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Recent studies have reported the experimental discovery that nanoscale specimens of 
even a natural material, such as diamond, can be deformed elastically to as much as 
10% tensile elastic strain at room temperature without the onset of permanent dam-
age or fracture. Computational work combining ab  initio calculations and machine 
learning (ML) algorithms has further demonstrated that the bandgap of diamond can 
be altered significantly purely by reversible elastic straining. These findings open up 
unprecedented possibilities for designing materials and devices with extreme physical 
properties and performance characteristics for a variety of technological applications. 
However, a general scientific framework to guide the design of engineering materials 
through such elastic strain engineering (ESE) has not yet been developed. By combining 
first-principles calculations with ML, we present here a general approach to map out the 
entire phonon stability boundary in six-dimensional strain space, which can guide the 
ESE of a material without phase transitions. We focus on ESE of vibrational properties, 
including harmonic phonon dispersions, nonlinear phonon scattering, and thermal con-
ductivity. While the framework presented here can be applied to any material, we show 
as an example demonstration that the room-temperature lattice thermal conductivity 
of diamond can be increased by more than 100% or reduced by more than 95% purely 
by ESE, without triggering phonon instabilities. Such a framework opens the door for 
tailoring of thermal-barrier, thermoelectric, and electro-optical properties of materials 
and devices through the purposeful design of homogeneous or inhomogeneous strains.

phonon stability boundary | thermal conductivity | elastic strain engineering |  
machine learning | first-principles simulation

The fundamental characteristics of semiconductors, such as electrical and thermal transport 
properties, can be modified through the controlled introduction of elastic strain (1–3). 
With an ever-accelerating search for improved electrical and thermal characteristics of 
devices, tuning phonon properties through mechanical strains offers a powerful pathway 
to enhance the performance of microelectronic and optoelectronic devices. Just as the 
properties of silicon can be spatially tuned on the same single-crystalline wafer by 
variable-concentration chemical doping (4), it is also possible to envision the tailoring of 
physical properties through the rational design of inhomogeneous elastic strain distribution 
to achieve variable bandgap (5), carrier mobility (6), and thermal barrier properties on 
the same chip. In this work, we consider elastic strains that are an order of magnitude 
larger than those hitherto adopted by the semiconductor industry, which typically involve 
strains on the order of one percent (7–9).

There exists an ideal strain limit (εideal), which is the theoretical upper bound for revers-
ible elastic deformation for a perfect crystal at the absolute zero temperature. Beyond εideal, 
the onset of relaxation by phonon instability at either k = 0 (Γ point) or finite-k would 
occur, which would inevitably lead to fracture, plasticity, or phase transition (10). In actual 
experiments, both zero-temperature and defect-free conditions are impractical, and the 
fact that every real material must have a surface, which is a defect, already renders εideal 
unattainable. By including the effects of temperature, microstructure, and defects present 
in materials, the more conservative εreal boundary may be found, and the six-dimensional 
(6D) strain space circumscribed by the five-dimensional (5D) εreal boundary is a subset 
of that by εideal.

A large dynamic range for εreal has been discovered in recent studies in nano-scale 
materials at room temperature without the onset of plasticity, phase transformation, or 
fracture for time periods long enough for applications. Even for the hardest natural crys-
talline diamond, mechanical bending experiments involving single-crystal nanoscale nee-
dles have shown (11) that local elastic tensile strains of nearly 10% can be achieved prior 
to the onset of fracture, whereas nanoscale polycrystalline diamond could be elastically 
strained to nearly 4%. Similar magnitudes of elastic strains have subsequently been 
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demonstrated in both synthetic and natural diamonds in the form 
of nanoneedles and nanowires (12, 13), and micro-bridged arrays 
(13). This is possible at the nanoscale, where small characteristic 
dimensions and low defect populations in pure diamond make it 
possible to approach εideal during mechanical deformation (2). 
Silicon in the nanowire form can withstand 15% uniaxial tension 
without the onset of plasticity (14), which is more than one order 
of magnitude higher than that currently employed by the semi-
conductor industry for its strained silicon technology. The reali-
zation of ultra-large elastic deformation in nanoscale dimensions 
of semiconductor materials, together with the ultra-large levels of 
thermal conductivity in certain semiconductors such as diamond, 
has created opportunities for the custom design of performance 
characteristics through elastic strain engineering (ESE) (15). These 
provide pathways to realizing a dynamic and broad range of phys-
ical properties, i.e., from electronic insulator to conductor (16), 
or from thermal conductor to thermal barrier, which may be 
achieved on the same single crystal by varying the spatial distri-
bution of strain (17).

In this work we focus on the upper bound of theoretical strain, 
εideal, which envelops the practically attainable εreal boundary. The 
mapping of the εideal hypersurface necessitates an evaluation of 
phonon stability within the six-dimensional (6D) strain space 
represented by the elastic strain tensor ε ≡ (ε11, ε22, ε33, ε23, ε13, 
ε12). In the low-temperature and defect-free limit, the mechanical 
stability of the crystal is preserved so long as the frequency ω of 
each phonon mode ν is real (non-imaginary) for all wave vectors 
k throughout the Brillouin zone. If this condition is violated, 
energy reduction can be achieved by following the eigenvector of 
the unstable phonon (in unit cell if Γ-point soft phonon, and in 
an enlarged supercell if finite-k soft phonon), a barrierless relax-
ation that can happen even at T = 0 K. εideal can thus be regarded 
as a strain hypersurface in 6D that corresponds to the onset of 
non-real phonon frequencies for arbitrary k and ν. Ordinarily, 
computation of phonon properties directly comparable with 
experimental data from neutron or X-ray inelastic scattering 
requires first-principles calculations based on the finite displace-
ment method or density functional perturbation theory (DFPT) 
(18). To outline the intractable computational burden of this task, 
consider the phonon band structure ων(ε; k), which is a function 
of wave vector k and crystal strain ε where k ∈ ℝ

3 , � ∈ ℝ
6 , with 

nine dependent variables (10 when including the discrete phonon 
branch index ν), for an arbitrary bulk semiconductor crystal. 
Mapping the phonon band frequency space with a tabulation 
approach would then entail many millions of first-principles cal-
culations, with additional computational costs incurred to include 
ESE effects on lattice thermal conductivity.

To overcome these difficulties, we present a general method 
that combines machine learning (ML) and ab initio calculations 
to identify the theoretical ESE upper bound that defines the pho-
non stability boundary and εideal. This method invokes artificial 
neural networks (NNs) to predict, within a reasonable degree of 
accuracy, material properties as a function of strain while utilizing 
minimally required input data. In analogy with the yield surface 
commonly used to describe plastic deformation of metallic mate-
rials, we visualize the phonon stability boundary of a bulk semi-
conductor crystal in the elastic strain εideal or stress space. We 
demonstrate the potential of our method for engineering phonon 
band structure, phonon density of states (DOS), and thermal 
transport properties. Exemplifying the potential for semiconduc-
tor performance optimization afforded by our method, we demon-
strate that the lattice thermal conductivity of diamond can span 
from sub-100 W·m−1·K−1 up to 6,000 W·m−1·K−1 solely through 

mechanical strain. The general method developed in this work, 
with specific demonstrations of its application for the case of dia-
mond, is thus seen to provide a broad framework to guide ESE 
of materials to tailor their physical properties, such as phonon 
band structure and thermal conductivity.

Results

ML Phonon Band Structure and DOS. ML methods have become 
indispensable for solving problems with extensive parameter 
spaces that are challenging to tackle through conventional 
analytical or numerical means. In the domain of our concern, 
this challenge manifests prominently in the modeling of phonon 
dispersion as a function of strain tensor. To address this, the 
present work employs two ML models: a feed-forward neural 
network (FNN) and a convolutional neural network (CNN). In 
the study of electronic properties, FNNs have been demonstrated 
to provide high accuracy for single-value regression tasks, such as 
predicting the scalar-valued electronic bandgap (5). By contrast, 
drawing an analogy between dispersion relations and RGB pixel 
color encoding of digital images, CNN can be chosen as a base 
architecture to fit band structure. CNNs were found to excel at 
learning multiple energy bands simultaneously with the inclusion 
of “intra/inter-band correlation” and to achieve state-of-the-art 
band curvature accuracy (6).

Two generic NN training processes to learn strain-dependent 
phonon-related properties are shown in Fig. 1. Both processes take 
the elastic strain state ε as input to learn phonon dispersion and 
DOS g (�; �) . In contrast to the FNN method employed for 
learning six bands (three acoustic and three optical) separately, a 
CNN method applies 3D convolution in reciprocal space and 
learns the band structure ��(�; k) in its entirety. Similarly, CNN 
applies 1D convolution in the frequency domain to learn the 
DOS, which is not feasible in the FNN model. The phonon sta-
bility can either be directly machine-learned as a classification task 
(indicated by the orange arrow in Fig. 1A) or predicted by post-
processing the as-trained phonon DOS or band structure FNN/
CNN models. The results yielded from learning ~15,000 strain 
data for the phonon stability boundary, band structure, and DOS 
in the general 6D strain space and two 3D subspaces are summa-
rized in Table 1. A detailed description of first-principles data 
acquisition and the NN architecture can be found in Method.

Analysis of the Phonon Stability Boundary. The 6D strain space 
consists of mixed deformation states that combine standard 
hydrostatic, uniaxial, and pure shear strains. Visualization of this 
space is important as it allows for the delineation of the phonon 
stability boundary, defining an upper bound for the “safe” working 
limit of applied strains.

We trained ML models to reveal the stability boundaries in two 
3D subspaces by constraining three of the six strain components. 
Fig. 2 A and B demonstrates the stability boundary in pure com-
pressive and tensile strain subspace (ε23 = ε13 = ε12 = 0). Fig. 2 C 
and D shows the stability boundary in the shear strain subspace 
(ε11 = ε22 = ε33 = 0). Similar to the isosurfaces used to assess the 
boundaries of bandgap modulation by recourse to ESE in our 
previous work (5, 6), the present study deals with phonon stability 
boundary signifying the onset of imaginary phonon frequencies 
for a given strain state on the stability boundary at critical wave 
vectors kc.

In general, there are three types of the critical wave vector in 
the strain spaces considered. Following the notation rules intro-
duced in SI Appendix, Notation, they can be classified as
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•	 The Γ type: kc = (0, 0, 0)
•	 The “Δ” type: kc = (ξ, ξ, 0), (ξ, 0, ξ), or (0, ξ, ξ), where 
0 < 𝜉 < 0.5

•	 The “L” type: kc = (0, 0, 0.5), (0, 0.5, 0), or (0.5, 0, 0)

In Fig. 3, the general phonon stability boundary, a 5D surface 
denoted as f

(

�11, �22, �33, �23, �13, �12
)

= 0   , can be partially 
visualized through pair-plot slices of the 6D space. The six 
pairwise-normal-strain subfigures in the top left corner can be 
thought of as origin-crossing vertical or horizontal cuts of the 3D 
volume in Fig. 2 A or B, while the six pairwise-shear-strain sub-
figures in the lower right corner can be thought of as origin-crossing 
vertical or horizontal cuts of the 3D volume in Fig. 2 C or D. 
Crystal deformation symmetries were enforced when learning the 
stability boundary through ML models. When the strain state is 
composed of a single strain type (either normal-normal or 
shear-shear), the stability boundary has higher symmetry. The 
normal-normal strain stability boundaries on the top 3 × 3 left 
corner are phonon boundary surfaces with 2 mm symmetry, the 

shear-shear stability boundaries on the lower 3 × 3 right corner 
are quatrefoils with 4 mm symmetry, while all other mixed strain 
states such as the �12−�33 normal-shear pair have only m sym-
metry with a “fish cracker” shaped stability boundaries. Overall, 
structural instability is more easily initiated by shear strain than 
normal strain, as indicated by the reduced shear strain axial extent 
and commensurate volume reduction.

Deep ESE of Lattice Thermal Conductivity. The thermodynamic 
and thermal transport properties of a solid due to lattice dynamics 
are directly related to its phonon characteristics. By far, the largest 
contribution to thermal conductivity �   of dielectric solids comes 
from the lattice thermal conductivity �l   , which arises from the 
combined contribution of all phonon modes (with the dominant 
ones being acoustic). ML techniques developed for providing �l   of 
undeformed solids such as Si, MgO, and LiCoO2 made possible 
an reduction of the computational costs associated with high-
order phonon scattering analysis (19, 20). Strain engineering of 
phononics (21) is of interest in fields such as thermoelectricity, 
where achieving low �   is sought in order to increase the figure 
of merit for a thermoelectric material. In industrial applications 
where thermal insulation is important, materials with low �   values 
are used for thermal barrier coatings (22). In electronic device 
applications, materials with high �   values are preferred in order 
to prevent damage from heat accumulation (23, 24), while it may 
be preferable to seek low � values in some regions for thermal 
insulation purposes (from the hot regions) as well. Effective 
control of �l through ESE therefore has potential technological 
applications.

For an ML method to accurately acquire the strain dependence 
of �l   within the 6D strain space, it is necessary to accumulate a 
sufficiently large collection of �l   values under different strain states 
to use as a training dataset. Recent advancements in the field have 
shown the feasibility of training NNs (25) to solve the phonon 
Peierls–Boltzmann transport equation (BTE). For enhanced accu-
racy in our study, we rely on the first-principles approach for 

Fig. 1. ML workflow for phonon-related properties with strain information used as input. When adopting (A) FNN models, the phonon stability can either be 
learned by directly fitting the onset of imaginary frequencies or analyzed from ML-predicted phonon band structure or DOS. The band structure, �

(

�;k; �
)

 , is 
treated as six separate bands. When (B) CNN models are used, the direct ML target can be band structure or DOS. The band structure, ��

(

�;k

)

 , is learned as a 
whole. The green, blue, and orange arrows indicate the procedural steps for learning band structure, DOS, and phonon stability, respectively.

Table  1. Summary of the ML accuracies reached for 
phonon stability boundary, DOS, and band structure 
corresponding to strain states in the εε1111––εε2222––εε3333 normal 
strain space, the εε2323––εε1313––εε1212 shear strain space, and 
general 6D hyperspace

ML target

ε11–ε22–ε33 
normal 

strain space

ε23–ε13–ε12 
shear strain 

space
General 6D 
strain space

Stability boundary 97% 95% 94%

DOS 0.009 0.01 0.02

Band structure 1.1–2.5% 3.3–4.6% 4–4.5%
The DOS results are expressed in mean absolute error (MAE). The band structure results 
are given by a relative error range due to band dependence.
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solving the phonon BTE to determine �l   . High-throughput com-
putations on ~10,000 strain states that are randomly distributed 
in the 6D space were performed to build the training dataset. 
Additional computational details are included in Method, with 
specifics on �l given in SI Appendix, Theoretical background of κl.

The average lattice thermal conductivity � l (ε) and the elastic 
strain energy density h(�) as functions of strain tensor ε within 
the 6D strain space were obtained using the ML model, as shown 
in Fig. 4A. The values of scalar � l are obtained by taking the 
average of the three �l tensor eigenvalues, � l ≡ Tr(�l )

3
 . The distri-

bution of possible � l is indicated in Fig. 4A by purple shading, 
with darker tonal values indicating that a larger number of strain 
states are able to achieve a specific � l value for a given h, where h 
denotes the elastic strain energy density in the unit of meV/Å3. 
The cumulative “density of states” of average lattice thermal con-
ductivity c(�′

l
; h′) is defined as:

Fig. 2. 3D phonon stability boundaries. The stability boundaries for the ε11–ε22–ε33 normal strain subspace colored by (A) the elastic strain energy density h 
(unit: meV/Å

3

 ) and partitioned by (B) critical wave vector k
c
 . The stability boundaries for the ε23–ε13–ε12 shear strain subspace colored by (C) h and partitioned by 

(D) k
c
 . The regions in light green, blue, red/crimson correspond to k

c
 of the “Δ”, “L”, “Γ” types, respectively.

where �( ⋅ ) and Θ( ⋅ ) are the Dirac delta and Heaviside step func-
tions, respectively, and d 6

� ≡ d�11d�22d�33d�23d�13d�12 ∈ ℝ
6 

is a volume element of the 6D strain space. The joint density of 
states of � l at h′ can then be expressed as:

	 [2]
g is found by considering all possible strain states and the resultant 
distribution of � l   arising from these states in the elastic strain energy 
density interval of (h − dh

2
, h + dh

2
)   . The function g(κ

_
l
′; h′)   

provides information for finding accessible thermalconductivity 
values at different energy costs. A lower and upper envelope func-
tion rendered as the purple dashed and solid lines in Fig. 4A can 
also be defined based on g, respectively:

g
(

��
l
; h�

) ≡
�c
(

��
l
; h�

)

�h�
= � d 6

��
(

��
l
− � l (�)

)

�
(

h� − h(�)
)

	 [1]c(𝜅�
l
; h�) ≡ �

h(�)<h�

d 6
�𝛿(𝜅�

l
− 𝜅 l (�)) = � d 6

�𝛿(𝜅�
l
− 𝜅 l (�))Θ(h

� − h(�))

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 M
A

SS
A

C
H

U
SE

T
T

S 
IN

ST
IT

U
T

E
 O

F 
T

E
C

H
N

O
L

O
G

Y
 M

IT
 L

IB
R

A
R

IE
S 

on
 F

eb
ru

ar
y 

14
, 2

02
4 

fr
om

 I
P 

ad
dr

es
s 

18
.1

8.
54

.1
5.

http://www.pnas.org/lookup/doi/10.1073/pnas.2313840121#supplementary-materials


PNAS  2024  Vol. 121  No. 8  e2313840121� https://doi.org/10.1073/pnas.2313840121   5 of 9

	 [3]

By tracing � lower
l

   and �upper
l

   in Fig. 4A, it is found that dia-
mond, as the best thermal conductor present in nature, can have 
its lattice thermal conductivity either doubled, or shrunk to 
sub-100 W·m−1·K−1 (i.e., decreasing by more than 95%), purely 
through reversible elastic strain. These changes point to a very 
broad dynamic range in thermal transport properties as the strain 
tensor is varied, while still staying in the potential energy basin of 
the diamond phase without any phase transitions. What can also 
be deduced from Fig. 4A is that the lower bound guides the strain 
pathway, with the least elastic strain energy density (or “energy 
expenditure”) to realize a target figure of merit (e.g., a lower ther-
mal conductivity, if it is desirable to make a thermal barrier out 
of diamond, which is typically a good thermal conductor). Thus, 
the � lower

l
(h) function could be used as a blueprint for designing 

thermal barrier structures with minimal strain energy density.
To assess the structural robustness of deformed diamond in 6D, 

one can define a “phonon softness” term by considering the inte-
gration of �2

�
 over the Brillouin zone for each phonon branch ν:

	 [4]

There exist other definitions of s as well, details of which can 
be found in SI Appendix, Table S1 and Fig. S1; these different 
possibilities provide essentially similar results. Relative softness 

can then be defined as the ratio between softness in deformed and 
undeformed states:

	 [5]

In general, deformation causes the thermal conductivity to 
decrease, as indicated by the color scheme for sr   in Fig. 4B. This 
trend can be more easily seen in Fig. 4C, where the plot of sr   
against � l   is obtained from the projection of the data in the sr  -� l  -h 
parameter space. As phonon frequencies get smaller when 
sr (�) < 1   , larger wavevector phonons become dominant, and 
three-phonon scattering processes are more likely. When such 
processes occur, the sum of two phonon wavevectors may exceed 
the first Brillouin zone, leading to Umklapp phonon–phonon 
scattering, where k1+k2−k3 (net combination of the incoming and 
outgoing phonon wavevectors involved in the nonlinear scatter-
ing) is a non-zero reciprocal vector of the host crystal. As seen in 
the cyan color projection in Fig. 4C, this generally results in 
smaller thermal conductivity. The brown projection in Fig. 4C 
corresponds to the relation between sr (�)   and h, which is not a 
bijective trend. There are instances where sr (�) < 1   and sr (�) > 1   
for the same elastic strain energy density h, as the same h can 
correspond to different strain states, e.g., compressive and tensile 
deformations bearing the same elastic energy tend to have different 
effects on sr.

To evaluate the stability of a given strain state ε, we define the 
smallest possible Euclidean distance from ε to the �ideal stability 
boundary hypersurface as dm(�) , with a strain–space distance met-
ric of:

� lower
l

(h) ≡ inf� l

(

g
(

� l ; h
))

, �
upper

l
(h) ≡ sup� l

(

g
(

� l ; h
))

s ≡ ∑

�
�
BZ

�2
�
dk

sr (�) ≡ s(�)

s (� = 0 )
.

Fig. 3. Phonon stability boundary pair-plots. The subfigures are 2D cuts of the 6D strain space with the remaining four strain components fixed at zero. For 
instance, strains in the �

11
�
12

 subfigure in the lowest-left corner have �
22

= �
33

= �
23

= �
13

= 0 . The diagonal subfigures are histograms for strain states spanning 
−0.4 to 0.4. Due to the symmetry in strain space, the 15 subfigures in the upper triangular region have a one-to-one correspondence with the 15 subfigures in 
the lower triangular region at relative positions.
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Fig. 4. Deep ESE of thermal conductivity. (A) Distribution of average lattice thermal conductivity ( �
l
) over different elastic strain energy density (h) values. Darker 

tonal values indicate that a larger number of strain states within the sampled strain space are able to achieve a specific �
l
   value at a given h. (B) Scatter plot of 

�
l
   and h. The color spectrum denotes relative softness values. Inset is a zoomed-in logscale plot of the small �

l
   region, in comparison with other well-known 

components used in the electronics industry. (C) Cross plots of h, �
l
   , and relative softness in 3D. (D) A plot of h, �

l
 , and distance to the stability boundary d

m
 .  

The d
m
− h and d

m
− �

l
 relations are illustrated by the 2D projections in green and blue, respectively. Note that the purple projection on the h − �

l
 plane in  

(C) and (D) is the same as in (A). A 2D plane cuts the strain data points colored in black. Solid curve segments are on dupper
m

 . (E) �
l
 and (F) Debye temperature �

D
 vs. Ω.
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between any two strain tensors ε and �̃   , and dm(�)   is the minimum 
of all d ’s connecting ε to a point on the surface. The bigger the 
dm   value, the farther it is from losing stability. The relation among 
dm   , h, and � l is illustrated in Fig. 4D. In the blue projection, dm 
is plotted against � l . It shows that a given � l value can correspond 
to a range of different dm values. Thus, to modulate thermal con-
ductivity through ESE, one could always choose the strain states 
that have a relatively large dm value to achieve a targeted � l through 
elastic deformation with higher safety factors. The green projection 
in Fig. 4D is the dm vs. h relation, which shows an increase in h is 
usually accompanied by a reduction of dm , i.e., with more strain 
energy stored in a material, it is more likely to lose phonon 
stability.

A closer inspection of Fig. 4D suggests that the upper bound-
aries of the two projections are of particular interest as they cor-
respond to strain states which are furthest from the ESE limit at 
given values of � l or h. To accurately delimit these boundaries, 
one can adopt a similar workflow as in Eqs. 1–3 to determine the 
density of states denoted as g (dm) and then define the following 
upper envelope functions:

	 [7]

	 [8]

As shown in Fig. 4D, d upper
m

(

� l
)

 and d upper
m (h) coincide with 

the line segments AB and CD colored in blue and green, respec-
tively. These two envelope functions can guide deep ESE. In par-
ticular, d upper

m

(

� l

)

 describes the path in the 6D strain space with 
the highest safety factor to reach a targeted � l from the unde-
formed state. For instance, one can apply the strains following as 
close as possible the curve segment AB in Fig. 4D to avoid the 
material from going through strain states with smaller dm values 
that are more likely to cause phonon instability. Note the slight 
difference between following d upper

m (� l ) and following � lower
l

(h) as 
introduced in Fig. 4A: The former is a conservative way to conduct 
deep ESE and always keeps a long minimum distance away from 
potential material failure during deformation; the latter is a more 
progressive way to carry out deep ESE by emphasizing 
energy-efficient achievement of target figure of merit of a material, 
regardless of how close it may get to the phonon stability boundary 
while undergoing deformation along the strain path in 6D. 
Meanwhile, the d upper

m (h) function is useful for the optimization 
of strain path in 6D to achieve a deformation with certain strain 
energy storage. For example, to reach a target h value of 200 
meV/Å

3
 , one can choose the states with the largest dm value (Point 

D on the d upper
m (h) envelope), and segment CD delineates a path 

from the undeformed state to this chosen point.

Fig. 4E shows that when the volume of the crystal unit cell ( Ω ) 
decreases, the thermal conductivity of diamond generally increases. 
A molecular dynamics (MD) simulation qualitatively showing this 
trend can be found in SI Appendix, Fig. S2. When the normal 
deformation is compressive, decreasing Ω results in stronger cova-
lent bonding with increased phonon frequencies ω and greater 
phonon frequency dispersion. Such frequency dispersion enhance-
ment due to reduced Ω is also reflected in the increased Debye 
temperature �D (Fig. 4F and SI Appendix, Fig. S3). The occupancy 
f0 of phonons with a greater ω would decrease according to 

d
upper
m

(

� l

)≡ supdm

(

g
(

dm; � l

))

d
upper
m (h) ≡ supdm

(

g
(

dm; h
))

Bose–Einstein statistics, where f0 = 1∕

(

e

ℏ𝜔

kBT − 1

)

 . Small 
wavevector phonons will therefore become more abundant than 
in an undeformed material at the same temperature (300 K). For 
a three-phonon scattering process, the sum of two small phonon 
wavevectors is less likely to exceed the first Brillouin zone and 
satisfy momentum conservation relation k + k

’ = k
’’ −G . This 

results in fewer Umklapp and more normal phonon scattering 
processes, and the interaction strength of such processes Φ

��
�
�
��  

(λ is shorthand for 
(

�, j
)

 which represents a phonon with fre-
quency ω and polarization j) will decrease, leading to an increase 
in � l . For similar reasoning, a general decrease in � l can be found 
when the deformation is of tensile nature when three-phonon 
processes with more Umklapp processes will play a major role. In 
this case, Φ

��
�
�
�� will increase, the scattering rate Γ�

(

��

)

 will then 
increase, which will impede phonon propagation and shorten the 
phonon lifetime, �� =

1

2Γ�(��)
.

Conclusion

First-principles calculations of the characteristics of phonons and 
physical properties such as thermal conductivity of semiconduc-
tors can be computationally expensive and intractable with on-
the-fly computation. In this work, a unique and general approach 
involving neural networks is developed to capitalize on the struc-
tured and highly correlated relationship between band dispersion 
and strain to accurately perform a variety of tasks, including the 
prediction of phonon band structure and DOS. The ML models 
employed here are sufficiently flexible to include synergistic data 
sampling and active-learning cycles, which can further improve 
training accuracy. Direct application of this scheme to diamond 
crystals is demonstrated by predicting the strain hypersurface 
where the onset of phonon instability occurs. Employing deep 
ESE to modulate fundamental phonon-related properties of 
materials, such as thermal conductivity or phonon band struc-
ture, requires the identification of optimal actionable strain states 
within the 6D strain hyperspace. The example provided in this 
work of tuning the thermal conductivity of diamond lattice 
through deep ESE illustrates the opportunity for figure-of-merit 
optimization and customizing device performance. In particular, 
the prediction that the lattice thermal conductivity of diamond, 
nature’s most thermally conductive material, can be either dou-
bled or decreased to sub-100 W·m−1·K−1 values purely through 
elastic strain is a striking example of the application of this 
method. This ultra-wide dynamic range for modulating physical 
properties through ESE offers potential applications, as phonons 
control thermoelectric, superconductivity, and quantum coher-
ence (26, 27) properties as well.

Applications of such surrogate ML models are many. Just as the 
gradient of the electronic band relates to group velocity, the gradient 
of the phonon band [ ∇k��(ε; k)] relates to the speed of sound in 
the medium, which could be attained by invoking this model. Other 
important material properties such as the Grüneisen parameter (that 
characterizes the effect of volume change of a crystal lattice on its 
vibrational properties and therefore, thermal expansion (28) could 
be derived from postprocessing selected phonon band structures 
with certain strain states. Furthermore, various properties of a mate-
rial under different strain states might be seen as competing objec-
tives that need to be optimized simultaneously (Pareto analysis) (6). 

	 [6]d ≡
√

(�11− �̃11)
2 + (�22− �̃22)

2 + (�33− �̃33)
2 + 2(�23− �̃23)

2 + 2(�13− �̃13)
2 + 2(�12− �̃12)

2,
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For example, a balance between thermal properties and electronic 
properties could be explored to identify the most efficient energy 
conversion in a thermoelectric material. Lastly, owing to its accuracy 
and low computational cost, it is appealing to explore adaptations 
of this joint ML-ab initio calculation framework for simulating pho-
nonic functionalities to accelerate figure-of-merit acquisition for a 
variety of semiconductors and to incorporate the method into tech-
nology computer-aided design (TCAD) (29–32) for industry-grade 
device application with deep ESE.

Method

First-Principles Data Acquisition. Computational results for undeformed 
diamond were first calibrated against widely available experimental values 
obtained from neutron/X-ray inelastic scattering, including lattice constant, 
elastic properties, and phonon band structures. After the benchmark, ~15,000 
Latin-Hypercube-sampled strain points were fed into ab  initio calculations to 
acquire the phonon stability, DOS, band structures, and other related properties 
for each deformed structure.

For strain-deformed structure relaxation, density functional theory (DFT) 
simulations were carried out using the projector augmented wave method (33) 
with Perdew–Burke–Ernzerhof (34) exchange-correlation functional following 
the implementation in the Vienna Ab initio Simulation Package (VASP) (35). For 
all computations, the electronic wavefunctions were expanded using a plane 
wave basis set characterized by an energy cutoff of 600 eV, and Brillouin zone 
integration was performed using a 13 × 13 × 13 Monkhorst–Pack k-mesh. 
A maximum residual force of 5.0 × 10

−4   eV/Å was permitted for atoms fol-
lowing structural relaxation. The Green–Lagrangian strain measure was used 
|�ij | ≤ 0.4 (i, j = 1, 2, 3),   and the strain was sampled in a sufficient range 
to capture the entire phonon stability boundary (main text Fig. 3). Known crystal 
symmetries were employed to further reduce the number of strain computations 
needed. The diamond phonon calculations were carried out based on Γ-only 
density functional perturbation theory (DFPT) implemented in the VASP-Phonopy 
package (36, 37). The force constant calculations were conducted based on a 2 × 
2 × 2 supercell of diamond and 3 × 3 × 3 k-point mesh. Given the coarseness 
of this mesh, Phonopy’s “mesh sampling mode” was employed for the expan-
sion/extrapolation of the results onto a 25 × 25 × 25 grid. ML models were 
then trained upon learning this dense grid of frequency eigenvalues. Phono3py 
package (36, 37) was employed for deformed diamond lattice thermal conduc-
tivity calculations through a direct solution of the linearized phonon Boltzmann 
transport equation.

Model Architecture. The input and output data structures of the FNN and CNN-
based models used in this work are illustrated in the main text Fig. 1. The FNN 
models reaching the best accuracies for learning phonon stability, DOS, and band 
structure all involve three hidden layers: 6–(256–128–64)–1, 6–(2,048–2,048–
4,096)–w, and 6–(1,024–1,024–2,048)–6m3 , respectively. Here, w dictates the 
resolution of the DOS plot, and m is the number of k-points sampled in the 
Brillouin zone. The CNN-based model yielding the best learning result for the 
band structure fitting task consists of a fully-connected part at the beginning 
to “unpack” the 6 × 1 vector denotation of ε into an m × m × m × 6 tensor 
representation in order to be fed into the subsequent convolutional part with 
three blocks of convolution with a (3 × 3 × 3 × 3) kernel subsequently applied 

upon the floating-point representation residually. It has been demonstrated in 
previous works regarding electronic band structure in diamond that such convo-
lutions account for the so-called “inter/intra-band correlations” (6) with periodic 
boundary conditions and symmetry. Likewise, the CNN-based model yielding the 
best outcomes for the DOS fitting task morphs the 6 × 1 representation of ε into 
a w × 1 vector by a series of fully connected layers, which is treated by two blocks 
of 1D convolution: the first with a (7 × 1) kernel and the second with a (3 × 1) 
kernel. Each convolution comes with 16 channels. After that, we did channel-wise 
down-sampling and applied the result residually to the original w × 1 vector. The 
Adam stochastic optimization algorithm was used to train the model, together 
with the gradually reducing dropout rate for fully connected layers to enhance 
learning and prevent overfitting.

MD Simulation. Thermal conductivity of diamond was computed via the equilib-
rium Green–Kubo formalism (38, 39), a methodology that connects the ensemble 
average of heat flux auto-correlation to thermal conductivity. Heat flux vectors 
were calculated based on atomic contributions (from atomic energies, velocities, 
and stresses). Thermal conductivity calculations require a sufficiently large sim-
ulation box to address the large mean free path of phonons, which is critical for 
high lattice thermal conductivity materials such as diamond. We first tested both 
sample size and correlation length dependencies to ensure the convergence of 
the thermal conductivity calculation. The convergence was established at a correla-
tion length of at least 30 ps and a sample size of at least 60 × 60 × 60 a0

3, where 
a0 is the equilibrium lattice constant at 300 K. For production MD runs, we first 
equilibrated all samples, inclusive of those exposed to varying hydrostatic strains, 
for 100 ps under NVT conditions. Then, heat flux auto-correlation was determined 
over an additional 1 ns NVT MD run. The final thermal conductivity corresponding 
to a specific hydrostatic strain was obtained by time-averaging across the 1 ns 
period. All MD simulations were based on Tersoff potential obtained from the 
NIST repository (40) to provide qualitative trends.

Data, Materials, and Software Availability. All data presented in the arti-
cle and SI Appendix are accessible through https://github.com/kra5h/phonon-
stability (41).
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Notation 

During a general three-dimensional deformation involving three normal strains, the original point 

group of the diamond crystal, denoted as 𝑂ℎ, turns into a 𝐷2ℎ point group. The corresponding 

Brillouin zone would not be a regular truncated octahedron with equilateral hexagonal and square 

faces anymore. The center of the Brillouin zone is labeled as Γ following the tradition. In an 

undeformed diamond, the centers of the square and regular hexagonal surfaces on the Brillouin 

zone boundary both degenerate, which are referred to as 𝑋 and 𝐿, respectively. For the sake of 

comparison and simplicity, we adhere to this convention by considering the ‘𝑋’-type points as the 

centers of tetragonal surfaces and the ‘𝐿’-type points as the centers of regular or non-regular 

hexagonal surfaces. Connecting the Γ point to the ‘𝑋’-type points results in lines labeled as ‘Δ’-

type. Consequently, while the six ‘𝑋’- and ‘𝐿’-type points are no longer degenerate, they maintain 

the correct fractional coordinates of 〈0.5, 0, 0.5〉-type and 〈0.5, 0, 0〉-type. Moreover, the k-points 

situated along the Γ-‘𝑋’ line all possess coordinates of the 〈𝜁, 0, 𝜁〉-type, where 0 < 𝜁 < 0.5. 

 

Theoretical background of 𝜿𝑙 
 

The Hamiltonian of a crystal system can be written as 

𝐻 = Ψ0 + 𝑇 + 𝐻2 + 𝐻3 +⋯ (1) 

where Ψ0 is a constant potential, 𝑇 the kinetic energy of ions, and 𝐻𝑛 the 𝑛-body crystal potentials. 

𝐻2 is the harmonic potential and does not contribute to the lattice thermal resistance. The 𝐻3 term 

describes three-phonon scattering processes and is the main contribution to 𝜿𝑙
-1. In the form of 

second quantization, these can be expressed as 1 

𝐻2 =∑ℏ𝜔𝜆 (
1

2
+ 𝑎̂𝜆

†𝑎̂𝜆)

𝜆

(2) 

𝐻3 = ∑ Φ𝜆𝜆′𝜆′′(𝑎̂−𝜆
† + 𝑎̂𝜆)(𝑎̂−𝜆′

† + 𝑎̂𝜆′)

𝜆𝜆′𝜆′′

(𝑎̂
−𝜆′′
† + 𝑎̂𝜆′′) (3) 

where 𝜆 = (𝒒, 𝑗) represents the wave vector 𝒒, and polarization 𝑗 of the phonon mode, and 𝑎̂𝜆
†
 and 

𝑎̂𝜆 are the phonon creation and annihilation operators. The interaction strength of three-phonon 

scattering processes is given by Φ𝜆𝜆′𝜆′′ and is the determinative factor for the value of 𝜿𝑙. The 

procedures for computing 𝜿𝑙 were implemented in Phonopy and Phono3py software packages, and 

employed a supercell approach 1,2, with individual supercells computed using VASP 3,4. The full 

form of the 𝜿𝑙 tensor can be expressed as 

𝜿𝑙 =
1

𝑁𝑉
∑𝐶𝜆𝜏𝜆𝒗𝜆⨂𝒗𝜆
𝜆

(4) 

where 𝑉 is the volume of the computed unit cell, 𝑁 is the number of unit cells employed, 𝒗𝜆 is the 

group velocity of a phonon mode with wave vector 𝒒 and polarization 𝑗,  and 𝜏𝜆 is the lifetime of 

each phonon mode. The lifetime can be computed as 𝜏𝜆 =
1

2
Γ𝜆(𝜔𝜆), with Γ𝜆(𝜔𝜆) the phonon 
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linewidth or phonon “self-energy” and is proportional to |Φ−𝜆𝜆′𝜆′′|
2. The detailed expression for 

Γ𝜆(𝜔𝜆) is in the form of the selection rule of 3-phonon process 1 and can be obtained from 𝐻3.  

 

 

Table S1. Mathematical definitions of phonon softness (𝑠) in addition to Eqn. (4). Considerations 

are given based on convergence. 𝑐 is a constant. 

Definition Bands involved k-point involved 

∑
𝜔𝜈, 𝐤
2

|𝐤|2 + 𝑐𝜈,𝐤

∑ 1𝜈,𝐤
 

All All 

∑
𝜔𝜈, 𝐤
2

|𝐤|2
𝜈=3
𝜈=1,𝐤≠𝟎

∑ 1𝜈=3
𝜈=1,𝐤≠𝟎

 
𝜈 = 1, 2, 3 no Γ 

∑
𝜔𝜈, 𝐤
2

|𝐤|2𝜈,𝐤≠𝟎

∑ 1𝜈,𝐤≠𝟎
 

All no Γ 

∑
𝜔𝜈, k
2

|𝐤|2
𝜈=3
𝜈=1,𝐤

∑ 1𝜈=3
𝜈=1,𝐤

 
𝜈 = 1, 2, 3 All 

∑ ∫𝜔𝜈
2𝑑𝐤

BZ

𝜈=3

𝜈=1
 𝜈 = 1, 2, 3 All 
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Figure S1. Thermal conductivity as a function of elastic strain energy density. The colors 

correspond to the relative softness derived from the definitions in Table S1. 

 
Figure S2. Alternations in the lattice thermal conductivity in response to varying hydrostatic 

strains by molecular dynamics (MD) simulations, utilizing a system of ~2.17 million C atoms 

governed by a Tersoff potential5. The unevenness in the curve arises from the inherent randomness 

of one-shot MD simulations. While the Tersoff potential itself does not explicitly model phonon 

interactions, the behavior that emerges from this potential can result in phonon scattering events 

such as 3-phonon scattering due to atomic interactions dictated by the potential. Therefore, despite 

the quantitative disparity in 𝜿𝑙 at a zero-strain condition, the qualitative trend of delineating the 

strain-dependent evolution of aligns coherently with the results in the main text.  
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Figure S3. Debye temperature calculation and results. (a) A plot of the fitting function  (
9𝑁

𝑎
)

1

3
 used, 

where a is a fitting parameter, and 𝜔D is the Debye frequency. The DOS from 0 to 1/4 of the 

maximum phonon frequency is used for fitting, and the Debye temperature is calculated as θD =
ℏ

𝑘B
𝜔D. (b) 3D scatter plot of strain distribution in the Ω − θD − 𝜅𝑙̅ parameter space.  
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