of conductance levels. However, the fluctuation commonly 
observed at each conductance level (Fig. 1e) limits the number of distin-
guishable levels that can be achieved in a specific conductance range. 
We found that such fluctuation can be substantially suppressed, as 
shown in Fig. 1e,f, by applying appropriate electrical stimuli (called 
‘denoising’ processes). Notably, this denoising process does not require 
any extra circuitry beyond the usual read-and-program circuits. We 
incorporated the denoising process into device-tuning algorithms and 

successfully programmed a memristor made in a standard commer-
cial foundry (Fig. 1a–d) into 2,048 conductance levels (Fig. 1g), corre-
sponding to a resolution of 11 bits. Conductive atomic force microscopy 
(C-AFM) was used to visualize the evolution of conduction channels 
during programming and denoising processes. We discovered that a 
normal switching operation (set or reset) always ends up with some 
incomplete conduction channels, which appear as islands or blurry 
edges along the main conduction channel and are less stable than the 
main conduction channel. First-principles calculations indicate that 
these incomplete channels are unstable phase boundaries with dopant 
levels in a range that is sensitive to nearby trapped charges, contributing 
to the large fluctuations of each conductance level. We showed, experi-
mentally and theoretically, that an appropriate voltage in the denoising 
process either annihilates (weakens) or completes (enhances) these 
incomplete channels, resulting in a strong reduction in fluctuation and a 
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substantial increase in memristor precision. The observed phenomena 
generally exist in a memristive-switching process with localized con-
duction channels, and the insights can be applied to most memristive 
systems for scientific understanding and technological applications.

 
Conductance levels and arrays on integrated chips
Memristors used in this study were fabricated on an eight-inch wafer by 
a commercial semiconductor manufacturer (Fig. 1b). Details about the 
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Fig. 1 | High-precision memristor for neuromorphic computing. a, Proposed 
scheme of the large-scale application of memristive neural networks for edge 
computing. Neural network training is performed in the cloud. The obtained 
weights are downloaded and accurately programmed into a massive number  
of memristor arrays distributed at the edge, which imposes high-precision 
requirements on memristive devices. b, An eight-inch wafer with memristors 
fabricated by a commercial semiconductor manufacturer. c, High-resolution 
transmission electron microscopy image of the cross-section view of a memristor. 
Pt and Ta serve as the bottom electrode (BE) and top electrode (TE), respectively. 
Scale bars, 1 μm and 100 nm (inset). d, Magnification of the memristor material 
stack. Scale bar, 5 nm. e, As-programmed (blue) and after-denoising (red) currents 
of a memristor are read by a constant voltage (0.2 V). The denoising process 
eliminated the large-amplitude RTN observed in the as-programmed state  

(see Methods). f, Magnification of three nearest-neighbour states after denoising. 
The current of each state was read by a constant voltage (0.2 V). No large- 
amplitude RTN was observed, and all of the states can be clearly distinguished.  
g, An individual memristor on the chip was tuned into 2,048 resistance levels by 
high-resolution off-chip driving circuitry, and each resistance level was read by a 
d.c. voltage sweeping from 0 to 0.2 V. The target resistance was set from 50 μS to 
4,144 μS with a 2-μS interval between neighbouring levels. All readings at 0.2 V 
are less than 1 μS from the target conductance. Bottom inset, magnification of 
the resistance levels. Top inset, experimental results of an entire 256 × 256 array 
programmed by its 6-bit on-chip circuitry into 64 32 × 32 blocks, and each block  
is programmed into one of the 64 conductance levels. Each of the 256 × 256 
memristors has been previously switched over one million cycles, demonstrating 
the high endurance and robustness of the devices.
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fabrication process are provided in the Methods. Cross-section views 
of a memristor are shown in Fig. 1c, and the crucial resistive switching 
layers are magnified in Fig. 1d. The elemental image produced by elec-
tron energy-loss spectroscopy is shown in Supplementary Fig. 1. The 
device, which consists of a Pt bottom electrode, a Ti/Ta top electrode 
and a HfO2/Al2O3 bilayer, was fabricated in a 240-nm via above the CMOS 
peripheral circuitry. The Al2O3 and Ti layers are designed to be thin 
(<1 nm) so that they seem as a mixed layer rather than two separate 
continuous layers. When the bottom electrode is grounded, the device 
can be switched by applying either a sufficiently positive voltage (for 
set) or a negative voltage (for reset) to the top electrode. The fluctuation 
level (characterized by the standard deviation of a measured current 
under a constant voltage) after a set or a reset operation is distributed 
in a wide range (Supplementary Fig. 2). The result indicates that an 
as-programmed state typically has large fluctuations. This considerably 
limits the applications of memristors, but is a characteristic of memris-
tive materials more generally33–36. The data also show that a set opera-
tion tends to induce a larger fluctuation in an as-programmed state 
than does a reset operation. Such reading fluctuations mainly consist 
of random telegraph noise (RTN), which typically has step-like transi-
tions between two or more current levels at random time points under 
a constant reading voltage. Such RTN generally exists in memristors. 
Even fluctuations that do not seem step-like may in fact be made of a 
RTN37, which can be shown only when the measurement sampling rate 
is higher than the RTN frequency, as shown in Supplementary Fig. 3. It 
has been demonstrated previously by simulations that memristor RTN 
may be caused by charges occasionally trapping into certain defects 
and blocking conduction channels because of Coulomb screening34,38. 
However, experiments that directly link trapped charges, conduction 
channel(s) and RTN, and how to remove it, are missing. Although this 

is a critical issue for memristors in general, it has been unclear how to 
reduce the RTN in memristors. These experiments are important not 
only for understanding the physical origin of memristor RTN but also 
for revealing the entire microscopy picture of memristive switching 
and providing possible solutions to high-precision memristors.

We discovered that the fluctuation level could be greatly reduced 
by applying small voltage pulses with optimized amplitude and width. 
An example is given in Fig. 1e, in which an as-programmed state with a 
considerable fluctuation (blue) was stabilized into a low-fluctuation 
state (red) by denoising pulses. Using a three-level feedback algorithm 
devised to denoise, as shown in Supplementary Fig. 4, a single memris-
tor was tuned into 2,048 conductance states between 50 and 4,144 μS, 
with a 2-μS interval between every two neighbouring states. All states 
were read by a voltage sweeping from 0 to 0.2 V, as shown in Fig. 1g. 
The bottom inset to Fig. 1g shows magnification of the current–volt-
age curves, which show the well-distinguishable states and the marked 
linearity of each state. Three nearest-neighbour states after denoising 
are shown in Fig. 1f, in which a constant voltage of 0.2 V reads each state 
for 1,000 s. The current fluctuation of every state is within 0.4 μA, cor-
responding to 2 μS in conductance. No significant overlap was observed 
in the neighbouring states. A magnification of the measurement at 
high-conductance states is shown in Supplementary Fig. 5. Memristors 
from multiple chips of an 8-inch wafer were measured, demonstrat-
ing considerable programming uniformity across the entire wafer, as 
shown in Supplementary Fig. 6. We further used the denoising process 
in the array-level programming of an entire 256 × 256 array using the 
on-chip circuitry. The experimentally programmed patterns are shown 
in Fig. 1g (top inset) and Supplementary Fig. 7. For demonstrations using 
the on-chip circuitry, the programming precision was limited by the pre-
cision of the on-chip analog-to-digital conversion peripheral circuitry, 
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Fig. 2 | Direct observation of the evolution of conduction channels in the 
denoising process using C-AFM. a, Schematic of the customized memristor 
structure and C-AFM testing set-up. A C-AFM probe was used as the top 
electrode in the customized device. Because Ta easily oxidizes in air and is not 
a practical probe material, a Pt probe was used. This Pt probe had the same 
purpose as that of the bottom Pt electrode of the standard memristor that we 
used. To maintain the material stack of a standard memristor, the customized 
memristor has a reversed structure. b, Current readings at 0.1 V before (red) 
and after (blue) a denoising process using a subthreshold reset voltage.  

c, Current readings at 0.1 V before (red) and after (blue) a denoising process using 
a subthreshold set voltage. d, Conductance map measured by C-AFM scanning 
corresponding to the before-denoising state (red) in b. e, Conductance map 
corresponding to the after-denoising state (blue) in b. f, Conductance map 
measured by C-AFM scanning corresponding to the before-denoising state 
(red) in c. g, Conductance map corresponding to the after-denoising state 
(blue) in c. The dashed yellow circles in d–g highlight the changes observed 
before and after the denoising process. Scale bars, 10 nm.
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which was 6-bit (64 levels) in this design. The testing set-up and the 
schematic of the driving circuits are shown in Supplementary Fig. 8. 
The extra system cost caused by the denoising process is estimated 
in Supplementary Information Section 9. Because a relatively smaller 
voltage is needed for denoising than is required for typical set or reset 
programming, the extra energy consumption is only a small fraction 
of the energy needed for programming. Further studies show that the 
denoising operation can also reduce RTN in other material stacks, for 
example, a TaOx-based memristor, as shown in Supplementary Fig. 10. 
Because reading noise has been observed in various resistive switching 
materials, the results indicate that the denoising step is an important, 
potentially essential, process for the training of memristive neural 
networks because unstable readings lead to incorrect outputs from 
the neural networks, and these cannot be compensated by adaptive 
in situ training.

Conduction channel evolution in denoising processes
Deciphering the underlying reason for the above results is essential 
for finding a reliable solution to the problem of unstable conduct-
ance states and understanding the dynamic process of memristive 
switching. Visualizing the evolution of conduction channels during 
electrical operations is informative for this purpose39–42. We used C-AFM 
to precisely locate the active conduction channel(s) and scan all of 
the surrounding regions. Details of the measurement are provided 
in the Methods and Supplementary Fig. 11. A customized device was 
fabricated for the C-AFM measurements. A schematic of its structure 
is shown in Fig. 2a. To use the Pt-coated C-AFM tip as the top electrode, 
the device was designed to have a reversed structure compared with 
that of the standard device shown in Fig. 1d. By grounding the bottom 
electrode and applying a voltage to the top electrode, the device can be 
operated as our standard device with opposite voltage polarities—that 
is, a positive voltage tends to reset the device, and a negative voltage 
tends to set the device. Denoising operations were also successfully 

performed by C-AFM, as shown in Fig. 2b,c. The conductance scan-
ning results corresponding to the reading results of Fig. 2b are shown 
before (Fig. 2d) and after (Fig. 2e) denoising, and those for the reading 
results of Fig. 2c are shown in Fig. 2f,g. A comparison of the conduct-
ance maps in Fig. 2d,e reveals that the main part of the conduction 
channel (the ‘complete’ channel) remains nearly the same whereas 
the positive denoising voltage annihilates an island-like channel (the 
‘incomplete’ channel). By contrast, the negative denoising voltage 
(Fig. 2f,g) reduces the noise by removing the current dips in Fig. 2c. 
These results indicate that the conductance of an RTN-rich state can 
be divided into two parts: the base conductance provided by com-
plete channels and the RTN provided by incomplete channels. These 
incomplete channels had formed together with complete channels but 
were smaller in size. Such incomplete channels were also observed in 
SrTiO3-based resistive switching devices43. A memristor can be denoised 
by eliminating incomplete channels (by either removing or complet-
ing them). Incomplete channels are more sensitive to voltage stimuli 
compared with complete channels, which makes it possible to tune 
the former without affecting the latter by using appropriate electrical 
stimuli. Further studies suggest that this is a general mechanism and 
can also be performed in other material stacks (Supplementary Fig. 12). 
It should be noted that the seemingly isolated island(s) may or may not 
be electrically connected with the main conduction channel beneath 
the surface. However, this does not change the denoising mechanisms 
or operation protocols.

Switching and denoising mechanisms
To understand the mechanism of denoising, we studied the microscopic 
origin of RTN in memristors. An important question is whether RTN is 
induced by an atomic effect or electronic effect. As shown in Supple-
mentary Fig. 13, incomplete channels are consistently observed in a 
C-AFM scan whenever RTN is observed. Once incomplete channels are 
eliminated, the RTN disappears. This indicates that RTN is associated 
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Fig. 3 | Trapped-charge-induced conductance change in incomplete 
conduction channels. a, The RTN-responsible defect (orange) is 1 nm away 
from an island-like conduction channel (blue). The channel is formed by a 
conductive phase region (phase II) and the phase boundary (PB) region. b, The 
transport electron wavefunction corresponding to a, where z denotes the 
position of the channel along the electron transport direction (from −3 nm to 
3 nm), and n(z) shows the normalized integration of the transport electron 
wavefunction on the plane perpendicular to the z direction, which indicates the 
electrical conduction at each z position. The black and red curves are n(z) when 

the carrier density in the channel is 5 × 1018 cm−3 or 1  × 1019 cm−3 with one 
electron trapped at the defect, respectively, and the blue line is n(z) with no 
electron trapped. c, Two defects (orange) are positioned away from a channel 
that is attached to the main conduction channel. The PB region is 3 nm in width. 
d, The transport electron wavefunction corresponding to c. The red and blue 
lines correspond to n(z) when one electron is trapped in the defect 0.8 nm and 
1 nm away from the channel, respectively, and the green and black lines 
correspond to n(z) when both or none of the defects have trapped electrons. 
The carrier density in the channel for the simulation is 5 × 1018 cm−3.
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with incomplete channels rather than being induced by the transi-
tion process (by atomic motion) between incomplete and complete 
channels. Previously, a theoretical framework was established for the 
electronic RTN mechanism33,34,44–46, in which the electrical conduc-
tion of the incomplete conduction channels was frequently blocked 
by Coulomb repulsion when nearby defects trapped electrons and 
became negatively charged. RTN caused by the atomic motion induced 
by external voltage stimuli is random, and irregular in amplitude even 
when the device is driven by regular voltage pulses47.

To identify the type of defect that traps or detraps charges, we 
measured memristor RTN at different voltages and performed theo-
retical analyses as described in Supplementary Information Section 
14. First-principles calculations indicate that the defects might be 
oxygen interstitials that have large relaxation energies and thus long 
trapping or detrapping times, consistent with the measurement shown 
in Supplementary Information Section 14 and Supplementary Fig. 15. 
It was also previously reported44 that charge trapping or detrapping at 
oxygen interstitials may be responsible for RTN in oxide memristors. 
The strongly non-equilibrium condition during device programming 
probably drives oxygen ions from conduction channels into their 
surrounding regions48 (Supplementary Fig. 16), leading to oxygen 
interstitial defects and potentially providing a type of trapping or 
detrapping source. By further analysing the relationship between 
characteristic duration of RTN and the reading voltage amplitude, 
we propose that RTN is predominantly induced by an electronic 
effect rather than an atomic effect in our device (Supplementary  
Information Section 17).

The incomplete channel blocking process was modelled as shown 
in Fig. 3. On the basis of C-AFM experiments, we classified the device 
region as three phases: the non-conductive phase (phase I), the conduc-
tive phase (phase II) and the region between them, which has an inter-
mediate conductance (phase boundary). During the programming or 
denoising operations, these phase-boundary regions form or disappear, 
accompanying the observation of RTN and its removal, indicating that 

some RTN-inducing incomplete channels are located in these phase 
boundary regions. Figure 3a shows a defect trapping or detrapping an 
electron 1 nm away from an island-like incomplete channel that has a 
width of 1 nm. The transport electron wavefunctions ψ(x, y, z) with or 
without a trapped charge are visualized in Fig. 3b by the probability 
density at each cross-section of the channel ∣ ∣∫n z ψ x y z x y( ) = ( , , ) d d2  
(where z is the axis along the channel). The wave functions show what 
proportion of the injected electron propagates through the channel. 
To mimic the different percentages of phase II, two charge carrier den-
sities (averaged over phase I and phase II) were used for the simulations. 
The results indicate that the incomplete channel is fully blocked at a 
lower charge carrier density (lightly doped with oxygen vacancies, 
corresponding to less phase II) and partially blocked at a higher charge 
carrier density (heavily doped, corresponding to more phase II).  
Figure 3c corresponds to another commonly observed C-AFM result, 
in which the incomplete channel is attached to the main channel with 
multiple charge traps around it. Figure 3d shows that a trapped charge 
close to the incomplete channel tends to have a larger impact on con-
ductance than one far away. Furthermore, the effect of multiple charge 
traps can enhance each other and lead to a multiplied change of con-
ductance because the thick phase boundary region is completely 
blocked. Compared with previous models using classic carrier drift-
diffusion equations, we use quantum transport formalism to simulate 
the influence of charged defects on channel conductivity, confirming 
that the Coulomb blockade mechanism applies to nano scale channels. 
Furthermore, we inferred that two or more (N) charge-trapping defects 
can lead to complex RTN patterns with a maximum of 2N levels, which 
is consistent with previous reports45,46.

Because the RTN originates from the incomplete conduction chan-
nels, the denoising process is associated with the disappearance of both 
the island and the blurry boundary of the main channel. A subthreshold 
voltage that is much smaller than the set or reset voltages can decrease 
the RTN because of the phase-field relaxation, as shown in Fig. 4. For 
this specific material system, the relatively conductive and insulating 
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Fig. 4 | Mechanism of denoising using subthreshold voltage, identified 
using C-AFM measurements and phase-field theory simulations. a–d, After 
switching (a), the conduction channel is first denoised by a 0.2 V voltage (b) and 
then reset twice with a 0.5 V voltage (c,d), as measured by C-AFM. e–h, Phase- 
field simulations of the conduction channels when the device is freshly 
switched (e), then denoised (f), and reset twice (g,h). The dynamics of the 
conductive and insulating phase fields are simulated on the basis of the phase 

transition energy pathway from the first-principles calculation. We propose 
that the conductive and insulating phases are the orthorhombic phase with a 
high number of oxygen vacancies and the monoclinic phase without oxygen 
vacancies, respectively. The denoising process is captured by the phase-field 
relaxation, in which the island of the incomplete channel disappears and the 
phase boundary sharpens.
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phases (phase II and phase I, respectively; Fig. 3) are the orthorhombic 
and monoclinic phases of HfO2, because the orthorhombic phase is 
stabilized by a high number of oxygen vacancies49. The denoising volt-
age provides a driving force for the phase relaxation through both tem-
perature effects and the current-induced forces, enabling the system 
to relax towards an equilibrium state. The free energy F and equation 
of motion of the system are as follows:
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where η is the order parameter (here, the monoclinic angle) describ-
ing the transition from the monoclinic to the orthorhombic phase, 
Δf0 is the free energy density for a system with a certain order param-
eter and K is the gradient energy parameter. The energy density Δf0 is 
derived from the first-principles calculations. Using the phase-field 
simulation, we derive a similar behaviour as observed by the C-AFM: 
after denoising, the island disappears and the boundary of the main 
channel sharpens. The disappearance and sharpening of the bound-
ary are driven by the energy barrier between the two phases, in which 
the high-energy boundary region is reduced. During the reset pro-
cess, the conduction channel shrinks in size and its conductivity also 
decreases because the strong voltage drives the oxygen vacancy away 
from the switching-active region. The incomplete conduction chan-
nels—that is, the islands and boundary regions in a freshly switched 
state—are frozen in a highly non-equilibrium state because they are 
always formed at the end of the set or reset voltage pulse and do not 
have a chance (sufficient time) to reach the same stable state as the 
more mature complete channel region formed earlier. Therefore, these 
incomplete conduction channels are prone to change; the completion 
or removal can be induced by a subthreshold voltage. In contrast to 
the electron transport in the complete main conduction channel, that 
of incomplete channels can be readily blocked by trapped charges 
(Fig. 3), making them the main source of RTN. The situation is more 
severe for a conductance state obtained by a set switching process 
because the creation and growth of a conduction channel comprise a 
positive feedback process, which happens faster and faster and leaves 
no time for the maturation of the newly formed conduction channels 
before the end of each switching pulse. In the denoising process, there 
is no need for the migration, annihilation or creation of trap sites (for 
example, interstitial oxygen defects). Although the specific phases 
involved may be different for different oxide systems, our approach 
and conclusions are generally applicable.

Summary
We have achieved 2,048 conductance levels in a memristor which is 
more than an order of magnitude higher than previous demonstra-
tions22,32. Notably, these were obtained in memristors of a fully inte-
grated chip fabricated in a commercial factory. We have shown the root 
cause of conductance fluctuations in memristors through experimental 
and theoretical studies and devised an electrical operation protocol to 
denoise the memristors for high-precision operations. The denoising 
process has been successfully applied to the entire 256 × 256 cross-
bars using the on-chip driving circuitry designed for regular reading 
and programming without any extra hardware. These results not only 
provide crucial insights into the microscopy picture of the memristive 
switching process but also represent a step forward in commercializing 
memristor technology as hardware accelerators of machine learning 
and artificial intelligence for edge applications. Moreover, such analog 
memristors may also enable electronic circuits capable of growing for 
the recently proposed mortal computations30.
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Methods

Memristor fabrication
Standard memristors integrated with CMOS driving circuits. The 
CMOS part was fabricated in a standard 180-nm process line in a com-
mercial semiconductor manufacturer with an exposed tungsten via 
at the top. Memristors were processed in the same process line with 
customized materials and protocols. After surface oxide cleaning of the 
tungsten via, the Pt bottom electrodes were sputtered and patterned 
on the vias. Holes for memristors were created by etching through a 
patterned SiO2 isolation layer (~100 nm) and terminating at the surface  
of Pt. The resistive switching layer (HfO2/Al2O3) and top electrode (Ti/Ta)  
were filled into the etched holes sequentially, in which the resistive 
switching layers were fabricated by atomic layer deposition and the 
top electrode was fabricated by sputter. Finally, a standard aluminium 
interconnect was used to connect the top electrode to bond pads for 
electrical testing.

A customized memristor for C-AFM measurement. The customized 
device was fabricated in a university cleanroom on an Si wafer covered 
with thermally oxidized SiO2 (~100 nm). The bottom electrode (Ta/Ti) 
and resistive switching layers (Al2O3/HfO2) were deposited by an AJA 
sputtering system. The four layers were fabricated continuously in a 
high-vacuum chamber to avoid oxidation of Ta and Ti. The chip was 
then patterned and etched to expose part of the bottom electrode. 
After surface oxide cleaning, Pt was deposited onto the exposed bot-
tom electrode to prevent oxidation and serve as the ground contact 
during C-AFM measurement.

Electrical measurements
Single-device measurement. Electrical measurements of the standard 
memristor (factory-made complete memristor with top electrode) 
were performed on a Keysight B1500A semiconductor device analyser 
equipped with a B1530A waveform generator and fast measurement 
unit. To realize the algorithm as shown in Supplementary Fig. 4, we built 
a program using C# to control the electrical operations of B1500A.

Array measurements. The schematic of the one-transistor–one- 
memristor array with on-chip driving circuits and the testing set-up is 
shown in Supplementary Figs. 7 and 8.

C-AFM measurements. C-AFM was performed using a Bruker Dimen-
sion Icon system with a conductive probe (SCM-PIT-V2, 0.01–0.025 
ohm-cm of resistivity) in a contact mode. When performing electri-
cal operations, including set, reset and read, the C-AFM probe was 
at a fixed position. The conduction channel was first formed with a 
voltage of 4 V. During the in situ set, reset and reading operations for 
the chosen conduction channel, the set point was set to a relatively 
large number (around 80 nm) to increase the strength of the pressing 
force to make a large contact area between the tip and sample surface. 
The set point is a measure of the force applied by the tip to the sample.  
In contact mode, it is a certain deflection of the cantilever. This deflec-
tion is maintained by the feedback electronics, so that the force between 
the tip and sample is kept constant. When performing the conduction 
channel morphology mapping, the probe scanned a 150 × 150 nm region 
surrounding the conductive channel. During this measurement, the 
set point was set to a small value (around 10 nm) for high resolution. 
The relationship between the contact radius and set point are shown 
in Supplementary Fig. 11.

First-principles calculations
The atomic and electronic structures of the oxygen interstitial defects 
are calculated using the density functional theory with the projec-
tor augmented wave method50 implemented in the Vienna ab initio 
simulation package51. The generalized gradient approximation is used 

together with the Perdew–Burke–Ernzerhof exchange-correlation 
function52. The cut-off energy is set to 400 eV and the k-point mesh 
is sampled using the Monkhorst–Pack method53 with a separation of 
0.2 rad Å−1. The atomic structure of the oxygen interstitial defect is 
constructed by including one oxygen atom in the 2  × 2 ×  2 supercell of 
the monoclinic-phase HfO2 crystal. The initial position of the included 
oxygen atom is set as described previously54 and the atomic configura-
tion is fully relaxed. The force on each atom converges to 0.01 eV Å−1, 
and the electronic energy converges to 10−6 eV. The atomic structure, 
charge distribution of the trap state and electronic band structure in 
Fig. 3 and Supplementary Figs. 14 and 15 are then extracted from the 
calculations of the density functional theory.

Simulation of the effect of a trapped charge on the conductive 
channel. We simulate the Coulomb blockade effect through the quan-
tum transport of a conduction electron in a cuboid conduction channel 
(Fig. 3). The length of the conductive channel is set to L = 6 nm to match 
the channel length in the device. The motion of carriers in the conduc-
tive channel is calculated through the effective mass approximation 
and the Coulomb blockade effect of the RTN-responsible defect is 
simulated by a screened Coulomb potential V ( )r  acting on the carriers. 
Assuming the electric conductance outside the channel is negligible, 
the quantum transport of an electron in the channel can be described 
by the following equations:
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where m* is the effective mass of the conductive band of HfO2, set to 
0.11me (ref. 55). E is the eigen energy of the transport electron, set to 
0.2 eV above the conduction band minimum Ec estimated by the mag-
nitude of bias voltage of about 0.2 V. The Coulomb potential is the 
summation of the RTN-responsible defect located at ir, where ϵr is the 
relative dielectric constant (set to 16 as proposed previously56) and λD 

is the Debye screening length calculated as λ = ϵ ϵ k T
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 (the temper-
ature T is set to 300 K).

The transport wavefunction with electrons injected from x = 0 with 
unitary amplitude is then calculated with the following boundary  
conditions:
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The electron transport is then shown by the probability density func-
tion of the electron wavefunction at each cross-section of the channel 

∫n z ψ x y z x y( ) = ( , , ) d d2 , reflecting what proportion of the injected 
electron propagates through the channel. If n L( ) 0≃ , the electron 
transport is completely blocked; if ≃n L( ) 1, the electron goes through 
the channel with negligible barrier. Three parameters control the Cou-
lomb blockade: the size of channel d, the carrier density n and the dis-
tance of the RTN-responsible defect to the channel. These factors lead 
to the different degrees of Coulomb blockade to the isolated island 
and main channel.
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Code availability
The algorithm for memristor high-precision programming is included 
in the Supplementary Information. The code for physical modelling 
and simulations is available at GitHub (https://github.com/htang113/
HfO2-memristor-denoise/tree/main).
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