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The growing demands of remote detection and an increasing amount of training data make distributed
machine learning under communication constraints a critical issue. This work provides a communication-
efficient quantum algorithm that tackles two traditional machine learning problems, the least-square fitting
and softmax regression problems, in the scenario where the dataset is distributed across two parties. Our
quantum algorithm finds the model parameters with a communication complexity of Oðlog2ðNÞ=ϵÞ, where
N is the number of data points and ϵ is the bound on parameter errors. Compared to classical and other
quantum methods that achieve the same goal, our methods provide a communication advantage in the
scaling with data volume. The core of our methods, the quantum bipartite correlator algorithm that
estimates the correlation or the Hamming distance of two bit strings distributed across two parties, may be
further applied to other information processing tasks.
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The amount of training data is critical for machine
learning to achieve high accuracy, generalization capabil-
ities, and predictive power. Nowadays, data collection is
growing with unprecedented speed around the world, so it
becomes a challenge for algorithms to exploit such large-
scale data within feasible time and memory [1,2].
Distributed machine learning emerges as a promising
solution, where the training data and learning process
are allocated to multiple machines [1,3,4]. This scales up
computational power and is also suitable for intrinsically
distributed data when collected [5,6]. However, these
algorithms require extensive communication between dif-
ferent machines, which usually becomes a rate-limiting
step [7]. Therefore, efficient communication schemes
for distributed machine learning tasks are attracting broad
interest. The communication necessary between two ma-
chines in a computation task is quantified by its commu-
nication complexity, either within classical [8–11] or
quantum channels [12–15]. Compared to classical commu-
nication, even though quantum algorithms have been
shown to reduce the communication complexity in some
scenarios [16], machine learning tasks were not included.
Quantum algorithms have been generally studied as accel-
erators for the computational complexity [17] in problems
such as least-square fitting [18], statistical inference [19],
feature engineering [20], and classification problems [21].
Whether quantum algorithms can accelerate communica-
tion in distributed learning tasks remains an open question.
Here, we propose a quantum communication algorithm

for two typical data fitting subroutines in machine learning:

least-square fitting and softmax regression, which are the
common output layers of predictors and classifiers, respec-
tively [22]. In this Letter we assume a training dataset
contains N independent identically distributed (iid) data
points. Each data point has anM-dimensional input x⃗ and a
scalar output y. In the basic communication scenario [4],
the training dataset, comprising the input attributes and
labels, is distributed across two parties, Alice and Bob.
Both least-square fitting and softmax regression aim at
fitting a model y ≈ fðx⃗; λÞ to the data, by estimating the
parameters λ̂ that minimize a given loss function. The goal
of a communication algorithm is to minimize the number of
bits [8,9] or qubits [14,15] exchanged between Alice and
Bob during model fitting, while keeping the accuracy of λ̂
within a standard error ϵ.
Least-square fitting has been extensively studied in both

classical distributed algorithms and single-party (no com-
munication) quantum algorithms. Using a classical algo-
rithm based on correlation estimation, it has been proved
that the classical communication complexity cannot be
below Oð1=ϵ2Þ [23,24]. However, to reach such a lower
bound requires an exponentially large number of data
points. In the case of finite datasets, since the accuracy
of the fitting parameters should be at least as small as
its error ϵ, a classical deterministic method requires
O½Nlog2ð1=ϵÞ� bits to be exchanged between two parties
within a precision ϵ [25]. When high accuracy is not
required, only 1=ϵ2 data points with random indexes
need to be transferred, which yields a Of½log2ð1=ϵÞ þ
log2ðNÞ�ð1=ϵ2Þg communication complexity [23]. Then, to
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achieve a statistical variance ϵ2s ¼ varðjλjÞ ∝ 1=N, these
two classical algorithms have the same communication
complexity O½N log2ðNÞ� or Oðlog2ð1=ϵsÞ=ϵ2sÞ. In com-
parison, quantum computation methods for linear fitting
based on the Harrow-Hassidim-Lloyd (HHL) algorithm [26]
yield normalized parameters (jλj2 ¼ 1) from a quantum
state jλi ¼ P

M
j¼1 λjjji with communication complexity of

O½log2ðNÞ� [18,27,28]. However, to extract λj¼1;…;M, the
HHL-based algorithm requires O½M2ð1=ϵ2Þ� repeated mea-
surements. In this case, the HHL-based fitting algorithm
requires communicating Oðlog2ðNÞ=ϵ2Þ qubits [18,29],
with no clear advantage over classical algorithms.
We designed a quantum counting-based [30,31] com-

munication algorithm that achieves a reduced communi-
cation complexity of Oðlog2ðNÞ=ϵÞ for both least-square
fitting and softmax regression (Table I). At its core, the
direct action of our algorithm is to estimate the correlation
or the Hamming distance of two bit strings distributed
across two parties. Embedding this algorithm into a hybrid
computing scheme enables the data fitting tasks beyond the
theoretical limit of classical algorithms, and we expect it
could benefit other scenarios not analyzed here.
Estimating correlation.—We first present the core sub-

routine of our methods, the quantum bipartite correlator
(QBC) algorithm. The problem is stated as follows:Alice and
Bob have N-dimensional vectors x⃗b; y⃗b ∈ f0; 1gN , respec-
tively, that can only take binary values (denoted by super-
script b). This is not as restrictive as it sounds, as real numbers
can always be expanded as binary floating point numbers
(see Sec. “Least-square fitting”). The task is to estimate the

correlation ρ̂≡
�
ðxbyb−xb ·ybÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xbð1−xbÞybð1−ybÞ

q �
, in

which the communication-intensive step is to evaluate

xbyb ¼ ð1=NÞPN
i¼1 x

b
i y

b
i within a standard deviation error

ϵ [23].
We assume that Alice and Bob have access to quantum

computers with oracles. The oracle of Alice’s computer per-
forms a unitary transformation Û1;2

x⃗b
∶ jii1j0i2 ↦ jii1jxbi i2

that encodes the data xbi , where jii is an n≡ ⌈ log2ðNÞ⌉-
qubit state ji1i2 � � � ini, representing the index of the queried
component, and jxbi i is a single-qubit state. Bobhas an oracle
Ûy⃗b of the same type that encodes the data ybi . This type of
oracle is a common building block in quantum algorithms
[18,26,36], which can be realized through quantum random
access memory [37] or other data-loading procedures
[38,39].

Estimating the correlation xbyb is based on quantum
counting, in which the phase oracle is realized cooperatively
by Alice and Bob through communication, as shown in
Fig. 1. We sketch the framework here and provide the
algorithm details in the Supplemental Material [40] (which
includes Refs. [31,33,35,41]), Sec. I. The algorithm works
on an n-qubit vector index space (j·in), a t-qubit register
space (j·it), and a 2-qubit oracle workspace (j·io). Initially,
all qubits are set to zero: jψ0i≡ j0itj0inj00io. Hadamard
gates are applied to create superposition in both t and n
space jψ1i ¼ 2−ðtþnÞ=2P

i;τ jτitjiinj00io. A phase oracle on
the state j·in can be realized through the following unitary
operation:

Ôx⃗b;y⃗b ≡ Ûn;o1
x⃗b

Ûn;o2
y⃗b

CZo1;o2Ûn;o2
y⃗b

Ûn;o1
x⃗b

; ð1Þ

which yields Ôx⃗b;y⃗b jiinj00io ¼ ð−1Þxbi ybi jiinj00io. Here o1,
o2 are the two qubits in the oracle space, and CZo1;o2 is a
control-Z gate acting on them.Each oracle call requires about

TABLE I. Communication complexity of classical distributed algorithm, quantum counting-based algorithm developed in this work,
and other quantum algorithms. Listed problems include estimating correlation and Hamming distance of two separate bit strings,
distributed linear fitting, and distributed softmax regression. In the first column, (c) and (q) mean the problem requires output as classical
data or quantum states, respectively. In the table, ϵ, N, and M are the standard error of solution, number of data points, and number of
attributes in Alice’s data; κ and s are the condition number and sparseness of the matrix X in linear regression problems; and q is the
number of classes in softmax regression problems. (See derivation in Sec. III.). All the classical algorithms and the LOCC algorithm
transfer classical bits, and the rest of the quantum algorithms transfer qubits.

Problem (output) Classical algorithm Quantum counting Other quantum algorithm

Correlation (c) Oð1=ϵ2Þ lower-bound) Ref. [23] Oðlog2ðNÞ=ϵÞ Oðlog2ðNÞ=ϵ2Þ (swap-test, [32])
O½log2ðNÞmax fð1=ϵ2Þ; ð ffiffiffiffi

N
p

=ϵÞg�
(LOCC, [33])

Hamming distance (c) OðNÞ [34] Oðlog2ðNÞ=ϵÞ Oðlog2ðNÞ=ϵ2Þ (classical shadows, [35])
Linear-fitting (c) O½Nlog2ðκ2=ϵÞ� (deterministic [25])

Of½log2ðNÞþ log2ðκ2=ϵÞ�=ðϵ=κ2Þ2g
(stochastic [23])

OðMκðlog2ðNÞ=ϵÞÞ OðM2κ5ðlog2ðNÞ=ϵ2ÞÞ (HHL, [18])

Linear-fitting (q) � � � OðMκðlog2ðNÞ=ϵÞÞ O½κ5 log2ðNÞ� (HHL, [18])
Softmax regression (c) OðN log2 qÞ OfMqκ½log2ðNÞ=ϵ�g � � �
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2n-qubit communication, as Alice needs to send the (nþ 1)
qubits to Bob after applying Ûn;o1

x⃗b
and Bob needs to send the

(nþ 1) qubits back after applying Ûn;o2
y⃗b

CZo1;o2Ûn;o2
y⃗b

; finally,

Alice applies Ûn;o1
x⃗b

to finish the whole oracle Ôx⃗b;y⃗b . The
Grover operation needed for counting is then constructed as
Ĝx⃗b;y⃗b ≡ Ĥ⊗nð2j0inh0jn − ÎÞĤ⊗nÔx⃗b;y⃗b . The QBC scheme
applies the Grover operation iteratively on the initial state:

jψ2i ¼
1

2ðtþnÞ=2
X
τ

jτit ⊗ ðĜx⃗b;y⃗bÞτ
X
i

jiinj00io: ð2Þ

Expanding the Grover operator in its eigenbasis gives
ðĜx⃗b;y⃗bÞτ

P
i jiin ¼ ðeiτθjϕþihϕþj þ e−iτθjϕ−ihϕ−jÞ

P
i jiin,

where jϕ�i are the two eigenstates of Ĝx⃗b;y⃗b , and

θ ¼ 2 arcsin

� ffiffiffiffiffiffiffiffiffi
xbyb

q �
. Applying the inverse quantum

Fourier transform (QFT†) to j·it yields the final state:

jψ3i ¼
1ffiffiffiffiffiffiffiffiffi
2tþn

p
X
η¼�;i

hϕηjiijϕηinj00ioQFT†
�X

τ

jτiteiητθ
�
:

ð3Þ
Measuring the t register will project into a state jjit resulting
in the phase 2πj · 2−t which encodes either θ̂ or 2π − θ̂ with
an equivalent standard deviation: Δθ̂ ¼ 2−tþ1.

Both cases give the same estimated correlation
d
xbyb¼

sin2ðθ̂=2Þ,with standard deviation ϵ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xbybð1−xbybÞ

q
2−tþ1

(see the Supplemental Material [40], Sec. II, for details).
The overall communication complexity C is the Grover

operation’s 2ðnþ 1Þ qubit communication repeated for
2t − 1 iterations:

C ¼ 2ðnþ 1Þð2t − 1Þ ¼ O

�
log2ðNÞ

ϵ

�
; ð4Þ

where we choose t to satisfy the desired error bound.
The computational complexity is the total number
of oracle calls by Alice and Bob, which is Ccomp ¼
4ð2t − 1Þ ¼ Oð1=ϵÞ.
We note that the QBC algorithm solves the problem of

estimating xbyb, which is equivalent to computing the inner
product. The inner product of quantum states is usually
accomplished by the swap test algorithm [32,33]. However,
the swap test method costs Oðlog2ðNÞ=ϵ2Þ bits of commu-
nication, due to the requirement of repeated measurements.
Recently, Anshu et al. [33] proposed an algorithm to
estimate the inner product of two quantum states using
local quantum operations and classical communication
(LOCC). With respect to communication complexity,
neither the original SWAP test that transfers qubits, nor
LOCC that transfers bits, achieves an advantage over the
classical algorithms. The QBC algorithm achieves the
communication advantage by utilizing quantum counting
and a distributed implementation of the Grover iterator.
Estimating the Hamming distance.—The QBC algorithm

can be used to estimate the Hamming distance d between x⃗b

and y⃗b (that is, the number of positions i where xbi ≠ ybi ).
The key is to replace the oracle in Eq. (1) by

Ô0
x⃗b;y⃗b ≡ Ûn;o1

x⃗b
Ûn;o2

y⃗b
Co1;o2
NOTZ

o2Co1;o2
NOT Û

n;o2
y⃗b

Ûn;o1
x⃗b

; ð5Þ

where Co1;o2
NOT represents a Control-NOT (CNOT) gate gate

with o1 as control qubit, and Zo2 represents a σZ gate acting
on the o2 qubit. This phase oracle acts as Ô

0
x⃗b;y⃗b jiinj00io ¼

ð−1Þxbi⊕ybi jiinj00io, and the QBC scheme counts the num-
ber of indexes i such that xbi ⊕ ybi ¼ 1, returning ðd=NÞ
with the same communication complexity as for estimating
the correlation.
This result provides a quantum solution to the widely

studied gap-Hamming problem in theoretical computer
science [34,42]. Multiple proofs conclude that it is impos-
sible for a classical protocol to output the Hamming
distance d within

ffiffiffiffi
N

p
using less than OðNÞ bits of

communication [23,34,43]. By setting ϵ ¼ ð1= ffiffiffiffi
N

p Þ,
our quantum scheme performs the estimation using
O½ ffiffiffiffi

N
p

log2ðNÞ� qubits of communication, exhibiting a
square-root speedup over classical algorithms. The
Hamming distance can also be estimated via the “classical
shadows” algorithm [35] (an established quantum algo-
rithm) with communication complexity of OðlogN=ϵ2Þ
(see the Supplemental Material [40], Sec. V, for details),
which has a higher order to ð1=ϵÞ than the QBC algorithm.
As estimating the Hamming distance under communication

FIG. 1. Quantum circuits for the distributed quantum counting
or QBC scheme. H, G, and QFT† represent the Hadamard gate,
the Grover operator, and the inverse QFT, respectively. The
t-qubit register is measured after the inverse QFT. The inset
shows the biparty distributed scheme of the Grover operation,
where Uxl and Vyk are defined in Eqs. (7) and (8).
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constraints has applications in database searching [42],
networking [44], and streaming algorithms [45], the QBC
algorithm may be embedded into other diverse applications
in the future.
Least-square fitting.—When machine learning models

are used to predict the central value of Gaussian distributed
continuous variables, the common setting is a linear
output layer fðxi; λÞ ¼ λ0 þ λ⃗ · x⃗ ¼ λTx (where xi ≡
ð1; xi;1;…; xi;M−1ÞT and λ≡ ðλ0; λ1;…; λM−1ÞT) that per-
forms the least-square fitting. The model fitting is reduced
to solving a linear least-square problemXλ ¼ y, whereX ≡
ðx1;…; xNÞT is an N ×M matrix belonging to Alice and y
is Bob’s N × 1 column vector, both of which have real-
number components. The goal is to estimate λ̂ with
standard error ϵ using minimal communications. Here
we assume M ≪ N, as the number of model parameters
or attributes is usually much smaller than the number of
data points to avoid overfitting.
The least-square solution of the equation is

λ ¼ ðXTXÞ−1XTy ¼ ð1=NÞðNX†Þy, where X† is the
Moore-Penrose pseudoinverse of X, and NX† should scale
as OðN0Þ in the case of the iid dataset. As NX† can be
computed by Alice locally, only the calculation of
ð1=NÞðNX†Þy involves communication. The jth compo-
nent of λ can be represented by correlations (inner product)
λj ¼ ð1=NÞPiðNX†

jiÞyi; j ¼ 0;…;M − 1, which can be
calculated by expanding the real numbers as binary floating
point numbers. For example, following the IEEE 754
standard [46], each NX†

ji and yi can be written as binary

floating point numbers: NX†
ji ≡

P∞
k¼0 2

u−kxbkji , yi ≡P∞
k¼0 2

v−kybki , where u and v are the highest digits of
the elements of NX†

ji and yi, and xbkji and ybki are the kth
digits, respectively. Then λj can be written as

λj ¼
1

N

X∞
r¼0

2uþv−r
Xr

k¼0

XN
i¼1

xbkji y
bðr−kÞ
i

¼ 2uþv
X∞
r¼0

2−rðrþ 1Þfjr: ð6Þ

As xbkji and ybki are binary quantity, the inner product fjr ¼
½1=Nðrþ 1Þ�Pr

k¼0

P
N
i¼1 x

bk
ji y

bðr−kÞ
i can be directly esti-

mated by the QBC algorithm. The overall communication
complexity is C ¼ P

M
j¼1

P∞
r¼0 2½log2ðNÞ=ϵjr�, where ϵjr is

thestandarddeviationerroroffjr.Theinfiniteseries inr iscut
off according to the target accuracy ϵ of each component λj,
setting ϵjr to ϵjr ¼ ϵ½ð0.449=2uþvÞðrþ 1Þ2=3�2ð2=3Þr. If r is
large enough so that ϵjr > 1, the quantum algorithm is no
longer pertinent, as the number t of ancilla qubits in the
quantum phase estimation algorithm drops to less than one,
since ϵjr ¼ 2−tþ1. In that case, fjr can be simply dropped

because these fjr terms are multiplied by 2−r in Eq. (6); they
do not contribute substantially to the total error of λj.
Rewriting C in terms of the condition number κ ¼
kA−1k∞kAk∞ of the matrix A ¼ ð1=NÞXTX gives

C ¼ 11.026 × 2vþ12uM
log2ðNÞ

ϵ
¼ O

�
Mκ log2ðNÞ

ϵ

�
; ð7Þ

where theabsolutemagnitudeof2vþu inC isonthesameorder
of ðκjyj∞=kXk∞Þ (see the Supplemental Material [40],
Sec. III, for details). The total number of oracle queries
is Ccomp ¼ ðMκ=ϵÞ.
An HHL-based quantum algorithm has been previously

developed for data fitting without the communication
bottleneck [18]. The algorithm produces a quantum state
jλi≡P

j λjjji with O½ðs3κ6=ϵÞlog2ðNÞ� computational
complexity, where 0 ≤ s ≤ 1 is the sparseness of the matrix
A. As explained above, this method is, however, inefficient
in extracting classical data from the quantum states. In the
communication-restricted scenario, the HHL-based algo-
rithm requires sharing O½ðκ5M2=ϵ2Þlog2ðNÞ� qubits. For a
target statistical precision ϵ ¼ 1=

ffiffiffiffi
N

p
, the QBC based

scheme again obtains a square-root speedup from OðNÞ
to O½ ffiffiffiffi

N
p

log2ðNÞ� compared with the classical theoretical
limit. A summary of the communication complexity of
different schemes is presented in Table I.
After demonstrating that the QBC algorithm can reduce

the communication complexity toN, we numerically assess
the practical conditions when the quantum algorithm shows

102
103

104
105

106
107

108

10-1

10-2

10-3

M = 1

M = 2

M = 5

Quantum

Classical (D)  
Classical (S)

2.74

7.01

N

FIG. 2. Communication complexity phase diagram of the QBC
algorithm, deterministic, and stochastic classical algorithms in
parameter space of N, ϵ, and M. Without loss of generality, we
assume that both x⃗ and y are normalized and different compo-
nents of x⃗ are iid. The color map represents the minimal
communication complexity of the three algorithms in the loga-
rithmic scale. Black lines divide the space into three regions
denoted as Classical (D), Classical (S), and Quantum, represent-
ing the region where the deterministic classical, stochastic
classical, and QBC algorithm have the smallest communication
complexity. The black dashed line in each layer indicates the
statistical variance ϵ ¼ 1=

ffiffiffiffi
N

p
.
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an advantage compared with classical algorithms (Fig. 2).
In general, the QBC algorithm starts showing an advantage
when N ≥ 103 ∼ 104, which is a reasonable range in fitting
problems. The quantum advantage requires ϵ to be in an
intermediate level: too-small or too-large ϵ make deter-
ministic or stochastic classical algorithms have a lower
communication complexity.
The quality of a fitted model can be characterized

by the mean square error E≡ ð1=NÞðy − Xλ̂Þ2 ¼
ð1=NÞðy2 þ ŷ2 − 2yT ŷÞ. Only the calculation of ð1=NÞyT ŷ
involves communication, which can again be realized
through the correlation estimation scheme, requiring
Oðlog2ðNÞ=ϵÞ-qubit communication.
The applications of the QBC algorithm are not restricted

to fitting linear functions, as a general function of x⃗ can be
expanded as a linear combination of a series of basis
functions y ¼ P

j λjfjðx⃗Þ. The matrix Fij ≡ fjðx⃗iÞ can be
computed locally, and the problem is then reduced to the
linear fitting problem Fλ ¼ y. Furthermore, this scheme
can be used as the linear output layer of a neural network in
high-expressivity machine learning models [22].
Softmax classifier.—Besides fitting continuous data, the

QBC scheme can also be used for fitting discrete labels
(classification). A common output layer of classification
models is the softmax classifier. The basic scenario is that the
data of Bob yi has discrete possible values in a set of classes
Y ¼ fc1; c2;…; cqg. Themodel outputs the probabilities for
a given data point x⃗ to be in each class Pðy ¼ cjjx;ΛÞ with
ansatz Pðy ¼ cjjx;ΛÞ ¼ ðeλjTx=Pl e

λl
TxÞ, where the coef-

ficient matrix is Λ≡ ðλ0;…; λqÞ. The cross-entropy loss
function LðΛÞ≡ −

P
ij 1yi¼cj log2 Pðyi ¼ cjjxi;ΛÞ is to be

minimized, where 1y¼cj is a 1 when y ¼ cj and 0 otherwise.

λ̂ can be obtained from a set of equations:

XN
i¼1

xie
λ̂Tj xiPq

k¼1 e
λ̂Tk xi

¼
XN
i¼1

1yi¼cjxi; j ¼ 1; 2;…; q: ð8Þ

The equation’s right-hand side can be estimated as the inner
product between 1y¼cj and the vector x following our
previous scheme, with communication complexity C ¼
OðqMlog2ðNÞ=ϵÞ (see the Supplemental Material [40],
Sec. IV, for details). As the left-hand side of the equations
does not involve y, the equations can be solved without any
further communication. We note that logistic regression for
the two-class classification problems can be derived as a
special case of the softmax regression scheme with q ¼ 2.
We can further quantify the communication complexity

of evaluating the quality of a fitted classifier. The quality
can be determined by comparing the model outputs
ŷi ¼ argmaxcjPðyi ¼ cjjxi;ΛÞ and labels yi on the training
or testing dataset. Alice and Bob encode ŷi and yi into
Nq-bit strings b̂ij ≡ 1ŷi¼cj and bij ≡ 1yi¼cj , respectively.
Then the correctness of the model can be determined by

estimating the Hamming distance d between b̂ and b as
1 − ðd=2NÞ (as each error in classification contributes a
two-bit difference). The communication complexity is
C ¼ Oðlog2ðNqÞ=ϵÞ, showing no dependence on dimen-
sion M and insensitive dependence on the number of
classes q.
Conclusion and outlook.—In this work, we developed a

distributed Grover-quantum counting-based scheme that
performs distributed least-square fitting or softmax regres-
sion with a communication complexity Oðlog2ðNÞ=ϵÞ, a
square-root improvement over classical algorithms. The
quantum advantage comes from reduced communication
requirements by encoding information in the phases of a
superposition state, a unique attribute of quantum systems.
Some previous quantum schemes [18,29,32] encode the
information in the weight of superposition: as extracting the
superposition weight by state tomography also requires
Oð1=ϵ2Þ repetitions of state preparation and measurements,
these methods do not show significant advantage in
deriving classical fitting parameters compared with classical
schemes. The core of our algorithm, a communication-
efficient “quantum bipartite correlator,” is expected to be
useful in other communication and information-processing
contexts as well. This method is expected to preserve
privacy between two parties. Neither Alice nor Bob can
determine the other party’s attributes of a specific data point,
as only the statistical average is encoded in the phase during
communication. This meets the security requirement of
distributed computing [47].
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I. DETAILS OF THE QUANTUM COUNTING
SCHEME

At the core of our algorithm is the estimation of the
correlation

f = xbyb =
1

N

∑
i

xbi y
b
i (1)

between two bit-strings x⃗b and y⃗b, distributed across two
parties. Without loss of generality, we assume N = 2n,
since for any bit string with arbitrary length N , one can
construct a new bit string with N ′ = 2⌈logN⌉ by ap-
pending zeros without changing the inner product. At
first, Alice prepare an equally weighted n-qubit state:

|ψ0⟩n = (H|0⟩)⊗n = 1√
N

∑N
i=1 |i⟩n. Alice then applies

the Grover operations to this initial state with an oracle
Ox⃗b,y⃗b realized by the following communication scheme.
For a given input state |ψ⟩n =

∑
i ci|i⟩n, Alice attaches

a single qubit |0⟩o1 to |ψ⟩n and applies a unitary trans-

formation Ûn,o1
xb to qubits n and o1 according to the bit

string xbi , where Ûn,o1
xb |i⟩n|s⟩o1 = |i⟩n|s ⊕ xbi ⟩o1 . This

yields the state:

|ψ1⟩ =
N∑
i=1

ci|i⟩n|xbi ⟩o1 . (2)

Alice sends this (n+1)-qubits string to Bob, and
Bob appends another qubit |0⟩o2 and applies the

unitary transformation Ûn,o2
yb Co1,o2

Z Ûn,o2
yb using his bit

string yb, where Ûn,o2
yb acts similarly to Ûn,o1

xb . As

Ûn,o2
yb Co1,o2

Z Ûn,o2
yb |i⟩n|s⟩o1 |0⟩o2 = (−1)y

b
i ∧s|i⟩n|s⟩o1 |0⟩o2 ,

the |0⟩o2 qubit is decoupled from other qubits both be-
fore and after this operation, so the operation can be
considered as a unitary transformation acting on |ψ1⟩:

|ψ2⟩ = Ûn,o2
yb Co1,o2

Z Ûn,o2
yb |ψ1⟩ =

N∑
i=1

(−1)x
b
i y

b
i ci|i⟩|xbi ⟩.

(3)
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Bob then sends the n+1 qubits |ψ2⟩ back to Al-

ice. By applying the unitary transformation Ûxb

again, Alice obtains the state |ψ3⟩ = Ûn,o1
xb |ψ2⟩ =

(
∑N

i=1(−1)x
b
i y

b
i ci|i⟩n)|0⟩o1 , which decouples the attached

qubit and realizes the oracle Ox⃗b,y⃗b that adds a phase of

π at position i where xbi y
b
i = 1. The Grover operation

is then completed by Alice through the standard proce-
dure [1]: |ψ4⟩ = H⊗n(2|0⟩n⟨0|n−I)H⊗n|ψ3⟩. The overall
Grover operator is thenGx⃗b,y⃗b = (2|ψ0⟩n⟨ψ0|n−I)Ôx⃗b,y⃗b ,
yielding

Gx⃗b,y⃗b

N∑
i=1

ci|i⟩n = (2|ψ0⟩⟨ψ0| − I)

N∑
i=1

(−1)x
b
i y

b
i ci|i⟩n.

(4)
The state |0⟩o1 is again omitted as it is decoupled both
before and after the transformation. In the quantum
counting scheme, the Grover operation acts iteratively
on ψ0. Note that ψ0 can be decomposed as |ψ0⟩ =√
1− f |αn⟩+

√
f |β⟩n, where |β⟩n = 1√

Nf

∑
i,xb

i y
b
i =1 |i⟩n,

|α⟩n = 1√
N(1−f)

∑
i,xb

i y
b
i =0 |i⟩n, and f is defined as the

mean of correlation of x and y in Eq. (1). In the subspace
spanned by |α⟩n and |β⟩n, Gx⃗b,y⃗b is then represented as
a simple 2D rotation matrix

Rθ =

[
cos θ − sin θ
sin θ cos θ

]
(5)

with rotation angle

θ = 2arcsin
√
f. (6)

As Rθ has two eigenvalues e±iθ, one can use the quan-
tum phase estimation (QPE) scheme to derive θ and then
calculate f .
The QPE scheme is implemented through a set of con-

secutive controlled Grover operations, as shown in Fig. 1.
A t-qubit register is first prepared in an equal superpo-
sition state. The quantum state of the overall system is
|ψinit⟩ = 1

2t/2
(|0⟩+ |1⟩)⊗t

(√
1− f |α⟩n +

√
f |β⟩n

)
. Alice

then applies the controlled Grover operation using the
circuit shown in the inset of Fig. 1, where the Uxb and
phase gate 2|0⟩⟨0|−I are replaced by the controlled gates
in the Grover search scheme we described above. After-
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FIG. 1. Quantum circuits for the biparty quantum counting
scheme. H, Gx⃗b,y⃗b , and FT+ represent the Hardmard gate,
the grover operator, and the inverse QFT, respectively. The
t-qubit register is measured after the inverse QFT. The inset
shows the biparty scheme of the grover operation, where U1,2

x⃗b

is the phase oracle.

ward, the state becomes

|ψ′⟩ = 1

2t/2+1

2t−1∑
τ=0

[e−iθ(τ+1/2)|τ⟩t(|α⟩n + i|β⟩n)+

eiθ(τ+1/2)|τ⟩t(|α⟩n − i|β⟩n)].

(7)

The inverse quantum Fourier transformation gives

|ψf ⟩ =
1

2t+1

2t−1∑
ν=0

1− e−i(2tθ+2πν)

1− e−i(θ+2πν/2t)
e−iθ/2|ν⟩t(|α⟩n + i|β⟩n)+

1− ei(2
tθ−2πν)

1− ei(θ−2πν/2t)
eiθ/2|ν⟩t(|α⟩n − i|β⟩n).

(8)
When Alice measures the t-qubit state |·⟩t, the probabil-
ity of obtaining |ν⟩t is

Pν =
1

22t+1

( sin 2t X+

2

sin X+

2

]

)2

+

(
sin 2t X−

2

sin X−
2

)2
 , (9)

where X± = ±θ + 2πν/2t and ν is a binary integer
νt−1νt−2 · · · ν0. Alice’s measurement outcome on the
state |·⟩t is either ν̂ ≃ ν1 or ν̂ ≃ ν2, and Alice can obtain

θ̂ or 2π− θ̂ from the result. Considering the range of θ is
[0, π] according to the definition in Eq. (6), Alice does not
need to distinguish these two outcomes. The correlation
f is then estimated as:

f = sin2
θ

2
≃ sin2 (π

ν̂

2t
). (10)

The distribution of f during a quantum counting mea-
surement for different accuracy parameters t is shown in
Fig. 2a.

Up to now, we described the procedure to compute f =
xy, which is only one ingredient to obtain the correlation
ρx,y. As ȳ can be computed by Bob and sent to Alice with
communicate of O(1), the communication complexity to

obtain ρ̂ = xbyb−x̄bȳb√
x̄b(1−x̄b)ȳb(1−ȳb)

is approximately equal to

that to finding f .

II. CORRELATION AND HAMMING
DISTANCE ESTIMATION

A. Estimation error and communication
complexity

The error in estimating the correlation f = xy can be
obtained from the distribution (9), which sets the stan-
dard deviation of θ is ∆θ = 2−(t−1). This error propa-
gates through to the correlation:

∆f =
df

dθ
∆θ =

√
f(1− f)2−(t−1) . (11)

We then evaluate the communication complexity. Each
Grover operation communicates 2⌈logN⌉+2 qubits, and
the scheme repeats the Grover operation 2t−1 times. To
estimate the correlation, Bob needs to send Alice ȳ with
t′ bits to keep t’-digits accuracy. the overall communica-
tion complexity is then C = 2(⌈logN⌉ + 1)(2t − 1) + t′.
As the communication complexity of t′ does not depend
on N and has only logarithmic relation with ϵ, it is small
compared with the overall communication complexity C.
Therefore, we can assume that t’ is sufficiently large with-
out significantly increasing C, so we do not need to con-
sider the rounded error from ȳ (and similarly for x̄).
The error (standard deviation) of the correlation is

then

ϵρ =
∆f√

x̄(1− x̄)ȳ(1− ȳ)
=

√
f(1− f)2−(t−1)√
x̄(1− x̄)ȳ(1− ȳ)

. (12)

Substituting the error into the communication complex-
ity and keeping the leading order, we obtain:

C ≃
4
√
f(1− f)√

x̄(1− x̄)ȳ(1− ȳ)

logN

ϵρ
. (13)

The coefficient
4
√

f(1−f)√
x̄(1−x̄)ȳ(1−ȳ)

does not depend on N and

is usually ∼ O(1) (as the extreme case when x̄ or ȳ ap-
proximates 1 or 0 is typically not of interests). Thus, the

overall communication complexity is C = O( logN
ϵρ

).

In the scenario of statistical inference, we assume we
have independent identically distributed (iid) data points
(xi, yi), and we can set the number of data points N ac-
cording to our target accuracy. The overall accuracy of
the inferred correlation is the combination of the error
from the quantum counting ϵq ∼ 2−t (as derived above)
and the statistical error ϵs from the finite number of



3

data points. The statistical error is well known to be
ϵs ∝ 1√

N
, so for an overall target accuracy ϵ, one will re-

strict both ϵq and ϵs within O(ϵ), which means sampling
N ∝ 1

ϵ2 data points. The communication complexity

then becomes C = O(− log ϵ
ϵ ). The query complexity (the

number of oracle calls) is 4 in each Grover operation, so
the overall query complexity is 4(2t − 1) = O( 1ϵ ). The
swap test in communication scenario requires logN -qubit
communication for each measurement and requires O( 1

ϵ2 )
repetitions to get the target accuracy, so the overall com-
munication complexity is O(− log ϵ

ϵ2 ) substituting N ∝ 1
ϵ2

into the expression.
In the typical scenario of the gap-Hamming problem,

the length of bit string N is given and the target accuracy
of the Hamming distance is

√
N . Then, we require that

the estimation of 1
N

∑
i xi ⊕ yi has an error ϵ = 1√

N
,

which gives a communication complexity of O(
√
N logN)

when substituting ϵ with 1/
√
N . Similarly, the query

complexity is 4 times of the number of Grover operations,
which is O(

√
N).

B. Lower bound

In the previous section we derived the quantum com-
munication complexity based on typical (or worst-case)
bit strings x, y. In particular, Eq. (13) shows that when
the number of bits N is fixed, the communication com-
plexity is determined by the number of qubits t that
stores the correlation result at the end of the algorithm.
The number 2t − 1 of qubit transmissions cannot be re-
duced when using the quantum counting algorithm. This
number t and the property of the data x, y, xy, will de-
termine the standard deviation of the final estimation.
Neglecting pathological cases of the data set (x, y either
zero or one), and without prior knowledge of the data set,

one needs to assume
√
xy(1− xy) is on the order of O(1),

as stated above. Then the procedure to solve the prob-
lem will be: (1) Based on the required ϵ, one calculates t
from t = log(1/ϵ); (2) Run the quantum counting based
algorithm and obtain the final result. This standard pro-
cedure achieves the error and communication complexity
proved above, Eq. (13,12).

There are however special cases that when the data
set is such that xy is close to zero or one. In this case, if
there’s prior knowledge of this property, one only needs
t = 2

3 log
1
ϵ qubits to store the final result and the commu-

nication complexity will be O( logN
ϵ2/3

). Here we show the
derivation of the case xy is close to 0, while the deriva-
tion and result of xy → 1 is the same because of the
symmetry between xy and 1− xy.
Eq. (13) and (12) show that as xy is close to zero, the

standard deviation of the final result will decrease. How-
ever, with maximum t digits precision, the lower bound of
the final result is xy < 2−t−1 in the case that all the first
t digits of xy are zero. Therefore, with t digits to store
the final result, the standard deviation of the correlation

can reach the lower bound by replacing xy ≈ 2−t−1, as
shown in Eq. (14)

ϵ ≥
2
√
2−t−1(1− 2−t−1)√
x(1− x)y(1− y)

2−t ∼ o(2−
3
2 t). (14)

By Replacing the 2t term in Eq. (13) with Eq. (14),
we obtain the communication complexity for this spe-
cial case: C ∼ O( logN

ϵ2/3
), which represents the minimum

communication complexity that this algorithm can reach.
However, when solving the linear regression problem

for float numbers, the assumption that xy is close to zero
or one is no longer valid since the digits of the binary
expansion of a float number can be regarded as uniformly
distributed. Therefore, there is not such a lower bound
for the linear regression problem as for the correlation of
bit strings.
Because the lower bound can only be reached for spe-

cial cases of the data set (and when prior information
about it is available), the communication complexity for
the general case is as previously stated. We note that if
no prior information is available, one might still attempt
to solve the problem with a smaller t and verify that
indeed xy is small or close to 1.
In the main text, we compared classical algorithms

that transfers qubits and quantum algorithms that trans-
fers eithor qubits or classical bits. Here in table. I, we
clarify such distinction between different algorithm and
the communication channels.

III. DETAILED ANALYSIS OF LEAST-SQUARE
FITTING

We first derive the overall communication complexity
equation (7) in the main text. From equation (6) in the
main text, the error of λj , ϵj , is:

ϵ2j = 22(u+v)
∑
r

(r + 1)2e−2rϵ2jr . (15)

The overall communication complexity C is the summa-
tion of Cjs for all bit-string inner product estimation:

C =
∑
jr

Cjr ≃
∑
j

∞∑
r=0

4
√
fjr(1− fjr)

logN

ϵjr

≤
∑
j

∞∑
r=0

2
logN

ϵjr
.

(16)

The optimal strategy for communication is to select pos-
itive real numbers ϵjr subject to the restriction that all
ϵj in Eq. (15) are smaller than a given error bound ϵ, and
minimize Eq. (16). This problem can be solved by the
Lagrange multiplier method, yielding

ϵjr = ϵ
0.449

2u+v(r + 1)2/3
2

2
3 r ; (17)
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TABLE I. Distinction between algorithms and communication channels. ∗: LOCC (local operation with classical communica-
tion) proposed by Ref. [2].

Algorithm to calculate inner product (correlation) of two bit strings

Quantum algo.
Encode as coefficient Encode as phase

Quantum Comm. SWAP-test (O(logN/ϵ2)) Quantum counting (O(logN/ϵ))

Classical Comm. LOCC∗(max
{
O(logN/ϵ2), O(

√
N logN/ϵ)

}
) None

Classical algo. Classical Comm. O(1/ϵ2) (lower-bound)

FIG. 2. Illustrative examples of the numerical results of the quantum counting algorithm. (a) Probability distribution function
of f from QPE for different values of t. (b) Simulation of multiple linear regression. We set the value of t for the first digits
as 12 and N = 1024. The data points are generated through the iid distribution P (X1, X2, Y ) = P (X1)P (X2)P (Y |X1, X2),
where X1, X2 follow an uniform distribution U(0, 1), and P (Y |X1, X2) follows a normal distribution N (k1X1+k2X2+b, ϵ2I2×2)
with k1 = 0.4, k2 = 0.3, b = 0.2, ϵ = 0.02. (c) Numerical simulation of the distributed quantum softmax regression scheme.
Raw data points for the logistic regression: the input x⃗ is a two-component real-number vector, and the output y is a single
binary number classifying the data points into two categories 0 (black) and 1 (grey). The fitted classifier that determines the
probability Py=1(x⃗) shown as a contour color plot. The data points are also generated by an iid distribution P (X1, X2, Y ) =
P (X1)P (X2)P (Y |X1, X2), where X1, X2 have the same distribution with (b), and P (Y = 1|X1, X2) = 1

2
erfc( k1X1+k2X2+b

ϵ
)

with k1 = 0.4, k2 = 0.3, b = −0.35, ϵ = 0.02.

C = 11.026× 2u+v+1M
logN

ϵ
. (18)

The factor 2u+v is from the fact that the error ϵ is propor-
tional to the magnitude of y and inversely proportional
to the magnitude of x⃗. Without loss of generality, one
can normalize all features xj and y into the range [0, 1).
This directly gives v = −1 and 0 ≤ |x⃗i|∞ < 1, where
| · |∞ represents the infinity norm of a vector. We then
derive the upper bound of 2u:

2u =
N

2
max
ij

X†
ji =

1

2
max
ij

[(
1

N
XTX)−1

jk X
T
ki]

=
1

2
max

i
|( 1
N

XTX)−1 · x⃗i|∞

≤ 1

2
∥ (

1

N
XTX)−1 ∥∞ max

i
|x⃗i|∞

≤ 1

2
∥ (

1

N
XTX)−1 ∥∞=

κ

2 ∥ ( 1
NXTX) ∥∞

= O(κ)

(19)

where ∥ · ∥∞ represents the infinity norm of a matrix, and
κ ≡∥ 1

NXTX ∥∞∥ ( 1
NXTX)−1 ∥∞ is the condition num-

ber of the correlation matrix 1
NXTX. In the last line, we

use the fact that ∥ 1
NXTX ∥∞= maxj

∑
k xjxk = O(1),

as the magnitude of feature x⃗ is normalized. For example,
if each component of x⃗ follows iid uniform distribution,
then ∥ 1

NXTX ∥∞= 1/4 and 2u = 2κ. Therefore, the
communication complexity

C = 11.026×O(κ)M
logN

ϵ
= O(

κM logN

ϵ
). (20)

For HHL based least square fitting which requires one-
time log2(N) qubit transfer from Bob to Alice, and then
Alice can locally estimate y′ = XT y and (XTX)−1, and

produce a quantum state |λ⟩ =
∑M

j=1 λj |j⟩. Here the er-
ror ϵ is defined as the distance between this result and the
exact solution, which is equivalent with our definition.
Such a results requires κ5 times of repetition, which yields
the total number of qubits transfer to be O(κ5 log2(N)).
However, when one needs classical numbers as an out-
put, M2/ϵ2 times of repeated measurement will increase
the communication complexity to O(M2κ5 log2(N))/ϵ2.
For classical algorithms solving linear fitting problem, ac-
cording to the definition of condition number we can ob-
tain the relation between the precision of data y, ϵy and
the error of each component in λ, ϵ:

κ ≡ ∥ δλ ∥∞
∥ λ ∥∞

/
∥ δy ∥∞
∥ y ∥∞

=
ϵ

|λj |maxϵt
, (21)
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where λj is the maximum component in λ. Considering
|λj |max ≤ |ymax| ∥ (XTX)−1XT ∥∞< κ, the transferred
data precision should be ϵt >

ϵ
κ2 . Therefore, the total

bit for single data point yi is log2(1/ϵt) < log2(κ
2/ϵ).

If the covariance of x⃗ is ill-conditioned, which means
the matrix has a large condition number κ, this will
lead to high communication complexity. However, this is
from the problem itself regardless of the fitting scheme.
In this case, a principle component analysis (PCA) [3]
should be conducted locally by Alice: Ucov(x⃗, x⃗)UT =
diag(d1, d2, · · · , dMx

). Then, all data points x⃗i are re-
placed by x⃗′i = Ux⃗i before being used for model fitting.
As the PCA only involves Alice’s information, it can be
conducted with arbitrary accuracy without increasing the
communication complexity. The components of x⃗′ corre-
sponding to the eigenvalues di close to zero are decou-
pled from other components. Then, Alice can release the
accuracy requirement for these components by setting
κmax = 1/dmin, where dmin equals the smallest but not
close to zero diagonal components.

To provide readers an intuitive example, the quan-
tum counting scheme for linear and softmax regression
is numerically simulated. The simulated multiple lin-
ear regression is shown in Fig. 2b. The fitted plane goes
through the central region of the data points distribution
as expected, validating that the scheme performs accu-
rate linear fitting. Similarly, the softmax regression is
shown in Fig. 2c, where a classifier is obtained to classify
input data points.

IV. DETAILS OF SOFTMAX REGRESSION

The error in estimating Λ in softmax regression is de-
termined by the numerical sensitivity in Eq. (8) in the
main text. As the model does not change if we subtract
from all λj an arbitrary vector u, we can set λq = 0
without loss of generality. The equations then become

N∑
i=1

xie
λT

j xi

1 +
∑q−1

k=1 e
λT

k xi
=

N∑
i=1

1yi=cjxi, j=1, . . . , q − 1.

(22)
The error from quantum counting appears on the right-
hand side of the equation as ϵjm (for the mth vector
component of the jth equation), and the overall commu-
nication complexity is:

C =
2u+1

(1− 2−2/3)2

∑
jm

logN

ϵjm
, (23)

where u is from the expansion of xk = 2u
∑∞

l=0 2
−lxkl.

The error of
∑N

i=1 1yi=cj then propagates to λj through
Eq. 22. The relation of δλj with ϵjm can be derived by
the Taylor expansion of Eq. 22 around its solution:

∂λk

[
N∑
i=1

xie
λT

j xi

1 +
∑q−1

k=1 e
λT

k xi

]
δλk ≡ NAjm,knδλk

= δ

(
N∑
i=1

1yi=cjxi

)
,

(24)

where we introduced the matrix Ajm,kn,

Ajm,kn =
1

N

q−1∑
k=1

∑
i

xi,mx
T
i,ne

λT
j +λT

k
2 xi

1 +
∑q−1

l=1 e
λT

l xi

×

[
(1 +

q−1∑
l=1

eλ
T
l xi)δjk − e

λT
j +λT

k
2 xi

]
,

where xi,m is the mth component of the ith data point

xi. Defining gjm = 1
N

∑N
i=1 1yi=cjxi,m and λkn as the

nth component of λk, we have:

Ajm,knδλkn = δgjm. (25)

The overall communication complexity with a bounded
relative error of the vector g is then obtained through
the Lagrange multiplier scheme:

C =
2u+1(qM)3/2

(1− 2−2/3)2|g|
logN

ϵg
≃ O(

Mq logN

ϵg
). (26)

In the last step, we utilize that the 2-norm of a qM -
dimension vector g has an order of O((qM)1/2). As the
relative error of λ is related to the relative error of g by:

ϵλ ≤ κϵg, (27)

where κ is the condition number of the matrix |A|, we
then have the communication complexity as a function
of the relative error of λ:

C = O(
Mqκ logN

ϵλ
). (28)

V. CLASSICAL SHADOWS ALGORITHM FOR
GAP HAMMING PROBLEM

The Hamming distance of two distributed bit strings
can also be estimated via the classical shadows algorithm.
The procedure is as follows:
1. Alice and Bob encode their bit strings xi

and yi as |ψx⟩ = 1√
N

∑N
i=1(−1)xi |i⟩ and |ψy⟩ =

1√
N

∑N
i=1(−1)yi |i⟩, respectively.

2. Alice sendsM copies of his states ψx to Bob, costing
communication complexity of O(M logN).
3. Now, Bob has a known state |ψy⟩ and an unknown

state |ψx⟩ from Alice. He can use the classical shadows
algorithm to estimate their inner product ⟨ψx|ψy⟩ using
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M = O( 1
ϵ2IP

) copies of |ψx⟩, as discussed in [2] and elab-

orated in [4]. The estimated inner product is:

⟨ψx|ψy⟩ =
1

N

N∑
i=1

(−1)xi+yi =
1

N

N∑
i=1

(1−2xi⊕yy), (29)

with an error of ϵIP .

4. The estimated Hamming distance d can then be

calculated as:

d

N
=

1

N

N∑
i=1

xi ⊕ yy =
1

2
(1− ⟨ψx|ψy⟩) (30)

The overall communication complexity of this scheme
is M logN = O( logN

ϵ2IP
) = O( logN

ϵ2 ), as we showed in the

table in the main text. Here, the ϵ represents the error
of d/N , which is 1

2ϵIP , one half of the error of the inner
product.
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