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ABSTRACT: Mapping the chemical reaction pathways and their
corresponding activation barriers is a significant challenge in
molecular simulation. Given the inherent complexities of 3D
atomic geometries, even generating an initial guess of these paths
can be difficult for humans. This paper presents an innovative
approach that utilizes neural networks to generate initial guesses
for reaction pathways based on the initial state and learning from a
database of low-energy transition paths. The proposed method is
initiated by inputting the coordinates of the initial state, followed
by progressive alterations to its structure. This iterative process
culminates in the generation of the guess reaction path and the
coordinates of the final state. The method does not require one-
the-fly computation of the actual potential energy surface and is
therefore fast-acting. The application of this geometry-based method extends to complex reaction pathways illustrated by organic
reactions. Training was executed on the Transition1x data set of organic reaction pathways. The results revealed the generation of
reactions that bore substantial similarities with the test set of chemical reaction paths. The method’s flexibility allows for reactions to
be generated either to conform to predetermined conditions or in a randomized manner.

1. INTRODUCTION
The enhanced comprehension of chemical reactions using
computational methods is continually advancing. Notably, the
intersection of machine learning and computational chemistry
has recently demonstrated significant potential for the
exploring materials based on atomistic energetics. Recent
advances in machine learning have accelerated research in
computational chemistry. The advent of machine learning
potentials has significantly sped up molecular dynamics.
However, because chemical reactions are intrinsically rare,
the acceleration provided by machine learning potentials alone
is insufficient to tracking chemical reactions within feasible
timeframes. Therefore, standard sampling techniques, such as
conventional molecular dynamics methods or Monte Carlo
methods, remain inadequate, even with improved potential
speeds. Further development of the sampling techniques is
required.

Historically, many methods have been proposed for
analyzing reaction pathways (RPs). Techniques such as the
First-Order Saddle Points (FOSP) refinement strategy to
determine transition states (TSs), eigenvector following,1 and
the dimer2 method have been introduced. Additionally, recent
advancements have led to the development of new methods,
such as those pioneered by Sella3 and others. Although the
FOSP refinement strategy is computationally efficient, it
requires precise initial guesses and careful monitoring due to

its sensitivity to the direction of the RP. Chain-of-state
refinement methods, such as the Nudged Elastic Band4 (NEB)
and String5 methods, mitigate some of the challenges
associated with FOSP. These methods approximate the RP
using discrete images and refine the entire pathway. With a
suitable initial guess, they can effectively determine the RP and
are generally more numerically stable than the FOSP
refinement strategy. However, obtaining an appropriate initial
guess remains challenging. For example, even when using
simple linear interpolation, it is necessary to align the initial
state (IS) and the final state (FS) appropriately. Moreover,
linear interpolation does not always provide an optimal initial
guess. High-precision RPs can be derived using the FOSP
refinement strategy or chain-of-state refinement methods like
NEB and the String method, but they depend on having an
appropriate initial guess. Methods such as Gaussian scans6 and
AFIR,7 which apply external forces, can be used to generate
these initial guesses. These approaches create pathways starting
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from the IS, passing near the RP, and reaching the FS. The
trajectories obtained can then serve as initial guesses for NEB
or the String method. If the obtained initial guess is highly
accurate, it may also be used for the FOSP refinement strategy.
However, defining an appropriate external force direction to
accurately represent the desired reaction is not always
straightforward. Existing methods that transition from IS to
FS often rely only on local information. Therefore, a well-
designed external force is necessary to guide the system toward
the appropriate TS without hindering its progression toward
the correct FS. Furthermore, these methods assume the
relaxation of other degrees of freedom as the reaction
coordinate progresses. If the external force direction diverges
from the RP, it may require extensive relaxation calculations.
Therefore, there is a chance to improve the reaction pathway
analysis using the knowledge of wide range of energy landscape
without explicitly indicating FS.

Significant developments in sampling techniques have
occurred in recent years, with the advent of generative models
equivariant to translation, rotation, and permutation. In
particular, focusing on machine learning-based sampling
methods, the current trend involves transforming simple
distributions, such as Gaussian distributions, into complex
distributions that the data should follow. Specifically, methods
such as normalizing flows,8 diffusion models,9 and flow
matching10 have been extensively studied for the sampling of
molecular structures. A common feature of these methods is
the iterative transformation of a simple distribution, such as a
Gaussian distribution, into a target distribution.

For example, the E(n) equivariant normalizing flow11 learns
to generate actual molecules by sampling the coordinates of
each atom constituting a molecule from a Gaussian
distribution through a normalizing flow. Similarly, GeoDiff12

learns the direction to generate molecular structures by
sampling the coordinates of each atom from a Gaussian
distribution but uses a diffusion model to define this direction.
DiffDock13 and Torsional Diffusion14 introduced a coordinate
system employing dihedral angles and translational degrees of
freedom within the molecule and applied diffusion models
within that framework. Equivariant flow matching15 transforms
the coordinates of each atom from a Gaussian distribution and
definines the direction of atom movement using flow matching.
Distributional Graphormer (DiG)16 determines the movement
direction using a diffusion model and learning with various
coordinates specific to each system. CDVAE17 generates bulk
systems using a VAE-conditioned flow. By training lightweight
energy predictors from the VAE18 features, it allows for the
estimation of the energy of the structures before generation,
thus saving time in what is typically a time-consuming process.

In addition to generating stable structures, generating RPs
are in significant demand. RPs and TSs provide crucial
information regarding chemical reactions. TS is the highest
energy point of the minimum energy path (MEP). The height
of the transition state is a critical parameter that determines the
rate of chemical reactions.

In recent years, methods that can sample RPs have also been
proposed in addition to models that generate stable structures.
Diffusion Methods for Generating Transition Paths19 discretize
the RP and use a diffusion model in a space defined by the
product of the number of degrees of freedom of the structure
and the number of discrete image points. In contrast, the
Boltzmann Generator20 and DiG directly interpolate between
two points on a Gaussian distribution, generating structures

from each point to obtain a pathway connecting different
basins. Notably, DiG is trained on various systems using
Graphormer,21 suggesting its potential for general application.
These methods can smoothly interpolate between two basins.
However, because they do not use MEP information during
training, it is uncertain whether the generated pathways are
close to the MEP.

The lattice-free extension of Kinetic Monte Carlo (KMC)22

can be considered a future RP generation application. For
instance, recent attempts have been made to combine KMC
with reinforcement learning.23

To accelerate the KMC by generating RPs, it is essential to
quickly enumerate the ISs, FSs, and activation barriers.
Reaction generation methods have been developed to handle
small molecules on solids or solid surfaces. However, models
capable of generating chemical reactions in organic chemistry
in a continuous space have not been proposed. Therefore, to
the best of our knowledge, the most promising method for
application in organic reactions and the potential for
accelerating reaction simulations is temperature-accelerated
dynamics (TAD),24 which samples high-temperature MD. One
reason for this is that reactions in organic compounds involve
curvilinear RPs in which the degrees of freedom of various
atoms are interdependent. This complex degree of freedom
makes it challenging to handle organic compounds in a 3N-
dimensional space.

Because generative models are generally inaccurate,
providing precise MEPs or TSs where the force is almost
zero under an actual potential is challenging. However, if an
approximate shape of the RP can be provided, methods such as
CI-NEB25 can be used to optimize the RP or models that
predict the activation energy from the approximate shape of
the RP can be employed to estimate the activation barrier.
Therefore, a method to rapidly generate approximate RPs is
required to accelerate the simulation of organic compounds.

In this study, we developed a model capable of generating
appropriate organic RPs from instructions or randomly
arbitrary without instructions. This breakthrough approach
effectively handles the complex degrees of freedom associated
with organic molecules. The proposed method uses the IS
structure and any reaction type as inputs. It gradually modifies
the structure of the IS along the RP to obtain the approximate
RP and the FS simultaneously.

To achieve this, we introduced two fields: transformation
guidance and denoising. This method produces a RP
connecting the IS and FS by following these fields to modify
the structure. This approach is rapid and can directly learn RPs
from RP data sets. In addition, it is highly versatile, as
demonstrated by training a generalized model on transi-
tion1x26 data. Moreover, the model can generate reactions for
molecules with more atoms than those in the transition1x data
set.

2. METHOD
2.1. Training Target. The number of atoms was N. Let x

∈ N3 denote the coordinates of each atom. In general, there
are numerous RPs exist, among which the ith RP is denoted by
xRP,i(s). Here, s is a parameter satisfying,

=
s

xd

d
1iRP,

(1)
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In this context, the minimum value of s is 0, and its maximum
value is the length of xRP,i. Furthermore, let the length of the
RP be Li. Consider the line segment from any coordinate x to
the nearest point on the RP xRP,i. The parameter s at the point
of intersection between this line and xRP,i is denoted as Ŝi(x)
defined in,

=S sx x x( ) argmin( ( ) )i
s

iRP,
2

(2)

In the proposed method, two types of fields are defined. The
first field is a transformation guidance field. The transformation
guidance field is the tangent vector of the RP, pointing from
the IS to the FS, at the foot of the vector drop perpendicular to
the RP that should be followed. The transformation guidance
field is defined as follows:
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(other)
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RP,
( )i

(3)

The second field is the denoising field. The denoising field is a
perpendicular vector pointing from x to the RP and drops to
the RP that should be followed. The denoising field is defined
as follows:

= St x x x x( ): ( ( ))i i id, RP, (4)

The machine learning model learns tt,i(x) and td,i(x). It does
not have information about the index of the training data.
Instead, it receives a condition vector given by the feature c as
input. Let yt,i(x, c) be the approximation of the training data
tt,i(x) by the machine learning model. Similarly, let yd(x, c) be
an approximation of the training data td,i(x) using the machine
learning model. tt,i(x) is the derivative of the RP for parameter.
Therefore, we start with IS and integrate it into tt,i(x), as
shown in,

= sx t xd ( )dit, (5)

allows us to obtain the RP. Therefore, one is expected to
generate the RP by learning the pathway from the IS to FS.
However, if one attempts to generate an RP using only yt,i, the
path may deviate from the actual RP because of inference or
approximation errors. The field at positions far from the RP is
not well learned, and there is no physical meaning to moving
along a tangent to the RP at such positions. Consequently,
once the pathway deviates from the RP, it diverges.

To address this problem, methods such as score matching
and diffusion models learn where to move, even in the vicinity
where data appear, to return to the region where the data
occurs. Similarly, in learning RPs, if a structure deviates from
the actual RP, it is necessary to return and correct it in the
direction of the RP.

For this purpose, generation is performed using a linear
combination of the transformation guidance and denoising
fields, as shown in

= +sx y x c y x cd ( , )d ( , )t d (6)

In addition, unlike general diffusion models, s is a parameter
corresponding to the length of the RP, and its maximum value
is unknown during generation. Therefore, to determine
whether we are partway along the RP, we define tf as a
variable. tf is an integer scalar output that takes the value of
zero or one. Additionally, let yf(x, c) be the approximation of

tf,i using a machine learning model. yf(x, c) outputs two values,
and the generation stops based on which value is larger.

For clarity, Figure 1 shows a model of the RP as a curve in a
2D space. In Figure 1, the center of the figure represents the IS.

The three curves emanating from the IS each represent
different RPs as indicated by the expressions xRP,i, i ∈ [1, 3].

When such RPs exist, the figure shows the field used as the
training data when the RP with the shortest denoising field is
selected for learning at each coordinate x. In Figure 1, the red
arrows denote the transformation guidance field, and the thin
black arrows denote the denoising field.
2.2. Related Work. Flow matching, diffusion models, and

reinforcement learning significantly influenced the model used
in this study with many modifications. The transformation
guidance and denoising fields can be interpreted within the
context of the flow matching and diffusion models.
Furthermore, the differences in problem settings between
this approach and imitation learning are discussed.
2.2.1. Relationship between the Transformation Guid-

ance Field and Existing Generative Models. The trans-
formation guidance field can be interpreted as a type of flow
matching. In general diffusion models or flow matching, a
“time” concept connects a simple distribution with the
generated distribution smoothly. For example, at t = 0, the
molecules follow a Gaussian distribution, and at t = 1, they
follow a Boltzmann distribution. However, the transformation
guidance field contains elements distinct from those in general
diffusion models or flow matching. In the transformation
guidance field, a distribution localized near the IS was used
instead of a simple distribution, and a distribution localized
around FS was used as the generated distribution.

In flow matching or diffusion models, the pathway during
generation is not crucial; only the distribution of the FS is
essential. In contrast, the transformation guidance field
considers the necessary pathways, and all the structures

Figure 1. Model image of the learned flow. Consider the center of the
figure as the IS. The three curves emanating from the IS are
considered optimized RPs. The FS is the end point of the RPs on the
side opposite to the IS. The black arrows extending from each point in
the figure represent the denoising field (td), and the red arrows
represent the transformation guidance field (tt). Note that the
denoising field is defined as pointing toward the nearest point on the
RP. As a result, the end points of RP tend to become convergence
points, where line segments from all directions accumulate.
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obtained during the generation process are used to construct
the RP. Furthermore, in the present problem setting, a time-
independent vector field is learned, which starkly contrasts
with diffusion models or flow matching, which learn time-
varying vector fields. The pathway that transitions from IS
along the learned vector field becomes the RP.

Because the vector field does not depend on time, unlike
general flow matching or diffusion models, the number of steps
required to complete the generation is not uniquely
determined. Therefore, we predict the stopping condition
using eq 28.
2.2.2. Relationship between the Denoising Field and

Existing Generative Models. The denoising field is related to
denoising score matching27 in a scenario in which every point
on the RP represents the data distribution. Suppose the RP can
be approximated as a discrete set of points and the nearest
point on the RP to a given point x is unique. In that case, it can
be proven that the denoising and Newton steps to maximize
the log-likelihood for the perturbed distribution in denoising
score matching are equivalent. Let xRP,i,s denote the s-th
discretized point in the i-th RP. In denoising score matching,
the distribution diffused around the data points is given by

=
=

p
S

x x x( , )
1

( ; , )i
i s

S

i s
1

RP, ,

i

(7)

where N is the probability density function of a normal
distribution represented by

i
k
jjjjj

y
{
zzzzzy x

x y
( ; , )

1

2
exp

2N N3 3

2

2
(8)

The gradient of the logarithm of eq 7 with respect to x is given
by

=
=

p
p S

x
x

x x
x xlog ( , )

1
( , )

1
( ; , )i

i i s

S
i s

i s
1

RP, ,
2 RP, ,

i

(9)

Furthermore, the second derivative of the logarithm of eq 7
with respect to x is given by,
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Here, we introduce the Soft-Nearest function represented in
the form of,

[ ] =
=

f
p S

fx
x

x x x xSN , , :
1

( , )
1

( , ) ( ; , )i
i i s

s

1
RP,i,s RP,i,s

i

(11)

Now, Ŝi(x) is introduced as

=S x x x( ) argmin( )i
s

i sRP, ,
2

(12)

When ∀ s ≠ sî(x), ∥xRP,i,s ̂di(x) − x∥ < ∥xRP,i,s − x∥, in the limit as
σ → 0, the Soft-Nearest function satisfies,

[ ] = +
i
k
jjjj

i
k
jjj y

{
zzz

y
{
zzzzf f Ox x xSN , , ( , ) exp

1
i i S xRP, , ( )i (13)

converges to the value at the point on the RP closest to x.
Because of this property, the denoising field coincides with the
σ → 0 limit of the following equation.

= [ ]t x x x x( , ) SN , ,i i i sd, RP, , (14)

=t x t xlim ( , ) ( )i i0 d, d, (15)

To investigate how far the Newton step and td,i(x, σ) are for
any σ, we define the difference between the Hessian of the log-
probability density function applied to td,i(x, σ) and the
gradient of the log-probability density function as shown in,

= +( ) ( ) ( ) ( )R p px x t x x, : log , , log ,i i i i
T

d,

This equation can be expanded as,

=i
k
jjj y

{
zzz i

k
jjj

Ä
Ç
ÅÅÅÅÅÅÅÅ
i
k
jjj y

{
zzzi

k
jjj y

{
zzz

É
Ö
ÑÑÑÑÑÑÑÑÄ

Ç
ÅÅÅÅÅÅÅÅ
i
k
jjj y

{
zzz

É
Ö
ÑÑÑÑÑÑÑÑ

Ä
Ç
ÅÅÅÅÅÅÅÅ
i
k
jjj y

{
zzz

É
Ö
ÑÑÑÑÑÑÑÑ
y
{
zzz

Ä
Ç
ÅÅÅÅÅÅÅÅ
i
k
jjj y

{
zzz

É
Ö
ÑÑÑÑÑÑÑÑ

R x x x x x

x x x x

x x

,
1

SN

SN SN

SN

i i i s i s

i i s i i s

i i s

4 RP, , RP, ,

T

RP, , RP, ,

T

RP, ,

In eq 17, the contents of the parentheses asymptotically

approach 0 as σ → 0 with an order of ( )( )O exp 1 .

Therefore, Ri(x, σ) asymptotically approaches 0 as σ → 0,
indicating that td,i(x) is a Newton step in the log-probability
density function as σ → 0. Consequently, for the denoising
field term, in many cases, when α = 1, it will yields values close
to the Newton step.

Instead of using a denoising field, we can consider using an
orthogonalized potential force with respect to the trans-
formation guidance field. However, the orthogonalized force
has an inverse dimension of distance, which differs from the
transformation guidance field and the coordinates. Therefore,
to combine it linearly with the transformation guidance field, it
is necessary to multiply it by a constant with the appropriate
magnitude and dimension, which can vary depending on the
system, making the adjustment challenging. In this respect, the
denoising field is more convenient because it has length
dimensions.
2.2.3. Relationship with Imitation Learning. RP prediction

can also be considered a sequential decision-making problem,
in which the task is to predict the coordinates along the MEP
at each time step. One approach to this problem is imitation
learning (behavior cloning), which involves supervised learning
from the trajectories of correct actions. Ross et al.28 proposes
algorithms that address the challenge of the difference between
the correct trajectory and the inference-time trajectory, which
can lead to unobserved states during training and result in
failed predictions. The denoising field proposed in this study
learns the direction perpendicular to the correct trajectory. It
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serves as a similar solution by recovering to the correct
trajectory. However, by removing noise, our denoising field
learns the score function, which is the gradient of the log-
likelihood. Because the gradient of the log-likelihood includes
pi(x, σ) in the denominator, as shown in eq 9, the score can be
large even in low-probability regions, allowing it to return to
high-probability regions. Although they and their subsequent
research utilized a trained model (policy) to generate the
training data,28,29 we generated the training data by adding
random noise to the correct points in our experiments. We
believe that it is worth exploring other approaches to training
data generation.

However, because Ross et al.28 and most reinforcement
learning settings assume discrete time steps, the direction from
a divergent point to the next step on the correct trajectory can
be trivially defined. The models are trained to predict that
direction directly. In contrast, in this study, because the RP
must be obtained by integrating tt,i(x), the definition of the
next step in continuous time is not trivial. Therefore, in this
study, the problem was modeled using two fields: trans-
formation guidance field and denoising.

3. TRAINING
3.1. Notation. ⊗ denotes the tensor product in e3nn.30 ⊕

represents concatenation. ⊙ denotes the operation that takes
the product of two features and sums them in the feature
direction.

Symbols with a single subscript, such as Zi, indicate the
notation for the i-th node (the i-th atom). Symbols with two
subscripts, such as cij, represent the edges between the i-th and
j-th nodes. Additionally, the values in bold, such as r, are E(3)-
equivariant quantities. r ̂ represents the normalized r, and ∥r∥
represents the norm of r.

All variables are written in e3nn notation according to the
transformation rules to which they belong. A particularly
important note is that the 0e components are E(3)-invariant
scalar components, and the 1o components are E(3)-
equivariant vector components. In addition, 128 × 0e indicates
a feature consisting of 128 E(3)-invariant scalar components.
“FNN” indicates the operation where a fully connected neural
network is applied to the 0e components of each atom. The
SiLU activation function was used.31 For transformations in
which the number of inputs and outputs were the same, a
ResBlock32 was employed.
3.2. Neural Network Architecture. Let i and j be atom

indices. The overall structure of the model is as follows: The
formal inputs to the model were as follows:

{ } { }f Z c y y yx x y y: , , , , , , ,i i i ij i i i icart IS, t, d, std,d, std,t, f (18)

where, x represents the coordinates of the current structure,
and xIS represents the coordinates of the IS. Zi is the atomic
number. In addition, cij is a feature vector specifying the
generated reaction. Ideally, as input feature vector c, any
descriptors are acceptable. For example, following RCG,33

feature vector generated by other methods such as MoCo34 or
VAE18 would be better. However, for the simplicity, in this
experiment, c handled some types of edge features only. Only
relative coordinates were used to guarantee translational and
rotational equivariance. The inputs and outputs obtained using
the relative coordinates are shown in Figure 2 and,

{ } { }f Z c y y yr y y: , , , , , ,ij i ij i i i irel t, d, std,t, std,d, f (19)

Here, r represents the relative coordinates between the
atoms. There are three types of relative coordinates: (1) the
relative coordinates between atoms in the IS structure, xIS,i −
xIS,j, (2) the relative coordinates between atoms in the current
structure, xi − xj, and (3) the relative coordinates between
atoms in the IS and the current structure, xi − xIS,i. These are
collectively denoted by rij. For xi − xIS,i, only the edges where
information flowed from atom in IS xIS,i to the same atom in
current structure xi were used. The correspondence of nuclei is
uniquely determined in the IS, and this correspondence is
maintained without changes while integrating eq 6. The pairs
(i, j) are determined with reference to Big Bird.35 Big Bird is a
method to sparsify the attention edges in Transformers. In Big
Bird, in addition to regular nodes, supernodes are prepared.
Edges are connected between nodes that are close to each
other, all nodes and supernodes, and randomly selected pairs
of nodes. These three types of connections are called window,
global, and random connections. In this experiment, we
selected and connected up to the 128 nearest neighbors among
the atoms within a distance of 12 Å (windows). In addition, 32
atoms were randomly connected within a distance of 30 Å
(random). We also prepared two supernodes and connected all
the atoms to the supernodes (global). Because supernodes do
not have coordinates, the relative coordinates of the edges
between supernodes are set to rij = 0. In eq 19, cij is composed
of a zero or one value, which indicates whether certain
conditions are satisfied. The first condition denotes whether a
bond is broken by the reaction (i.e., whether the atoms move
far apart). The second condition indicates whether the reaction
forms a bond (i.e., whether the atoms come closer together).
The third condition indicates whether the dihedral angle
around the bond is rotated by 105° or more because of the
reaction. Here, the value of 105° is determined as the value
which is larger than 105° but smaller than 120°, which is a
typical sp3 C−C bond rotation angle. The third condition is set
to zero if the first or the second condition is satisfied. The
fourth condition indicated whether the first three conditions
were used as the model input. If the fourth condition is set to
0, the first through the third conditions are set to zero; if set to
1, those conditions are used in the conditional generation; and
if set to 0, they are used in the unconditional generation. The
fifth condition indicates whether the edge is an edge connects

Figure 2. Whole model architecture.
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the IS and the current structure for each atomic bond. The
sixth condition determines whether an edge is a window. The
seventh condition indicates whether the edge is a random. The
eighth condition indicates whether the edge has an atom-
supernode connection. The ninth condition indicates whether
the edge is a supernode-supernode connection.

Figure 2 shows the entire model. A one-hot vector is used
for the embedding Zi. The embedding of Zi is further
transformed for each node by a neural network and then
normalized and treated as a node feature with only 0e
components, which serves as the input to the first interaction
block. The relative coordinates rij are decomposed into relative
distances ∥rij∥ and normalized relative coordinates rîj, each of
which is embedded separately. Sinusoidal embedding36 was
used to embed ∥rij∥, and e3nn spherical harmonics30 were
used to embed rîj. Here, the 1 × 0e component is always one,
and the 1 × 1o component is normalized rîj.

Embedding of the relative distance is a scalar edge feature
that satisfies the same transformation rule (E(3)-invariant) as
cij. Therefore, it is concatenated with cij and treated as a edge
scalar feature. After concatenation, the result transformed by
the FNN is treated as the edge scalar feature Sij. It is used as
the input to the interaction block. The embedding of the
normalized relative coordinates is treated as an edge vector
feature vij. It is used as the input to the interaction block.

The interactions were performed five times, during which Sij
and vij were fixed. However, the node features have different
values each time. Furthermore, because the tensor product of
the node features and vij is included in the interaction block,
the node features acquire higher-order tensor features for each
interaction.
3.3. Interaction. The interaction part of Figure 2 is

illustrated in Figure 3a. The E(3)-attention is implemented.

Three edge features (qij, kij, vij) are generated using the three
edge feature blocks introduced in Section 3.4. Node feature ni
is obtained from qij, kij, and vij. The following equation
represents the attention:

=
·
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d

q k
ij

ij ij

(20)
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where the “·” denotes the dot product, which is the sum of the
products of the corresponding elements of the features.
Consequently, wij is 1 × 0e. n′i obtained from eq 21 is
added to the input ni of the interaction block and normalized
to obtain the overall output. Here, the normalization is
represented by

·
n

n n
i

i i (22)

By normalizing in this method, rotational equivariance is
preserved.
3.4. EdgeFeat. In Chapter 3.3, edge features are

constructed using an edge feature block. An edge feature
block is shown in Figure 3b. First, the node features are
expressed as ni and nj to represent the interactions. A single-
edge tensor feature is formed by concatenating ni, nj, and Sij.
An o3 linear transformation is then performed, and an FNN
was applied. A tensor product with edge vector features is
computed using the result as the input to produce the output.
The tensor product incorporates high-rank components into
its features.
3.5. ReadOut. Figure 4 illustrates the readout section of

Figure 2. There are four outputs. Output yfin indicates the

stopping condition and has a size of 2 × 0e. Output ystd,i allows
different prediction uncertainties for each atom and has a size
of 1 × 0e. The outputs ytan,i and yprp,i are the direction
prediction outputs. Each has a size of 1 × 0o. Using inner
product decoding (Section 3.6), the sizes of ytan,i and yprp,i are
determined.
3.6. Inner Product Decoding. The norms of the

prediction vectors yprp and ytan, and the scalar value ystd
indicating the reliability of the prediction were decoded
using the inner product. After applying the FNN trans-
formation to the 0e component of the features, a softmax
function was applied to the features. The inner product was
obtained using an array of equidistant numerical values of the
same dimension as the features.

The arrays used to predict the norms of yprp and ytan are
evenly spaced sequences from −2 to 2 Å in steps of 0.1 Å. The
array used to predict ystd was an evenly spaced sequence from
0.1 to 1.0 Å in steps of 0.1 Å.
3.7. Data Set. Transition1x was used. When validating the

results, there are cases in which the generated results are

Figure 3. Diagrams of the interaction of the E(3)-attention network.
(a) The whole diagram. (b) Details of the EdgeFeat block used in (a).

Figure 4. Model architecture of the readout part.
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reoptimized using the string method. To enable fast
optimization in such instances, a high-speed machine learning
potential known as PFP37 is employed. Accordingly, the
training data used were derived from the RP optimizations of
Transition1x using PFP, which was used as the training data
set. The version of PFP used was v4.0.0 Crystal U0 mode.
After reoptimization, some paths were split into multiple
barriers, and 10,074 paths with single barrier were generated.
Among the IS and FS of these paths, molecules with an energy
difference within 0.05 eV and the distance between the most-
moved atoms within 0.1 Å were considered identical. Identity
determination was performed for all IS and FS. Subsequently,
we extracted only those reactions that involved changes in
bonding or dihedral angle rotations. Furthermore, only the
reaction with the lowest activation barrier was extracted among
reactions sharing the same IS and FS. This process reduces
some of the pathways; however, all the pathways are duplicated
twice in a round-trip manner. Consequently, 11,801 reactions
were identified as unique pathways. Next, the data were
divided into training, validation, and testing data sets. During
this process, care was taken to ensure that molecules of the
same composition were grouped. Consequently, it is
guaranteed that there is no data overlap between the training
and validation data sets. 90% of the total compositions were
used as training data. 5% was used as validation data, and the
remaining 5% was used as test data.
3.8. Sampling. The data coordinates directly used to train

the neural network were sampled along the RP. We selected
one RP and used a structure with noise added to the IS as the
initial value. Subsequently, by moving in the direction of the
RP, as shown in

= + +t gx t t wd d di it, d, (23)

approaching RP and adding noise, we sampled the data. Here,
w denotes the Wiener process. g was uniformly sampled from
the range [0.0, 0.2] each time the RP was selected. This
process sampled the structures around the RP. The resulting
distribution forms a tubular shape around the RP. The
distribution perpendicular to the pathway approximates the
distribution obtained by scaling the data sampled from a χ2-
distribution with degrees of freedom equal to the molecular
degrees of freedom by a factor of g/ 2 . To facilitate the
learning of tfin, data with tfin = 0 and data with tfin = 1 were
selected in a ratio of 1:1. To train the unconditional
generation, the training for unconditional generation was
conducted with a probability of 0.3. In contrast, conditional
generation was conducted with a probability of 0.7.
3.9. Training. The learning of yt and yd is based on the

methods of score matching9 and flow matching.10 However,
for ease of learning, the standard deviation of the output was
also predicted, and the loss was defined using the standard
deviation. First, a multidimensional Gaussian distribution
centered on t is expressed as follows:
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Taking the negative logarithm of eq 24, we define the loss
for the fields as
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For the denoising field and translation guidance fields, we
define the losses as follows:

=l l y x c t( ( , ), )id gauss d d, (26)

=l l y x c t( ( , ), )it gauss t t, (27)

Here, Σ is originally a 3N × 3N matrix; however, in this
instance, it is assumed to have zeros in all the off-diagonal
elements. The variance was predicted for each atom, resulting
in different values for each atom; however, within the same
atom, it was output with the same variance in the XYZ
directions. By incorporating the standard deviation into the
learning process, it is intended that the model will not need to
fit outputs for structures that are difficult to learn, allowing it to
better align the outputs for inputs that are easier to learn. The
fit of yf is determined using the cross-entropy error,
represented by
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where [yf,i(x, c)]idfeat
is the ifeat-th element of the binary output

yf,i(x, c). The loss during training was a linear combination of
the transformation guidance field, denoising field, and stopping
conditions. The coefficients for the loss related to yd, the loss
related to yt, and the loss related to yf were all set to be the
same. The mean values of ∥tt − yt∥ and ∥td − yd∥ for the
training and validation data during the training steps are shown
in Figure 5. It can be observed that they decreased as the
training progressed. Furthermore, while the loss of ∥td − yd∥

Figure 5. Mean of the norm of the difference vector between the
predicted and ground truth data for both the transformation guidance
field and the denoising field during the training steps. Here, train-t
relates to the transformation guidance field within the training data
set, and valid-t pertains to the transformation guidance field within the
validation data set. Similarly, train-d is associated with the denoising
field in the training data set. At the same time, valid-d is connected to
the denoising field in the validation data set.
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quickly decreases and then stops, ∥tt − yt∥ continues to
decrease for the training data. In the latter part, while ∥tt − yt∥
continues to decrease for the training data, it ceases to decrease
quickly for the validation data. This suggests that typical
overfitting occurs. This overfitting implies that, even for data
sets consisting of molecules with a similar number of atoms,
the augmentation of reaction data could potentially contribute
to performance improvement.

4. RESULT
4.1. Definition of the Field Used in Generation. During

the training steps, eq 23 was used. Similarly, using the outputs
of the trained models yt, yd, the RP can be generated using

= + +t gx y x c y x c wd ( , )d ( , ) dt d (29)

When dealing with molecules that significantly exceed the size
of the training data, there are cases in which the orientations of
yt and yd are opposite. This can make generation difficult when
using eq 29. In such scenarios,

= + +t gx y x c y x c wd ( , )d ( , ) dt d
T

was used for the generation. Here, yd
T is an orthogonalized yd

with respect to yt and defined as
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Additionally, for conditional generation, classifier-free
guidance38 as

= + w wy x c y x c y x 0( , ) (1 ) ( , ) ( , ) (32)

was used. When utilizing classifier-free guidance for orthogon-
alization, eq 31 was applied to both the conditional and
unconditional outputs, followed by the application of eq 32.
Afterward, orthogonalization was once again performed using
eq 31. Here, y(x, c) denotes the output vector under certain
conditions and y(x, 0) represents the output vector without
conditions. In addition, the termination condition is
determined using yf. yf is a binary output, and the generation
is terminated when the first element becomes larger than the
zeroth element.
4.2. Importance of the Denoising Field. The generation

was performed using denoising fields of various magnitudes to
ascertain the importance of the denoising field. First, to verify
the importance of the denoising field in a two-dimensional toy
model, the same hypothetical RP shown in Figure 1 was
utilized, and generation was conducted using eq 23. α ∈{0.0,

Figure 6. Results of generation with various parameters for the same RP as in Figure 1. (a) α = 0.0, g = 0.0, (b) α = 0.0, g = 0.4, (c) α = 1.0, g = 0.0,
(d) α = 1.0, g = 0.4.
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1.0}, g ∈{0.0, 0.4} were used. The results are presented in
Figure 6. Even when g = 0.0 where there is no noise, the path
deviates from the true path when α = 0.0, whereas the
deviation from the true path is minimal when α = 1.0. When g
= 0.4, the importance of the denoising field increases further;
for α = 0.0, the path passing through points significantly
deviates from the true path, whereas for α = 1.0, it shows a
distribution encompassing the true path’s vicinity. Further-
more, actual molecular RPs were generated using various
parameters. The IS and RP conditions were selected from one
of the optimized C8H9O pathways and recalculated using PFP
v4.0.0, found in the yarp data set.39 We performed the
generation using α ∈ {0.0, 1.0} and g ∈ {0.0001, 0.01}.
Generation was conducted 16 times for each parameter set,
and the RMSD between the generated FS and the PFP
optimized YARP FS was calculated. The average and standard
deviations of the RMSD were calculated. The results are
presented in Figure 7. When the noise was large as g = 0.01,
the structure was almost completely distorted with α = 0.0,
leaving very little of the original form. In contrast, at α = 1.0, g
= 0.01, although the structure was slightly degraded compared
to the clean α = 1.0, g = 0.0001 structure, it remained the same
qualitatively. Moreover, even in the case of low noise, various
bond angles are significantly distorted in the absence of a
denoising field, as indicated by α = 0.0, g = 0.0001.
4.3. Limitation of the Systematic Generalization

Ability. The definitions of the denoising field, denoising
coefficient, and size of the classifier-free guidance (eq 32) were
varied to generate the RPs for the dihedral angle rotation of the
center of polyethylene of various lengths. Figure 8 indicates the
rotation of polyethylene 8 carbon atoms. For the generation,
we used eqs 29 and 30 with dt = 0.1. The value of α was
chosen to be 1.0, the theoretical Newton step, and 0.1, which is
smaller than 1.0. For classifier-free guidance, we used w ∈ {0.0,
1.0, 2.0, 4.0, 8.0, 16.0}. For polyethylene with an even number
of carbon atoms (n) ranging from 2 to 16, conditional

generation was performed such that the dihedral angle of the
central CC-bond was rotated. Generation success varies
depending on the conditions, formulas, and parameters used.
We first investigated whether the generation time was
excessively long. Specifically, we verified whether the
completion time was <400 steps.

The reasons for the increased generation time are as follows.
(1) yt and yd are roughly oriented in opposite directions,
causing the atoms to oscillate. (2) After dissociation, the
complex underwent configurational changes. (3) The RP we
attempted to generate was too long to represent within 400
steps.

(1) In such cases, the reaction does not proceed and often
oscillates while maintaining a similar structure. However, there
were instances in which the reaction progressed gradually while
oscillating. (2) After the molecule splits, it moves without
reaching an end. (3) This does not occur when trying to
generate the rotation of the CC bond correctly but occurs
when attempting to generate a much longer multistep RP. The
results are listed in Table 1. It is particularly noticeable that
many cases do not converge when generated using α = 1.0 in
eq 29: Even in systems with sufficiently low carbon numbers
where proper learning is expected, such as n ≤ 7 and the
maximum n for Transition1x, there were instances of
nonconvergence. Upon examination of these cases, it was
found that in systems such as n = 2, w = 1.0 and n = 6, w =
16.0, unintended hydrogen migration occurred. The con-
vergence criteria were not met even after the migration, leading
to sustained oscillations. For n = 6, w = 1.0 and n = 8, w = 8.0,
2.0, 1.0, 0.0, the reaction did not proceed, and the structure
oscillated around the IS. Even when eq 29, convergence tends
to be easier when α = 0.1, although convergence was often not
achieved for n = 16 in these instances, many other cases
resulted in convergence.

One possible reason for the reaction remaining in the IS
without any progress is that yt and yd may indicate opposite
directions. Therefore, the generation was performed using eq
30. The results of generation using eq 30 are listed in the lower
section of Table 1. It was observed that, even with α = 1.0,
many examples satisfied the convergence conditions. The
number of examples converged for α = 0.1 was greater than for
eq 29.

In the data of Table 1, it was only verified whether the
machine learning model has determined that the generation

Figure 7. Results of the cyclization reaction of C8H9O generated with various parameters. (a) α = 0.0, g = 0.0001, (b) α = 0.0, g = 0.01, (c) α = 1.0,
g = 0.0001, (d) α = 1.0, g = 0.01. The numbers written below each generation result represent the average and standard deviation of the RMSD
between the original RP included in YARP and the optimized FS by PFP.

Figure 8. Example of the polyethylene rotational reaction used to test
the limits of generalization performance.
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should be stopped, and the validity of the generated results was
not confirmed. Therefore, we investigated whether the
obtained results satisfied the specified FS. We summarized
them in Tables 2 and 3. Table 2 summarizes whether the FS
has a central CC bond rotated compared to the IS and whether
other bonds are the same as the IS. Table 3 includes only those
cases in which the angles of unrelated bonds do not vary
significantly throughout the RP, as indicated by a check mark.
When w = 0.0 without classifier-free guidance, the specified
conditions were ignored for all cases. The reaction was derived
without central CC bond rotation. When α = 0.1 is used in eq
29, an easily understandable result is obtained, where the larger
the value of w, the more likely the conditions are to be
satisfied. Moreover, the FS satisfied the given conditions up to
n = 12, which exceeded the training data size. However, when
using α = 1.0 in eq 29, there are very few examples in which
generation satisfying the conditions is performed. Using eq 30,
more examples satisfied the conditions than using eq 29 even
when α = 1.0 was applied. In summary, employing eq 29 with
α = 0.1 yields manageable conditional generation results for
small molecules. Conversely, when deploying a trained model
in practical applications, the generation should be completed in
a finite number of steps, even for larger data sets that exceed
the training data size. For this purpose, eq 30 can be used.
4.4. Generation Examples. Examples of the results of the

conditional generation given the changes in bonding are shown
in Figure 9. Generation is performed using eq 29, which does
not involve orthogonalization with α = 0.1. Moreover,
classifier-free guidance with w = 4 is used (eq 32). The
chosen molecules were reactions involving C8H9O from the
yarp data set39 and a typical Diels−Alder reaction. The training
data used were Transition1x, which only included up to C7;

Table 1. When Generated under Various Conditions,
whether the Termination Condition Was Met within 400
Stepsa

aThe parts with check marks indicate cases where the termination
condition was met within 400 steps. In each table, the horizontal axis
(w) indicates the strength of the classifier-free guidance (eq 32). The
vertical axis (n) indicates the number of carbons in polyethylene. The
tables at the top left and top right are generated using eq 29. The
tables at the bottom left and bottom right are generated using eq 30.
The tables on the top left and bottom left used α = 0.1. The tables on
the top right and bottom right used α = 1.0. Here, α is the coefficient
for denoising.

Table 2. When Generating under Various Conditions, the
Final Product Was Checked for Correctness To See if It
Matched the Specified Expectationsa

aThe parts marked with a check mark indicate correctly generated
sets. In each table, the horizontal axis (w) represents the strength of
classifier-free guidance (eq 32). The vertical axis (n) indicates the
number of carbons in polyethylene. The tables in the upper left and
upper right were generated using eq 29. The tables in the lower left
and lower right were generated using eq 30. The tables in the upper
left and lower left utilized α = 0.1. The tables in the upper right and
lower right utilized α = 1.0. Here, α represents the coefficient of
denoising.

Table 3. When Generated under Various Conditions, the
Final Product Was Checked To Determine whether It Was
as Specified, Did Not Include Rotations Other than the
Specified Bonds during the Process, and whether There
Were No Changes in the Bonds during the Processa

aThe parts with check marks indicate correctly generated sets. In each
table, the horizontal axis (w) indicates the strength of classifier-free
guidance (eq 32). The vertical axis (n) indicates the number of
carbons in polyethylene. The top left and top right tables were
generated using eq 29. The bottom left and bottom right tables were
generated using eq 30. The top left and bottom left tables used α =
0.1, and the top right and bottom right tables used α = 1.0. Here, α is
the coefficient for denoising.
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however, despite this, the trained model was still able to
generate reactions for this molecule, C8H9O.

The first reaction in Figure 9 involves rotation of the
dihedral angles and formation of bonds. Manually creating
such an initial RP without the use of a neural network requires
meticulous manipulation of the dihedral angle rotations and
bond formations, making it an extremely labor-intensive task.
This neural network can generate this reaction within seconds
by simply specifying the bonds. Additionally, the first reaction
in Figure 9 includes dihedral rotation, and although the
reaction coordinate is significantly curved from the Cartesian
coordinates, it can still provide a qualitatively correct RP. The
other reactions shown in Figure 9 encompass various reactions.
The second reaction involves the addition of a hydrogen atom
to the double bond. The third reaction is a hydrogen transfer
reaction. The fourth is a bimolecular coupling reaction. The
fifth reaction is the Diels−Alder reaction. These reactions can
also be generated qualitatively and correctly.
4.5. Comparison between an Existing Method. The

pathway generated by the proposed method can be used as an
initial guess for NEB or String methods. Using two well-known
reactions, we compared the initial guesses obtained by linear

interpolation and the proposed method. The comparison is
shown in Figure 10. For the intramolecular aldol condensation,
the structure obtained by linear interpolation resulted in
atomic collisions, preventing NEB from converging. On the
other hand, using the pathway obtained by the proposed
method as the initial guess for NEB resulted in an appropriate
RP. For the Diels−Alder reaction, NEB was able to converge
using either linear interpolation or the proposed method.
However, the proposed method generated a structure closer to
the TS. To verify this, we prepared the converged TS structure
and compared the distance to the closest structure within each
pathway. The distance was defined as the root sum square of
distances. For the structure generated by linear interpolation,
the distance was 3.8 Å, whereas for the structure generated by
the proposed method, the distance was 0.8 Å.
4.6. Conditional Generation for Various Types of

Data. Conditional generation was performed on 833 test data
points separated from training data. Eq 29, which does not
involve orthogonalization with α = 0.1 was used for the
conditional generation, and eq 32 was employed. As the value
of w increases, reactions fulfilling the given conditions proceed
with more data. The results are presented in Table 4. Among

Figure 9. Results of conditional production for C8H9O and Diels−Alder reaction. (1) We set the condition c to bond the third atom and the eighth
atom. (2) We set the condition c to bond the seventh atom and the 17th atom, and bond the 0th atom and the 11th atom, while dissociating the
17th atom and the 11th atom. (3) We set the condition c to separate the 17th atom and the seventh atom, and bond the 17th atom and the ninth
atom. (4) We set the condition c to bond the 0th atom and the second atom. (5) We set the condition c to bond the 11th atom and the third atom,
and bond the 10th atom and the third atom.
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the results obtained using classifier-free guidance with w = 8.0,
those satisfying the given conditions were optimized using the
string method at the PFP v4.0.0 level. The activation barriers
of the test data sets were compared. In this comparison, we
expected the same activation barrier to be obtained if the
output followed the same qualitative pathway. The results are
presented in Figure 11a. A histogram of the energy differences
between the generated and optimized RP and the test RP is
shown in Figure 11b. Most reactions were expected to follow a
qualitatively similar RP and demonstrate the same activation
barriers as the test data set. However, some reactions followed
pathways completely different from those in the test data set
and yielded qualitatively different activation barriers. Generally,
there are qualitatively different RPs, even if the bonding
changes are the same. In this experiment, there were instances
in which reactions with activation barriers higher than the test
data were obtained; conversely, pathways with barriers lower
than the test data were also found. Therefore, we believe that
the model obtained in this study is well-learned as far as this
experiment can confirm.
4.7. Random Generation. White noise was added during

the generation. Eq 29 was used for this generation. Structural
optimization was performed before and after generation, and
changes in the bonds and rotations were analyzed. The number
of times the generation resulted in different changes from the
same IS was counted. Here, 16 was arbitrarily selected as the
artificial cutoff. Because the number of test data sets was large,
each reaction was generated 16 times to reduce the
computational cost of the experiment. 0.1 was used for dt,
0.1 for g, and 0.1 for α. A histogram of the results is shown in
Figure 12. The most frequent values on the horizontal axis
were 1 and 2, which indicates that many cases of similar
reactions were obtained no matter how many times they were
generated. However, there are some examples where the value
on the horizontal axis is significantly higher. Different reactions
can be achieved using the same IS.

5. CONCLUSIONS
A machine learning model for reaction pathway generation was
proposed. The model can obtain an approximate sketch of the
entire reaction pathway with several Neural Network

Figure 10. Comparison between the initial guess generated by linear
interpolation and the one generated by the proposed method with
respect to a typical reaction. (a−d) are the intramolecular aldol
polymerization reaction. (e−h) are the Diels−Alder reaction. (a) and
(d) are the ISs. (b) and (f) are the linearly interpolated structures. (c)
and (g) are the generated structures by our method. (d) and h) are
the optimized final structures.

Table 4. w Is the Parameter for Classifier-Free Guidancea

w number ratio

0.0 519 0.62
0.5 662 0.79
1.0 714 0.85
2.0 753 0.90
4.0 785 0.94
8.0 790 0.95

aThe column “number” is the number of generative results that satisfy
the generation conditions of the RPs. The column “ratio” is the
number of successful pathways divided by the number of test data.

Figure 11. (a) Comparison of activation barriers for reactions in test data set vs activation barriers for generated-optimized results. (b) The
histogram for energy difference between test data and generated-optimized RP.
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evaluations. The model can handle reaction pathways in 3N-
dimensional space and generate complex reactions such as
chemical reactions in organic chemistry. The model could
learn and generalize the transition1x results to generate
reactions similar to those of the test set. This model can be
used for both conditional and random generations. In this
experiment, conditional generation was performed using
changes in the bonding. Response paths that accurately
reproduced the bond changes in the test data were generated
with the proper use of classifier-free guidance. In addition,
when randomness was included in the generation, many
reactions were generated in each initial state.
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