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A multimodal robotic platform for 
multi-element electrocatalyst discovery

Zhen Zhang1,9, Zhichu Ren1,9, Chia-Wei Hsu1,9, Weibin Chen2,9, Zhang-Wei Hong3, 
Chi-Feng Lee4, Aubrey Penn5, Hongbin Xu1, Daniel J. Zheng1, Shuhan Miao6, Yimeng Huang2, 
Yifan Gao2, Weiyin Chen2, Hugh Smith1, Yaoshen Niu1, Yunsheng Tian3, Ying-Rui Lu7, 
Yu-Cheng Shao7, Sipei Li2, Hsiao-Tsu Wang4, Iwnetim I. Abate1, Pulkit Agrawal3, 
Yang Shao-Horn1,8 & Ju Li1,2 ✉

One of the goals of ‘AI for Science’ is to discover customized materials through real-
world experiments. Pioneering advances have been made in computational 
predictions and the automation of materials synthesis1–7. Yet most materials 
experimentation remains constrained to using unimodal active learning approaches, 
relying on a single data stream. The potential of artificial intelligence to interpret 
experimental complexity remains largely untapped8,9. Here we present Copilot  
for Real-world Experimental Scientists (CRESt), a platform that integrates large 
multimodal models (incorporating chemical compositions, text embeddings and 
microstructural images) with knowledge-assisted Bayesian optimization and robotic 
automation. CRESt uses knowledge-embedding-based search space reduction and 
adaptive exploration–exploitation strategy to accelerate materials design, high-
throughput synthesis and characterization, and electrochemical performance 
optimization. CRESt enables monitoring with cameras and the generation of vision-
language-model-driven hypotheses to diagnose and correct experimental anomalies. 
Applied to electrochemical formate oxidation, CRESt explored more than 900 
catalyst chemistries and 3,500 electrochemical tests within 3 months, identifying  
a state-of-the-art catalyst in the octonary chemical space (Pd–Pt–Cu–Au–Ir–Ce–Nb–Cr) 
that exhibits a 9.3-fold improvement in cost-specific performance.

Design of experiments (DOE) for targeted materials discovery remains 
a fundamental challenge. Even subtle variations in chemistry or pro-
cessing could yield markedly different properties, and experimental 
optimization is often constrained by human and machine errors, cost 
and limited throughput10. Active learning (AL), in the form of Gauss-
ian process-based Bayesian optimization (GP-BO), provides a DOE 
framework by balancing exploration of uncertain parametric regions 
and exploitation of already-promising regions11. However, conven-
tional unimodal AL operates on a single stream of data of fixed dimen-
sions—for example, mapping the ratios of a particular set of quinary 
elements directly to alloy properties—ignoring the diverse knowledge 
sources routinely used by human experts, such as literature, previ-
ous experience, microstructural features, intuition and hypothesis  
making.

Here we introduce Copilot for Real-world Experimental Scientists 
(CRESt), a multimodal platform that integrates large multimodal mod-
els (LMMs) with robotic automation12. Chemical compositions are 
precisely controlled by robotic preparation, whereas large language 
models (LLMs) embed literature knowledge to guide design and explo-
rations in reduced-dimensional spaces. Beyond chemical descriptors, 

CRESt incorporates microstructural features from high-throughput 
scanning electron microscopy (SEM) imaging and computer vision 
analysis, enriching the surrogate model and accelerating optimiza-
tion. Dimensionality reduction using principal component analysis 
(PCA) preserves variance before AL is performed in the latent space, 
with candidate solutions mapped back to compositions by sequential 
least squares programming (SLSQP).

Real-world experiments also face reproducibility challenges arising 
from mechanical, electrical, thermal, magnetic and even organizational 
and cognitive factors that remain invisible to standard algorithms. 
To address this, CRESt enables voice and text interaction, as well as 
camera-based monitoring of experiments. Leveraging vision language 
models (VLMs), CRESt analyses irreproducibility issues and proposes 
corrective procedures, offering a breadth of expertise that surpasses 
any individual researcher.

We demonstrate CRESt for the electrochemical formate oxidation 
reaction. Within 3 months, the platform explored more than 900 chem-
istries and 3,500 electrochemical tests, leading to the discovery of an 
octonary multi-element catalyst (Pd–Pt–Cu–Au–Ir–Ce–Nb–Cr). This 
catalyst achieved a 9.3-fold improvement in cost-specific performance 
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(power density normalized by catalyst cost) over the pure Pd bench-
mark (Fig. 1 and Supplementary Table 1). Mechanistic investigations 
showed enhanced tolerance to CO and hydrogen poisoning, consistent 
with electronic tuning in rational catalyst design. Finally, in a direct 
formate fuel cell, the optimized recipe delivered record power density 
at just one-quarter the precious-metal loading of previous devices. 
Together, these results demonstrate the potential of LMM- and robotics- 
driven materials experimentation.

Copilot for Real-world Experimental Scientists
We introduce our LMM-assisted robotic platform named CRESt12 
(Extended Data Figs. 1 and 2 and Supplementary Videos 1 and 2). CRESt 
consists of three main components: a user interface; the LMM-powered 
back end; and a range of actuators. The user interface supports both 

voice and text interactions, connecting the LMM back end and allowing 
researchers to control the robotic platform without computer pro-
gramming experience. The actuators encompass various robotic equip-
ment, including sample preparation tools, such as the liquid-handling 
robot and the carbothermal shock system13; sample testing tools, such 
as an automated electrochemical workstation; characterization equip-
ment, including X-ray diffraction (XRD) and software-driven SEM; and 
auxiliary devices, such as automated peristaltic pumps and gas valves. 
To facilitate coordinated electrochemical research, we customized 
these actuators extensively through coding, three-dimensional (3D) 
printing, laser cutting, electrical modifications, and so on. All actua-
tors operate remotely through our customized Python codes. Apart 
from implementing instructions, CRESt actively converses with human 
scientists in natural languages, making observations and hypotheses14 
along the way.
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Fig. 1 | AL discovery of multi-element electrocatalysts for formate oxidation 
reactions. a, The trajectory plot of the AL optimization results for ternary 
electrocatalysts (Pd–Pt–Cu). The triangular axes indicate the composition 
ratios of the three metallic elements. b, Cross-validation plot for the ternary AL, 
with prediction versus experiments. c, PCA plot with contour lines for octonary 
alloys (Pd–Pt–Cu–Au–Ir–Ce–Nb–Cr). d, Cross-validation plot for the octonary AL, 

with prediction versus experiments. e, The complete AL campaign plot with the 
baseline AL model, with the performance value compared with the recipe 
number. Blue shading indicates the ternary optimization region. The yellow 
and red shadings indicate the octonary optimization. The colour bars in a and c 
indicate the maximum power density (mW cm )geo

−2  of a catalyst. Error bars in 
b,d,e represent the predictive uncertainty estimated by the GP-BO model.
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Knowledge-assisted AL
Conventional unimodal AL relies on a single data stream of small, fixed 
dimensions, overlooking the richness and complexity of real-world 
materials and experiments. Embedding methods have proven effective 
across a range of downstream tasks in integrating diverse information 
sources15,16, such as 3D molecular and crystal structures17, property 
databases18, lab logs and discussion notes, into unified vector represen-
tations. Here, modifying the standard Bayesian optimization method 
(Supplementary Note 1), we introduce a knowledge-assisted Bayesian 
optimization (KABO) method that leverages LMMs to bridge this gap 
(Supplementary Note 2). For the text-embedding-based dimension-
ality reduction, CRESt first searches the literature for comprehen-
sive descriptions of metallic elements relevant to formate oxidation 

reactions and then embeds these responses into alloy-specific vec-
tors using word embedding models19. For the image embedding, we 
developed a new workflow to perform high-throughput SEM imaging 
(Fig. 2a–c, Extended Data Fig. 2b and Supplementary Fig. 1) for our 
samples with different imaging resolutions (Extended Data Figs. 2b  
and 3). Taking advantage of the near-spherical morphology of our cata-
lyst particles in most cases, we elected to extract four morphological 
features (slope of the particle distribution function, bias of the particle 
distribution function, particle coverage ratio and the particle count 
per unit area) for the AL training (Supplementary Note 4). Next, KABO 
applies PCA to update the latent space, reducing dimensionality while 
explaining at least 80% of the variability in the data, thus effectively rep-
resenting both literature-derived knowledge and known experimental 
features. Using the knowledge gradient acquisition function20, KABO 
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Fig. 2 | Vision analysis modules of the CRESt platform. a–c, Computer vision 
analysis of microstructures by the automated SEM control. Pipeline of the 
multi-scale image feature acquisition and analysis (a) and visualization of 
microstructure analysis (b,c). The first column shows the original SEM images. 
The second column shows the predicted depth maps, highlighting the 
separation of foreground and background. The third column shows particles 
successfully identified by our algorithm, marked in red. The recipe shown is for 
Pd0.232Pt0.133Ir0.330Nb0.176Cr0.128. Scale bar, 8 μm (b); 1 μm (c). d–f, Experimental 

diagnosis by the VLM. An illustrative example of leveraging a VLM is shown in  
d to diagnose issues during the automated liquid pipetting process. Provided 
with a minimal experimental context by the human operator, the VLM 
performed reasoning, invoked tools such as movement detection to identify 
shifts in the carbon paper, and subsequently proposed relevant solutions. 
Diverse sources of experimental failure in the CRESt pipeline are shown in e. 
Overall success rate of debugging experimental issues with different VLMs are 
shown in f.
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optimizes in this latent space, mapping candidate solutions back to 
practical materials compositions by SLSQP.

We also address the challenge of adaptively balancing exploration 
and exploitation in Bayesian optimization, which conventionally 
depends on a manually tuned weight parameter (κ) in the acquisition 
function. Here, we incorporate a dynamic tuning mechanism inspired 
by the Bayesian optimization with policy improvement constraints 
(BOPIC) framework in reinforcement learning21, introducing a Lagrange 
multiplier (λ) that adaptively adjusts the trade-off between exploration 
and exploitation without manual intervention (Supplementary Note 3).

We used CRESt to discover catalysts for the electrochemical oxida-
tion of formate. We elected to optimize the maximum power density of 
a fuel cell device using the synthesized catalyst for formate oxidation, 
with oxygen reduction reaction at the counter electrode. To simplify, we 
assumed that the current and potential data from the three-electrode 
linear sweep voltammetry reflect the performance of the formate oxi-
dation half-cell and a constant overpotential for oxygen reduction 
reaction22 (Supplementary Note 1). These choices provided a relatively 
consistent ranking of the catalyst performance when compared with 
fuel cell experiments (Supplementary Figs. 2 and 3). We independently 
evaluated the performance of KABO, BOPIC and standard Bayesian 
optimization through experimentation (Extended Data Fig. 4). Notably, 
both KABO and BOPIC achieved continuous improvements by identi-
fying higher-performing recipes batch after batch, whereas standard 
Bayesian optimization required several batches before substantial gains 
were obtained. This delay could be detrimental in high-throughput set-
tings, in which limited optimization may cause premature termination 
of experiments. By pre-screening the design space, KABO provided 
substantial early-stage benefits and reached convergence first. BOPIC 
proved most effective in sampling high-performing recipes, thereby 
generating a richer candidate pool for downstream selection. We fur-
ther benchmarked the convergence efficiency of the three algorithms 
using a trained gradient boosting model to simulate the optimization 
process (Supplementary Fig. 4). It is shown that, on average, there is a 
36% (KABO) and 27% (BOPIC) performance improvement compared 
with Bayesian optimization under the same number of experimental 
trials. In the quest for high-performance samples (here, more than 
five times the performance of the benchmark), it only required 25% 
(KABO) and 47% (BOPIC) of the recipes. Notably, KABO algorithm shows 
equally good performance when using open-source LLMs under various 
conditions, demonstrating the generalizability of our method (Supple-
mentary Note 2 and Supplementary Fig. 5). For the image-embedding 
method, to further validate the use of the selected morphological fea-
tures for AL, we designed various experimental settings and ablation 
studies. We found that microstructural features, when optimized jointly 
with elemental ratios, led to faster convergence (Supplementary Fig. 6).

Owing to the complexity of real-world experiments with Bayesian 
optimization, we first attempted an optimization process in a ternary 
chemical space (Pd–Pt–Cu), a subset of the octonary chemical space 
(Pd–Pt–Cu–Au–Ir–Ce–Nb–Cr). As a result, in the ternary space, we 
identified an optimal catalyst composition with less than 60 experi-
mental recipes, from around 5 × 105 potential recipes (Fig. 1a and Sup-
plementary Note 5), with cross-validation confirming model accuracy 
against experiments (Fig. 1b). The optimized catalyst, Pd0.635Pt0.258Cu0.107, 
delivered around 3.5 times the power density of pure Pd with the same 
molarity of metallic loading, which is commonly used as the benchmark 
catalyst23. We then progressed to the octonary space, which introduces 
exponentially larger search space (around 2 × 1017 potential recipes). We 
achieved optimized performance, with PCA indicating a primary peak 
with smaller satellites (Fig. 1c; for further analysis of the physical impor-
tance of the two primary axes from PCA, see Supplementary Fig. 7), 
and cross-validation showing a good alignment with experimental 
data (Fig. 1d). To validate global optimization, we started a second trial 
of AL, but favoring exploration. The optimization again converged to  
a similar value, potentially confirming global optimization (Fig. 1e). 

The optimized catalyst, Pd0.487Pt0.185Cu0.018Ir0.037Ce0.106Nb0.168, showed 5.6 
times the power density, whereas the catalyst Pd0.381Pt0.080Cu0.009Au0.004 
Ir0.02Ce0.086Nb0.338Cr0.082 showed 9.3 times the power density normal-
ized by catalyst cost, compared with the pure Pd catalyst benchmark 
(Supplementary Table 1).

Experimental error diagnosis by VLM
At the early stages of our electrochemical experiments, poor repro-
ducibility emerged as the main obstacle and time sink. Although large 
datasets were generated, inconsistencies across trials rendered them 
unreliable for AL training (Supplementary Fig. 8a and Supplementary 
Data 1 and 2). Careful inspection showed numerous hidden errors—
mechanical, thermal, electrical, magnetic and even organizational and 
cognitive—that subtly altered conditions despite seemingly identical 
steps, initially requiring extensive human oversight to debug (Fig. 2d,e). 
The advent of VLMs provided a new approach: by coupling computer 
vision with broad domain knowledge, AI proposed sources of irre-
producibility and plausible corrective procedures (Supplementary 
Video 1). For example, the VLM can invoke tools such as coordinate 
alignment and movement detection to diagnose issues in which the 
pipette displaces the carbon paper, even from micrometre-scale height 
changes (Fig. 2d). In another case, a 1-mm deviation in a 1-cm sample 
geometry introduces an error of approximately 10%, substantially 
degrading AL performance. Although laser-cut wooden stages were 
designed to ensure uniformity, the VLM identified charring arte-
facts that caused dimensional variation, attributing them to surface 
non-uniformity in laser absorption (Supplementary Fig. 9). This insight 
prompted a switch to stainless steel stages, yielding improved consist-
ency, with minimal human guidance during the debugging process. To 
systematically evaluate this ability, we curated a troubleshooting log 
(‘Criminals in the AI City’) and constructed a question and answer set 
from recorded failures (Appendix in the Supplementary Information). 
Benchmarking several VLMs demonstrated promising accuracies—72% 
(OpenAI o3), 70% (Gemini-2.5 Pro), 68% (OpenAI o4-mini) and 48% 
(Llama-3.2-90B)—highlighting their potential as practical experimental 
assistants (Fig. 2f and Extended Data Fig. 5). After hypothesis making14, 
checking and correcting the root causes, reproducibility was markedly 
improved (Supplementary Fig. 8b).

Performance testing
We leveraged in situ electrochemical deposition for the purpose of 
high-throughput testing. The synthesized nanoparticles showed uni-
form distribution across the entire electrode surface and on single 
carbon fibres (Fig. 3a). The optimized catalyst demonstrated a homo-
geneous mix of elements (Fig. 3b) and a single face-centred cubic (FCC) 
phase in the XRD analysis (Fig. 4a and Supplementary Fig. 10a,b). In the 
cyclic voltammetry analysis for formate oxidation, a pronounced peak 
appears during the forward scan, followed by a marked decrease in the 
current density as oxidation continues (Fig. 3c). This decrease is due to 
the formation of metal oxides, such as PdOx, which are inactive for for-
mate oxidation24,25. A pronounced peak is observed in the reverse scan, 
which corresponds to a surge in formate oxidation activity when metal 
oxides are reduced back to their metallic form26. In three-electrode 
testing, the optimized catalysts demonstrated a much higher current 
density, despite having an equivalent molar metallic catalyst load-
ing, compared with the benchmark catalyst. The enhanced activity 
allowed for a reduction in the usage of precious metals. In the fuel cell 
tests, our catalyst (with 2.0 mg cm−2 of entire metal loading, and thus 
around 1.2 mg cm−2 of precious-metal loading) demonstrated a peak 
power density of 325 mW cm−2, higher than the benchmark Pd catalyst 
with various loadings (0.5–4.0 mg cm−2), either tested by us (Fig. 3d 
and Supplementary Fig. 11) or reported in the literature23,27–35 (Fig. 3e). 
Furthermore, we found that the difference of catalyst activity could 
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at least partly come from the distinct chemical nature of these cata-
lysts, as indicated by a consistent trend of voltage/current slope in 
the activation region in both the three-electrode and fuel cell testing 
(Supplementary Fig. 12).

Mechanistic analysis
For the octonary catalyst (HEA-8D), Pd and Pt serve as primary active 
elements for formate oxidation reactions23. Small amounts of Au and Ir, 
included in the optimized composition, have also been previously used 
in direct formate fuel cells26. The remaining elements (Cu, Ce, Nb and Cr) 
could alloy with the primary elements to provide tailored coordination 
environments and reduce catalyst cost13,36,37. The optimized catalyst,  

Pd0.381Pt0.080Cu0.009Au0.004Ir0.02Ce0.086Nb0.338Cr0.082, demonstrated a sin-
gle FCC phase in the XRD analysis with Rietveld refinement (Fig. 4a). 
The lattice parameters for Pd and HEA-8D were determined as 3.896 Å 
and 3.899 Å, respectively, indicating that here alloying does not lead 
to huge lattice deformation, potentially ensuring structural integrity 
(Supplementary Table 2).

To probe the oxidation states and local coordination environments 
of the optimized catalyst, in situ XAS was used. Owing to the complex-
ity of the composition, we elected to investigate the primary catalytic 
elements Pd and Pt. X-ray absorption near-edge structure analysis 
showed that both Pd and Pt retained their metallic states during for-
mate oxidation (Supplementary Fig. 13), an important factor given that 
both PdO and PtO2 exhibit negligible catalytic activity26. A slight shift 
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Fig. 3 | Morphology characterization and electrochemical testing of the 
optimized catalysts for the formate oxidation reaction. a, SEM images of 
the electrochemically prepared catalysts on the carbon substrate. Uniform 
catalyst distribution was observed on a single carbon fibre. Scale bar, 200 μm, 
1 μm and 40 nm (left to right). b, High-angle annular dark-field scanning 
transmission electron microscopy and EDS of the optimized catalysts. Scale 
bar, 10 nm. c, The cyclic voltammetry plot of selected chemistries in a three-
electrode setup under nitrogen sparging at ambient conditions. A low catalyst 
precursor solution loading of 10 μl cm−2 (corresponding to about 0.05 mg cm−2 
for pure Pd) was used for fast catalyst screening. The scan rate was 50 mV s−1.  

d, The polarization curve of selected chemistries tested in the direct formate 
fuel cells at 60 °C in an electrolyte of 2.0 M KOH and 1.0 M HCOOK. To enable 
comparison with literature, all samples had a total catalyst loading of 
2.0 mg cm−2. Details are in the Methods. e, Comparison plot of our optimized 
catalysts with results in the literature under similar testing conditions (typically 
at 60 °C in an electrolyte of 2.0 M KOH and 1.0 M HCOOK)23,27–35. The catalyst 
HEA-1, HEA-2, HEA-3 and Benchmark represent the composition of Pd0.487Pt0.185 
Cu0.018Ir0.037Ce0.106Nb0.168, Pd0.381Pt0.080Cu0.009Au0.004Ir0.02Ce0.086Nb0.338Cr0.082, Pd0.635 
Pt0.258Cu0.107 and Pd, respectively. HEA, high-entropy alloy.
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in the Pd absorption edge relative to Pd foil indicated local structural 
perturbations arising from alloying. Furthermore, extended X-ray 
absorption fine structure (EXAFS) spectra showed distinct Pd–Pd and 
Pd–Pt coordination peaks, indicative of strong electronic interactions 
associated with tuned catalytic activity (Fig. 4b,c). Quantitative fitting 
of the EXAFS data showed minor variations in bond lengths and coordi-
nation numbers, suggesting a robust atomic structure in HEA-8D during 
the operation (Supplementary Note 6, Supplementary Figs. 14 and 15 
and Supplementary Table 3).

A structural model was constructed based on refined XRD results, and 
high-throughput calculations were performed to screen and identify 
stable structures for subsequent simulations (Supplementary Fig. 16 
and Supplementary Note 7). Reaction pathways and free energy profiles 
for both direct and indirect pathways were calculated for multiple pos-
sible adsorption sites (Supplementary Figs. 17–27 and Supplementary 
Notes 8 and 9) and benchmarked against a conventional Pd catalyst.  

The octonary catalyst demonstrates strong resistance to hydrogen 
poisoning (direct pathway, Fig. 4d,g,h) and CO poisoning (indirect path-
way, Fig. 4e) relative to pure Pd. Notably, the Pd site in the HEA exhibits 
a substantially lower potential-determining step barrier for the indi-
rect pathway than that of pure Pd. To further explain the mechanism, 
projected density of states analyses were performed for the Pd sites in 
HEA-8D and pure Pd in DFT calculations (Supplementary Fig. 28). The 
d-band centres of Pd-1, Pd-2 and Pd-3 are all much lower than that of 
pure Pd, indicating weakened hydrogen binding due to reduced orbital 
overlap (Fig. 4f), which promotes desorption. Moreover, isotope study 
(with electrolytes containing HCOONa or DCOONa) and CO stripping 
experiments were performed to experimentally validate the tolerance 
of the catalyst to surface Hads and COads, respectively (Supplementary 
Figs. 29 and 30). These findings demonstrate that tailored alloying and 
atomic-level structural tuning effectively regulate surface electronic 
properties and reaction energetics.
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Fig. 4 | Mechanistic analysis of the optimized multi-element electrocatalysts. 
a, XRD patterns with Rietveld refinement for the octonary catalyst, showing a 
singular FCC solid solution phase. b,c, In situ Fourier transform EXAFS spectra of 
the octonary catalyst collected at the Pd edge: the open circuit voltage spectrum, 
the potential-applied spectrum (at –0.524 V compared with Hg/HgO in 1.0 M 
KOH), as compared with reference samples, including metallic Pd and PdO (b)  
and spectra collected at the Pt edge: the open circuit voltage spectrum, the 
potential-applied spectrum (at –0.524 V compared with Hg/HgO in 1.0 M KOH), as 
compared with reference samples, including metallic Pt and PtO2 (c). d,e, Reaction 
pathways computed by the DFT calculations. Benchmark Pd catalysts show a 

reaction barrier of 0.706 eV in the direct pathway (d) and 1.318 eV in the indirect 
pathway (e), whereas the high-entropy catalysts showed a reduced activation 
barrier of –0.005 eV in the direct pathway (d) and 0.487 eV in the indirect 
pathway (e). f, Schematic of the standard Pd particle and the octonary alloy 
particle, and the position of the d-band centre. g,h, Schematic of the model and 
key intermediates and adsorbates on the Pd (g) and the optimized octonary 
catalyst (h). From top to bottom: the pure Pd reaction model and the HEA-Pd-3 
reaction model. From left to right: the clean model surface, the model with 
HCOO adsorbed, the model with COO–H adsorbed and the model with CO2 
adsorbed. OCV, open circuit voltage.
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Conclusion
In summary, we developed CRESt, an LMM- and robotic-driven platform 
for experimental materials discovery. Our method incorporates previ-
ous literature and database knowledge, human and machine hypothesis 
making, composition tuning and process design, and microstructural 
features into the materials experimentation framework. We further 
leverage VLMs to analyse experimental processes to find and correct 
the root causes of anomalies. Mechanistic studies confirm that the 
optimized multi-element catalyst exhibits enhanced tolerance to 
hydrogen and CO poisoning, attributed to tailored atomic and elec-
tronic structures. This demonstrates that LMM-based approach could 
more effectively explore the rich and complex real-world materials and 
experiments, uniting automation with intelligence.
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Methods

Implementation of the CRESt platform
The system supports a unified workflow in which the user engages with 
our AI platform, CRESt, a large language-model-driven layer, through 
natural language prompts (Extended Data Fig. 2a). CRESt interprets 
these requests and orchestrates the execution of relevant routines, here 
collectively referred to as ‘end-effectors’. Each end-effector is accessed 
through standardized HTTP requests or Python calls. Some routines 
query local and remote databases (for example, Materials Project) for 
data retrieval, whereas others directly manipulate physical labora-
tory hardware, such as a liquid-handling robot (Opentrons), multi-axis 
robotic arm (xArm) or specialized lab components for pumping, gas 
flow control or illumination.

In the present implementation, many devices rely on PyAutoGUI 
for emulating keyboard and mouse interactions, enabling a univer-
sal approach to instrument control irrespective of the availability 
of hardware-specific application programming interfaces. This is 
expected to evolve as laboratory equipment increasingly offers dedi-
cated endpoints compatible with AI-ready protocols. Although not 
limited to these, commonly invoked routines involve automatic experi-
mental preparation (for example, pipetting liquids with Opentrons), 
advanced sample handling (xArm) or environment manipulation (pump 
and gas valves). Thus, the integration of CRESt with both digital data 
repositories and physical lab instrumentation consolidates a broad 
range of abilities within a single AI-governed function pool, reducing 
operator overhead while ensuring reproducibility and streamlined 
experimental workflows. Specific AL approaches are discussed in detail 
in Supplementary Notes 1–3.

The autonomous materials characterization framework integrates 
three GPT (generative pre-trained transformer)-based agents with a 
Phenom Pharos scanning electron microscope using Python (Extended 
Data Fig. 2b). At the top layer, CRESt serves as the user interface, captur-
ing natural language descriptions of desired imaging objectives. Rather 
than issuing low-level instructions, CRESt converts these requests into 
structured goals and forwards them to the SEM actuation agent, which 
is also powered by GPT. The scanning electron microscope actuation 
agent then interprets the goals and translates them into direct scan-
ning electron microscope commands (for example, zoom in, zoom 
out and stage navigation). Autofocus, brightness–contrast and image 
acquisition routines proceed automatically at each iteration. Following 
each round of data capture, the scanning electron microscope actua-
tion agent sends the newly obtained micrographs and metadata to the 
vision agent, built on GPT-4V. The vision agent assesses whether the 
micrographs fulfil the predefined objective and, if necessary, recom-
mends subsequent zoom or stage manoeuvres back to the scanning 
electron microscope actuation agent. A set-of-mark layer augments 
the raw images with reference markers before they are processed by 
GPT-4V, allowing explicit spatial referencing of specific features and 
ensuring more precise stage navigation. This cycle repeats until the 
vision agent confirms that the target electron micrograph has been 
successfully acquired, at which point the scanning electron microscope 
actuation agent returns the final image and summary report to CRESt. 
Detailed methods for the computer vision analysis on catalyst particles 
are provided in Supplementary Note 4.

Materials and reagents
Palladium(II) chloride (≥ 99.9%), chloroplatinic acid hexahydrate 
(ACS reagent, ≥37.50% Pt basis), platinum(IV) chloride ( ≥ 99.99% trace 
metals basis), copper(II) nitrate trihydrate (puriss. p.a., 99–104%), 
gold(III) chloride ( ≥ 99.99% trace metals basis), gold(III) chloride tri-
hydrate (≥ 99.9% trace metals basis), hydrogen hexachloroiridate(IV) 
hydrate (99.9% trace metals basis), cerium(III) nitrate hexahydrate 
(99% trace metals basis), niobium(V) chloride (≥ 99.9% trace met-
als basis), chromium(III) chloride (anhydrous, 99.99% trace metals 

basis), bismuth(III) chloride (99.99% trace metals basis), tin(II) chloride 
( ≥ 99.99% trace metals basis), yttrium(III) chloride (anhydrous, powder, 
99.99% trace metals basis), iron(III) chloride (anhydrous for synthesis), 
zinc(II) chloride (reagent grade, ≥ 98%), indium(III) chloride (99.999% 
trace metals basis), praseodymium(III) chloride (anhydrous, powder, 
99.99% trace metals basis), lanthanum(III) chloride heptahydrate (ACS 
reagent), ruthenium(III) chloride hydrate (≥ 99.9% trace metals basis), 
vanadium(III) chloride (99+), Tungsten(VI) chloride (≥99.9% trace met-
als basis), nickel(II) chloride hexahydrate (99.9% trace metals basis), 
cobalt(II) chloride hexahydrate (ACS reagent, 98%), ethyl alcohol  
(pure, 200 proof, anhydrous, ≥99.5%), hydrochloric acid (ACS reagent, 
37%), Nafion 115 ionomer solution (5 wt%), potassium formate (Rea-
gentPlus, 99%), potassium hydroxide (ACS reagent, ≥85%, pellets), 
oleylamine (technical grade, 70%), hexadecyltrimethylammonium 
chloride (CTAC, ≥98.0%), palladium(II) acetylacetonate (Pd(acac)2, 
Umicore, 99%), platinum(II) acetylacetonate (Pt(acac)2, ≥99.98% trace 
metals basis), copper(II) acetylacetonate (Cu(acac)2, ≥99.9% trace met-
als basis), iridium(III) acetylacetonate (Ir(acac)3, 97%), cerium(III) acety-
lacetonate hydrate (Ce(acac)3∙xH2O), chromium(III) acetylacetonate 
(Cr(acac)3, 97%), were purchased from Sigma Aldrich. Hexacarbonyl-
molybdenum (Mo(CO)6, 98%) was purchased from Thermo Scientific. 
Avcarb MGL 370 carbon paper was used as the loading substrate and gas 
diffusion layer in the fuel cell, and a commercial Pt cathode (2 mg cm−2) 
was used as the counterelectrode, and both were directly purchased 
from Fuel Cell Store. Sustainion X37-50 anion exchange membrane and 
Sustainion XA-9 ionomer were purchased from Dioxide Materials. Pal-
ladium black (high surface area) was purchased from Fuel Cell Store.

Solutions, each containing a single metallic salt, were prepared as 
precursors for the robotic system. Most metallic salts were dissolved 
in ethanol to prepare 50 mM solutions. Salts that are insoluble or with 
low solubility in pure ethanol (palladium chloride, bismuth chloride and 
niobium chloride) were dissolved in aqueous hydrochloric acid solution 
(37%) to final concentrations of 20 vol% HCl(aq) and 50 mM metallic 
element concentration in ethanol. Both AuCl3 and HAuCl4 would be 
slowly reduced to metallic gold in the presence of ethanol, even when 
the solution is acidified with 20 vol% HCl(aq). Thus, we dissolve the 
HAuCl4 in deionized water to prepare a 50 mM solution.

Liquid handling with Opentrons
The OT-2 liquid-handling robot was purchased from Opentrons. Two 
pipette channels were installed: P20 Single Channel Gen2 (20 μl tip) and 
P300 Single Channel Gen2 (300 μl tip). The liquid dispensing rate was 
optimized to be 0.378 μl s−1. A customized 3D-printed 36-slot sample 
stage was used to place carbon strips of size 1.0 cm × 1.3 cm. A 96-well 
plate (300 μl volume for each well) was used for mixing different solu-
tions. The mixing protocol was executed by the 300 μl tip with a fast 
mixing rate of 7.56 μl s−1 to ensure a turbulent, homogeneous mix.

In situ electrodeposition synthesis
For AL, because the goal was to select the best recipe, only 10 μl of 
the precursor mixture was dropcast by Opentrons on each sample 
(Avcarb MGL 370 strip) of size 1.0 cm × 1.3 cm, which was pre-cut by laser 
to ensure high size consistency. After dropcasting, the samples were 
naturally dried in air for at least 2 h for the ethanol solvent to evaporate. 
During the later robotic electrochemical treatment, the 0.3 cm fringe 
was clamped by the sample holder and did not take part in reactions. 
Each sample was first immersed in the electrolyte for 1 min, and then 
activated with cyclic voltammetry for 20 scans (50 mV s−1), and a linear 
voltammetry scan for once (10 mV s−1). The potential range was from 
–1.0 V to 0.2 V compared with Hg/HgO. The electrolyte was a mixture 
of 1.0 M potassium hydroxide (KOH) and 1.0 M potassium formate 
(HCOOK). The treatment occurred at ambient conditions. To process 
samples with a higher loading density, more activation cycles would be 
required. After this process, nanostructures would be generated in situ 
on the carbon fibre for further electrochemical testing.



Nanoparticle synthesis
This method was adapted from a previous report38. Specifically, 
CTAC (50 mg) and oleylamine (5 ml) were mixed and sonicated for 
about 15 min in a glass vial. After that, Pd(acac)2, Pt(acac)2, Cu(acac)2, 
HAuCl4, Ir(acac)3, NbCl5, Ce(acac)3∙xH2O, Cr(acac)3, glucose (60 mg) 
and Mo(CO)6 (33 mg) were added into the vial with designated ratios. 
The total amount of the metal precursor added was controlled to be 
0.125 mmol, and the exact mass of metal precursor added depends on 
the specific recipe. The mixture was then subjected to sonication for 
1 h. The vial was then heated to 220 °C and kept at this temperature for 
2 h under vigorous magnetic stirring. The black colloidal product was 
collected by centrifugation and washed at least twice with a mixture of 
ethanol and cyclohexane (1:1 in volume ratio). Then, the product was 
subjected to ultrasonication in 0.5 M acetic acid (in ethanol) for 2 h and 
then centrifuged to further remove organic impurities. The final pow-
der product was collected after washing with ethanol solution twice.

Electrochemical testing with the 7-axis robot
The 7-axis xArm robotic arm with gripper was purchased from UFactory. 
A customized Cu–Au connection plate was fabricated to enable the con-
nection of the electrode sample holder with the BioLogic Potentiostat 
(SP-150e). The electrolyte for the three-electrode setup test was a mix-
ture of 150 ml 1.0 M KOH and 1.0 M HCOOK. Hg/HgO electrode (filled 
with 1.0 M KOH) was used as the reference, and the Pt foil electrode of 
size 1.0 cm × 1.0 cm was used as the counter. Pure N2 gas (Airgas, Ultra 
High Purity) was continuously sparged into the electrolyte during tests. 
All the three-electrode tests occurred at ambient temperature. For each 
sample, a typical test time is around 20 min. The electrolyte would be 
changed, and the cell would be cleaned thoroughly every 10 samples. 
Alkaline solutions such as KOH may etch glass and introduce impurities 
into the electrolyte, but considering the relatively short amount of time 
for the testing, such an effect was considered minimal in this work.

Membrane electrode assembly fuel cell testing
The membrane electrode assembly flow electrolyser was purchased 
from the Fuel Cell Store. It has two compartments: an anolyte chamber 
with a titanium anode flow field and a catholyte chamber with 904-L 
stainless steel flow field. It also has a PID (proportional–integral– 
derivative) temperature controller and two customized heating pads 
attached to the two metallic blocks. Sustainion X37-50 was used as the 
anion exchange membrane for ion conduction across the inner circuit, 
and a commercial platinum black catalyst (2.0 mg cm−2) was used as the 
standard cathode for the oxygen reduction reactions. The commercial 
palladium black anode was fabricated by air-spraying 2.0 mg cm−2 of pal-
ladium black (with 30 wt% of Sustainion XA-9 ionomer) on the carbon 
paper. The formate anode size was 1.0 cm × 1.0 cm. To better compare 
the performance of the formate oxidation, we oversized our oxygen 
reduction cathode to be 1.4 cm × 1.6 cm. All the current and power densi-
ties were reported against the formate anode size (1.0 cm2), which was 
the research topic of this work. O2 gas (Airgas, Ultra High Purity) was 
constantly flowing in and out at 10 sccm through silicone tubes with a 
mass flow controller (Alicat) at ambient pressure. The anolyte (2.0 M 
KOH and 1.0 M HCOOK) was also flowing in and out at a constant flow 
rate of 20 ml min−1 with a peristaltic pump. The membrane electrode 
assembly block was heated to 60 °C, and the electrolyte was heated 
to 70 °C on a hot plate with a thermometer immersed in the solution. 
All the parameters (including flow rate and temperature) are the opti-
mized values with our setup for this work. For the polarization curve 
test, the linear sweep voltammetry method at a scan rate of 10 mV s−1 
was applied, similar to that in a previous literature report39. CO2 and 
carbonate are generated during the formate oxidation reaction, leading 
to a change in the local pH. But for the flow cell test, considering that a 
fresh solution was pumped in and out of the flow field constantly, this 
effect was insignificant.

We used both catalysts synthesized from the in situ electrochemical 
deposition method and the multi-element nanoparticle bulk synthesis 
method. The in situ electrochemical method provides a high-throughput 
way for sample preparation and performance optimization but suffers 
from low mass loading (typically below 0.2 mg cm−2). AL was conducted 
using catalysts synthesized by in situ electrochemical deposition for 
rapid screening. Promising or representative recipes were subsequently 
validated in fuel cell testing (Supplementary Fig. 3) using HEA powder 
prepared by conventional synthesis. For the device testing, we mixed 
the HEA nanoparticles with 30 wt% of Sustainion XA-9 ionomer and 
air-sprayed them onto the carbon paper, which improves the mass load-
ing (controlled to be 2.0 mg cm−2) of our catalyst, and thus the device 
performance. However, such a workflow remains mostly manual for us. 
The key point of this paper is to leverage the robotic platform to quickly 
screen catalyst recipes using the three-electrode testing method, which 
is a more widely used electrochemical testing method in the literature.

Structural characterization
XRD was conducted on the X-ray diffractometer (Aeris Research edi-
tion) using a copper target at a voltage of 40 kV and a current of 15 mA. 
Deionized water was used to rinse the remaining KOH and HCOOK off 
the electrode surface before XRD testing. SEM was performed with a 
Zeiss Merlin High-resolution scanning electron microscope at the MIT 
Materials Research Laboratory. Characterization with transmission 
electron microscopy (TEM), energy-dispersive spectroscopy (EDS) 
and scanning transmission electron microscopy were performed with 
the Thermo Fisher Scientific Themis Z G3 aberration-corrected scan-
ning transmission electron microscope with a resolution of <0.6 Å at 
MIT.nano. In situ XAS experiments were performed at the SPring-8 
BL12B2 Taiwan Beamline, using a custom-designed electrochemical 
cell tailored for in situ XAS measurements. Fluorescence signals were 
acquired using a Lytle detector. A custom-made in situ XAS cell was used 
for this experiment. The electrochemical setup used a three-electrode 
system, consisting of a working electrode, a counterelectrode (Pt wire) 
and a reference electrode (Hg/HgO), immersed in an electrolyte solu-
tion composed of 1.0 M KOH and 1.0 M HCOOK.

DFT calculations
First-principles calculations were performed using spin-polarized 
DFT40,41 implemented in the Vienna ab initio simulation package42 with 
the Perdew, Burke and Ernzerhof43 exchange-correlation potential 
within the generalized gradient approximation. The projector aug-
mented wave pseudo-potential44 was used to describe core electrons. 
For all optimization calculations, the cutoff energy was set at 450 eV and 
k-space was sampled by 3 × 3 × 1 for all models. The convergence criteria 
for energy and force were set at 10–4 eV and 0.02 eV Å–1, respectively. 
The van der Waals interaction has been considered using the Grimme 
dispersion scheme45.

For a certain reaction (A → B), the reaction free energy ΔG (including 
the DFT total energy, zero-point energy, vibrational enthalpy (thermal 
corrections) and vibrational entropy (at T = 298.15 K)) is defined as 
follows:

G G GΔ ≡ −B A

Further details on the modelling approaches and model selection 
criteria can be found in Supplementary Note 6, whereas the energy 
calculations and treatment methods for formate fuel cells are described 
in Supplementary Note 7.

Data availability
The data that support the findings of this study are included in the main 
text, and the source files are available from the corresponding author 
upon request. Source data are provided with this paper.
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Code availability
The code supporting the findings of this study is available at GitHub 
(https://github.com/zhang21mit/CRESt) and can be obtained from the 
corresponding author upon request.
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Extended Data Fig. 1 | The workflow of electrocatalyst discovery guided by 
CRESt. A large multimodal model interfaces with researchers through text and 
voice, monitors experiments via visual analysis, and autonomously controls 
robotic instruments for electrochemical materials research. The multimodal 
active learning (MAL) module integrates literature and human knowledge, 
microstructural images, and composition and process tuning, operating in a 
compressed latent space to guide candidate selection. Robotic subsystems 

carry out sample synthesis, testing, and characterization, while the vision 
module applies computer vision techniques such as segmentation and depth 
estimation to analyze microstructures. In parallel, a vision language model 
diagnoses experimental error modes to improve reproducibility. Experimental 
results are iteratively incorporated into the active learning loop, and optimized 
materials are validated through mechanistic studies and device-level testing.
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Extended Data Fig. 2 | The CRESt coding architecture. (a) Architecture of the 
CRESt main experimental platform. CRESt acts as a laboratory orchestrator, 
dynamically invoking routines from a shared function library that includes 
instrument-control systems and Python workflows to execute real-world 
experiments. (b) Architecture of the autonomous scanning electron microscope 
(SEM) module. A three-agent loop coordinates (i) a dialogue/orchestration agent 
at the CRESt layer that interfaces with users and sets goals, (ii) an SEM control 

agent that performs navigation, focusing and zooming, and (iii) a vision agent 
that analyzes images and recommends the next action. The loop iterates until 
the imaging objective is met, after which the SEM agent returns the final 
micrograph and an execution report to CRESt. A separate computer vision 
analysis module is also utilized to analyze SEM images for statistical features 
(Supplementary Note 4).



Extended Data Fig. 3 | Example of the particle number distribution function 
in the logarithm scale. The feature statistics were obtained from SEM images 
captured at varying field widths across our dataset. The effective radius is 
calculated by converting the measured particle area into an equivalent spherical 
radius. Our analysis shows that obtaining accurate feature statistics, especially 
those related to particle size, requires selecting a field of view that is appropriately 
scaled to the size of the particles being analyzed.
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Extended Data Fig. 4 | Comparison plot of the active learning campaign for 
the three algorithms. (a) Knowledge-Assisted Bayesian Optimization (KABO). 
(b) Bayesian Optimization with Policy Improvement Constraints (BOPIC).  
(c) Standard Bayesian Optimization using the Upper Confidence Bound (UCB) 
acquisition function. Both KABO and BOPIC achieved continuous improvements 
batch after batch, whereas standard BO required ~70 samples before making 
progress—a critical limitation when each experiment is costly. KABO, likely due 

to its integration of domain knowledge, showed the strongest alignment 
between predictions and experimental results, particularly in high-performance 
regions, and also identified the global optimum first (indicated by the orange 
vertical line). BOPIC proved especially effective in sampling high-performance 
candidates relative to the other two methods. Ultimately, all three algorithms 
converged to a similar high-performance value, consistent with the fixed ground 
truth in the chemistry space.



Extended Data Fig. 5 | Comparison of performance for the state-of-the-art 
vision language model (VLM) on a real-world materials science experimental 
question set. Considering the stochasticity of the vision language models, 

each question was tested for five times for each model to compute the average 
accuracy. Examples could be found in the Appendix of the Supplementary file.
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