Nanoscale Origin of the Soft-to-Hard Short-Circuit Transition in **Inorganic Solid-State Electrolytes**

Chunyang Wang,^{*,⊥} Yubin He,[⊥] Peichao Zou, Qi He, Ju Li,* and Huolin L. Xin*

Cite This: https://doi.org/10.1021/jacs.5c04113

ACCESS More Article Recommendations Supporting Information				
	ACCESS	III Metrics & More	E Article Recommendations	s Supporting Information

ABSTRACT: Understanding and overcoming the chemomechanical failures of Li⁰ precipitation & interconnection polycrystalline inorganic solid-state electrolytes (SSEs) are critical for next-generation all-solid-state batteries. Yet, so far, the nanoscale origin of SSEs' chemomechanical failure under operation conditions remains a mystery. Here, by using in situ electron microscopy, we decipher the nanoscale origin of the soft-to-hard short-circuit transition-a conventionally underestimated failure mechanism-caused by electronic leakage-induced Li⁰ precipitation in SSEs. For the first time, we directly visualize stochastic Li⁰ interconnection-induced soft short circuits, during which the SSEs undergo the transition from a nominal electronic insulator to a state exhibiting memristor-like nonlinear conduction (electronic leakages), ultimately evolving into hard short circuits. Furthermore, we first capture intragranular cracking caused by Li⁰ penetration, demonstrating that fully wetted Li⁰ can fracture polycrystalline oxide

SSEs via a liquid-metal embrittlement-like mechanism. Guided by these insights, we show that incorporating an electronically insulating and mechanically resilient 3D polymer network into an inorganic/polymer composite SSE effectively suppresses Li⁰ precipitation, interconnection, and short circuits, significantly enhancing its electrochemical stability. Our work, by elucidating the soft-to-hard short-circuit transition kinetics of SSEs, offers new insights into their nanoscale failure mechanisms.

INTRODUCTION

All-solid-state batteries $(ASSBs)^{1-5}$ have attracted considerable interest due to their improved safety compared to conventional lithium-ion batteries^{6,7} with flammable liquid electrolytes. As the key components of ASSBs, solid-state electrolytes (SSEs) play a crucial role in their performance and stability. So far, two types of SSEs, inorganic and polymeric SSEs, are mainly deployed in solid-state batteries. Inorganic SSEs including oxides^{8,9} and sulfides^{10,11} are highly promising for ASSBs due to their high ionic conductivity and elastic modulus. Yet, the chemomechanical instabilities of inorganic SSEs bring a grand challenge to their practical applications.¹² Polymer electrolytes are another SSE choice for ASSBs.^{13–18} However, due to their low elastic modulus, Li⁰ morphological instabilities^{19,20} and displacive penetration through polymer electrolytes easily lead to short circuits and battery failure.²¹ In contradiction to the conventional view that dendrites can be inhibited by ceramic SSEs, which have a higher elastic modulus than Li metal, some recent studies $^{12,22-24}$ propose that due to the minuscule (yet nonzero) electronic conductivity of inorganic SSEs (e.g., $1.2 \times$ 10^{-8} S/cm in LATP²⁵ compared to its ionic conductivity of 6 $\times 10^{-4}$ S/cm),²⁶ electronic leakage-induced Li⁰ precipitation in voids or at grain boundaries (GBs) can occur inside inorganic SSEs.²⁷ Here, we note that while most theoretical works idealized SSE as an electronic (e⁻) insulator and ionic (Li⁺) conductor in the linear-response regime, a large electric field (E) may trigger nonlinear responses, since a typical battery will sustain an average $E \sim V/\mu m$ across the SSE layer between the

cathode at \sim 4 V and the anode at 0 V, and the local E magnitude may easily be enhanced 10× by tip-curvature effects, i.e., in front of a metallic asperity. For comparison, a true wide-bandgap electronic insulator Al₂O₃ (alumina) only has a dielectric breakdown strength of 13.4 V/ μ m.²⁸ Thus, it is conceivable that electronic leakage can occur in SSEs in real batteries, especially under local high-field conditions, near metallic asperities of the anode current collector (e.g., surface roughnesses from imperfect manufacturing). Charge-transfer (Faradaic) reactions can then occur at the following internal sites: Li^{0} (free volume) = Li^{+} (SSE) + e^{-} (SSE),²⁶ where Li^{0} (free volume) denotes a lithium adatom that is charge-neutral. These adatoms easily diffuse and aggregate into chains or clusters, and at some point, extended Li⁰ precipitation and growth create a highway for electrons, consequently leading to short circuits. Also, such Li⁰ precipitation is expected to lead to local stress concentration and mechanical fracture that further aggravate the degradation of inorganic SSEs. So far, although considerable efforts have been devoted to understanding the failure mechanism of inorganic SSEs,²⁹⁻³¹ its nanoscale

Received: March 9, 2025 Revised: May 6, 2025 Accepted: May 7, 2025

Figure 1. Soft-to-hard short-circuit transition and stabilization mechanisms in solid-state electrolytes. (a) Soft-to-hard short-circuit transition and its nanoscale origin in inorganic solid-state electrolytes (SSEs). (b) Stabilization mechanisms in inorganic/polymer hybrid SSEs. (c) Long-cycle electrochemical performance of the LATP/polymer (with FEC additive) and pure LATP SSEs. The inset shows the LATP curve with different scales. (d) Impedance of pure LATP (1.3 mm) and the LATP/polymer composite (350μ m) measured at room temperature. (e) Voltage–time profiles of a Li/LATP-polymer/Li symmetric cell cycled at 22 °C, 0.2 mA/cm², and 0.5 mA h/cm². Note that no FEC additive was introduced into the composite electrolyte.

degradation mechanism and kinetics remain a mystery, largely due to the low spatial/temporal resolution of ex situ electronor X-ray-based microscopy techniques.

RESULTS

In this work, by constructing solid-state batteries with a variety of SSEs inside a transmission electron microscope (TEM), we uncover the nanoscale origin of the soft-to-hard short-circuit transition of inorganic SSEs through in situ monitoring of the lithium deposition process and the total current flowing through the system (see an illustration of the experimental setup in Figure S1). It turns out that while the Faradaic current is maximally on the order of 10^2 pA (inferred from the rate of Li⁰ deposition in our experiments), the transient total current we actually measured can exceed tens of nanoamperes, proving nonlinear electronic leakage in the high-field regime. We reveal that for NASICON- or garnet-type oxide SSEs, Li⁰ precipitation-metallic Li formation inside SSEs-is inevitable near interfaces, i.e., voids and GBs, if subjected to a high E (say, from a tip or a random machining surface asperity on the anode current collector) with a faraway Li⁺ source. With prolonged operation, charge-transfer reactions Li⁰(free volume) = $Li^+(SSE) + e^-(SSE)$ occur, rate-limited by the electronic leakage inside the SSE,²⁶ where Li⁰(free volume) denotes a charge-neutral adatom that requires some atomiclevel free volume to reside in. These reduced adatoms can then diffuse and aggregate into chains or clusters, giving rise to memristor-type electronic conductance,²⁶ ultimately leading to frequent, transient nanoscale short circuit (soft short circuit)

events that are not detectable in conventional electrochemical tests (Figure 1a). Moreover, for the first time, the dynamic process of soft-to-hard short-circuit transition induced by Li⁰ precipitation-induced intragranular cracking was directly captured at the nanoscale. These provide direct evidence that two types of currents, non-Faradaic and Faradaic, mutually reinforce each other: the non-Faradaic electronic leakage was kicked off by a high $E_{\rm tip} \sim 10^1 \, {\rm V}/\mu{\rm m}$, same as in the standard dielectric breakdowns of ionic and electronic insulators (IEI)³² like Al_2O_3 ,²⁸ whereas the Faradaic electronic leakage plates out Li⁰ (in conjunction with ionic flux), paving a metallic path and further extending and enhancing $E_{tip}(x)$. In addition to the nonlinear electronic aspect, there is also a nonlinear mechanical aspect: the soft Li metal precipitated inside inorganic SSE is able to mechanically break the GBs of oxide polycrystals. Indeed, the eventual complete wetting of ceramic oxide grains by Li⁰ and disintegration of the polycrystalline assembly closely resembles the phenomena of liquid-metal embrittlement in metallurgy,³³ where liquid Na/Ga attacks GBs of stainless steel/Al by reactive wetting. Based on the new insights, we introduce a flexible polymer network into the inorganic SSEs to form a nanocomposite SSE, with (a) much lower electronic leakage, due to the stronger electronic insulation properties of the polymer electrolyte, without significantly reducing the ionic transport properties, and (b) better tensile toughness, as the polymer can sustain tensile stress better than ceramic GBs, thereby preventing the Li⁰ charge-transfer reaction and wetting attack (Figure 1b). Electrochemical tests (Figure 1c-e) show that in stark contrast

pubs.acs.org/JACS

Figure 2. In situ observation of short-circuiting of inorganic SSEs induced by Li^0 penetration/precipitation. (a) Time-resolved bright-field TEM (BF-TEM) images showing the in situ Li⁺ transportation and Li deposition with LATP as the SSE. The projected area of Li^0 was plotted as a function of time. (b) In situ Li⁺ transportation and Li deposition with garnet-type $Li_{6.4}La_3Zr_{1.4}Ta_{0.6}O_{12}$ (LLZTO) and the projected area of Li^0 as a function of time. (c) In situ Li⁺ transportation and Li deposition with $Li_{10}GeP_2S_{12}$ (LGPS) and the projected area of Li^0 as a function of time. The Li^0 growth in all systems shows stochastic characteristics, that is, both stochastic acceleration and stagnation were observed during the Li deposition.

to LATP-based Li–Li cells which fail rapidly (<100 h), Li–Li cells containing LATP/polymer hybrid SSE demonstrate good stability (Figures S2–S4) and dramatically improved cycling performance (Figures 1c,e and S5) with a significantly lower overall impedance (Figure 1d). These results suggest that the polymer component not only suppresses electronic conduction but also facilitates ionic transport through the LATP GBs.

High-resolution TEM (HRTEM) image and electron diffractions of pristine $Li_{1.3}Al_{0.3}Ti_{1.7}(PO_4)_3$ (LATP) demonstrate that LATP has a NASICON-type structure^{34,35} (see the

size distribution, atomic structure, and electronic conductivity of LATP in Figures S6 and S7 and Table S1). Figure 2a and Movie S1 present time-resolved bright-field TEM images showing the in situ Li deposition process through the polycrystalline LATP SSE. Upon lithiation by applying a voltage, the LATP particle soon underwent a volume expansion (t = 257 s), after which metallic Li grew out from the particle surface and deposited onto the Cu electrode (t =295.5 s). Aside from the growth of existing Li nuclei, Li⁰ was also observed to nucleate from other free-surface sites (t = 365

Figure 3. In situ observation of soft-to-hard short-circuit transition in inorganic SSEs. (a) Current as a function of time during the whole process of Li deposition with the LATP system. (b,c) Zoomed-in current-time curves corresponding to the boxed regions in (a). The onset of soft short circuit is indicated in (b). High-frequency soft short circuits featured by intermittent current spikes (the amplitude of the spike increases with time) are indicated by arrows in (b,c). (d) Time-resolved BF-TEM images showing stochastic nucleation and growth of Li^0 from multiple sites including free surface and internal voids. Subsequently, with the Li visibly linked together, the system short-circuited completely. (e) In situ observation of chemomechanical cracking induced by Li penetration at grain boundaries (GBs). The system finally short-circuited due to stochastic Li^0 precipitation and interconnection.

s). Shortly after, the system short-circuited (t = 399.5 s), indicating that a highway for electrons, i.e., interconnected Li⁰, was formed across the entire SSE particle. To quantitatively

understand the Li^0 evolution dynamics, the projected area of Li^0 was plotted as a function of the deposition time (Figure 2a). We found that although the Li^0 growth was nearly linear,

growth acceleration or stagnation occurred in certain periods. Detailed analysis (Figure S8) was performed on the lithiated LATP in the incipient stage before visible Li⁰ precipitates at the particle surface. Electron energy-loss spectroscopy (EELS) of the Ti- L_{23} edge (Figure S8c) shows that upon lithiation, the Ti valence shifts from Ti^{4+} toward lower energy (Ti^{3+}) , suggesting a fully lithiated phase $Li_3Al_{0.3}Ti_{1.7}(PO_4)_3^{30}$ was formed due to a reduction reaction (see further discussion on how an SSE's reduction stability impacts Li penetration in Supporting Information). Yet, based on the area change (Figure S8a) between the pristine (t = 0 s) and lithiated phase (t = 257 s), the volume expansion was roughly estimated as \sim 11%, evidently larger than the theoretical volume expansion $(\sim 6\%)$ caused by the phase transformation (Figure S9). Although the possibility of crack formation in the particle cannot be ruled out, the nearly doubled volume expansion suggests that Li⁺ was likely saturated in the LATP and Li⁰ formed inside the particle. This is consistent with our observation that Li⁰ subsequently penetrated the particle's surface and spilled over (t = 257 s, Figure 2a). Aside from LATP, other oxides and sulfide SSEs, including garnet-type $Li_{6.4}La_3Zr_{1.4}Ta_{0.6}O_{12}$ (LLZTO) and $Li_{10}GeP_2S_{12}$ (LGPS), were also explored. Figure 2b and Movie S2 present time-resolved bright-field TEM images showing the in situ dynamics of LLZTO during Li deposition. Upon lithiation, metallic Li grew out from the particle surface and a large Li⁰ particle was formed in the "key hole" between the SSE and Cu electrode (t = 116.2 s). The Li^0 kept increasing in proportion through the coalescence of existing domains and the formation of new nuclei (t = 251.8 s). Interestingly, the Li⁰ inclines to fill the "key hole" through lateral growth under compression (Li metal tends to diffusionally creep like a Newtonian fluid when confined to less than $\sim 10^2$ nm at room temperature³⁷). With the hole almost filled, the left Li⁰ grain gradually changed its growth direction (t = 344 s) from lateral to nearly vertical, leading to grain rotation (t = 386.2 s). Subsequently, with a reversed bias, although the grain rotation shows a reversible trend upon stripping, the cell short-circuited soon afterward (t = 410.8 s). The projected area of Li^0 plotted as a function of time shows that similar to that for LATP, the growth of Li⁰ through LLZTO shows acceleration or stagnation at different stages. Similarly, we found that LGPS also suffered from Li⁰ penetration, nonlinear Li⁰ growth, and short circuit (Figure 2c). By estimating the amount of Li^0 plated from Figure 2 and applying Faraday's laws of electrolysis, we can estimate the Faradaic current from these dynamic microstructural observations. The magnitude of the Faradaic current is at most $\sim 10^2$ pA, which is below the noise floor of our ampere meter used in conjunction with the TEM holder. Note that a typical industrial-level current density in batteries is 3 mA/cm² (equivalent to a 3 mAh/ cm^2 cathode under 1C charging). Given that the contact area under observation in Figure 2 is on the order of μ m², the corresponding Faradaic current in ASSBs is expected to be approximately 30 pA, indicating that our experiment closely approximates industrial conditions.

To investigate the underlying mechanism of the observed short-circuiting and breakdown of the inorganic SSEs, the total current flowing through the electrolyte was recorded in situ and correlated to their dynamic evolutions. Figure 3a shows the current curve flowing through the LATP SSE recorded over its whole life. It is found that during the in situ deposition process, the current kept building up until the whole system suddenly short-circuited and burnt out (Figure 3a). Figure 3b

shows the zoomed-in current curve corresponding to the leftside boxed region in Figure 3a. We found that the current at the beginning is low (equivalent to the background noise of ~0.5 nA). At a certain point, the current abruptly increased, followed by high-frequency stochastic spikes that indicate transient short circuit and meltdowns within the electrolyte. The observed electronic-conduction dynamics closely mirror those characteristic of dielectric breakdown and memristortype switching. The nA-level current corresponds to electronic current rather than ionic current, as nothing about ionic conduction can reach this magnitude ($\sim 10^2$ pA level and not measurable in our case as it is beyond the detection limit), nor could it vary so violently with time. Thus, by quantitative microstructural evolution and amperometry, we can separate out the Faradaic and non-Faradaic electronic currents. The non-Faradaic electronic bursts are much larger in amplitude and shorter in duration, similar to those in nanoscale dielectric breakdowns of insulators like Al₂O₃ and HfO₂ under high field. They can kick-start the autocatalytic Faradaic reaction Li⁰(free volume) = $Li^+(SSE) + e^-(SSE)$, where more bridging Li^0 (free volume) can form atomic filaments²⁶ that increase the availabilities of $e^{-}(SSE)$ and E_{tip} . With prolonged operation, although the frequency of the soft short circuit remains almost unchanged, the amplitude of the current spike gradually increased to hundreds of nA (Figure 3c). At a certain point, the current suddenly dropped to nearly zero, indicating that the system completely short-circuited and then disintegrated by melting like a fuse. Figure 3d and Movie S3 show timeresolved bright-field TEM images of a bunch of interconnected LATP particles (current flowing through the LATP is shown in Figure 3a) during in situ Li⁰ deposition. Upon lithiation, a Li whisker soon nucleated and grew out from the particle surface (t = 197.5 s). Subsequently, the whisker melted or evaporated off under increased current due to the short circuit, yet new Li⁰ domains nucleated stochastically from free surfaces and voids/ gaps between the LATP particles (t = 214.5 s); during this period, although the whole electrolyte was not visibly covered by Li⁰, a highway for electrons was already created transiently (indicated by stochastic current spikes as shown in Figure 3ac). In the following stage, the Li⁰ domains kept growing rapidly (t = 277.5 s) and, ultimately, the whole system completely short-circuited (Figure S10) when the Li⁰ domains became visibly interconnected with each other (t = 341.5 s). From the above, the short circuit followed by a short period of recovery suggests that the electron highway can be transiently broken up by meltdown or evaporation of local Li₀ domains, which is essentially a form of soft short circuit and could be responsible for the growth stagnation observed in Figure 2. Figure 3e and Movie S4 show another case whereby chemomechanical failure caused by Li⁰ penetration at GBs was directly observed. We found that upon lithiation, the whole electrolyte broke into pieces with metallic Li spilling over from the GBs (t = 17 s); meanwhile, grain rotation caused by large internal stress between the LATP grains was also observed (in regions on the left side). This final stage of damage reminds one of the liquidmetal embrittlement in metallurgy³³ where reactive wetting of steel/Al GBs by liquid Na/Ga causes the granular assembly to completely disintegrate, except here, the matrix grains are an oxide instead of a metal. With further growth of the Li⁰ between the grains, the cracking of the oxide electrolyte was exacerbated, and, in the meantime, Li⁰ domains and whiskers burst from the free surfaces (t = 52.2 s). Similar to the case in Figure 3d, the stochastic Li⁰ precipitation and interconnection

pubs.acs.org/JACS

Article

Figure 4. Chemomechanically stable Li^+ transportation in a LATP/polymer hybrid SSE. (a) Energy-dispersive spectroscopy (EDS) maps of the LATP/polymer hybrid SSE. (b) Time-resolved BF-TEM images of the LATP/polymer hybrid SSE upon in situ lithiation. (c) Enlarged images corresponding to the boxed region in (b) The dashed line highlights the surface profile of the SSE particle in the previous frame. The wavy movement of the surface indicates coordinative deformation between the flexible polymer network and the inorganic SSE particles upon lithiation. (d) Current as a function of time during the whole process of Li deposition with LATP/polymer hybrid SSE. The current remains stable as a function of time (close to the background noise).

finally resulted in a complete short circuit of the system (t = 53.4 s). In short, an initial nonlinear electronic "vicious cycle" triggered the onset of SSE degradation, which gradually evolved into a nonlinear mechanical "vicious cycle".

To mitigate the soft-to-hard short-circuit transition and its resultant chemomechanical breakdowns and disintegration of inorganic SSEs, a mechanically flexible 3D polymer network (EA-LiFSI-EIMFSI-FEC; see synthesis details in Supporting Information) was introduced to form an LATP/polymer hybrid SSE (the polymer was mixed with the LATP powder with a mass ratio of 1:2; see details in Supporting Information). Figure 4a shows the elemental maps of the LATP/polymer hybrid SSE. It is seen that the polycrystalline LATP particles and the polymer network form a well-blended nanocomposite. That is, the rigid LATP crystals are well wrapped around by the polymer network. In situ Li deposition experiment shows that the LATP/polymer hybrid SSE remained stable during the lithiation process (Figure 4b and Movie S5; also see the full-length video in Movie S6 and the

corresponding current-time curve in Figure S11). Figure 4c shows enlarged images corresponding to the boxed region in Figure 4b. The dashed line highlights the surface profile of the solid electrolyte in the previous frame. Different from the pure LATP, which undergoes rigid expansion at all sites during lithiation and easily cracks, the LATP/polymer hybrid SSE undergoes coordinative deformation between the flexible polymer network (acting as a mechanically resilient buffering layer) and the inorganic solid electrolyte particles featured by the wavy movement of the electrolyte's surface as shown in Figure 4c and Movie S7. The robust mechanical stability of the LATP/polymer hybrid SSE was also validated by in situ deformation experiments in TEM. In stark contrast to the pure LATP system easily cracking during deformation (Figure S12), the hybrid electrolyte remains almost intact after reversible deformation up to over 200 cycles (Figure S13). In addition, distinct from pure inorganic SSEs, which suffer from highfrequency soft short circuit events featuring > nA non-Faradaic spikes on the current-time curve, the current flowing through

CONCLUSIONS

In summary, we elucidate the nanoscale origin of the soft-tohard short-circuit transition in inorganic SSEs through in situ electron microscopy with high spatial and temporal resolution. Our findings reveal that soft short circuits-characterized by dynamically reversible non-Faradaic electronic breakdownsoriginate from transient interconnections and localized melting of precipitated Li⁰ at the nanoscale, which ultimately evolve into hard short circuits marked by amplified electronic leakage. This failure mechanism is universally observed in both NASICON- and garnet-type inorganic SSEs. By integrating a flexible polymer network into rigid inorganic SSEs to mitigate electronic leakage while preserving ionic transport, we demonstrate a significant enhancement in electrolyte stability and cycling performance. This new mechanistic insight and proof-of-concept strategy offer a broadly applicable framework for designing next-generation SSEs for high-energy-density, long-life ASSBs.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.5c04113.

- Materials and electrochemical tests; details of in situ TEM experiments; and additional electrochemical, SEM, TEM characterizations of the solid-state electrolytes (PDF)
- Time-resolved bright-field TEM images showing the in situ Li deposition process through the polycrystalline LATP SSE (AVI)

Time-resolved bright-field TEM images showing the in situ dynamics of LLZTO during Li deposition (AVI)

Time-resolved bright-field TEM images of a bunch of interconnected LATP particles (AVI)

Chemomechanical failure caused by Li⁰ penetration at grain boundaries (AVI)

In situ Li deposition experiment showing that the LATP/polymer hybrid SSE remained stable during the lithiation process (AVI)

In situ Li deposition experiment shows that the LATP/ polymer hybrid SSE remained stable during the lithiation process (AVI)

LATP/polymer hybrid SSE undergoing coordinative deformation between the flexible polymer network (acting as a mechanically resilient buffering layer) and the inorganic solid electrolyte particles featured by the wavy movement of the electrolyte's surface (AVI)

AUTHOR INFORMATION

Corresponding Authors

- Chunyang Wang Department of Physics and Astronomy, University of California Irvine, Irvine, California 92697, United States; Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; Orcid.org/0000-0001-8461-3952; Email: wangchunyang@imr.ac.cn
- Ju Li Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States; Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United

the LATP/polymer hybrid SSE remains below the noise floor of our TEM holder's ampere meter (Figure 4d) as it should be, indicating that soft short circuits were effectively suppressed even under the same operation conditions.

DISCUSSION

The failure of SSEs has often been attributed to chemical and electrochemical instabilities at the SSE/Li interface, where interfacial side reactions compromise the electrolyte's integrity.^{38,39} While we acknowledge that such side reactions play an important role in battery degradation, our findings emphasize the importance of another key failure mechanism-Li penetration and the resultant soft-to-hard short-circuit transition. Through operando TEM, we first experimentally confirmed that transient soft short circuit events, driven by Li infiltration along GBs or voids, can gradually evolve into a percolating electron pathway, ultimately leading to catastrophic hard short circuits. This process suggests that while interfacial degradation may contribute to the instability of SSEs, the Limetal-penetration-induced mechanical disintegration and short circuit are crucial and often underappreciated factors in battery failure. Our in situ TEM experiments highlight that even in the absence of severe interfacial degradation, Li penetration alone can initiate a self-reinforcing cycle of electronic leakage and structural breakdown. Thus, to develop more robust SSEs, strategies aimed at mitigating Li penetration-such as interfacial engineering or mechanical reinforcement-should be considered alongside efforts to improve interfacial stability.

The nanoscale interrogation of the structure-performance relationship of SSEs in this work fundamentally confirms that integrating inorganic electrolytes with dynamic polymer networks is a crucial strategy for developing high-performance SSEs.³⁸⁻⁴⁰ Our results show that the polymer network offers three key advantages. First, it introduces an electronically more insulating (the polymeric SSE's electronic conductivity is measured to be $\sim\!\!1.09\times10^{-10}$ S/cm (Figure S14), 2 orders of magnitude lower than that of LATP²⁵) but ionically conducting interface between neighboring grains. Considering the charge-transfer reaction Li^{0} (free volume) = $Li^{+}(SSE)$ + e⁻(SSE): with e⁻(SSE) much more difficult to come by, and with Li⁺(SSE) passing rapidly across the inorganic GB via the polymer bridge, there is less chance for Li⁺(SSE) to dwell near the GB, meet an electron, and become reduced into the Li⁰(free volume) adatom. We note that our solid polymer electrolyte (SPE) is a better electronic insulator than the oxide SSEs not only in the linear sense but likely in the nonlinear sense. Second, despite its lower elastic modulus, the polymer chains can sustain some tensile stress, while ceramic GBs can hardly sustain any. The polymer network acts as a mechanically resilient buffer that could effectively accommodate the plastic strain generated by the inorganic particle's volume change. This enables the nanocomposite SSE to impart compressive stress onto ceramic grains, suppressing crack propagation and enhancing mechanical stability. Third, the strong adhesion and intimate binding of the SPE, which acts as an organic binder between ceramic grains, reduce the driving force for GB wetting by Li⁰ and "liquid-metal embrittlement" tendencies. Yet, it should be noted that, for the design of composite/ hybrid SSEs, it is important to consider not only the chemical/ electrochemical compatibility between inorganic SSEs and Li metal (see a detailed discussion and Figure S15 in the Supporting Information) but also their compatibility with polymer chemistry.

States; orcid.org/0000-0002-7841-8058; Email: liju@mit.edu

Huolin L. Xin – Department of Physics and Astronomy, University of California Irvine, Irvine, California 92697, United States; o orcid.org/0000-0002-6521-868X; Email: huolin.xin@uci.edu

Authors

- Yubin He Department of Physics and Astronomy, University of California Irvine, Irvine, California 92697, United States; orcid.org/0000-0002-3434-4595
- **Peichao Zou** Department of Physics and Astronomy, University of California Irvine, Irvine, California 92697, United States
- **Qi He** Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States

Complete contact information is available at: https://pubs.acs.org/10.1021/jacs.5c04113

Author Contributions

 $^{\perp}$ C.W. and Y.H. contributed equally.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work is supported by the Materials Science and Engineering Divisions, Office of Basic Energy Sciences of the U.S. Department of Energy, under award no. DE-SC0021204. J.L. acknowledges support by NSF CBET-2034902. This research used the resources of the Center for Functional Nanomaterials (CFN), which is a U.S. Department of Energy Office of Science User Facility, at Brookhaven National Laboratory under Contract No. DE-SC0012704. Part of the write-up was completed after C.W. left UC Irvine.

REFERENCES

(1) Liu, X.; Garcia-Mendez, R.; Lupini, A. R.; Cheng, Y.; Hood, Z. D.; Han, F.; Sharafi, A.; Idrobo, J. C.; Dudney, N. J.; Wang, C.; Ma, C.; Sakamoto, J.; Chi, M. Local electronic structure variation resulting in Li 'filament' formation within solid electrolytes. *Nat. Mater.* **2021**, *20*, 1485–1490.

(2) Jin, Y.; Liu, K.; Lang, J.; Zhuo, D.; Huang, Z.; Wang, C.-a.; Wu, H.; Cui, Y. An intermediate temperature garnet-type solid electrolytebased molten lithium battery for grid energy storage. *Nat. Energy* **2018**, *3* (9), 732–738.

(3) Kasemchainan, J.; Zekoll, S.; Spencer Jolly, D.; Ning, Z.; Hartley, G. O.; Marrow, J.; Bruce, P. G. Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells. *Nat. Mater.* **2019**, *18* (10), 1105–1111.

(4) Ning, Z.; Jolly, D. S.; Li, G.; De Meyere, R.; Pu, S. D.; Chen, Y.; Kasemchainan, J.; Ihli, J.; Gong, C.; Liu, B.; Melvin, D. L. R.; Bonnin, A.; Magdysyuk, O.; Adamson, P.; Hartley, G. O.; Monroe, C. W.; Marrow, T. J.; Bruce, P. G. Visualizing plating-induced cracking in lithium-anode solid-electrolyte cells. *Nat. Mater.* **2021**, *20*, 1121–1129.

(5) Balaish, M.; Gonzalez-Rosillo, J. C.; Kim, K. J.; Zhu, Y.; Hood, Z. D.; Rupp, J. L. M. Processing thin but robust electrolytes for solidstate batteries. *Nat. Energy* **2021**, *6* (3), 227–239.

(6) Suo, L.; Borodin, O.; Gao, T.; Olguin, M.; Ho, J.; Fan, X.; Luo, C.; Wang, C.; Xu, K. Water-in-salt" electrolyte enables high-voltage aqueous lithium-ion chemistries. *Science* **2015**, *350* (6263), *938–943*. (7) von Wald Cresce, A.; Xu, K. Aqueous lithium-ion batteries. *Carbon Energy* **2021**, *3* (5), *721–751*.

(8) Paolella, A.; Liu, X.; Daali, A.; Xu, W.; Hwang, I.; Savoie, S.; Girard, G.; Nita, A. G.; Perea, A.; Demers, H.; Zhu, W.; Guerfi, A.; Vijh, A.; Bertoni, G.; Gazzadi, G. C.; Berti, G.; Sun, C.; Ren, Y.; Zaghib, K.; Armand, M.; Kim, C.; Xu, G. L.; Amine, K. Enabling High-Performance NASICON-Based Solid-State Lithium Metal Batteries Towards Practical Conditions. *Adv. Funct. Mater.* **2021**, *31* (30), 2102765.

(9) Zhai, W.; Zhang, Y.; Shi, H.; Hu, X.; Hao, R.; Liu, W.; Yu, Y. Quantifying the Growth Kinetics of Lithium Metal Reduced from Solid Ionic Conductors. *J. Am. Chem. Soc.* **2024**, *146* (20), 14095–14104.

(10) Wu, J.; Liu, S.; Han, F.; Yao, X.; Wang, C. Lithium/Sulfide All-Solid-State Batteries using Sulfide Electrolytes. *Adv. Mater.* **2021**, *33* (6), 2000751.

(11) Xu, R.; Yue, J.; Liu, S.; Tu, J.; Han, F.; Liu, P.; Wang, C. Cathode-Supported All-Solid-State Lithium–Sulfur Batteries with High Cell-Level Energy Density. *ACS Energy Lett.* **2019**, *4* (5), 1073–1079.

(12) Liu, H.; Cheng, X.-B.; Huang, J.-Q.; Yuan, H.; Lu, Y.; Yan, C.; Zhu, G.-L.; Xu, R.; Zhao, C.-Z.; Hou, L.-P.; He, C.; Kaskel, S.; Zhang, Q. Controlling Dendrite Growth in Solid-State Electrolytes. *ACS Energy Lett.* **2020**, *5* (3), 833–843.

(13) Yue, L.; Ma, J.; Zhang, J.; Zhao, J.; Dong, S.; Liu, Z.; Cui, G.; Chen, L. All solid-state polymer electrolytes for high-performance lithium ion batteries. *Energy Storage Mater.* **2016**, *5*, 139–164.

(14) Dong, T.; Zhang, J.; Xu, G.; Chai, J.; Du, H.; Wang, L.; Wen, H.; Zang, X.; Du, A.; Jia, Q.; Zhou, X.; Cui, G. A multifunctional polymer electrolyte enables ultra-long cycle-life in a high-voltage lithium metal battery. *Energy Environ. Sci.* 2018, 11 (5), 1197-1203.
(15) Wu, J.; Rao, Z.; Cheng, Z.; Yuan, L.; Li, Z.; Huang, Y. Ultrathin, Flexible Polymer Electrolyte for Cost-Effective Fabrication of All-Solid State Lithium Matal Batteries. Adv. Energy Mater. 2019. 9 (46)

Solid-State Lithium Metal Batteries. Adv. Energy Mater. 2019, 9 (46), 1902767.
(16) Lu, Q.; He, Y. B.; Yu, Q.; Li, B.; Kaneti, Y. V.; Yao, Y.; Kang, F.;

Yang, Q. H. Dendrite-Free, High-Rate, Long-Life Lithium Metal Batteries with a 3D Cross-Linked Network Polymer Electrolyte. *Adv. Mater.* **2017**, *29* (13), 1604460.

(17) Qiu, J.; Liu, X.; Chen, R.; Li, Q.; Wang, Y.; Chen, P.; Gan, L.; Lee, S. J.; Nordlund, D.; Liu, Y.; Yu, X.; Bai, X.; Li, H.; Chen, L. Enabling Stable Cycling of 4.2 V High-Voltage All-Solid-State Batteries with PEO-Based Solid Electrolyte. *Adv. Funct. Mater.* **2020**, 30 (22), 1909392.

(18) Nie, K.; Wang, X.; Qiu, J.; Wang, Y.; Yang, Q.; Xu, J.; Yu, X.; Li, H.; Huang, X.; Chen, L. Increasing Poly(ethylene oxide) Stability to 4.5 V by Surface Coating of the Cathode. *ACS Energy Lett.* **2020**, 5 (3), 826–832.

(19) Wang, C.; Lin, R.; He, Y.; Zou, P.; Kisslinger, K.; He, Q.; Li, J.; Xin, H. L. Tension-Induced Cavitation in Li-Metal Stripping. *Adv. Mater.* **2023**, *35* (7), 2209091.

(20) Wang, C.; Wang, H.; Tao, L.; Wang, X.; Cao, P.; Lin, F.; Xin, H. L. Direct Observation of Nucleation and Growth Behaviors of Lithium by In Situ Electron Microscopy. *ACS Energy Lett.* **2023**, 8 (4), 1929–1935.

(21) Rosso, M.; Brissot, C.; Teyssot, A.; Dollé, M.; Sannier, L.; Tarascon, J.-M.; Bouchet, R.; Lascaud, S. Dendrite short-circuit and fuse effect on Li/polymer/Li cells. *Electrochim. Acta* **2006**, *51* (25), 5334–5340.

(22) Kazyak, E.; Garcia-Mendez, R.; LePage, W. S.; Sharafi, A.; Davis, A. L.; Sanchez, A. J.; Chen, K.-H.; Haslam, C.; Sakamoto, J.; Dasgupta, N. P. Li Penetration in Ceramic Solid Electrolytes: Operando Microscopy Analysis of Morphology, Propagation, and Reversibility. *Matter* **2020**, *2* (4), 1025–1048.

(23) Wang, M. J.; Kazyak, E.; Dasgupta, N. P.; Sakamoto, J. Transitioning solid-state batteries from lab to market: Linking electrochemo-mechanics with practical considerations. *Joule* **2021**, *5* (6), 1371–1390.

(24) Han, F.; Yue, J.; Zhu, X.; Wang, C. Suppressing Li Dendrite Formation in Li2S-P2SS Solid Electrolyte by LiI Incorporation. *Adv. Energy Mater.* **2018**, *8* (18), 1703644. (25) Zhao, E.; Ma, F.; Jin, Y.; Kanamura, K. Pechini synthesis of high ionic conductivity Li1.3Al0.3Ti1.7 (PO4)3 solid electrolytes: The effect of dispersant. *J. Alloys Compd.* **2016**, *6*80, *6*46–653.

(26) Dong, Y.; Chen, I.-W.; Li, J. Transverse and Longitudinal Degradations in Ceramic Solid Electrolytes. *Chem. Mater.* **2022**, 34 (13), 5749–5765.

(27) Han, F.; Westover, A. S.; Yue, J.; Fan, X.; Wang, F.; Chi, M.; Leonard, D. N.; Dudney, N. J.; Wang, H.; Wang, C. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. *Nat. Energy* **2019**, *4* (3), 187–196.

(28) Haynes, W. M.; Lide, D. R.; Bruno, T. J. CRC Handbook of Chemistry and Physics; CRC Press, 2016.

(29) Gu, J.; Chen, X.; He, Z.; Liang, Z.; Lin, Y.; Shi, J.; Yang, Y. Decoding Internal Stress-Induced Micro-Short Circuit Events in Sulfide-Based All-Solid-State Li-Metal Batteries via Operando Pressure Measurements. *Adv. Energy Mater.* **2023**, *13* (47), 2302643.

(30) Wang, C.; Deng, T.; Fan, X.; Zheng, M.; Yu, R.; Lu, Q.; Duan, H.; Huang, H.; Wang, C.; Sun, X. Identifying soft breakdown in all-solid-state lithium battery. *Joule* **2022**, *6* (8), 1770–1781.

(31) Menkin, S.; Fritzke, J. B.; Larner, R.; de Leeuw, C.; Choi, Y.; Gunnarsdóttir, A. B.; Grey, C. P. Insights into Soft Short Circuitbased Degradation of Lithium Metal Batteries. *Faraday Discuss.* **2024**, 248, 277–297.

(32) Kim, S. Y.; Li, J. Porous Mixed Ionic Electronic Conductor Interlayers for Solid-State Batteries. *Adv. Energy Mater.* **2021**, 2021, 1–15.

(33) Nicholas, M.; Old, C. Liquid metal embrittlement. J. Mater. Sci. **1979**, 14 (1), 1–18.

(34) Goodenough, J. B. NASICON I Structure and conductivity. Solid State Ionics 1983, 9, 793-794.

(35) Aono, H.; Sugimoto, E.; Sadaoka, Y.; Imanaka, N.; Adachi, G. y. Ionic Conductivity of the Lithium Titanium Phosphate (Li1 + X M X Ti2 - X (PO 4) 3, M = Al, Sc, Y, and La) Systems. *J. Electrochem. Soc.* **1989**, 136 (2), 590–591.

(36) Zhu, J.; Zhao, J.; Xiang, Y.; Lin, M.; Wang, H.; Zheng, B.; He, H.; Wu, Q.; Huang, J. Y.; Yang, Y. Chemomechanical Failure Mechanism Study in NASICON-Type Li1.3Al0.3Ti1.7(PO4)3 Solid-State Lithium Batteries. *Chem. Mater.* **2020**, *32* (12), 4998–5008.

(37) Chen, Y.; Wang, Z.; Li, X.; Yao, X.; Wang, C.; Li, Y.; Xue, W.; Yu, D.; Kim, S. Y.; Yang, F.; Kushima, A.; Zhang, G.; Huang, H.; Wu, N.; Mai, Y.-W.; Goodenough, J. B.; Li, J. Li metal deposition and stripping in a solid-state battery via Coble creep. *Nature* **2020**, *578* (7794), 251–255.

(38) He, Y.; Wang, C.; Zhang, R.; Zou, P.; Chen, Z.; Bak, S. M.; Trask, S. E.; Du, Y.; Lin, R.; Hu, E.; Xin, H. L. A self-healing plastic ceramic electrolyte by an aprotic dynamic polymer network for lithium metal batteries. *Nat. Commun.* **2024**, *15* (1), 10015.

(39) He, Y.; Wang, C.; Lin, R.; Hu, E.; Trask, S. E.; Li, J.; Xin, H. L. A Self-Healing, Flowable, Yet Solid Electrolyte Suppresses Li-Metal Morphological Instabilities. *Adv. Mater.* **2024**, *36* (49), 2406315.

(40) Liu, S.; Liu, W.; Ba, D.; Zhao, Y.; Ye, Y.; Li, Y.; Liu, J. Filler-Integrated Composite Polymer Electrolyte for Solid-State Lithium Batteries. *Adv. Mater.* **2023**, *35* (2), 2110423.