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A B S T R A C T

Traditional tensile testing with ‘‘dogbone’’-shaped specimen (ASTM E8, first standardized in 1924) strives
for strain uniformity. Multiple tests with such samples help fit simple constitutive relation parameters
on real materials. With the development of deep learning, the concept of employing entirely data-driven
constitutive relations to capture more intricate material behavior has arisen. Nevertheless, these methods
demand experimental data that are distributed throughout the complete stress–strain configuration space to
effectively train the machine learning models. This is particularly crucial for mechanisms like hardening,
which are time-dependent and sensitive to loading history. In this work, we investigate the potential to
efficiently gather a wider range of experimental data points in the stress–strain configuration space using non-
uniform samples and displacement-field mapping, leveraging advancements in computer vision techniques.
We developed a metric to quantify stress state diversity in 2D tensile experiments and used it to optimize
the shape of the sheet sample. The goal was to increase stress–strain diversity obtained within a single test,
particularly in the linear elastic regime. Additional geometric constraints can be introduced on the design
features, considering factors such as size and curvature to adapt to the microstructural characteristics of the
sample material.
. Introduction

Tensile testing is one of the fundamental experimental techniques
o measure the mechanical properties of engineering materials [1].

ith standardized specimen geometry and experimental protocols, the
echanical properties of different materials can be compared quantita-

ively. The typical ‘‘dogbone’’ tensile specimen [2] consists of enlarged
houlders on both ends, gripped by the tensile tester, and a gauge
ection with a reduced cross-section in which the plastic deformation,
amage and mechanical failure are localized. The purpose of such a
ample design is to ensure a controllable and uniform uniaxial tensile
eformation condition within the gauge section [3]. By stretching the
ample on both ends, the material starts to deform and eventually yields
pon exceeding the elastic limit, and the stress–strain curves obtained
rom tensile experiments give us data about the constitutive relations
overning the mechanical behaviors [4–6]. Constitutive relations are
f the utmost importance in materials applications because they can be
pplied to numerical simulations and predict the mechanical behavior
n different structures or during various manufacturing processes. How-
ver, fully determining the constitutive relation of a material requires

∗ Corresponding author at: Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge,
1239, MA, USA.

E-mail address: liju@mit.edu (J. Li).

the input of the mechanical responses under a variety of loading
conditions, not only uniaxial stretching [7–9], which is laborious in
general and expensive to achieve in conventional tensile testing setup.

Supervised machine learning approaches have found extensive use
in modeling [10–12] and simulating [13,14] the non-linear material
behaviors. Particularly, several works propose the use of a framework
combining Finite Element Method (FEM) and Neural Networks (NNs).
In this framework, the idea is to take the mechanical responses obtained
from FE simulations as the training sets to refine the NN functions
that served as the numerical replacements of the real constitutive
relations [15–17]. The displacement fields calculated by FEM based on
the NN functions are compared with the ground truth to iteratively
refine the NN functions representing the constitutive relation. In this
framework, the ground-truth data can be replaced by the one obtained
in mechanical experiments. This comparison is made through a loss
function, which is often the Euclidian norm of the difference between
the nodal positions calculated with the NN and the ones given as
ground truth. Since the backpropagation algorithm that updates the NN
vailable online 6 May 2024
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is driven by the gradient of the loss function with respect to the NN
parameters, sufficient data sets are needed to explore the variations of
this loss function, or the NN could not be reshaped properly to represent
the real constitutive relations. To adequately train the NN model, which
expresses the material behavior in detail, a rich diversity of stress–
strain paths is required. However, the only data stored in conventional
tensile experiments with dogbone specimens are the total uniaxial
strain and the load applied to the specimen. In addition to reading
the cross-head displacement, digital image correlation (DIC) is another
technique that can be used with mechanical tests to collect the full-field
information of materials deformation [18]. By comparing the image
between two different stages during testing, the spatial distribution of
displacements and, thus, strains on the testing sample can be extracted,
which can serve as a cheap yet rich source of mechanical response
data. The displacement field measured by DIC is stored with spatial
resolution. Therefore, the results can be interpolated and matched to
the FEM-NN simulations result in order to assess the reliability of the
constitutive relation within a wider subset of the phase space if the
stress/strain fields are heterogeneous. Already many examples show
that, in general, NNs have very good performance for interpolation,
but they are extremely inaccurate for extrapolation [19–21]. In order
to train the NN function to satisfactorily capture the characteristics
of the constitutive relation, the designed sample geometry must allow
for the generated data to cover the whole range of interest in the
stress configuration space thoroughly. It has been a common practice
to modify the geometry by cutting out flat sheet samples in order to
introduce stress concentrations and investigate the mechanical proper-
ties [22–26]. It has also been confirmed that DIC can effectively capture
the inhomogeneous deformation states within an irregularly shaped
sample [26]. Creating a modified tensile specimen with an irregular
gauge section would therefore be a meaningful approach for efficiently
obtaining the training data for NNs with a wider range of strain and
stress states.

In this work, a quantitative metric has been proposed based on the
distributions of stress states in the vector space of the combinations
of their normal and shear stress components to measure the diver-
sity of stresses explored within the specimen under tension. The FE
simulations on various sample geometries to obtain their stress paths
and calculate the corresponding diversity metrics. Some specific sample
geometries were identified to exhibit an almost uniform exploration of
the stress configuration space in a single test under uniaxial tension.
These observations provided a guideline to improve the tensile sample
designs for extracting the information satisfying the needs of FEM-NN
model training to learn constitutive relations. Then, our stress diversity
score has been used in optimization algorithms (Grey Wolf Optimizer,
GWO, presented here) to provide optimized sample designs. Further-
more, our method can be generalized to designing optimal samples
for more specific materials, by refining the constitutive relation used
during the optimization and adding geometrical constraints depending
on microstructural characteristics. With an extension of the score to 3D,
an equivalent method could be used for 3D sample design optimization
for Digital Volume Correlation (DVC)-based experiments.

2. Theory

2.1. A stress diversity score: quantifying specimen quality

This section presented the quantitative measuring of the diversity of
stress states reached by a specimen subjected to a tensile test. Fig. 1(a)
illustrates a standard uniaxial tensile testing configuration applied to a
thin sheet material with arbitrary geometry. Unlike the uniform gauge
section design in the typical dogbone sample, these irregularities induce
stress and strain heterogeneity during tensile experiments. The quality
assessment of the samples was based on the following assumptions:

• Infinitesimal strain (‖∇𝑢‖ ≪ 1, where 𝑢 is the displacement field)
to describe the beginning of the stretching process.
2

• Plane stress in the (𝑥, 𝑦) plane (thin sheet samples), where 𝑦 is
along the axis of the tensile testing machine, to correspond to DIC
experiments.

These assumptions carry significant implications. In real-world ex-
periments, it is common to encounter tests involving strains beyond
the infinitesimal, and practical situations may involve buckling. Plane
stress assumptions may not deviate from the actual state of the sample.
However, motion out of the plane cannot be captured by a simple
2D-DIC setup, which would also be a concern for real experiments.
The expandability of this study to consider 3D sample design and
DVC experiments coupled with FEM-NN frameworks can be found in
Section 5.

The stresses will therefore be represented by the following symmet-
ric second-order tensor in a particular subspace containing only the
in-plane components:

𝜎 ≡
(

𝜎𝑥𝑥 𝜏
𝜏 𝜎𝑦𝑦

)

Recall that the symmetry of this tensor comes from the conservation
of angular momentum [27]. In this representation, there are three
independent variables 𝜎𝑥𝑥, 𝜎𝑦𝑦 and 𝜏. Therefore, the stress state at
each point can be represented by a unique three-dimensional tuple
(𝜎𝑥𝑥, 𝜎𝑦𝑦, 𝜏).

Instead of studying the stress states reached in the full space, the
discussion focus on only the diversity of stress states in the plane
( 𝜎𝐱𝐱−𝜎𝐲𝐲

𝟐 , 𝜏
)

, often called the ‘‘𝜋-plane’’ or ‘‘deviatoric stress plane’’ [28].
Note that the combination 𝜎𝑥𝑥+𝜎𝑦𝑦

2 , which stands for hydrostatic pres-
sure within the subspace of in-plane stress components, evolves per-
pendicularly to this plane. Indeed, in a number of materials, the hy-
drostatic pressure has a small influence on the yielding behavior [29].
This applies to all materials exhibiting behavior that approximates
a perfect plasticity law, where the deviatoric stress tensor 𝑠 = 𝜎 −
1
2 tr(𝜎) dominates [30]. Such a framework is useful for simplifying the
representation of stress diversity. To show what this simplification
corresponds to, Fig. 1(b) shows the evolution of (𝜎𝑥𝑥, 𝜎𝑦𝑦, 𝜏) in each
element of a FEM specimen during a tensile test. The projection of
cylindrical yield surface in the plane of

( 𝜎𝑥𝑥−𝜎𝑦𝑦
2 , 𝜏

)

is a perfect circle
in Fig. 1(c). This type of isotropic yielding behavior has already been
learned by neural network [16,17]. Similarly, this concept can be
extended to learn an anisotropic relationship, where exploring the yield
surface from various directions is necessary.

Given that there was no prior information available about the plastic
behavior of the material under study before experimentation, this study
primarily concentrated on assessing sample quality based on results
derived from linear elastic behavior. Linear elasticity is computation-
ally efficient and serves as a representative model for materials at low
strains, making it a practical choice for assessing how sample geometry
influences the diversity of stress–strain states. Evidenced by Fig. 1(b–c),
the elastic behavior provides approximate information on the directions
towards the yield surface taken by the stress states in the stress space,
at each point of the sample. In such a case, the intensity of the applied
force or displacement on the boundary 𝛹 acts only as a multiplicative
actor on the stress and strain fields in 𝛺. Therefore, only the initial

directions taken by stress state points in the 𝜋-plane are examined.
The red dots in Fig. 1(c) shows the stress states under external

strain 𝜖 = 0.1%. At this strain level, an approximated linear elas-
tic behavior was observed. These stress states start to depart from
the origin radially once the sample is stretched. The stress states
were normalized by the maximum von Mises effective stress 𝜎max =

max
(√

3
2 𝑠 ∶ 𝑠

)

as displayed in the inset of Fig. 1(d). In this plane,
( 𝜎𝑥𝑥−𝜎𝑦𝑦

2 , 𝜏
)

can be transformed into polar coordinate (𝑟, 𝜙) where

𝑟 =
√

( 𝜎𝑥𝑥−𝜎𝑦𝑦
)2

+ 𝜏2 and 𝜙 = atan2
(

𝜏,
𝜎𝑥𝑥−𝜎𝑦𝑦

)

, where the angle
2 2
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Fig. 1. Numerical metric measuring a sample quality based on its stress states. (a) The example FEM sample mesh. The Dirichlet boundary conditions are shown in purple
and the free boundaries are represented by blue dashed lines. (b) Stress states of each mesh element in the space of stress components (𝜎𝑥𝑥 , 𝜎𝑦𝑦 , 𝜏) assuming perfect plasticity until
applied strain 𝜖 = 0.5%, the yielding surface is indicated by blue isosurface. (c) Stress states in the plane

(

𝜎𝑥𝑥−𝜎𝑦𝑦
2

, 𝜏
)

, the stress states at applied strain 𝜖 = 0.1% are marked as
red dots. (d) Example of the cumulative circular distribution of the stress states displayed in panel (c), the deviation between the cumulant (red curve) and that of a uniform
distribution (black curve) is used to define cdf to represent the angular diversity of stress state. The inset shows stress states normalized by the maximum von Mises effective
stress 𝜎max, for a simulation assuming pure elastic behavior. The data points within the range 𝑟∕𝜎max ∈ [1 − 𝑓th𝑟med , 1] with 𝑓th = 1 (teal background), marked as bold red dots, are
the ones used to evaluate the sample quality. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
𝜙 is related to the orientation of principal stress within the physical
coordinate. This representation of the distribution of stress points is
utilized to define a numerical score measuring the sample quality.

In addition to angular distribution, radius 𝑟 also contains informa-
tion about the sample quality. For example, considering the ultimate
tensile strength of a ductile metal can be around 10 times its yield
strength, before the material develops irreversible damage and breaks,
the difference between maximum and minimum von Mises effective
stress of the region undergoing plastic deformation is around 90% of
the maximum value. In other words, only data points with 𝑟∕𝜎max > 0.1
effectively provide information about the material’s plastic behavior,
which is beneficial for training the NN constitutive model. To account
for this in the sample quality score, we focus exclusively on data points
with the highest stress radii. The threshold concerning the median of
the stress radii distribution, denoted as 𝑟med, was carefully selected to
guarantee statistical stability across discretized data obtained from var-
ious sampling techniques and different machines, assuming the same
input mesh and loading conditions. Subsequently, 𝑓th was introduced
as a parameter to fine-tune the data selection: stress data points with
𝑟 > 𝑓th𝑟med were categorized as ‘‘significant’’ data for the purpose of
learning, and only these points were retained for the calculation of
the diversity score. In the inset of Fig. 1(d), the significant points,
highlighted as bold red dots against the teal background, are selected
based on the parameter 𝑓 . This parameter allows our metric to be
3

th
versatile and applicable to a variety of material systems with different
failure behaviors.

The goal was to achieve a uniform angular distribution of stress
states within this 𝜋-plane, Therefore, any distributions that display
clustering of data points deviating from this uniform distribution should
be subject to penalties. Here the circular distribution was wrapped at
𝜙̃ = 0, 2𝜋, where 𝜙̃ = 𝜙−𝜙cm +𝜋, and 𝜙cm is the circular mean of stress
states defined as 𝜙cm = atan2(⟨sin𝜙𝑖⟩, ⟨cos𝜙𝑖⟩). We defined cdf as the
integral

cdf =
6
𝜋 ∫

2𝜋

0

(

𝑟(𝜙̃)
)2 𝑑𝜙̃ (1)

in terms of the residual 𝑟(𝜙̃) ≡ 𝑐(𝜙̃) − 𝜙̃
2𝜋 , and the cumulant 𝑐(𝜙̃) ≡

1
𝑁 ∫ 𝜙̃

0
∑𝑁

𝑖=1 𝛿(𝜙
′ − 𝜙𝑖)𝑑𝜙′ [31] in Fig. 1(d) to represent the angular

diversity of stress state as displayed by the inset. Considering the
perfectly isotropic distribution that all data points distributed uniformly
around the circle, 𝑐(𝜙̃) = 𝜙̃

2𝜋 and therefore cdf = 0. On the opposite
extreme, the most undesired case is that most of the data points are
perfectly aligned in the same direction. In such case, 𝑐(𝜙̃) = 𝐻(𝜙̃ − 𝜋)
and cdf = 1 where 𝐻(𝑥) is the Heaviside function. Note that according
to Eq. (1), cdf is insensitive to the amount of data points for sufficiently
large 𝑁g, therefore the stress diversity score provide a stable metric
to quantitatively compare the different angular distributions of data
points.
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3. Calculation

This section offers a comprehensive explanation of the process for
acquiring stress state distributions and their corresponding stress diver-
sity scores. Additionally, we will illustrate the optimization procedure
used to enhance sample geometry designs and attain greater stress
diversity.

3.1. Finite element tensile simulations

The 1 cm × 1 cm square sheet patterned sample in Fig. 1(a) is
ubject to displacement-controlled tension along the 𝑦-axis until the

total applied strain 𝜖 = 0.5%. Stress states are examined in elasto-plastic
E simulations using the Fenics [32] package in Python assuming
erfect plasticity [33], and the mechanical properties of plain carbon
teel: Young’s modulus 𝐸 = 200 GPa, yield stress 𝜎𝑦 = 350 MPa,

and Poisson’s ratio 𝜈 = 0.25 [34,35]. Hence, the tensile strain at the
elastic limit is 𝜖𝑦 = 0.175%. The stress and strain states on the FEM
mesh vertices were subsequently interpolated to a uniform grid that
corresponds to the sample area. This ensures uniform sampling condi-
tions, making it compatible with the typical format of DIC datasets. In
Section 4.1, we will present the results of stress state distributions and
their corresponding cdf for various sample geometries.

3.2. Geometry optimization

The optimization problem can be described as follows:

Find argmin
𝜌|𝛺

cdf (𝜌)

where 𝜌 ∶ 𝛺 ∪ 𝛹 ⟶ {0, 1} represents the density of matter on the
sample, 𝛺 the space filmed by the camera in a DIC study and 𝛹 the
rest of the sample in which the density is uniform (𝜌|𝛹 = 1). The
notations correspond to those in Fig. 1(a). To simplify this problem,
the approach involves seeking an approximation of its solution within
specific function subspaces of 𝛺 in {0, 1}.
Algorithm 1: Geometric Optimization Algorithm. This iterative
rocess starts with parameterized model 𝜔 and initial guesses 𝜆i.

At each iteration, it generates a mesh, conducts FE simulations
for stretching, and calculates cdf based on the obtained data.

he GWO updates 𝜆 to minimize cdf . After completing a set
umber of iterations, the optimal parameters 𝜆opt are selected.
inally, the optimized sample geometry 𝛺opt is obtained by

evaluating the model with 𝜆opt : 𝛺opt ≡ 𝜔(𝜆opt ).
Input: Parametric models 𝜔 with inputs 𝜆, initial guesses 𝜆i
Result: 𝛺opt ≡ 𝜔(𝜆opt )

1 𝛺 ← 𝜔(𝜆i)
2 𝑖 ← 0
3 while 𝑖 < Maxiter do
4 Evaluate stress states (𝜎𝑥𝑥, 𝜎𝑦𝑦, 𝜏) in FE simulation.
5 Evaluate cdf from the stress states.
6 Update 𝜆 with GWO algorithm to minimize cdf .
7 𝑖 ← 𝑖 + 1
8 end
9 𝜆opt ← 𝜆

10 return 𝛺opt ≡ 𝜔(𝜆opt )

To simplify calculations and account for geometric constraints to
void undesirable shapes, we have developed several parametric sam-
le models. Detailed descriptions of these models are available in
ppendix B. The global optimization algorithms were employed us-

ng the NEORL library [36] to discover the parameter combinations
hat yield the sample with the lowest fitness. In our case, the fitness
etric to minimize is cdf . The optimization procedure is outlined

n Algorithm 1. This algorithm generates the mesh corresponding to
4

t

the parameters 𝝀, conducts FE simulations of tensile stretching, and
computes cdf for the obtained data points. The parameters 𝝀 are then
iteratively updated by the optimizer to minimize cdf . The optimizer
was achieved by GWO algorithm [37]. Based on the population-based
meta-heuristic algorithm, replicas of mutated parameters are updated
iteratively according to their previous positions in the search space.
These replicas share information with each other and organize their
movements by mimicking the hunting behavior of wolf packs. Conven-
tional multivariable global optimization techniques such as stochastic
gradient descent and its variants [38] could potentially offer advan-
tages in terms of computational efficiency. However, the approach we
chose had the benefit of not necessitating the evaluation of gradients
for minimizing objectives. This is particularly advantageous in various
situations, especially when complex FE simulations and interpolations
are needed to compute cdf , making gradient calculations unfeasible.

4. Results

4.1. Numerical evaluation of 2D tensile specimens

The stress diversity score defined in the previous section is now
employed to evaluate the performance of different sample geometries.
By creating holes of different sizes, shapes and arrangements, hetero-
geneity was introduced in the 1cm × 1cm1 square sheet sample with
isotropic and uniform elastic properties. The stress states were collected
in each mesh element under elastic deformation in the FE simulations
described previously to evaluate the sample quality, with 𝑓th = 1.

Fig. 2 displays several sample designs along with their stress states
for a linear elastic behavior. Spatial distributions of 𝑟 and 𝜙 are visual-
ized as pseudocolor plots to emphasize that, in this work, the diversity
of stress states is a consequence of the heterogeneous full-field deforma-
tions. Such diversity can be captured by image processing techniques
such as DIC. We can either interpolate the FEM stress data to random
sample points with uniform distributions or regularly-spaced grid of
sampling points in 𝛺 while excluding the ones in holes to eliminate the
effect of heterogeneity in FEM mesh density when comparing between
different sample designs.

Panel (a)–(c) display the stress states of a sample with no hole/notch
in the gauge region. In this case, there is no stress heterogeneity within
the sample and cdf = 1, indicating that all stress data points are
perfectly aligned. This is exactly the condition people will generally
look for and find in the gauge section of traditional ‘‘dogbone’’ shaped
specimens. Unfortunately, it is also the most undesired pattern for
FEM-NN data analysis framework.

A simple yet straightforward way to introduce stress heterogeneity
to testing is by introducing holes in the sample [16,17]. As demon-
strated in panel (d)–(f), the discrepancy between data points begins
to emerge and cdf decreased to 0.85. However, most significant data
points are still distributed within a 𝜋∕2 sector, indicating the informa-
tion that can be learned from these data points is still mainly limited
to the behavior close to pure tensile stretching along the 𝑦 axis.

The question arises whether it is possible to induce stress states that
are very different from the uniaxial 𝜎𝑦𝑦 tension, such as pure shear or
pure tension along the 𝑥 axis, by merely stretching the sample along
the 𝑦 axis. Panel (g)–(i) provided a successful example. By cutting out
an array of non-convex bow tie-shaped holes, the retained parts in this
sample form a network structure in which each node is bridged with
its neighbor by an arch. Upon stretching the sample, these arches are
straightened jointly, resulting in compressive stress in the convex side
and tensile stress in the opposite. Similar behavior can also be found

1 Different sample size could have been chosen here. It could be important
o cope with geometrical constraints influenced by microstructural character-
stics of the material while enabling complex hole patterns, and to correspond
o the practical limitations of the sample preparation and testing tools.
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Fig. 2. Stress states in different sample geometry under linear elastic perturbations. The left and middle columns display the spatial distribution of 𝑟 and 𝜙 respectively, and
the right column demonstrates normalized stress states, with a teal background representing the relative threshold 𝑓th = 1. (a)–(c): uniform sample without a hole. (d)–(f) single
circular hole at the center. (g)–(i) network structure with bowtie-shaped non-convex holes.
in auxetic patterned structures [39]. Therefore, the major principal
stresses with different orientations were generated by configuring the
directions of these arches. As displayed in Fig. 2(h) we obtained a great
diversity of 𝜙 ranging from 0 to 2𝜋 in the different parts of our sample.
The resulting stress paths are displayed in Fig. 2(i), cdf is further
reduced to 0.36, and the distribution of significant data points marked
by bold dots is more isotropic in the 𝜋-plane than the above cases.

Fig. 3 displays the stress diversity of more different sample designs,
where the cdf are plotted against 𝑓th to demonstrate how the stress
diversity score changes with the threshold determining whether the
collected stress states are significant. The corresponding stress state
distributions are provided in the appendix Fig. A.6. By lowering the 𝑓th,
we incorporate more data points into the calculation of stress diversity,
including more directions that are considered to be ‘‘explored’’, and
cdf decreases. All the sample designs exhibit different degrees of stress
diversity, except the uniform sample without a hole. The legends are
sorted according to cdf at 𝑓th = 1 in descending order.

At this threshold value, the cdf of those patterned samples can
be categorized into two groups. The sample designs with simple or
no holes display less uniform stress state distributions in the 𝜋-plane,
whereas the ones with an array of complex holes display more stress
diversity. This is because in the structure with a single convex hole,
uniaxial stretching along the 𝑦-axis creates greater von Mises effec-
tive stress on the left and right of the hole due to the reduction of
5

supporting area, and the plasticity usually develops in this left and
right sides of the hole. However, in these regions, the orientations of
principal tensile stresses are aligned with the 𝑦-axis as indicated by the
cyan color in Fig. 2(e), resulting in insufficient plasticity data about
the horizontal stretching along 𝑥-axis in these samples. In contrast,
as displayed in Fig. 2(g)–(i), by properly arranging the non-convex
holes, those retained arch-like structures in different orientations are
straightened cooperatively. cdf of these samples is reduced to less than
0.2, indicating that they could be copious sources of data for neural
network training.

Judging from the cdf at different 𝑓th, Fig. 3 is also a useful in-
struction for selecting the sample design for the materials with different
level of ductility. When studying a brittle material or focusing solely on
shallow plasticity, the sample design with the lower cdf may be chosen
at higher 𝑓th for only a small fraction of stress states approaching the
yield surface. Whereas if the goal is to study the material behavior
under deep drawing, consideration may also be given to the samples
with low 𝑓th that incorporate more data points.

4.2. Geometry optimization

Based on a quantifiable measure of sample quality, we suggest an
approach to generate improved sample geometry through the utiliza-
tion of optimization algorithms. Parametric models, including Bézier
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Fig. 3. Stress diversity score map. cdf of various sample with the relative threshold = [0.00, 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00], respectively. The legend is ordered
according to the score at 𝑓th = 1.00 in descending order.
2-fold/3-fold symmetric models and the free harmonic holes (FHH)
model, were selected to streamline the optimization process by limiting
the number of degrees of freedom that are permitted to vary. Their
construction is presented in Appendix B. The first two are inspired by
the best geometries referenced in Fig. 3, with an array of holes showing
2-fold or 3-fold symmetry. The FHH model offers a greater degree of
freedom, allowing the exploration of more varied hole geometries and
positions, while the number of holes is constrained. Since now cdf can
be computed as a function of a tuple of parameters with defined bounds
and data types, the optimizing problem now becomes straightforward.
In addition, the constraints on parameter bounds can also be informed
by microstructure considerations and practical limitations related to
sample preparation.

In Fig. 4, we present GWO optimization results for three different
parameterized models. For each sample, the spatial stress distribution is
displayed in the two first columns, the first one representing the 𝑟 distri-
bution and the second one the 𝜙 distribution. This representation of the
stress states with polar coordinates has been explained in Section 2.1.
The last column contains the representations of the stress states in the
𝜋-plane. Appendix Table C.1 contains the detailed model parameters
of the optimized samples with their calculated stress diversity score.
It also displays the hyperparameters used for GWO, including the
optimization space and the number of wolves used, which corresponds
to the number of configurations tested in each generation, as well as
the number of generations. The results confirm that remarkable stress
diversity scores can be achieved with very simple optimized models.
Evidenced by Fig. 4(c) and (f), the stress points are distributed in an
almost isotropic manner. It is particularly manifested in the Bézier
symmetric models, which only require 3 or 4 parameters, because the
knowledge acquired in Section 4.1 has been well exploited. Further-
more, those fixed holes models enable us to prevent the convergence
towards the geometries that could not easily be made in practical tests.
Although it attains a higher stress diversity score, the outcome from the
6

free harmonic hole model is particularly intriguing. It shows that the
holes with unrestricted geometries have a tendency to merge, yet they
remain separated by very thin strips connecting the upper and lower
sections of the sample. Such a pattern avoids creating large continuous
zones that would almost only undergo a uniform uniaxial tension along
the 𝑦 axis. Unfortunately, these thin strips may pose certain challenges.
Specifically, the evolution of the stress field within these narrow linking
bonds, which is exactly the source of stress diversity, could potentially
result in breakage, even during the initial stages of deformation. It
could also result in out-of-plane bending in practice, as discussed below
in Section 5.

Fig. 5 shows the evolution of the best cdf identified at every
generation of the three GWO jobs. The choice of models that tend
to create better candidates (Bézier symmetric models) enables the
optimization process to depart from already very low scores. Even
without knowing whether there exists a better score in more iterations,
satisfactory results are already achieved within a few generations. The
outcome for the harmonic holes model (c) also demonstrates satisfac-
tory convergence, although it is challenging to conclude that no further
improvement is possible.

To conclude, this optimization process enables us to quickly reach
great score diversity, and it can give lots of ideas to any experimenter
or machine learning specialist interested in anisotropic constitutive law
learning.

5. Discussion

An important question regarding the practical aspect of these anti-
dogbone specimens is the feasibility of obtaining the strain states in DIC
experiments. With the aid of numerically controlled laser cutting, the
anti-dogbone samples can be precisely produced in the laboratory on
thin sheet materials. However, if one tries to stretch the sample follow-
ing the boundary conditions indicated in Fig. 1(a), deviations from 2D
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Fig. 4. Stress states in the optimized samples based on parameterized models. The left and middle columns display the spatial distribution of 𝑟 and 𝜙 respectively (polar
coordinates in the 𝜋-plane defined previously), and the right column demonstrates normalized stress states, with a teal background representing the threshold 𝑓th = 1. (a)–(c):
2-fold symmetrical hole array. (d)–(f) 3-fold symmetrical hole array. (g)–(i) free harmonic holes.
Fig. 5. cdf returned during GWO optimization process.

FEM simulation predicted deformation conditions may emerge. Such a
deviation is generally due to out-of-plane bending created under non-
uniform strain states. The presence of such instability can already be
well predicted by the instability criteria based on the in-plane linear
elastic responses [40,41]. This discrepancy arising from out-of-plane
7

deformations may be minimized by taking into account the in-plane
elastic instability along with cdf during geometry optimization. In the
meantime, experimental studies are needed to check the quality of the
designs obtained with these 2D assumptions for DIC in a machine learn-
ing of constitutive relation experiment in practice. Another concern
arises that the DIC approach could often omit pixels around sample
edges. To handle this, modifications can be applied by either excluding
data points that DIC could not access in terms of their distances from
the edges, or including a corresponding penalty term into the loss
function to account for these missing data points.

While practical 2D studies might be challenged by the occurrence
of out-of-plane behavior, our approach represents an initial step to-
wards prospective 3D investigations. Indeed, full-field measurement
techniques including tomography scans [42] or confocal imaging [43]
could also be used for DVC for 3D samples, and similar neural network
training processes could be designed to acquire the full 3D behavior of
materials. For such applications, our approach could be generalized to
3D sample optimization, with an extension of the stress diversity score
to a 3D stress tensor.

The exploration of how sample geometry can enhance the informa-
tion density for NN training contributes to the continuous refinement
of sample design. Given that the loss function for training NN typically
involves the summation of stress, strain, or displacement deviations
from each DIC pixel, we suggest incorporating data point density into
the target function to be optimized in future studies. Additionally,
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to comprehensively capture mechanical properties across all potential
directions, the requisite number of experiments for a ‘‘dogbone’’-shaped
specimen will decrease inversely with the required angular resolution
or bin width. Adequate data points within each angular bin are there-
fore crucial for obtaining dependable statistics. Eq. (1) conveniently
expresses the deficiency of a particular sample geometry in comparison
to one that produces an ideal isotropic stress distribution. Notably,
Eq. (1) can be modified to delineate differences in the data richness
from two different sample geometry 𝛺𝑝 and 𝛺𝑞 by:

𝑝,𝑞 =
6
𝜋 ∫

2𝜋

0

(

𝑐𝑝(𝜙̃) − 𝑐𝑞(𝜙̃)
)2 𝑑𝜙̃, (2)

here 𝑐𝑝 and 𝑐𝑞 corresponds to the cumulant from 𝛺𝑝 and 𝛺𝑞 .
Moreover, the proposed method can be adjusted for designing ten-

ile specimens to learn more specific material behaviors within an
terative framework. If an approximate stress–strain relation is already
nown, it can be utilized in a FE simulation to calculate a behavior-
pecific stress diversity score. Sample optimization can be performed
sing this initial approximated relation, and the resulting sample can
hen be used to refine the constitutive relation. It is important to
cknowledge that material behavior can often be highly nonlinear
ue to factors like work hardening, thermo-mechanical coupling, or
amage accumulation. In such cases, relying solely on infinitesimal
train approximations may be limited. Once the qualitative behavior
f material plasticity is understood within a specific material system,
he FE simulation routine can be adjusted to replicate any necessary
henomena that affect strain development in stress/strain states. By
aking these modifications, optimal sample designs can be developed

o capture information in the deeper plastic stages of material behavior.

. Conclusions

In this work, several sample geometries were proposed to be able
o produce complex stress states in tensile experiments. These sample
esigns provide fruitful sources of training data for NNs to capture the
echanical properties, which are generally inaccessible by the standard
ogbone specimens. Since most of the commonly used mass production
rocesses such as rolling, drawing or extrusion will produce anisotropic
extures in material, it is also worthwhile to consider which sample
esigns could lead to a more thorough exploration of stress states in
echanically anisotropic materials. The geometry optimization algo-

ithm, relying on parameterized models, offers flexibility in addressing
he anisotropy. It allows for obtaining optimized sample geometries
apable of presenting diverse data for NN training by minimizing cdf

based on stress states derived from anisotropic FE simulations.
The score design and optimization tasks have been proposed based

on the concept that an ideal elastic behavior would represent many
material responses at low strains. It would be interesting to take some
of the optimized designs and compare the 𝜋-plane stress plots ob-
tained with DIC during tensile stretching experiments and the ones
returned by elastic FE simulation. Additionally, comparing their cdf
at low strain would be meaningful if sufficient image precision can
be achieved at this stage of the experiment. To tailor the optimization
process for specific materials and not solely rely on the design provided
for linear elastic behavior, one might consider an iterative optimization
approach that involves refining both the constitutive relation and the
sample design alternately.

Enhancing NN performance for learning anisotropic constitutive
relations is undoubtedly valuable. However, it is worth noting that
the low extrapolation performance of NNs implies that conducting nu-
merous experiments with simple dogbone samples would be necessary,
which could substantially extend the time and material resources re-
quired. Therefore, the optimal sample geometry proposed in this work
has the potential to address this challenge effectively. This work under-
scores the significance of innovative approaches at the intersection of
materials science, optimization, and machine learning in shaping the
future of mechanical characterization and design.
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Appendix A. Stress states in different sample geometry under lin-
ear elastic perturbations

See Fig. A.6.

Appendix B. Parameterized models used in topological optimiza-
tions

Bézier symmetrical patterns
We propose parameterized models in the two different types of

symmetrical patterns:

• 2fold: mm2 symmetrical holes arranged in an array of p4gm
wallpaper group.

• 3fold: 3m symmetrical holes arranged in an array of p31m
wallpaper group.

here the symmetry is noted in Hermann–Mauguin notations [44,45].
ig. B.7(a) and (b) display these patterns respectively. The symmet-
ical holes are generated by distorting and dilating the unit cells
oundaries to width 𝑤. As displayed in Fig. B.7(c), the blue straight
egments are replaced by the red Bézier curves. Here, we use 𝑛 control
oints to determine the parameterized curve [46]. Fig. B.7(d) describes
he arrangement of control points in 2fold. The black vertices on
oth ends were fixed, and the rest of 𝑛 − 2 red vertices are dis-
ributed uniformly along the 𝑥-axis. Their 𝑦 coordinate can be noted
s 𝑦−𝑚, 𝑦−𝑚+1,… , 𝑦−1, 𝑦0, 𝑦1,… , 𝑦𝑚−1, 𝑦𝑚. By limiting 𝑦𝑚 = 𝑦−𝑚, we can
se parameters: [𝑤, 𝑦0,… , 𝑦𝑚] to describe the sample geometry. On the
ther hand, the control points of Bézier curves in 3fold are described
n two-center bipolar coordinates (𝜃𝑥, 𝜃𝑦) as displayed in Fig. B.7(e), and
he parameters becomes [𝑤, 𝜃 ,… , 𝜃 ].
𝑦0 𝑦𝑚
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Fig. A.6. The 𝜋-plane stress states distributions for all the 16 different sample geometry displayed in Fig. 3. Spatial distributions of 𝑟 and 𝜙 are also visualized as pseudocolor
plots on the side. Panels are sorted according to their cdf at the truncation level 𝑓th = 1.
Free harmonic holes
In order to explore sample geometries with greater disorder and

more varied hole geometries, the following free harmonic hole model
has been tested. Each hole is represented by its center (𝑥, 𝑦), an ex-
pansion coefficient 𝑅max and a sequence of coefficients associated with
each harmonic 𝑘 (𝑐𝑘, 𝜙𝑘). In polar coordinates (𝑅, 𝜃) with origin (𝑥, 𝑦),
the contour equation is:

𝑅(𝜃) =
𝑅max
2

⎛

⎜

⎜

⎝

∑𝑁ℎ
𝑘=1 𝑐𝑘 cos(𝑘(𝜃 + 2𝜋𝜙𝑘))

max𝜃∈[0,2𝜋] |
∑𝑁ℎ

𝑘=1 𝑐𝑘 cos(𝑘(𝜃 + 2𝜋𝜙𝑘))|
+ 1

⎞

⎟

⎟

⎠

To avoid creating thin bands of material that would easily break,
a band of material is added around the hole: its inner contour is
𝑟in(𝜃) = 𝑅(𝜃) and its outer contour 𝑟out (𝜃) = 𝑅(𝜃) + 𝑤, where the width
𝑤 is an optimization parameter that is usually fixed but can be released
within a certain range (see Fig. B.8). The parameters are specified
in the following order, with the exponent corresponding to the hole
numbering and the index corresponding to the harmonic numbering :

[

𝑤, 𝑛holes, 𝑥(1), 𝑦(1), 𝑅
(1)
max, 𝑐

(1)
1 , 𝜙(1)

1 ,… , 𝑐(1)𝑁ℎ
,

𝜙(1)
𝑁ℎ

,…⋯, 𝑥(𝑛holes), 𝑦(𝑛holes), 𝑅(𝑛holes)
max , 𝑐(𝑛holes)1 , 𝜙(𝑛holes)

1 ,… , 𝑐(𝑛holes)𝑁ℎ
, 𝜙(𝑛holes)

𝑁ℎ

]

The number of holes (𝑛holes) is fixed for the optimization, and the
holes are placed one after the other in a subspace of the rectangle
representing the sample. Because of the presence of 𝑤 wide bands, the
order of addition of the holes matters in the optimization of this model.
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Appendix C. Results obtained from geometric optimization

See Table C.1.

Appendix D. Numerical stability of the stress diversity metric

To assess the numerical stability of the stress diversity metric, we
considered three different specimen designs: a simple disc hole (Fig. 2
d–f), optimized hole arrays with 2-fold symmetry (Fig. 4 a–c), and the
optimized free harmonic hole (Fig. 4 g–i). The stress diversity metric
was evaluated for various values of 𝑓th ranging from 0 to 2.0. The
mesh sizes were repeatedly refined until the number of mesh cells
exceeded 100,000, where the minimum feature size is around 3 × 10−4

of the sample width. For the simple disc hole and optimized 2-fold
hole arrays, the stress diversity metric showed negligible differences
among the different levels of mesh refinement. However, in the case of
the optimized free harmonic hole specimen, the significant feature size
heterogeneity resulted in varying sizes of mesh cells in different parts of
the sample. As a consequence, there were gradual changes in the stress
diversity metric, while the general trend remained intact. Introducing
parametric limitations on the feature size in sample design can be a
valuable approach to controlling the variation of mesh densities in the
specimen. By carefully managing the distribution of mesh cells and
considering the inherent limitations of image resolution, we can ensure
accurate and reliable results in DIC analysis, particularly when dealing
with challenging imaging conditions (see Fig. D.9).



Extreme Mechanics Letters 69 (2024) 102157C.-H. Tung and J. Li
Fig. B.7. Geometric patterns used in geometry optimization (a)–(b) Schematic diagram of the 2fold and 3fold pattern. (c) Symmetrical holes are generated by replacing
the unit cell boundaries (blue) with parameterized curves (red). (d)–(e) Bézier curves and their control points used to determine the distorted unit cell boundaries in panel (c).
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. B.8. Free Harmonic Holes Parameterized hole pattern where the hole shapes are defined by superposition of harmonic functions.
Table C.1
Parameters used for Grey Wolf Optimization algorithms and results obtained.

Model cdf Optimized parameters Parameter bounds Number of wolves Number of generations

Bézier 2-fold 0.018900 [0.02, 0.865945, 0.871320] [[0.02, 0.02] cm, [0, 1], [0, 1]] 80 500

Bézier 3-fold 0.000417 [0.02, 4.345357e−04,
7.484435e−01, 9.662662e−01]

[[0.02, 0.02] cm, [0, 1], [0, 1], [0, 1]] 80 500

Free harmonic holes 0.047874 [5.000000e−04, 2.000000e+00,
3.000000e−03, 7.000000e−03,
3.000000e−03, 5.793045e−01,
0.000000e+00, 9.532601e−03,
1.643613e−01, 4.204582e−01,
4.711165e−02, 2.656237e−02,
4.022482e−01, 6.500855e−02,
5.192538e−01, 7.000000e−03,
4.461367e−03, 3.000000e−03,
1.000000e+00, 1.515416e−01,
4.651967e−02, 1.019129e−01,
2.235705e−02, 7.957423e−03,
3.416316e−03, 1.537801e−03,
7.284446e−01, 7.893828e−01]

𝑤 = 0.05 cm, 2 holes,
(𝑥, 𝑦) ∈ [0.3, 0.7] cm,
𝑅max ∈ [0.05, 0.3] cm,
∀𝑘 ∈ [[1, 5]] (𝑐𝑘 , 𝜙𝑘) ∈ [0, 1]2

500 500
10
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Fig. D.9. Numerical stability of stress diversity metric evaluated across specimen
designs. The red line represents simple disc hole (Fig. 2 d–f), green line represents
optimized hole arrays with 2-fold symmetry (Fig. 4 a–c), and blue line for the optimized
free harmonic hole (Fig. 4 g–i). The stress diversity metric was assessed for varying
𝑓th values ranging from 0 to 2.0. Mesh refinement, with a minimum feature size of
approximately 3 × 10−4 of the sample width, was performed until exceeding 100,000
mesh cells. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
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