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 A B S T R A C T

Extended one- and two-dimensional defects in crystalline materials are usually metastable. The thermodynamic 
ground state of the material is presumed to be defect-free. Here, we investigate the conditions under which 
extended defects, such as grain boundaries, can exist in a multicomponent alloy when the latter reaches the 
thermodynamic ground state allowed by the Gibbs phase rule. We treat all extended defects as low-dimensional 
phases on the same footing as the conventional bulk phases. Thermodynamic analysis shows that, in the ground 
state, the formation free energies of all extended defects must be zero, and the system must follow a generalized 
phase rule. The latter predicts that only a finite number of symmetry-related defect types can coexist in the 
material in the ground state. Guided by the phase rule, we discuss finite-size polycrystalline and/or polyphase 
microstructures that are fully immune to coarsening and their possible transformations.
1. Introduction

Most crystalline solids contain defects, which are traditionally clas-
sified into the following categories:

• Zero-dimensional (0D) defects, also known as point defects, in-
clude vacancies, self-interstitials, impurity atoms, and similar 
disruptions of crystalline order with atomic-scale size in all di-
rections.

• One-dimensional (1D) defects, including dislocations, triple junc-
tions of grains in polycrystalline materials, contact lines between 
phases, and other defects with atomic-scale dimensions in two 
directions and mesoscale length along a line.

• Two-dimensional (2D) defects, such as grain boundaries, inter-
phase boundaries, stacking faults, and other defects of mesoscale 
area and atomic-scale width.

3D defects can also be considered, such as pores and stacking-fault 
tetrahedra, but they are not discussed in this paper. The 1D and 2D 
defects are collectively referred to as extended defects.

Intrinsic point defects, such as vacancies and self-interstitials, are 
classified as equilibrium defects because they are part of the thermody-
namic ground-state structure of crystalline phases. At a given temper-
ature 𝑇 , they reach equilibrium concentrations 
𝑐eq(𝑇 ) ∝ exp(−𝑓0D∕𝑘B𝑇 ), (1)

∗ Corresponding author.
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where 𝑓0D is the local (nonconfigurational) formation free energy per 
defect and 𝑘B is Boltzmann’s constant. The intrinsic point defects form 
spontaneously to reduce the Helmholtz free energy of the solid by 
increasing its configurational entropy. The latter is associated with 
different positions of the defects on the crystalline lattice, which they 
sample by a diffusive random walk.

In contrast, most extended defects are thermodynamically unstable 
or metastable. They have an excess nonconfigurational free energy and 
seldom contribute to the configurational entropy because their mobility 
is too low, preventing them from sampling the positions in space on 
the timescale of laboratory experiments and practical applications. 
As a result, their formation free energy is dominated by the non-
configurational part. Its value per unit length 𝐿 or per unit area 𝐴 is 
often referred to as, respectively, the free energy of the line 𝜏 and the 
free energy of the surface/interface 𝛾. These quantities are sometimes 
called line tension and surface tension, respectively, if directional 
isotropy is assumed (e.g., fluid/fluid interfaces). An extended defect 
cannot form spontaneously by thermal fluctuations because its total 
formation free energy is exorbitantly high. For example, the total free 
energy 𝐹 = 𝜏𝐿 of a dislocation line of length 𝐿 (typically measured 
in micrometers) can be on the order of keV or higher. As a result, the 
thermally equilibrium population of dislocations, estimated from the 
Boltzmann factor ∝ exp (−𝐹∕𝑘B𝑇 ), is negligibly small. The same applies 
to the thermally equilibrium population of grain boundaries.
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Extended defects can lower their length/area spontaneously if they 
possess sufficient mobility. They can also increase their length/area if 
an external driving force is applied, such as shear stress, radiation, or 
temperature change. For example, a Peach-Koehler force acting on a 
dislocation can cause it to bow out and increase its length. In many 
cases, extended defects are found in a stationary state when they are 
pinned by immobile elements of the microstructure. Stationary defects 
can reach a state of constrained thermodynamic equilibrium, i.e., equi-
librium with respect to exchanges of heat and chemical components 
with the environment. In alloy systems, such exchanges lead to the 
formation of solute segregation at interfaces and segregation atmo-
spheres (Cottrell atmospheres) at dislocations. The solute segregation 
reduces the free energy of defect formation according to the Gibbs 
adsorption equation for multicomponent systems [1], but the latter 
remains positive in most cases. We emphasize that the defect is not in 
full thermodynamic equilibrium because its length/area is not allowed 
to vary to further reduce the free energy.

It was suggested [2–22] that a sufficiently strong grain boundary 
segregation of solute atoms can fully stabilize a polycrystalline alloy 
against grain growth. Thermodynamic analysis shows that the total free 
energy of a closed system composed of a uniform grain boundary and 
surrounding grains can reach a minimum with respect to variations 
of the boundary area when the boundary free energy 𝛾 reaches zero 
value [21]. The derivation assumes that during the area variations, 
the grain boundary remains in thermal and chemical equilibrium with 
the grains. Extensive experimental, theoretical, and computational ef-
forts [12–28] have been dedicated to the search for solutes that could 
drastically reduce 𝛾 and even drive it to a zero value. However, the 
thermodynamic meaning of the conditions of 𝛾 = 0 or 𝜏 = 0 and their 
microstructural consequences have not been systematically discussed.

Here, we suggest that the thermodynamics underlying the grain 
boundary stabilization is as general as the thermodynamics of 3D 
phases, in which multiple 3D phases can coexist in equilibrium if 
certain thermodynamic conditions are met. Thermodynamics is equally 
valid for all 2D and all 1D defect phases in crystalline materials. For 
1D defects, the 𝛾 = 0 condition must be replaced with 𝜏 = 0. A truly 
stabilized material must satisfy the 𝛾 = 0 and 𝜏 = 0 conditions for all
2D and 1D defects present in the material. For example, if all grain 
boundaries in a polycrystalline material are fully stabilized (𝛾 = 0) but 𝜏
of triple junctions remains positive, the defect structure will still remain 
unstable and evolve under the capillary forces of the triple junctions. 
The total free energy will continue to strive towards smaller values.

The full thermodynamic stabilization of crystalline materials is an 
important fundamental concept, but it also presents significant practical 
interest. The pursuit of full thermodynamic stabilization of polycrystals 
and/or finite-size phases (e.g., phase precipitates) that are forever 
immune to Ostwald ripening or coarsening opens a previously unrec-
ognized design space, particularly for nanocrystalline materials whose 
superior physical and mechanical properties predicate on the suppres-
sion of grain growth at elevated temperatures. The full thermodynamic 
stabilization, if achieved, will suppress all driving forces while re-
taining the nanostructure responsible for the superior properties. The 
full stabilization concept is very general and relies only on the laws 
of thermodynamics. If realized in practice, it would circumvent the 
currently employed kinetic stabilization mechanisms such as solute 
drag and Zener pinning by small embedded particles.

The central idea of this article is that extended defects can be treated 
as 1D and 2D phases on par with conventional bulk (3D) phases. Thus, 
the material can be considered to be composed of multiple phases of 
different dimensionality: 1D and 2D phases of extended defects and 
3D bulk phases. Generally, these phases are not in equilibrium with 
each other. However, the system can reach the thermodynamic ground 
state if all phases establish equilibrium with each other. It can be 
shown (see Supplementary Information) that the condition of 𝛾 = 0
and 𝜏 = 0 for all defects is equivalent to achieving the thermodynamic 
equilibrium between all phases present in the system. This insight 
2

is crucial because it allows us to apply the Gibbs phase rule to the 
fully stabilized crystalline material containing defects. Depending on 
the number of chemical components, the phase rule can predict the 
maximum numbers of different 1D and 2D defects that can coexist in 
the system when it reaches the ground state. These numbers inform 
the analysis of possible equilibrium microstructures of a fully stabilized 
material, depending on the dimensionalities of the defects and the 
crystal symmetry. Such microstructures could be designed to achieve 
the desired physical and mechanical properties while simultaneously 
preventing them from coarsening at high temperatures.

2. Thermodynamics of extended defects and the phase rule

We consider a 𝑘-component alloy composed of several bulk phases 
and grains. The alloy contains interfaces and line defects. The extended 
defects are treated as phases on equal footing with the bulk phases. For 
brevity, we will use the shorthand (𝜑3@𝜑2@𝜑1)𝑘 for a 𝑘-component 
system composed of 𝜑3 bulk phases, 𝜑2 2D phases, and 𝜑1 1D phases. 
For example, (1@1@0)2 denotes a single-phase binary solid solution 
containing a grain boundary.

Thermodynamic properties of a bulk phase are fully defined by a 
fundamental equation 
𝐹 = 𝐹 (𝑇 ,𝑁1,… , 𝑁𝑘, 𝑉 ), (2)

where 𝐹  is the total free energy of the phase, 𝑇  is temperature, 𝑉
is volume, and 𝑁𝑖 are the amounts of the chemical components (in 
moles). The phase is considered spatially uniform and thermally equi-
librated (uniform temperature throughout). Under these assumptions, 
the free energy is a homogeneous first-degree function of 𝑉  and all 𝑁𝑖’s. 
Applying Euler’s theorem of homogeneous functions, we obtain 

𝐹 = −𝑝𝑉 +
𝑘
∑

𝑖=1
𝜇𝑖𝑁𝑖, (3)

where 𝜇𝑖 = 𝜕𝐹∕𝜕𝑁𝑖 are the chemical potentials of the components and 
𝑝 = −𝜕𝐹∕𝜕𝑉  is pressure.

Next, consider an interface between two phases or two grains in 
the same phase. All thermodynamic properties of the interface can be 
derived from its fundamental equation [29,30] 
𝐹 = 𝐹 (𝑇 , 𝑁̃1,… , 𝑁̃𝑘, 𝐴), (4)

where 𝐴 is the interface area, 𝐹  is the excess free energy of the 
interface, and 𝑁̃𝑖 are the excess amounts of chemical components (in 
moles). In Eq. (4), the excesses are defined using Gibbs’ dividing surface 
construction [31]. Namely, the excess quantity is calculated relative to 
homogeneous bulk phases by extrapolating their intensive properties 
to the geometric dividing surface. There are many ways to define 
interface excess properties [29,32], which all lead to the same final 
results. In a more general treatment [29], the interface free energy is 
expressed in terms of generalized excesses introduced by Cahn [32]. 
For this discussion, it will suffice to adopt one particular type of excess, 
namely excess under the constraint of fixed volume. Such excesses are 
denoted [𝑋]𝑉  (𝑋 being any extensive property) [29] and correspond 
to the dividing surface construction introduced by Gibbs [31]. Note 
that, under this convention, the excess volume of any interface is 
zero by definition. All equations appearing in the following can be 
reformulated in terms of other definitions of excesses without changing 
the conclusions.

Note that Eq. (4) has the same functional form as Eq. (2), except that 
the spatial dimension of the interface is defined by its area 𝐴 instead 
of the volume 𝑉 . The interface properties are assumed to be uniform 
throughout the area. Therefore, the excess free energy in Eq. (4) is again 
a homogeneous function of first degree with respect to the extensive 
variables 𝐴 and 𝑁̃𝑖’s. From Euler’s theorem, 

𝐹 = 𝛾𝐴 +
𝑘
∑

𝜇̃𝑖𝑁̃𝑖. (5)

𝑖=1
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Here, 

𝛾 = 𝜕𝐹
𝜕𝐴

(6)

is the interface free energy (tension) and we have introduced the 
notation 𝜇̃𝑖 ≡ 𝜕𝐹∕𝜕𝑁̃𝑖. Note that 𝛾 is a 2D analog of the (negative) 
pressure 𝑝.

Similarly, all thermodynamic properties of a line defect can be 
derived from the fundamental equation [29,30] 
𝐹 = 𝐹 (𝑇 , 𝑁̂1,… , 𝑁̂𝑘, 𝐿), (7)

where 𝐿 is the length of the defect and the excess quantities are cal-
culated by extrapolating the intensive properties of the homogeneous 
bulk phases to the defect line. The excess free energy in Eq. (7) is a 
homogeneous function of first degree similar to Eq. (2) except for the 
replacement of 𝑉  by 𝐿. As above, we apply Euler’s theorem to obtain 

𝐹 = 𝜏𝐴 +
𝑘
∑

𝑖=1
𝜇̂𝑖𝑁̂𝑖, (8)

where 𝜇̂𝑖 ≡ 𝜕𝐹∕𝜕𝑁̂𝑖 and 

𝜏 = 𝜕𝐹
𝜕𝐿

(9)

is the defect free energy (line tension), which is a 1D analog of the 
interface tension 𝛾.

The similarity of the fundamental Eqs. (2), (4) and (7) justifies 
treating the extended defects as phases. As indicated earlier [29], the 
laws of thermodynamics are not specific to any particular dimension of 
space. Any object whose thermodynamic properties are described by a 
fundamental equation can be treated as a phase. Thermodynamically, 
a 3D phase is no different from 1D/2D defect phases or other low-
dimensional systems such as suspended graphene, graphane, or twisted 
MoS2 bilayer.

The total free energy of a multiphase, multidefect system is the 
sum of the free energies of all phases present in the system in the 
form of Eqs. (2), (4) and (7). Suppose that the phases are initially 
not in equilibrium with each other. Then we bring them to thermal, 
mechanical, and chemical equilibrium with each other. As discussed 
in the Supplementary Information file, the equilibrium conditions can 
be readily derived by considering reversible variations of the entropies 
of all phases and volumes of the bulk phases, as well as exchanges of 
the chemical components between the phases. The result is that the 
temperatures of all phases must be equal, the pressures in the bulk 
phases must be equal, and the coefficients in front of 𝑁̃𝑖 and 𝑁̂𝑖 in 
Eqs. (5) and (8) must be equal to the respective chemical potentials: 
𝜇̂𝑖 = 𝜇̃𝑖 = 𝜇𝑖 for all 𝑖 = 1,… , 𝑘. In other words, the chemical potential 
of each species is the same in all phases of any dimensionality. Under 
these conditions, Eqs. (5) and (8) become 

𝐹 = 𝛾𝐴 +
𝑘
∑

𝑖=1
𝜇𝑖𝑁̃𝑖, (10)

𝐹 = 𝜏𝐿 +
𝑘
∑

𝑖=1
𝜇𝑖𝑁̂𝑖. (11)

The above conditions of thermal, mechanical, and chemical equilib-
rium are not sufficient for reaching the thermodynamic ground state. 
They only bring the system to a state of constrained equilibrium, in 
which the segregation atmospheres on extended defects are in equilib-
rium with the bulk phases, but the defects are not allowed to alter their 
areas and lengths. To reach the ground state, the free energy must be 
minimized with respect to variations of the defects’ areas and lengths. 
The result of this minimization (see Supplementary Information file) 
is that in the ground state, the formation free energies of all extended 
defects must be zero: 
𝜏1 = 𝜏2 = ⋯ = 𝜏𝜑1

= 0, (12)

𝛾 = 𝛾 = ⋯ = 𝛾 = 0. (13)
3

1 2 𝜑2
The possible defect configurations in the ground state will be discussed 
later.

The system can remain in the ground state while some of its ther-
modynamic parameters vary without changing the number of phases. 
The number 𝜋 of independent parameters that can vary (the number of 
degrees of freedom) can be derived by subtracting the total number 
of constraints imposed by the equilibrium conditions from the total 
number of intensive parameters describing the system. The calculation 
gives the following phase rule for a crystalline material with defects 
(see Supplementary Information file): 
𝜋 = 𝑘 + 2 − (𝜑1 + 𝜑2 + 𝜑3). (14)

For example, consider a (1@1@0)2 system composed of a binary 
solid solution with a grain boundary (or a set of symmetrically equiva-
lent grain boundaries) at 𝛾 = 0. Eq. (14) predicts 𝜋 = 2. If the pressure 
is fixed, the system has one degree of freedom. For example, we can 
vary the temperature, which will cause changes in grain boundary 
segregation, the chemical composition of the grains, and the grain 
boundary area. If we also fix the temperature, then there will be 
no degrees of freedom left. We can still vary the average chemical 
composition of the alloy by adding or removing the solute atoms. This 
will not cause any changes in the chemical composition inside the 
grains or at the grain boundary. However, the grain boundary area 
will vary to accommodate the added/removed solute atoms. The same 
solid solution can be equilibrated with two different grain boundaries 
(assuming that they represent different 2D phases), but only at one 
temperature.

As another example, consider a tri-crystal (three grain boundaries 
and a triple line) in a five-component solid solution, which is a 
(1@3@1)5 system. When this system reaches a thermodynamic ground 
state, it has 𝜋 = 2 degrees of freedom. At a fixed pressure, the 
temperature can be varied while keeping the system in the ground 
state. Temperature variations will be accompanied by changes in grain 
composition and boundary/junction segregations with corresponding 
adjustments of their areas/lengths.

We next discuss a geometric interpretation of the defect thermo-
dynamics. It is convenient to reformulate the fundamental equations 
in intensive variables. For a bulk phase, we introduce the molar free 
energy 𝑓 = 𝐹∕𝑁 and the concentrations (mole fractions) of the 
components 𝑐𝑖 = 𝑁𝑖∕𝑁 , where 𝑁 =

∑

𝑖 𝑁𝑖 is the total amount of 
the chemical components. The chemical composition is specified by 
(𝑘 − 1) independent concentrations, for which we choose 𝑐2,… , 𝑐𝑘. 
These concentrations form a (𝑘 − 1)-dimensional composition vector 
𝐂 = (𝑐2,… , 𝑐𝑘). Eqs. (2) and (3) become 
𝑓 = 𝑓 (𝑇 , 𝑐2,… , 𝑐𝑘, 𝜔), (15)

𝑓 = −𝑝𝜔 +

(

𝜇1 +
𝑘
∑

𝑖=2
𝜇𝑖1𝑐𝑖

)

, (16)

where 𝜔 = 𝑉 ∕𝑁 is the molar volume and 𝜇𝑖1 = 𝜇𝑖−𝜇1 are the diffusion 
potentials relative to reference component 1. Similarly, for the excess 
free energy of an extended defect we have 
𝑓 = 𝑓 (𝑇 , 𝑐2,… , 𝑐𝑘, 𝜎), (17)

𝑓 = 𝑓 (𝑇 , 𝑐2,… , 𝑐𝑘, 𝜆), (18)

𝑓 = 𝛾𝜎 +

(

𝜇̃1 +
𝑘
∑

𝑖=2
𝜇̃𝑖1𝑐𝑖

)

, (19)

𝑓 = 𝜏𝜆 +

(

𝜇̂1 +
𝑘
∑

𝑖=2
𝜇̂𝑖1𝑐𝑖

)

. (20)

Here, the excess free energy and the segregated amounts of components 
have been normalized by the total excess amounts 𝑁̃ =

∑

𝑖 𝑁̃𝑖 and 
𝑁̂ =

∑

𝑁̂ , respectively. Other notations include the normalized area 
𝑖 𝑖
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Fig. 1. Conceptual diagrams illustrating the geometry of the defect phase thermody-
namics. The molar free energy is plotted against the (𝑘 − 1)-dimensional composition 
vector. The multicomponent (2@1@1)𝑘 alloy contains two bulk (3D) phases 𝛼 and 𝛽, 
a 1D defect phase (line defect), and a 2D defect phase (interface). (a) The phases 
are not in equilibrium with each other. (b) The system is in constrained equilibrium 
(the chemical potentials in all phases are equal). (c) The system is in thermodynamic 
ground state. The dashed lines represent the 𝛬 -planes. The dotted lines in (b) represent 
tangential planes to the free energies of defect phases.

𝜎 = 𝐴∕𝑁̃ , the normalized length 𝜆 = 𝐿∕𝑁̂ , and the low-dimensional 
analogs of the diffusion potentials: 

𝜇̃𝑖1 =
𝜕𝑓

−
𝜕𝑓

, (21)
4

𝜕𝑐𝑖 𝜕𝑐1
𝜇̂𝑖1 =
𝜕𝑓
𝜕𝑐𝑖

−
𝜕𝑓
𝜕𝑐1

. (22)

The excess concentrations 𝑐𝑖 and 𝑐𝑖 can be grouped in composition 
vectors 𝐂̃ and 𝐂̂, respectively.

Consider a 𝑘-dimensional space spanned by the molar free energies 
of the phases and the composition vectors (Fig.  1). The terms in 
parentheses in Eqs. (16), (19) and (20) define (𝑘−1)-dimensional hyper-
planes, which we call 𝛬-planes because they originate from Legendre 
transformations of the free energy with respect to the concentrations. 
The 𝛬-planes are parallel to the tangential hyperplanes to the respective 
free energy functions 𝑓 (𝐂), 𝑓 (𝐂̃) and 𝑓 (𝐂̂) at fixed 𝑇 , 𝜎, and 𝜆. For 
a bulk phase, the 𝛬-plane coincides with the tangential hyperplane 
(assuming 𝑝 = 0). For a defect phase, the 𝛬-plane must be shifted 
by a positive amount of 𝛾𝜎 or 𝜏𝜆 to touch the plot of the respective 
free energy function. In the initial state, when the phases are not in 
equilibrium with each other, their 𝛬-planes are generally not parallel. 
In the example shown in Fig.  1(a), the bulk phases 𝛼 and 𝛽 are not in 
equilibrium with each other. If the free energy 𝑓𝛽 (𝐂) of phase 𝛽 is above 
the 𝛬-plane of phase 𝛼, then phase 𝛽 is metastable relative to phase 𝛼. 
In fact, phase 𝛽 can be considered a defect in phase 𝛼.

If the defect phases are in constrained equilibrium with each other 
and with the bulk phases, then all 𝛬-planes merge into a single hy-
perplane with linear coefficients equal to the diffusion potentials (Fig. 
1(b)). The bulk phases are now in thermodynamic equilibrium with 
each other and their tangential planes merge into a common tangent 
plane. However, if the formation free energies 𝛾 and 𝜏 of the defect 
phases remain positive, the defects are metastable relative to the bulk 
phases. They form equilibrium segregation atmospheres, but their ex-
istence costs the system extra free energy. When the system finally 
reaches its ground state, the formation free energies of the extended 
defects become zero. All 𝛬 planes and all tangential planes merge into 
a common tangent plane to all phases (Fig.  1(c)).

It is instructive to consider in more detail the case of a single grain 
boundary in a binary solid solution, which is a (1@1@0)2 system with 
𝜋 = 2. Suppose the system is closed and the temperature and pressure 
are fixed (𝑝 = 0). The molar free energy of the bulk phase, which we 
call phase 𝛼, is a function of the solute concentration 𝑐2. The bulk 
solution is initially in internal equilibrium. Next, we create a grain 
boundary in the system. Before it has a chance to equilibrate with the 
environment, it has the same chemical composition as the bulk phase 
(Fig.  2(a)); all excess properties are zero. Then we allow the boundary 
to equilibrate with the 𝛼 phase without changing the boundary area. 
This can be achieved by diffusion of the solute atoms. The boundary 
forms an equilibrium segregation atmosphere of the solute atoms. The 
process is accompanied by redistribution of the solute between the 
grain boundary and the bulk solution until a constrained equilibrium 
is reached. If the segregation is positive (𝑐2 > 0), the bulk solution is 
slightly depleted in the solute. The new chemical compositions of the 
boundary and the solution are such that the tangents to the respective 
free energy plots are parallel and the lever rule is satisfied for the given 
grain boundary area (Fig.  2(b)). The tangent line to the grain boundary 
free energy is a distance 𝛾𝜎 above that of the 𝛼 phase, indicating that 
the grain boundary phase is metastable. Finally, we allow the grain 
boundary to decrease its area to further reduce the total free energy. In 
the scenario shown in Fig.  2(c), the system reaches a ground state at a 
finite grain boundary area. The chemical compositions of the phases 
and the final grain boundary area are determined by the common 
tangent construction and the lever rule applied to the tie line 𝑎 − 𝑏.

Fig.  3 presents an alternative scenario. In this case, the grain bound-
ary again reaches a constrained equilibrium with the environment at a 
fixed area (Fig.  3(b)). As above, the new chemical compositions of the 
phases are dictated by the parallel tangent construction and the lever 
rule. The star symbol on the plot represents the total free energy of 
the system in this metastable state. If the grain boundary is allowed 
to vary its area, it will shrink and eventually disappear. The system 
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will return to its initial single-phase state, in which the free energy 
is lower than in any state containing the grain boundary (Fig.  3(c)). 
This example demonstrates that full stabilization of a grain boundary 
is not always possible. It requires particular shapes of the free energy 
functions of both the grain boundary and the grains. Note that these 
shapes depend on temperature. A full grain boundary stabilization can 
be possible at one temperature but may become impossible at another 
temperature. In other words, a fully stabilized grain boundary can exist 
in a certain domain of the composition-temperature phase diagram of 
the bulk phase.

3. Fully stabilized defect structures

We next discuss possible morphologies of extended defects in a 
fully stabilized state. We focus on grain boundaries in a single-phase 
multicomponent solid solution as an example, although our conclusions 
are more general.

Grain boundary properties depend on five directional degrees of 
freedom in addition to internal variables, such as the local atomic den-
sity [33,34]. Grain boundaries can also undergo structural [33,35,36] 
and segregation-induced [37] phase transformations. Partitioning into 
families of symmetry-related structures reduces the number of distinct 
grain boundary types. However, we still have an infinite number of 
boundaries that can potentially reach a full thermodynamic equilib-
rium. Meanwhile, the phase rule dictates that only a finite (usually 
small) number of grain boundary types can exist in the thermodynamic 
ground state. How can nature reconcile the phase rule with the infinite 
pool of grain boundary types? Furthermore, the full equilibration is 
achieved for a specific grain boundary area and without triple junc-
tions. What kind of geometric arrangements of grain boundaries can 
satisfy these requirements?

The answer depends on many factors, such as the crystallographic 
anisotropy of the boundary free energies, the temperature, and the free 
energy cost of small deviations from the strict 𝛾 = 0 condition. At fixed 
temperature and pressure, up to 𝜉 = 𝑘 − 1 grain boundaries can be 
equilibrated. Some possible morphologies are shown in Fig.  4. If 𝜉 = 1
and the 𝛾 = 0 condition can be satisfied by a symmetrical tilt grain 
boundary, then the structure can be composed of lamellas with twin-
related crystallographic orientations (Fig.  4(a)). The spacing 𝑙 between 
the boundaries can be adjusted to match the equilibrium area. This 
structure contains no extended defects other than the grain boundaries 
and their intersections with the surface, which can be neglected for 
a sufficiently large sample size. The lamellas can also be organized 
into domains with orientations compatible with the crystal symmetry 
(Fig.  4(b)). The domain boundaries in this polysynthetic structure 
are additional extended defects, but their excess free energy can be 
neglected if they have a large (e.g., mesoscopic) size. For 𝜉 > 1, the 
domains can be composed of periodic arrangements of lamellas with 
different crystallographic orientations (≤ 𝜉) and widths adjusted to 
the required specific area. In this case, the grain boundaries need not 
be symmetric. Conventionally, lamella-based structures are vulnerable 
to capillary fluctuations and morphological instabilities (such as the 
Plateau–Rayleigh instability) unless the boundary free energy is highly 
anisotropic with deep cusps at the inclinations represented in the 
lamellas (Fig.  5(a)). But these instabilities would be suppressed for a 
fully stabilized grain boundary, for which the cusps in the 𝛾-plot reach 
the origin of the plot, at which 𝛾 = 0, as shown schematically in Fig. 
5(b).

An alternative morphology is a set of faceted grains embedded in a 
large matrix grain. When 𝜉 = 1, the facets must have the same structure 
up to symmetry operations (Fig.  4(c)), while for 𝜉 > 1 the facets can 
be different and the grains can have more complex shapes (Fig.  4(d)). 
The grains do not have to be the same size. Like in the lamella case, 
strong crystallographic anisotropy is required to avoid morphological 
instabilities at elevated temperatures. The facet edges are additional 
extended defects with excess free energy. They can create a capillary 
5

Fig. 2. Free energy diagram of a binary solid solution 𝛼 containing a grain boundary 
labeled ‘‘GB phase’’. The molar free energy is plotted against the solute concentration 𝑐2. 
(a) Initial state after the boundary was inserted in the solution. (b) Grain boundary has 
been equilibrated with the 𝛼 phase without changing its area. (c) The grain boundary 
area has been adjusted to achieve thermodynamic equilibrium with the 𝛼 phase. The 
vertical line marks the fixed alloy composition. The dashed lines show the tangents to 
the phases. The black dots indicate the current states of the phases. The blue line 𝑎− 𝑏
is a tie line between the two phases.

pressure acting on the grains if 𝛾 > 0. However, their contribution to 
the total free energy can be negligible if the grains are sufficiently large. 
Also, when the system is in the ground state, the grain boundaries at 
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Fig. 3. Free energy diagram of a binary solid solution 𝛼 containing a grain boundary 
(GB phase). The molar free energy is plotted against the solute concentration 𝑐2. (a) 
Initial state after the boundary was inserted in the solution. (b) Grain boundary has 
been equilibrated with the 𝛼 phase without changing its area. (c) The grain boundary 
has disappeared to let the system reach the thermodynamic ground state. The vertical 
line marks the fixed alloy composition. The dashed lines show the tangents to the 
phases. The black dots indicate the current states of the phases. The dotted line in (b) 
is a tie line between the phases, and the star symbol marks the free energy of the 
system.

special misorientations/inclinations have zero tension (Fig.  5(b)), and 
the force balance at the edges is of no concern.

At temperatures above the roughening transition, the excess free 
energy of grain boundaries becomes nearly isotropic. In this case, the 
6

uniform boundary model becomes a reasonable approximation, and all 
boundaries can be treated as one 2D phase. The embedded grains need 
not be faceted. If 𝛾 > 0, the embedded grain shape must be close 
to spherical. When 𝛾 → 0, the capillary forces vanish and the grains 
have no particular shape or size. They may have a wide distribution of 
sizes and ameaba-like shapes (Fig.  4(e)). Another possible morphology 
is a maze crystal, which can be considered a particular case of the 
embedded-grain structure in which the embedded grain and the matrix 
form interpenetrating pathways. More generally, bi-continuous (Fig. 
4(f)), tri-continuous (Fig.  4(g)), and similar interpenetrating morpholo-
gies are candidate ground-state structures when interfaces are nearly 
isotropic. They contain no triple junctions and can easily adjust the in-
terface area per unit volume. Yet another possible scenario that arises at 
high temperatures is that 𝛾 fluctuates around a zero value. The system 
will then reach a dynamic equilibrium between grain growth (when 
𝛾 > 0) and grain refinement (when 𝛾 < 0) while maintaining a constant 
average boundary area. Such dynamic grain structures were observed 
in recent computer simulations [22]. In this case, the contribution of 
the configurational entropy to the free energy of the extended defects 
may no longer be negligible. Indeed, 1D defects could be analogous 
to polymer chains and 2D defects could be analogous to suspended 
graphene or lipid bilayers, all of which have configurational entropy 
contributions to free energy. After time-averaging over the fluctuations, 
the excess free energy may be zero.

The search for equilibrium microstructures that contain fully sta-
bilized grain boundaries is a design problem that becomes especially 
interesting in the presence of interactions between the 1D/2D defects. 
So far, we have assumed that the defect excess free energies are simply 
additive, ignoring the interaction terms that depend on geometry. 
Dislocations have a long-range stress field ∝ 1∕𝑟, and even fully relaxed 
grain boundaries have a stress field that decays exponentially with 
distance from the boundary plane. In finite-size polycrystals, (weak) 
interactions are unavoidable. For microstructures composed of isolated 
defects, such as those shown in Fig.  4(c,d,e), the design problem 
reduces to the optimization of a ‘‘superlattice’’ of 3D grains with a 
mesoscale lattice parameter 𝑙. With enough chemical complexity, it 
seems reasonable to expect that such a structure can reach a global 
minimum at an optimal value of 𝑙. This ground-state superlattice struc-
ture will resist grain coarsening or grain refinement, forming a ‘‘pseudo 
crystal’’ with internal interactions analogous to a ground-state atomic 
crystal. (Even though a ground-state atomic crystal has zero total stress, 
individual atomic pairs interact with attractive or repulsive interatomic 
forces, according to the Lennard-Jones interaction potential.)

As temperature or chemical composition change, this ‘‘pseudo crys-
tal’’ structure can undergo reversible changes, assuming that the solute 
diffusion is fast enough to respond to the changes. The grain sizes 
and shapes can change, the lattice parameter 𝑙 can increase (‘‘ther-
mal expansion’’) or decrease, and the superlattice itself can undergo 
sudden changes in the morphology and symmetry in a manner similar 
to structural phase transformations of the atomic crystals. At a high 
temperature, the superlattice can ‘‘melt’’ by transitioning to a spatially 
disordered arrangement of the grains.

4. Discussion and conclusions

Previous thermodynamic treatments of extended defects as low-
dimensional phases considered only phase equilibria and phase trans-
formations within a defect with a fixed area or length [29]. Thus, 
only constrained thermodynamic equilibria of the entire system were 
considered. The defects were in thermal, mechanical, and chemical 
equilibrium with their environment, but not in full equilibrium. The 
system containing extended defects was always in a metastable state. In 
this paper, we continued to treat extended defects as low-dimensional 
phases. However, we applied this treatment to address new questions 
not asked before, such as: Can a crystalline material with multiple 
extended defects reach a true thermodynamic equilibrium? If it can, 
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Fig. 4. 2D schematics of possible ground state morphologies of a solid solution with grain boundaries ((1@1@0)𝑘 system). (a) Lamellar structure with symmetrical tilt grain 
boundaries. (b) Polysynthetic structure composed of lamellar domains. (c) Isolated grain arrangement for a single type of grain boundaries (𝜉 = 1). (d) Isolated grain arrangement 
for several grain boundary types (𝜉 > 1). (e) Isolated grains above the roughening transition. (f) Bi-continuous bicrystalline structure. (g) Tri-continuous tri-crystalline structure. 
The colors represent different lattice orientations. The characteristic distance 𝑙 between the grains is indicated.
what thermodynamic properties will the defect phases have? What 
kind of microstructure will the material have when it reaches the 
thermodynamic ground state?

To let the system reach the full thermodynamic equilibrium, we 
allowed the extended defects to vary their areas and lengths, which 
are the degrees of freedom that were previously frozen. In other words, 
the amounts of phases of all dimensionalities in a closed system were 
allowed to vary to reach full equilibrium. Two different scenarios were 
found. The defect phases can shrink in size and eventually disappear, 
leaving only bulk phases in the ground state. This happens if the 
defect formation free energies remain positive during the equilibration 
process. Grain growth in polycrystalline alloys is an example of this 
process. However, thermodynamics also permits a scenario in which 
some special extended defects remain. We have shown that the forma-
tion free energies of such defects in the ground state must be zero. In 
fact, such special ‘‘defects’’ are no longer defects but low-dimensional 
phases that can coexist thermodynamically with the conventional 3D 
phases. All driving forces for microstructure coarsening vanish, and 
the material becomes structurally stable. An example is offered by the 
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hypothetical fully stabilized nanocrystalline alloys discussed in the lit-
erature [3,4,6–22]. However, many other types of stabilized materials, 
e.g., ‘‘pseudo crystals’’, can be imagined with unique properties in the 
realms of ceramics and electronic materials. These structures with a 
finite characteristic length scale are forever immune to coarsening if 
the temperature and chemical composition are fixed. However, the 
said length scale can also vary when the intensive thermodynamic 
variables are changed, akin to thermal expansion or chemical expansion 
of atomic crystals.

To the best of our knowledge, full thermodynamic stabilization of 
polycrystals or any other defected structures has not been demonstrated 
experimentally so far. One of the challenges in achieving the full stabi-
lization in polycrystalline structures is that grain boundary segregation 
thermodynamically competes with bulk phase transformations. Rather 
than forming strong GB segregation atmospheres that could stabilize 
the polycrystalline state, the solute atoms may prefer to precipitate as 
a new bulk phase. However, it is conceivable that in some cases the bulk 
phase nucleation can be delayed by slow kinetics, and the grain bound-
aries in the initial bulk phase can still reach a free-energy minimum 
at a finite grain size. Although this state would be thermodynamically 
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Fig. 5. 2D schematic of possible 𝛾-plots of a strongly anisotropic grain boundary. (a) 
Grain boundary with 𝛾 > 0. The filled square shows the corresponding Wulff-Gibbs 
shape of an enclosed grain. (b) Grain boundary with 𝛾 = 0.

metastable, the phase rule formulated above would still apply to the 
stabilized grain boundaries and other extended defects within the 
initial phase. Of course, on a much longer timescale, the solute atoms 
would gradually diffuse away from the grain boundaries into the new 
phase, eventually causing grain coarsening and destabilization of other 
extended defects.

In the beginning of the article, we mentioned intrinsic point defects 
whose free energy includes a configurational part due to their mobility 
and which are part of a bulk phase. However, many microstructures 
contain immobile point defects, such as dislocation nodes and quadru-
ple points in polycrystalline materials. Such 0D defects (‘‘defects in 
defects’’) should be considered as 0D phases, and their degrees of 
freedom should be included in the phase rules. Considering that the 
fraction of atoms that reside in such phases is relatively small, we 
focused on 1D and 2D defects. Extension of our analysis to include 0D 
phases is straightforward.

An important outcome of this work is the realization that the 
stabilized extended defects must follow Gibbs’ phase rule generalized 
to phases of any dimensionality. This rule limits the number of defect 
types that the material can contain in the ground state. This number 
depends on the number of chemical components in the system and is 
in practice relatively small. The phase rule can serve as a guide for 
the design of thermodynamically stabilized materials. It also opens up 
an exciting new direction of searching for microstructures that contain 
a prescribed number of extended defects and are capable of adjusting 
the defect areas/length to satisfy the equilibrium conditions. We dis-
cussed several possible microstructures for a single-phase solid solution 
with grain boundaries. However, this simple case barely scratches the 
surface of the problem. Deeper and more systematic investigations are 
needed in the future.

Many other aspects of full stabilization call for future research. For 
example, solute diffusion is a critical factor that was not discussed 
here. During the equilibration process, the solute diffusion must be fast 
enough to sustain the segregation atmospheres at the defects and to 
maintain the low and eventually zero values of their formation free 
energies. This is especially important for the dynamically equilibrated 
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structures in which the defects constantly move and their free energies 
fluctuate between positive and negative values. Recent simulations 
suggest that slow solute diffusion can trap the structure in metastable 
states [21].

Another unexplored question is how the ground-state structures 
with defects would appear on phase diagrams. In the simple case of a 
binary solid solution (phase 𝛼) with a single grain boundary ((1@1@0)2
system), the ground state structure can exist in a temperature-
composition domain bounded by coexistence lines with other phases 
(Fig.  2(c)). At a fixed temperature, the ground states span the compo-
sition interval between the end points 𝑎 and 𝑏 on the tie line. Near 
point 𝑎, the grain boundary area is infinitely small and phase 𝛼 is 
virtually a single crystal. Near point 𝑏, most atoms belong to the grain 
boundary while the grains are infinitely small. In reality, phase 𝛼 is 
likely to transform to another bulk phase before point 𝑏 can be reached. 
Alternatively, the grain boundary can premelt when approaching point 
𝑏 and then fully melt at this point. In this scenario, the domain of the 
(1@1@0)2 system on the phase diagram is bounded by a solid–liquid 
coexistence field on the high-concentration side. In recent computer 
simulations [22], a stable polycrystalline state in a binary system was 
indeed observed under a solidus line on the phase diagram. Future 
research can show how general this trend is and what fully stabilized 
states can look like on the structural phase diagrams of more complex 
systems.
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