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One of the goals of ‘Al for Science’ is to discover customized materials through real-
world experiments. Pioneering advances have been made in computational
predictions and the automation of materials synthesis'”. Yet most materials
experimentation remains constrained to using unimodal active learning approaches,
relying on asingle data stream. The potential of artificial intelligence to interpret
experimental complexity remains largely untapped®’. Here we present Copilot

for Real-world Experimental Scientists (CRESt), a platform that integrates large
multimodal models (incorporating chemical compositions, text embeddings and
microstructuralimages) with knowledge-assisted Bayesian optimization and robotic
automation. CRESt uses knowledge-embedding-based search space reduction and
adaptive exploration-exploitation strategy to accelerate materials design, high-
throughput synthesis and characterization, and electrochemical performance
optimization. CRESt enables monitoring with cameras and the generation of vision-
language-model-driven hypotheses to diagnose and correct experimental anomalies.
Applied to electrochemical formate oxidation, CRESt explored more than 900
catalyst chemistries and 3,500 electrochemical tests within 3 months, identifying
astate-of-the-art catalyst inthe octonary chemical space (Pd—Pt-Cu—Au-Ir-Ce-Nb-Cr)
that exhibits a 9.3-fold improvement in cost-specific performance.

Design of experiments (DOE) for targeted materials discovery remains
afundamental challenge. Even subtle variations in chemistry or pro-
cessing could yield markedly different properties, and experimental
optimizationis often constrained by human and machine errors, cost
and limited throughput’. Active learning (AL), in the form of Gauss-
ian process-based Bayesian optimization (GP-BO), provides a DOE
framework by balancing exploration of uncertain parametric regions
and exploitation of already-promising regions'. However, conven-
tional unimodal AL operates onasingle stream of data of fixed dimen-
sions—for example, mapping the ratios of a particular set of quinary
elementsdirectly to alloy properties—ignoring the diverse knowledge
sources routinely used by human experts, such as literature, previ-
ous experience, microstructural features, intuition and hypothesis
making.

Here we introduce Copilot for Real-world Experimental Scientists
(CRESt), amultimodal platform that integrates large multimodal mod-
els (LMMs) with robotic automation®. Chemical compositions are
precisely controlled by robotic preparation, whereas large language
models (LLMs) embed literature knowledge to guide design and explo-
rationsinreduced-dimensional spaces. Beyond chemical descriptors,

CRESt incorporates microstructural features from high-throughput
scanning electron microscopy (SEM) imaging and computer vision
analysis, enriching the surrogate model and accelerating optimiza-
tion. Dimensionality reduction using principal component analysis
(PCA) preserves variance before AL is performed in the latent space,
with candidate solutions mapped back to compositions by sequential
least squares programming (SLSQP).

Real-world experiments also face reproducibility challenges arising
frommechanical, electrical, thermal, magnetic and even organizational
and cognitive factors that remain invisible to standard algorithms.
To address this, CRESt enables voice and text interaction, as well as
camera-based monitoring of experiments. Leveraging vision language
models (VLMs), CRESt analyses irreproducibility issues and proposes
corrective procedures, offering a breadth of expertise that surpasses
any individual researcher.

We demonstrate CRESt for the electrochemical formate oxidation
reaction. Within3 months, the platform explored more than 900 chem-
istriesand 3,500 electrochemical tests, leading to the discovery of an
octonary multi-element catalyst (Pd-Pt-Cu-Au-Ir-Ce-Nb-Cr). This
catalystachieved a9.3-fold improvement in cost-specific performance
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Fig.1|ALdiscovery of multi-element electrocatalysts for formate oxidation
reactions. a, The trajectory plot of the AL optimization results for ternary
electrocatalysts (Pd-Pt-Cu). The triangular axes indicate the composition
ratios of the three metallicelements. b, Cross-validation plot for the ternary AL,
with prediction versus experiments. ¢, PCA plot with contour lines for octonary
alloys (Pd-Pt-Cu-Au-Ir-Ce-Nb-Cr).d, Cross-validation plot for the octonary AL,

(power density normalized by catalyst cost) over the pure Pd bench-
mark (Fig. 1and Supplementary Table 1). Mechanistic investigations
showed enhanced tolerance to CO and hydrogen poisoning, consistent
with electronic tuning in rational catalyst design. Finally, in a direct
formate fuel cell, the optimized recipe delivered record power density
atjust one-quarter the precious-metal loading of previous devices.
Together, theseresults demonstrate the potential of LMM- and robotics-
driven materials experimentation.

Copilot for Real-world Experimental Scientists

We introduce our LMM-assisted robotic platform named CRES
(Extended DataFigs.1and 2 and Supplementary Videos1and 2). CRESt
consists of three main components: auser interface; the LMM-powered
back end; and a range of actuators. The user interface supports both
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with prediction versus experiments. e, The complete AL campaign plot with the
baseline AL model, with the performance value compared with the recipe
number. Blue shadingindicates the ternary optimizationregion. The yellow
andred shadingsindicate the octonary optimization. The colourbarsinaandc
indicate the maximum power density (mW cméﬁo) ofacatalyst. Errorbarsin
b,d,erepresent the predictive uncertainty estimated by the GP-BO model.

voice and textinteractions, connectingthe LMMback end and allowing
researchers to control the robotic platform without computer pro-
gramming experience. The actuators encompass various robotic equip-
ment, including sample preparation tools, such as the liquid-handling
robotand the carbothermal shock system™; sample testing tools, such
asanautomated electrochemical workstation; characterization equip-
ment, including X-ray diffraction (XRD) and software-driven SEM; and
auxiliary devices, suchasautomated peristaltic pumps and gas valves.
To facilitate coordinated electrochemical research, we customized
these actuators extensively through coding, three-dimensional (3D)
printing, laser cutting, electrical modifications, and so on. All actua-
tors operate remotely through our customized Python codes. Apart
fromimplementinginstructions, CRESt actively converses withhuman
scientists in natural languages, making observations and hypotheses™
along the way.
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The second column shows the predicted depth maps, highlighting the
separation of foreground and background. The third column shows particles
successfully identified by our algorithm, marked inred. The recipe shownis for
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Knowledge-assisted AL

Conventional unimodal AL relies on a single data stream of small, fixed
dimensions, overlooking the richness and complexity of real-world
materials and experiments. Embedding methods have proven effective
across arange of downstreamtasks inintegrating diverse information
sources™', such as 3D molecular and crystal structures”, property
databases'®, lab logs and discussion notes, into unified vector represen-
tations. Here, modifying the standard Bayesian optimization method
(Supplementary Note 1), we introduce aknowledge-assisted Bayesian
optimization (KABO) method that leverages LMMs to bridge this gap
(Supplementary Note 2). For the text-embedding-based dimension-
ality reduction, CRESt first searches the literature for comprehen-
sive descriptions of metallic elements relevant to formate oxidation
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diagnosis by the VLM. Anillustrative example of leveraging a VLM is shownin
dtodiagnoseissues during the automated liquid pipetting process. Provided
with aminimal experimental context by the human operator, the VLM
performed reasoning, invoked tools such as movement detection to identify
shiftsinthe carbon paper, and subsequently proposed relevant solutions.
Diverse sources of experimental failure in the CRESt pipeline areshownine.
Overallsuccessrate of debugging experimental issues with different VLMs are
showninf.

reactions and then embeds these responses into alloy-specific vec-
tors using word embedding models®. For the image embedding, we
developed a new workflow to perform high-throughput SEM imaging
(Fig. 2a-c, Extended Data Fig. 2b and Supplementary Fig. 1) for our
samples with different imaging resolutions (Extended Data Figs. 2b
and 3). Taking advantage of the near-spherical morphology of our cata-
lyst particles in most cases, we elected to extract four morphological
features (slope of the particle distribution function, bias of the particle
distribution function, particle coverage ratio and the particle count
per unitarea) for the AL training (Supplementary Note 4). Next, KABO
appliesPCAtoupdatethelatent space, reducing dimensionality while
explaining atleast 80% of the variability in the data, thus effectively rep-
resenting both literature-derived knowledge and known experimental
features. Using the knowledge gradient acquisition function®, KABO
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optimizes in this latent space, mapping candidate solutions back to
practical materials compositions by SLSQP.

We also address the challenge of adaptively balancing exploration
and exploitation in Bayesian optimization, which conventionally
depends on a manually tuned weight parameter (k) in the acquisition
function. Here, we incorporate adynamic tuning mechanisminspired
by the Bayesian optimization with policy improvement constraints
(BOPIC) framework inreinforcement learning?, introducing a Lagrange
multiplier (1) that adaptively adjusts the trade-off between exploration
and exploitation without manual intervention (Supplementary Note 3).

We used CRESt to discover catalysts for the electrochemical oxida-
tion of formate. We elected to optimize the maximum power density of
afuel cell device using the synthesized catalyst for formate oxidation,
withoxygenreductionreaction at the counter electrode. To simplify, we
assumed that the current and potential data from the three-electrode
linear sweep voltammetry reflect the performance of the formate oxi-
dation half-cell and a constant overpotential for oxygen reduction
reaction® (Supplementary Note1). These choices provided a relatively
consistent ranking of the catalyst performance when compared with
fuel cell experiments (Supplementary Figs. 2and 3). We independently
evaluated the performance of KABO, BOPIC and standard Bayesian
optimization through experimentation (Extended Data Fig.4). Notably,
both KABO and BOPIC achieved continuousimprovements by identi-
fying higher-performing recipes batch after batch, whereas standard
Bayesian optimizationrequired several batches before substantial gains
were obtained. This delay could be detrimental in high-throughput set-
tings, in which limited optimization may cause premature termination
of experiments. By pre-screening the design space, KABO provided
substantial early-stage benefits and reached convergence first. BOPIC
proved most effective in sampling high-performing recipes, thereby
generating aricher candidate pool for downstream selection. We fur-
ther benchmarked the convergence efficiency of the three algorithms
using atrained gradient boosting model to simulate the optimization
process (Supplementary Fig. 4). Itis shown that, on average, thereisa
36% (KABO) and 27% (BOPIC) performance improvement compared
with Bayesian optimization under the same number of experimental
trials. In the quest for high-performance samples (here, more than
five times the performance of the benchmark), it only required 25%
(KABO) and 47% (BOPIC) of the recipes. Notably, KABO algorithm shows
equally good performance when using open-source LLMs under various
conditions, demonstrating the generalizability of our method (Supple-
mentary Note 2 and Supplementary Fig. 5). For theimage-embedding
method, to further validate the use of the selected morphological fea-
tures for AL, we designed various experimental settings and ablation
studies. We found that microstructural features, when optimized jointly
withelementalratios, led to faster convergence (Supplementary Fig. 6).

Owing to the complexity of real-world experiments with Bayesian
optimization, we first attempted an optimization processinaternary
chemical space (Pd-Pt-Cu), a subset of the octonary chemical space
(Pd-Pt-Cu-Au-Ir-Ce-Nb-Cr). As aresult, in the ternary space, we
identified an optimal catalyst composition with less than 60 experi-
mental recipes, from around 5 x 10° potential recipes (Fig. 1aand Sup-
plementary Note 5), with cross-validation confirming model accuracy
against experiments (Fig. 1b). The optimized catalyst, Pd ¢;sPt25sClUg 107,
delivered around 3.5 times the power density of pure Pd with the same
molarity of metallicloading, whichis commonly used as the benchmark
catalyst®. We then progressed to the octonary space, which introduces
exponentially larger search space (around 2 x 10¥ potential recipes). We
achieved optimized performance, with PCA indicating a primary peak
with smaller satellites (Fig. 1c; for further analysis of the physical impor-
tance of the two primary axes from PCA, see Supplementary Fig. 7),
and cross-validation showing a good alignment with experimental
data (Fig.1d). To validate global optimization, we started asecond trial
of AL, but favoring exploration. The optimization again converged to
asimilar value, potentially confirming global optimization (Fig. 1e).

4 | Nature | www.nature.com

The optimized catalyst, Pdg 45,Pt155CU0 01517 0.037C€0.106NDo 165, Showed 5.6
times the power density, whereas the catalyst Pd, ;5,Pt, 050CUg 009AU0,004
Ir6,0,C€0.0s6ND0 335Cr 0,052 Showed 9.3 times the power density normal-
ized by catalyst cost, compared with the pure Pd catalyst benchmark
(Supplementary Table 1).

Experimental error diagnosis by VLM

At the early stages of our electrochemical experiments, poor repro-
ducibility emerged as the main obstacle and time sink. Although large
datasets were generated, inconsistencies across trials rendered them
unreliable for AL training (Supplementary Fig. 8aand Supplementary
Dataland 2). Careful inspection showed numerous hidden errors—
mechanical, thermal, electrical, magnetic and even organizational and
cognitive—that subtly altered conditions despite seemingly identical
steps, initially requiring extensive human oversight to debug (Fig. 2d,e).
The advent of VLMs provided a new approach: by coupling computer
vision with broad domain knowledge, Al proposed sources of irre-
producibility and plausible corrective procedures (Supplementary
Video 1). For example, the VLM can invoke tools such as coordinate
alignment and movement detection to diagnose issues in which the
pipette displaces the carbon paper, even from micrometre-scale height
changes (Fig. 2d). In another case, a1-mm deviation in a 1-cm sample
geometry introduces an error of approximately 10%, substantially
degrading AL performance. Although laser-cut wooden stages were
designed to ensure uniformity, the VLM identified charring arte-
facts that caused dimensional variation, attributing them to surface
non-uniformity inlaser absorption (Supplementary Fig. 9). This insight
prompted aswitch to stainless steel stages, yielding improved consist-
ency, withminimalhuman guidance during the debugging process. To
systematically evaluate this ability, we curated a troubleshooting log
(‘Criminals in the Al City’) and constructed a question and answer set
fromrecorded failures (Appendix inthe Supplementary Information).
Benchmarking several VLMs demonstrated promising accuracies—72%
(OpenAl 03), 70% (Gemini-2.5 Pro), 68% (OpenAl 04-mini) and 48%
(Llama-3.2-90B)—highlighting their potential as practical experimental
assistants (Fig. 2fand Extended Data Fig. 5). After hypothesis making™,
checkingand correcting the root causes, reproducibility was markedly
improved (Supplementary Fig. 8b).

Performance testing

We leveraged in situ electrochemical deposition for the purpose of
high-throughput testing. The synthesized nanoparticles showed uni-
form distribution across the entire electrode surface and on single
carbonfibres (Fig.3a). The optimized catalyst demonstrated ahomo-
geneous mix of elements (Fig. 3b) and asingle face-centred cubic (FCC)
phaseinthe XRD analysis (Fig. 4a and Supplementary Fig.10a,b). In the
cyclic voltammetry analysis for formate oxidation, a pronounced peak
appearsduringthe forward scan, followed by amarked decreaseinthe
current density as oxidation continues (Fig. 3c). This decreaseis due to
the formation of metal oxides, such as PdO,, which are inactive for for-
mate oxidation®*?. A pronounced peak is observed in the reversescan,
which corresponds to asurge in formate oxidation activity when metal
oxides are reduced back to their metallic form?. In three-electrode
testing, the optimized catalysts demonstrated amuch higher current
density, despite having an equivalent molar metallic catalyst load-
ing, compared with the benchmark catalyst. The enhanced activity
allowed for areductionin the usage of precious metals. In the fuel cell
tests, our catalyst (with 2.0 mg cm™ of entire metal loading, and thus
around 1.2 mg cm™ of precious-metal loading) demonstrated a peak
power density of 325 mW cm™, higher than the benchmark Pd catalyst
with various loadings (0.5-4.0 mg cm™), either tested by us (Fig. 3d
and Supplementary Fig. 11) or reported in the literature®** % (Fig. 3e).
Furthermore, we found that the difference of catalyst activity could
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Fig.3|Morphology characterization and electrochemical testing of the
optimized catalysts for the formate oxidation reaction. a, SEM images of
theelectrochemically prepared catalysts on the carbon substrate. Uniform
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electrode setup under nitrogen sparging atambient conditions. A low catalyst
precursor solution loading of 10 pl cm™ (corresponding to about 0.05 mg cm™
for pure Pd) was used for fast catalyst screening. The scan rate was 50 mVs™.

at least partly come from the distinct chemical nature of these cata-
lysts, as indicated by a consistent trend of voltage/current slope in
the activation region in both the three-electrode and fuel cell testing
(Supplementary Fig.12).

Mechanistic analysis

For the octonary catalyst (HEA-8D), Pd and Pt serve as primary active
elements for formate oxidation reactions®. Smallamounts of Auand r,
includedinthe optimized composition, have alsobeen previously used
indirect formate fuel cells?. The remaining elements (Cu, Ce, Nband Cr)
couldalloy with the primary elements to provide tailored coordination
environments and reduce catalyst cost®***, The optimized catalyst,

: 2
Current density (A cm, )

" . 2
Precious metal loading (mg cm,.)

d, The polarization curve of selected chemistries tested in the direct formate
fuelcellsat60°Cinanelectrolyte of 2.0 MKOHand 1.0 MHCOOK. Toenable
comparison with literature, all samples had a total catalyst loading of

2.0 mg cm2 Details areinthe Methods. e, Comparison plot of our optimized
catalysts withresultsin theliterature under similar testing conditions (typically
at60°Cinanelectrolyte of 2.0 MKOHand 1.0 MHCOOK)*?% The catalyst
HEA-1,HEA-2,HEA-3 and Benchmark represent the composition of Pd 45,Ptg 155
Cuo 01517'0.037C€0.106NDo 168, Pdo.381PL0.080CU0.009AU0.0041T0.02C€0.086ND0.338C 0,052, Pdo 635
Pt,,55CUg10;,and Pd, respectively. HEA, high-entropy alloy.

Pd36:Pt0.050CU0.000AUg 00417 0.02C€0.086NDo 335CT 0,052, demonstrated asin-
gle FCC phase in the XRD analysis with Rietveld refinement (Fig. 4a).
The lattice parameters for Pd and HEA-8D were determined as 3.896 A
and 3.899 A, respectively, indicating that here alloying does not lead
to huge lattice deformation, potentially ensuring structural integrity
(Supplementary Table 2).

To probe the oxidation states and local coordination environments
ofthe optimized catalyst, in situ XAS was used. Owing to the complex-
ity of the composition, we elected toinvestigate the primary catalytic
elements Pd and Pt. X-ray absorption near-edge structure analysis
showed that both Pd and Pt retained their metallic states during for-
mate oxidation (Supplementary Fig.13), animportant factor given that
both PdO and PtO, exhibit negligible catalytic activity?. A slight shift
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Fig.4|Mechanistic analysis of the optimized multi-elementelectrocatalysts.
a, XRD patternswith Rietveld refinement for the octonary catalyst,showinga
singular FCCsolid solution phase. b,c, Insitu Fourier transform EXAFS spectra of
the octonary catalyst collected at the Pd edge: the open circuit voltage spectrum,
the potential-applied spectrum (at -0.524 Vcompared with Hg/HgO in1.0 M
KOH), as compared with reference samples, including metallic Pd and PdO (b)
andspectracollected at the Pt edge: the open circuit voltage spectrum, the
potential-applied spectrum (at -0.524 V compared with Hg/HgOin1.0 MKOH), as
compared withreference samples, including metallic Ptand PtO, (c).d,e, Reaction
pathways computed by the DFT calculations. Benchmark Pd catalysts show a

inthe Pd absorption edge relative to Pd foil indicated local structural
perturbations arising from alloying. Furthermore, extended X-ray
absorption fine structure (EXAFS) spectrashowed distinct Pd-Pd and
Pd-Ptcoordination peaks, indicative of strong electronic interactions
associated with tuned catalytic activity (Fig. 4b,c). Quantitative fitting
ofthe EXAFS data showed minor variationsinbond lengths and coordi-
nation numbers, suggesting a robust atomic structure in HEA-8D during
the operation (Supplementary Note 6, Supplementary Figs. 14 and 15
and Supplementary Table 3).

Astructuralmodel was constructed based on refined XRD results, and
high-throughput calculations were performed to screen and identify
stable structures for subsequent simulations (Supplementary Fig. 16
and Supplementary Note 7). Reaction pathways and free energy profiles
forboth directandindirect pathways were calculated for multiple pos-
sible adsorptionsites (Supplementary Figs.17-27 and Supplementary
Notes 8 and 9) and benchmarked against a conventional Pd catalyst.

6 | Nature | www.nature.com

e@QQ0Qo0o0

reactionbarrier of 0.706 eVinthedirect pathway (d) and1.318 eVin theindirect
pathway (e), whereas the high-entropy catalysts showed areduced activation
barrier of -0.005 eVinthe direct pathway (d) and 0.487 eVin theindirect
pathway (e). f, Schematic of the standard Pd particle and the octonary alloy
particle, and the position of the d-band centre. g,h, Schematic of the model and
key intermediates and adsorbates on the Pd (g) and the optimized octonary
catalyst (h). From top tobottom: the pure Pd reaction model and the HEA-Pd-3
reaction model. Fromleft toright: the clean model surface, the model with
HCOO adsorbed, the model with COO-H adsorbed and the model with CO,
adsorbed. OCV, opencircuit voltage.

The octonary catalyst demonstrates strong resistance to hydrogen
poisoning (direct pathway, Fig.4d,g,h) and CO poisoning (indirect path-
way, Fig. 4e) relative to pure Pd. Notably, the Pd site in the HEA exhibits
asubstantially lower potential-determining step barrier for the indi-
rect pathway than that of pure Pd. To further explain the mechanism,
projected density of states analyses were performed for the Pd sitesin
HEA-8D and pure Pd in DFT calculations (Supplementary Fig. 28). The
d-band centres of Pd-1, Pd-2 and Pd-3 are all much lower than that of
pure Pd, indicating weakened hydrogen binding due toreduced orbital
overlap (Fig. 4f), which promotes desorption. Moreover, isotope study
(withelectrolytes containing HCOONa or DCOONa) and CO stripping
experiments were performed to experimentally validate the tolerance
of the catalyst to surface H,4, and CO,4,, respectively (Supplementary
Figs.29 and 30). These findings demonstrate that tailored alloying and
atomic-level structural tuning effectively regulate surface electronic
properties and reaction energetics.



Conclusion

Insummary, we developed CRESt, an LMM- and robotic-driven platform
for experimental materials discovery. Our method incorporates previ-
ous literature and database knowledge, human and machine hypothesis
making, composition tuning and process design, and microstructural
features into the materials experimentation framework. We further
leverage VLMs to analyse experimental processes to find and correct
the root causes of anomalies. Mechanistic studies confirm that the
optimized multi-element catalyst exhibits enhanced tolerance to
hydrogen and CO poisoning, attributed to tailored atomic and elec-
tronic structures. This demonstrates that LMM-based approach could
more effectively explore the rich and complex real-world materials and
experiments, uniting automation with intelligence.

Online content

Anymethods, additional references, Nature Portfolio reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions
and competinginterests; and statements of dataand code availability
are available at https://doi.org/10.1038/s41586-025-09640-5.

1. Szymanski, N. J. et al. An autonomous laboratory for the accelerated synthesis of novel
materials. Nature 624, 86-91(2023).

2. Dai, T. et al. Autonomous mobile robots for exploratory synthetic chemistry. Nature 635,
890-897 (2024).

3. Joung, J. F, et al. Electron flow matching for generative reaction mechanism prediction.
Nature 645, 115-123 (2025).

4. Koscher, B. A. et al. Autonomous, multiproperty-driven molecular discovery: From
predictions to measurements and back. Science 382, eadi1407 (2023).

5. Boiko, D. A., MacKnight, R., Kline, B. & Gomes, G. Autonomous chemical research with
large language models. Nature 624, 570-578 (2023).

6. Coley, C. W. etal. A robotic platform for flow synthesis of organic compounds informed
by Al planning. Science 365, eaax1566 (2019).

7. Tom, G. et al. Self-driving laboratories for chemistry and materials science. Chem. Rev.
124, 9633-9732 (2024).

8. Ren,Z.,Ren,Z,Zhang,Z., Buonassisi, T. &Li, J. Autonomous experiments using active
learning and Al. Nat. Rev. Mater. 8, 563-564 (2023).

9. Noorden, R. V. &Perkel, J. M. Al and science: what 1,600 researchers think. Nature 621,
672-675 (2023).

10. Attia, P. M. et al. Closed-loop optimization of fast-charging protocols for batteries with
machine learning. Nature 578, 397-402 (2020).

1. Balandat, M. et al. BoTorch: a framework for efficient Monte-Carlo Bayesian optimization.
NeurlPS https://doi.org/10.48550/arxiv.1910.06403 (2020).

12. Ren, Z.,Zhang, Z., Tian, Y. & Li, J. CRESt - copilot for real-world experimental scientist.
Preprint at https://doi.org/10.26434/chemrxiv-2023-tnz1x-v4 (2023).

13.  Yao, Y. etal. Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science
359, 1489-1494 (2018).

14. Park, Y. J. et al. Can ChatGPT be used to generate scientific hypotheses? J. Materiom. 10,
578-584 (2024).

15.  Nussbaum, Z., Morris, J. X., Duderstadt, B. & Mulyar, A. nomic embed: training a reproducible
long context text embedder. Preprint at https://doi.org/10.48550/arxiv.2402.01613 (2024).

16. Ramos, M. C., Michtavy, S. S., Porosoff, M. D. & White, A. D. Bayesian optimization of catalysis
with in-context learning. Preprint at https://doi.org/10.48550/arxiv.2304.05341(2025).

17.  Park, Y.J., Kumaran, M., Hsu, C.-W., Olivetti, E. &Li, J. Contrastive learning of English
language and crystal graphs for multimodal representation of materials knowledge.
Preprint at https://doi.org/10.48550/arxiv.2502.16451 (2025).

18. Park, Y.J., Jerng, S. E., Yoon, S. & Li, J. 1.5 million materials narratives generated by
chatbots. Sci. Data 11, 1060 (2024).

19. Neelakantan, A. et al. Text and code embeddings by contrastive pre-training. Preprint at
https://doi.org/10.48550/arxiv.2201.10005 (2022).

20. Frazier, P. 1., Powell, W. B. & Dayanik, S. A knowledge-gradient policy for sequential
information collection. SIAM J. Control Optim. 47, 2410-2439 (2008).

21.  Chen, E., Hong, Z.-W., Pajarinen, J. & Agrawal, P. Redeeming intrinsic rewards via
constrained optimization. NeurlPS https://doi.org/10.48550/arxiv.2211.07627 (2022).

22.  Xu, H. et al. An actor-critic algorithm to maximize the power delivered from direct
methanol fuel cells. Nat. Energy 10, 951-961(2025).

23. An,L.&Chen, R. Direct formate fuel cells: a review. J. Power Sources 320, 127-139 (2016).

24. Choun, M., Hong, S. & Lee, J. Adsorbed hydrogen as a site-occupying species in the
electrocatalytic oxidation of formate on Pd/C in alkaline medium. J. Electrochem. Soc.
165, J3266-J3270 (2018).

25. Wang, Q. et al. Transition from core-shell to janus segregation pattern in AgPd nanoalloy
by Ni doping for the formate oxidation. Appl. Catal. B Environ. 270, 118861 (2020).

26. Folkman, S. J., Gonzalez-Cobos, J., Giancola, S., Sanchez-Molina, |. & Galan-Mascards,

J. R. Benchmarking catalysts for formic acid/formate electrooxidation. Molecules 26,
4756 (2021).

27. Tran, K., Nguyen, T. Q., Bartrom, A. M., Sadiki, A. & Haan, J. L. A fuel-flexible alkaline direct
liquid fuel cell. Fuel Cells 14, 834-841(2014).

28. Bartrom, A. M. & Haan, J. L. The direct formate fuel cell with an alkaline anion exchange
membrane. J. Power Sources 214, 68-74 (2012).

29. Bartrom, A. M. et al. Optimization of an anode fabrication method for the alkaline direct
formate fuel cell. J. Power Sources 229, 234-238 (2013).

30. Lan, L. etal. Membrane-less direct formate fuel cell using an Fe-N-doped bamboo
internode as the binder-free and monolithic air-breathing cathode. ACS Appl. Mater. Inter.
12, 27095-27103 (2020).

31. Bartrom, A. M., Ognibene, G., Ta, J., Tran, J. & Haan, J. L. Catalysts for alkaline direct
ethanol and direct formate fuel cells. Electrochem. Soc. Trans.50, 1913-1918 (2013).

32. Zeng, L., Tang, Z.K. & Zhao, T. S. A high-performance alkaline exchange membrane direct
formate fuel cell. Appl. Energy 115, 405-410 (2014).

33. Li, Y., Feng, Y., Sun, X. & He, Y. A sodium-ion-conducting direct formate fuel cell:
generating electricity and producing base. Angew. Chem. Int. Ed. 56, 5734-5737
(2017).

34. Castello, C. et al. Direct formate anion exchange membrane fuel cells with a PdAu
bimetallic nanoparticle anode electrocatalyst obtained by metal vapor synthesis. Energy
Adv. 3,2520-2529 (2024).

35. Sun, X, Li, Y., An, L. & Lv, X. Comparative performance evaluation of self-basifying direct
formate fuel cells. J. Electrochem. Soc. 166, F768-F773 (2019).

36. Abdelhafiz, A., Wang, B., Harutyunyan, A. R. & Li, J. Carbothermal shock synthesis of high
entropy oxide catalysts: dynamic structural and chemical reconstruction boosting the
catalytic activity and stability toward oxygen evolution reaction. Adv. Energy Mater. 12,
2200742 (2022).

37. Tajuddin, A. A. H. et al. Corrosion-resistant and high-entropic non-noble-metal electrodes
for oxygen evolution in acidic media. Adv. Mater. 35, €2207466 (2023).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this
article under a publishing agreement with the author(s) or other rightsholder(s); author
self-archiving of the accepted manuscript version of this article is solely governed by the
terms of such publishing agreement and applicable law.

© The Author(s), under exclusive licence to Springer Nature Limited 2025

Nature | www.nature.com | 7


https://doi.org/10.1038/s41586-025-09640-5
https://doi.org/10.48550/arxiv.1910.06403
https://doi.org/10.26434/chemrxiv-2023-tnz1x-v4
https://doi.org/10.48550/arxiv.2402.01613
https://doi.org/10.48550/arxiv.2304.05341
https://doi.org/10.48550/arxiv.2502.16451
https://doi.org/10.48550/arxiv.2201.10005
https://doi.org/10.48550/arxiv.2211.07627

Article

Methods

Implementation of the CRESt platform

The system supports a unified workflow in which the user engages with
our Al platform, CRESt, alarge language-model-driven layer, through
natural language prompts (Extended Data Fig. 2a). CRESt interprets
these requests and orchestrates the execution of relevant routines, here
collectively referred to as ‘end-effectors’. Each end-effectorisaccessed
through standardized HTTP requests or Python calls. Some routines
query local and remote databases (for example, Materials Project) for
data retrieval, whereas others directly manipulate physical labora-
tory hardware, such as aliquid-handling robot (Opentrons), multi-axis
robotic arm (xArm) or specialized lab components for pumping, gas
flow control or illumination.

In the present implementation, many devices rely on PyAutoGUI
for emulating keyboard and mouse interactions, enabling a univer-
sal approach to instrument control irrespective of the availability
of hardware-specific application programming interfaces. This is
expected to evolve as laboratory equipment increasingly offers dedi-
cated endpoints compatible with Al-ready protocols. Although not
limited to these, commonly invoked routines involve automatic experi-
mental preparation (for example, pipetting liquids with Opentrons),
advanced sample handling (xArm) or environment manipulation (pump
and gas valves). Thus, the integration of CRESt with both digital data
repositories and physical lab instrumentation consolidates a broad
range of abilities within a single Al-governed function pool, reducing
operator overhead while ensuring reproducibility and streamlined
experimental workflows. Specific AL approaches are discussed in detail
in Supplementary Notes 1-3.

The autonomous materials characterization framework integrates
three GPT (generative pre-trained transformer)-based agents with a
Phenom Pharos scanning electron microscope using Python (Extended
DataFig.2b). Atthetop layer, CRESt serves as the user interface, captur-
ingnatural language descriptions of desired imaging objectives. Rather
thanissuing low-levelinstructions, CRESt converts these requests into
structured goals and forwards them to the SEM actuation agent, which
is also powered by GPT. The scanning electron microscope actuation
agent theninterprets the goals and translates theminto direct scan-
ning electron microscope commands (for example, zoom in, zoom
outand stage navigation). Autofocus, brightness-contrast and image
acquisition routines proceed automatically at each iteration. Following
each round of data capture, the scanning electron microscope actua-
tionagent sends the newly obtained micrographs and metadatatothe
vision agent, built on GPT-4V. The vision agent assesses whether the
micrographs fulfil the predefined objective and, if necessary, recom-
mends subsequent zoom or stage manoeuvres back to the scanning
electron microscope actuation agent. A set-of-mark layer augments
the raw images with reference markers before they are processed by
GPT-4V, allowing explicit spatial referencing of specific features and
ensuring more precise stage navigation. This cycle repeats until the
vision agent confirms that the target electron micrograph has been
successfully acquired, at which point the scanning electron microscope
actuationagentreturns the finalimage and summary report to CRESt.
Detailed methods for the computer vision analysis on catalyst particles
are provided in Supplementary Note 4.

Materials and reagents

Palladium(ll) chloride (= 99.9%), chloroplatinic acid hexahydrate
(ACSreagent, >37.50% Pt basis), platinum(IV) chloride (= 99.99% trace
metals basis), copper(ll) nitrate trihydrate (puriss. p.a., 99-104%),
gold(lll) chloride (= 99.99% trace metals basis), gold(lll) chloride tri-
hydrate (= 99.9% trace metals basis), hydrogen hexachloroiridate(IV)
hydrate (99.9% trace metals basis), cerium(lll) nitrate hexahydrate
(99% trace metals basis), niobium(V) chloride (= 99.9% trace met-
als basis), chromium(lll) chloride (anhydrous, 99.99% trace metals

basis), bismuth(lll) chloride (99.99% trace metals basis), tin(ll) chloride
(=99.99% trace metals basis), yttrium(lll) chloride (anhydrous, powder,
99.99% trace metals basis), iron(lll) chloride (anhydrous for synthesis),
zinc(Il) chloride (reagent grade, > 98%), indium(lll) chloride (99.999%
trace metals basis), praseodymium(lll) chloride (anhydrous, powder,
99.99% trace metals basis), lanthanum(lll) chloride heptahydrate (ACS
reagent), ruthenium(lll) chloride hydrate (> 99.9% trace metals basis),
vanadium(lll) chloride (99+), Tungsten(VI) chloride (>99.9% trace met-
als basis), nickel(ll) chloride hexahydrate (99.9% trace metals basis),
cobalt(ll) chloride hexahydrate (ACS reagent, 98%), ethyl alcohol
(pure, 200 proof, anhydrous, 299.5%), hydrochloric acid (ACS reagent,
37%), Nafion 115 ionomer solution (5 wt%), potassium formate (Rea-
gentPlus, 99%), potassium hydroxide (ACS reagent, >85%, pellets),
oleylamine (technical grade, 70%), hexadecyltrimethylammonium
chloride (CTAC, 298.0%), palladium(ll) acetylacetonate (Pd(acac),,
Umicore, 99%), platinum(ll) acetylacetonate (Pt(acac),, 299.98% trace
metals basis), copper(ll) acetylacetonate (Cu(acac),, 299.9% trace met-
alsbasis), iridium(lIl) acetylacetonate (Ir(acac),, 97%), cerium(lll) acety-
lacetonate hydrate (Ce(acac);xH,0), chromium(lll) acetylacetonate
(Cr(acac);, 97%), were purchased from Sigma Aldrich. Hexacarbonyl-
molybdenum (Mo(CO),, 98%) was purchased from Thermo Scientific.
Avcarb MGL 370 carbon paper was used as the loading substrate and gas
diffusionlayerin the fuel cell, and acommercial Pt cathode (2 mg cm™)
was used as the counterelectrode, and both were directly purchased
from Fuel Cell Store. Sustainion X37-50 anion exchange membrane and
Sustainion XA-9 ionomer were purchased from Dioxide Materials. Pal-
ladium black (high surface area) was purchased from Fuel Cell Store.

Solutions, each containing a single metallic salt, were prepared as
precursors for the robotic system. Most metallic salts were dissolved
inethanol to prepare 50 mM solutions. Salts that are insoluble or with
low solubility in pure ethanol (palladium chloride, bismuth chloride and
niobium chloride) were dissolved inaqueous hydrochloric acid solution
(37%) to final concentrations of 20 vol% HCl(aq) and 50 mM metallic
element concentration in ethanol. Both AuCl; and HAuCl, would be
slowly reduced to metallicgold in the presence of ethanol, even when
the solution is acidified with 20 vol% HCl(aq). Thus, we dissolve the
HAuCl, in deionized water to prepare a 50 mM solution.

Liquid handling with Opentrons

The OT-2 liquid-handling robot was purchased from Opentrons. Two
pipette channels were installed: P20 Single Channel Gen2 (20 pltip) and
P300 Single Channel Gen2 (300 pltip). The liquid dispensing rate was
optimized to be 0.378 pul s™. A customized 3D-printed 36-slot sample
stage was used to place carbon strips of size 1.0 cm x 1.3 cm. A 96-well
plate (300 pl volume for each well) was used for mixing different solu-
tions. The mixing protocol was executed by the 300 pl tip with a fast
mixing rate of 7.56 pl s™ to ensure a turbulent, homogeneous mix.

Insitu electrodeposition synthesis

For AL, because the goal was to select the best recipe, only 10 pl of
the precursor mixture was dropcast by Opentrons on each sample
(Avcarb MGL 370 strip) of size 1.0 cm x 1.3 cm, which was pre-cut by laser
to ensure high size consistency. After dropcasting, the samples were
naturally dried inair for atleast 2 h for the ethanol solvent to evaporate.
During the later robotic electrochemical treatment, the 0.3 cm fringe
was clamped by the sample holder and did not take part in reactions.
Each sample was firstimmersed in the electrolyte for 1 min, and then
activated with cyclic voltammetry for 20 scans (50 mVs™),and alinear
voltammetry scan for once (10 mV s™). The potential range was from
-1.0 Vt0 0.2 Vcompared with Hg/HgO. The electrolyte was a mixture
of 1.0 M potassium hydroxide (KOH) and 1.0 M potassium formate
(HCOOK). The treatment occurred at ambient conditions. To process
samples with a higher loading density, more activation cycles would be
required. After this process, nanostructures would be generated in situ
onthe carbon fibre for further electrochemical testing.



Nanoparticle synthesis

This method was adapted from a previous report®. Specifically,
CTAC (50 mg) and oleylamine (5 ml) were mixed and sonicated for
about 15 minin a glass vial. After that, Pd(acac),, Pt(acac),, Cu(acac),,
HAuCl,, Ir(acac);, NbCl,, Ce(acac);-xH,0, Cr(acac),, glucose (60 mg)
and Mo(CO), (33 mg) were added into the vial with designated ratios.
The total amount of the metal precursor added was controlled to be
0.125 mmol, and the exact mass of metal precursor added depends on
the specific recipe. The mixture was then subjected to sonication for
1h.Thevialwas then heated to 220 °C and kept at this temperature for
2 hunder vigorous magneticstirring. The black colloidal product was
collected by centrifugation and washed at least twice with a mixture of
ethanol and cyclohexane (1:1in volume ratio). Then, the product was
subjected to ultrasonicationin 0.5 Macetic acid (in ethanol) for 2 hand
then centrifuged to further remove organicimpurities. The final pow-
der product was collected after washing with ethanol solution twice.

Electrochemical testing with the 7-axis robot

The 7-axis xArm robotic arm with gripper was purchased from UFactory.
A customized Cu-Au connection plate was fabricated to enable the con-
nectionof the electrode sample holder with the BioLogic Potentiostat
(SP-150e). The electrolyte for the three-electrode setup test was a mix-
ture of 150 ml 1.0 M KOH and 1.0 M HCOOK. Hg/HgO electrode (filled
with1.0 MKOH) was used as the reference, and the Pt foil electrode of
size1.0 cm x 1.0 cmwas used as the counter. Pure N, gas (Airgas, Ultra
High Purity) was continuously sparged into the electrolyte during tests.
Allthe three-electrode tests occurred at ambient temperature. For each
sample, a typical test time is around 20 min. The electrolyte would be
changed, and the cell would be cleaned thoroughly every 10 samples.
Alkaline solutions such as KOH may etch glass and introduce impurities
intotheelectrolyte, but considering the relatively shortamount of time
for the testing, such an effect was considered minimal in this work.

Membrane electrode assembly fuel cell testing

The membrane electrode assembly flow electrolyser was purchased
fromthe Fuel Cell Store. It has two compartments: ananolyte chamber
with a titanium anode flow field and a catholyte chamber with 904-L
stainless steel flow field. It also has a PID (proportional-integral-
derivative) temperature controller and two customized heating pads
attached tothe two metallic blocks. Sustainion X37-50 was used as the
anion exchange membrane forion conduction across theinner circuit,
andacommercial platinum black catalyst (2.0 mg cm™) was used as the
standard cathode for the oxygenreduction reactions. The commercial
palladiumblack anode was fabricated by air-spraying 2.0 mg cm2of pal-
ladium black (with 30 wt% of Sustainion XA-9 ionomer) on the carbon
paper. The formate anode size was 1.0 cm x 1.0 cm. To better compare
the performance of the formate oxidation, we oversized our oxygen
reduction cathode tobe 1.4 cm x 1.6 cm. All the currentand power densi-
tieswere reported against the formate anode size (1.0 cm?), which was
the research topic of this work. O, gas (Airgas, Ultra High Purity) was
constantly flowingin and out at 10 sccm through silicone tubes witha
mass flow controller (Alicat) at ambient pressure. The anolyte (2.0 M
KOH and 1.0 M HCOOK) was also flowing in and out at a constant flow
rate of 20 ml min™ with a peristaltic pump. The membrane electrode
assembly block was heated to 60 °C, and the electrolyte was heated
to 70 °Con a hot plate with athermometer immersed in the solution.
Allthe parameters (including flow rate and temperature) are the opti-
mized values with our setup for this work. For the polarization curve
test, the linear sweep voltammetry method at ascan rate of 10 mV's™
was applied, similar to that in a previous literature report®. CO, and
carbonate are generated during the formate oxidation reaction, leading
toachangeinthelocal pH. Butfor the flow cell test, considering thata
freshsolutionwas pumped inand out of the flow field constantly, this
effect was insignificant.

We used both catalysts synthesized from the in situ electrochemical
deposition method and the multi-element nanoparticle bulk synthesis
method. Theinsitu electrochemicalmethod provides a high-throughput
way for sample preparation and performance optimization but suffers
fromlow mass loading (typically below 0.2 mg cm™). ALwas conducted
using catalysts synthesized by in situ electrochemical deposition for
rapid screening. Promising or representative recipes were subsequently
validated in fuel cell testing (Supplementary Fig. 3) using HEA powder
prepared by conventional synthesis. For the device testing, we mixed
the HEA nanoparticles with 30 wt% of Sustainion XA-9 ionomer and
air-sprayed them onto the carbon paper, whichimproves the mass load-
ing (controlled to be 2.0 mg cm™) of our catalyst, and thus the device
performance. However, such a workflow remains mostly manual for us.
Thekey point of this paperistoleverage the robotic platform to quickly
screen catalyst recipes using the three-electrode testing method, which
isamore widely used electrochemical testing method in theliterature.

Structural characterization

XRD was conducted on the X-ray diffractometer (Aeris Research edi-
tion) using a copper target atavoltage of 40 kVand acurrent of 15 mA.
Deionized water was used to rinse the remaining KOH and HCOOK off
the electrode surface before XRD testing. SEM was performed with a
Zeiss Merlin High-resolution scanning electron microscope at the MIT
Materials Research Laboratory. Characterization with transmission
electron microscopy (TEM), energy-dispersive spectroscopy (EDS)
and scanning transmission electron microscopy were performed with
the Thermo Fisher Scientific Themis Z G3 aberration-corrected scan-
ning transmission electron microscope with a resolution of <0.6 A at
MIT.nano. In situ XAS experiments were performed at the SPring-8
BL12B2 Taiwan Beamline, using a custom-designed electrochemical
celltailored for in situ XAS measurements. Fluorescence signals were
acquired usinga Lytle detector. A custom-made insitu XAS cell was used
for thisexperiment. The electrochemical setup used athree-electrode
system, consisting of aworking electrode, acounterelectrode (Pt wire)
and areferenceelectrode (Hg/HgO),immersed in an electrolyte solu-
tion composed of 1.0 M KOH and 1.0 M HCOOK.

DFT calculations

First-principles calculations were performed using spin-polarized
DFT***implemented in the Vienna ab initio simulation package** with
the Perdew, Burke and Ernzerhof* exchange-correlation potential
within the generalized gradient approximation. The projector aug-
mented wave pseudo-potential** was used to describe core electrons.
For all optimization calculations, the cutoff energy was set at 450 eV and
k-spacewassampled by 3 x 3 x 1for allmodels. The convergence criteria
for energy and force were set at 10™* eV and 0.02 eV A, respectively.
The van der Waalsinteraction has been considered using the Grimme
dispersion scheme®.

Foracertainreaction (A > B), thereaction free energy AG (including
the DFT total energy, zero-point energy, vibrational enthalpy (thermal
corrections) and vibrational entropy (at 7T=298.15K)) is defined as
follows:

AG=Gy-G,

Further details on the modelling approaches and model selection
criteria can be found in Supplementary Note 6, whereas the energy
calculations and treatment methods for formate fuel cells are described
inSupplementary Note 7.

Data availability

The datathatsupport the findings of this study areincluded in the main
text, and the source files are available from the corresponding author
uponrequest. Source data are provided with this paper.
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Code availability

The code supporting the findings of this study is available at GitHub
(https://github.com/zhang21mit/CRESt) and can be obtained from the
corresponding author upon request.
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Extended DataFig.1| The workflow of electrocatalyst discovery guided by
CRESt. Alarge multimodal model interfaces with researchers through text and
voice, monitors experiments via visual analysis, and autonomously controls
roboticinstruments for electrochemical materials research. The multimodal
activelearning (MAL) moduleintegrates literature and human knowledge,
microstructural images, and composition and process tuning, operatingina
compressed latent space to guide candidate selection. Robotic subsystems

carry outsample synthesis, testing, and characterization, while the vision
module applies computer vision techniques such as segmentation and depth
estimation to analyze microstructures. In parallel, a vision language model
diagnoses experimental error modes toimprove reproducibility. Experimental
resultsareiteratively incorporated into the active learning loop, and optimized
materials are validated through mechanistic studies and device-level testing.
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Extended DataFig.2|The CRESt coding architecture. (a) Architecture of the
CRESt main experimental platform. CRESt acts asalaboratory orchestrator,
dynamically invoking routines from a shared function library thatincludes
instrument-control systems and Python workflows to execute real-world
experiments. (b) Architecture of the autonomous scanning electron microscope
(SEM) module. A three-agentloop coordinates (i) adialogue/orchestration agent
atthe CREStlayer thatinterfaces with users and sets goals, (ii) an SEM control

agent that performs navigation, focusing and zooming, and (iii) a vision agent
thatanalyzesimages and recommends the nextaction. Theloop iterates until
theimaging objective is met, after which the SEM agent returns the final
micrograph and an executionreportto CRESt. Aseparate computer vision
analysis moduleisalso utilized to analyze SEM images for statistical features
(Supplementary Note 4).
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Extended DataFig. 3| Example of the particle number distributionfunction
inthelogarithmscale. The feature statistics were obtained from SEMimages
captured atvarying field widths across our dataset. The effective radius is
calculated by converting the measured particle areainto anequivalent spherical
radius. Our analysis shows that obtaining accurate feature statistics, especially
thoserelated to particle size, requires selecting afield of view thatis appropriately
scaled tothesize of the particlesbeinganalyzed.
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Extended DataFig.4 | Comparison plot of the active learning campaign for
the three algorithms. (a) Knowledge-Assisted Bayesian Optimization (KABO).
(b) Bayesian Optimization with Policy Improvement Constraints (BOPIC).

(c) Standard Bayesian Optimization using the Upper Confidence Bound (UCB)
acquisition function. Both KABO and BOPIC achieved continuousimprovements
batchafter batch, whereas standard BO required -70 samples before making
progress—acritical limitation when each experimentis costly. KABO, likely due

Recipe number

Recipe number

toitsintegration of domain knowledge, showed the strongest alignment
between predictions and experimental results, particularly in high-performance
regions, and alsoidentified the global optimum first (indicated by the orange
verticalline). BOPIC proved especially effective in sampling high-performance
candidatesrelative to the other two methods. Ultimately, all three algorithms
converged toasimilar high-performance value, consistent with the fixed ground
truthinthe chemistry space.
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Extended DataFig. 5| Comparison of performance for the state-of-the-art each questionwas tested for five times for each model to compute the average

visionlanguage model (VLM) on areal-world materialsscienceexperimental  accuracy.Examples could be foundinthe Appendix of the Supplementary file.
questionset. Considering the stochasticity of the vision language models,
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