Phonon Interactions and Thermal Conductivity

A term paper for 22.51

Li Ju

February 28, 1996



Contents

1 Basic Lattice Dynamics

2 Basics of Lattice Thermal Conductivity

3 3-Phonon Process

15

24



Chapter 1

Basic Lattice Dynamics

Consider a 3D crystal with r atomic species. Denote the unit cells by L and atom type by

L
S, S = 1..r. The position vector is R(S), and the atomic displacement

) =) - 1o() o)

where o denotes Cartesian components. For convenience’s sake, sometime we contract

L
(a, L, S) into a single index m, u,, = uq (S)

Near equilibrium, the total crystalline potential energy V (¢"V) could be expanded into

1 1
V(QN) — 5@mnumun —+ E(I)mm’m"umum’um” 4+ ... (12)

where

o - V(")
mn — L LI
Ouq (s) Oug (s') a

(1.3)



PV (q")

q)mm’m” = L L' L" (1.4)
Oua () e (g, ) Bt () -
For a crystal, ®’s will only depend on relative distances between unit cells:
LL' L-L' LL'L" L-L",['—L"
Lag (SS/) = Pagp (SS’ )’ Papy (SS’S“) = Qagy (ss's" )’ (1.5)
and by exchanging the order of differentiation, there is
LL 'L )
(I)aﬂ (SS") = (bﬂa (5’5)7 1.e., cI)mn = q)nm (16)
and thus
L -L
Pap (SS’) = Ppa (s'5> (1.7)

From the translational and rotational invariance of the interaction potential, there must be

2 P (5e) =0 (18)
E o)) 5 e () "

For instance, Eq(1.9) could be proved by considering a virtual rotation in direction n for
Ll
small angle 860, so the displacement of each atom is n x R? (5,)69. Consider the force on

atom (L, S), it’s

Ra() = X (i) camne ()0
B _“L,zs,: (Ss') (L:)_(I)M(i)Rg(g)]fﬂaan@ (1.10)

L
Since F, (s) should be zero for any n, it’s obvious that Eq(1.9) must be satisfied.



Consider mass-scaled quantities

L
Um = 1/ Msug (S) (1.11)
and
@ @ ! "

D =$, Dyt = ———t 1.12
™ UMMy U M i 12

We are concerned with the diagonalization of D,,,, i.e., finding a unitary matrix that
Dy = Ul wiUkn, where Ul Upn = 6n (1.13)

In doing this, we should know the fact that by using irreducibe basis functions {exp(iq-r)}
of the translational group we can easily block-diagonalize this 3r N x 3rN matrix into NV
3r x 3r matrices (only functions with the same q in the first B.Z. can couple to each other
through the Hamiltonian). This means we can label our normal coordinates of the crystal

by k, which is the contraction of two indices (qj):

k . /L _ L - .
Vi =V (g) = explia- R(L)eF (5) (1.14)
such that
SVERVE = S Vj(é)*vj' (g) = O (1.15)
n a,L,S

Here j(1..3r) denote the phonon branch, by which polarization vector e (S) is specified.

For Eq(1.15) to be correct, e¥’s for the same q should be orthonormal to each other,
> el (S) e (S) = 6y (1.16)
a,S

Also, since {k} form a complete basis set, there should be completeness relation

STVEVE = 6p (1.17)
k



To block diagonalize D,,,, there should be

SO
® (L—L'
af SS’
,B,L/,Sl MSMS’

L-L'

) exp(iq - R(L'))ej(S") = wi exp(iq - R(L))eq(S)

q)a
> —M exp(—iq - R(L — L'))ef(S") = wieq(S)

B,L',S' MsMs

Define the 3 x 3 dynamical matriz in q space to be

1 L
D(:s') - Mg Mg XL:(I)(SS'

then there would be
q ’
> D(,)ef(S) = wiek(s)
Sl

From time-reversal symmetry (conjugate invariance),

D(i,) D(,) = D)\ (¥
D(,) D() - DG) || e@
D(() . . V@) | _
D() D(,) - D)/ \evi)

) exp(—iq - R(L))

(1.18)

(1.19)

(1.20)

(1.21)

(1.22)

(1.23)
(1.24)
(1.25)

(1.26)



and with

(e¥(1)",e¥(2)*, ¥ (3)", ...., e (r)*) = 5

e’ (r)

(1.27)

Diagonalization complete. We have 3rN unit vectors for the crystal now, and thus the

unitary matrix U}, = V™.

e Lagrangian Formulation

Decompose

Msuq (z) =Unp = ZQkVn{i
k

L . .
Since ua( ) is real, there is
S
Qr = Qik
and
. (L : .
U"‘(s) =3 QVE=S Qi
k k
the Lagrangian of the crystal then become
1 o 1
L= Z ~Msu,, — Z = Uy, Prran U,
1. 1
= ; 51},2,1 — ; Evamnvn
1 T X * Ny 7 1 * * ’
= >{> §Qk VEQuVe = §QkVn’§ DpynQr Vi '}
k' m m

= > %Qk*Qk - %wiQZQk
p

(1.28)

(1.29)

(1.30)

(1.31)



So
P, = =Qf =Q_k (1.32)

and

H= > PQi—L
k

P*Pk ) w2 %
= Xk: k—2‘ + kaQk
= P";Pk + %’%Q—ka (1.33)
P
From here we can see that
L 1 1 . k
Ua(s) = m%@k : 7—N6XP(2Q‘R(L))%(5) (1.34)
a(l) = VMs > Qg esplia- R(L)EL(S)
= M5 Py o explia-R(L)E(S) (1.35)
P
And so the inverse
Q= X Mo () exp(—ia - RID)EL(S)” (1.36)
ao,L,S
Pu= 3 ena(t) e ew(ia- RI)E(S) (1.37)
a,L,S

e Second Quantization

L L
Second QQuantization is to simply replace all the u, (5), Pa (s) in the classical Hamiltonian

pa (g) 1 /L Lr r
H = Q;S 2—]\45' + §ua(s)@aﬂ (SS’)uﬁ( ) + ... (138)

L L
by operators p, (s)’ Ug, (s) Starting from here is a bit cumbersome, but is much safer.
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Define Qy, P_j through Eq(1.36),Eq(1.37), then

Qo= Xy Soia(}) expl-ia- R()E(S)

a,L,S

Pi= ¥ ﬁp (5 exp(—iq - R(L)L(S)"

o,L,S

If we also define

. . . 1
U =\ Mgy, W, = —/mpn
then
Qi = Ugntn, P_j = Upnily,
and
QL = Utyin = Q_y, Pl =Uipiv, = B
Then

[Qk’ pk'] = Uanl:’m[’[)na wm] = ilidpks

and obviously

[Qk, Q] =[P, Bv] =0

That’s good. However notice that Qk and Pk are not Hermitian.

Define
a L (weQx +iP_y)  al ! (wr@ D)
= _ = w _k— 1
k s &k k k s & —k %
1 A A 1 N -
(g = k+ib) al, = —iP_
a_g \/%—wk(ka k 7 k) a_g \/m(kak 1 k)
Then
. 1 A s s
[k, ) = %—W(—Zwk[Qk, Py + twi [P, Q-r']) = Ogpr

(1.39)

(1.40)

(1.41)

(1.42)

(1.43)

(1.44)

(1.45)

(1.46)

(1.47)

(1.48)



1
[dk,dk/] = ———(Z(.u'k[Qk, P_kl] + 1wy [P_k, le]) =0

2h,/wkwk/
1 R N ~ A
ATAT;: — (-1 _P/—./P _/:O
[ay, a] o wkwkz( 1wi|Q -k, Per] — iwp: [Py, Q-k'])

With this in mind and with Eq(1.42) we have

~

T

So
H= ¥ L > 6D
= %( oL (UL Ul P + wQ1Q4)
- X %(pgpk + wiQLQx)
But
Zhwk (afax ;)

= Z hwk{ﬁ—(ka—ka + PPy — iwp PoQy + 1wk Q_x Py) + =

— Z—[P—kpk+ka ka]+hwk{ [QkaPIc] ;}
k

= X

k

1 [PTPIC + kaka]

N |

Compare with Eq(1.52), we see that

1
H = Zhwk&& +§)

(1.49)

(1.50)

(1.51)

(1.52)

(1.53)

(1.54)

Quantization complete. All conclusions of the algebra could be transported onto 3D crys-

tal. Notice that k¥ and —k phonons are entirely decoupled, although they share the same



frequency.

Important dynamical operators:

A R R C(hw ..
Qk = _(k+at—k)’ P_p=— “‘2—Ic'(ak—af_k) (1.55)

2wk
and
W)= T SO eplia- RIL)Q
= Wi te(S) ewlia- RAL) @ + L)
- ¥ 2_]\,—]\3—@{6';(5) exp(iq - R(L))ax + e (S)* exp(—iq - R(L))al}(1.56)
pa(’) = %;ez(S)expwqR(L))ﬁ_k
hMSw k

Phonons will form bands, as all excitations in a periodic lattice. One important difference
between phonon and electron band is that a pure phonon state |ny > won’t carry momentum,
which is easily seen from Eq(1.57). A pure electron Bloch state |y} > however, does carry

the momentum m,vg, where v is the group velocity:

_ Owy(q)

Vg = aq (1.58)

e Conservation Laws

10



We now consider general conservation laws for peoriodic systems, not only under harmonic
approximation, but with arbitary interactions, and with external probes inside the system,
say, neutrons or photons. We know that conservation laws are linked closely with some

invariance operators, like the conservation of energy with time-translational operator:

- Hr
U, = exp(ﬁ) (1.59)

Here the infinitesimal generator of U, is H. Since obviously

[0, H] =0 (1.60)
as physical laws doesn’t depend on the time origin, there is

[H,H] =0 (1.61)

which we know directly otherwise. So the measurement of the generator of U, is conserved,
i.e.,

< #H >= const (1.62)

Consider the Hamiltonian of a general crystal,

o /L\2 i
H:Zp21(w> V(D + 5+ WO (5 () (169

Here P, # are operators for the external probe, W is its interaction with the crystal. From
Eq(1.62) we can see that
tot tot
EiO — EfO

in the case of a photon,

hw; + EF** = hwy + B (1.64)

11



There are two kinds of spatial translations for a peoriodic system: one is the common real-

space translations with arbitary displacement,
R i N
Us = exp(-,;(LX;p(S) +P)-6) (1.65)

This means

and obviously
[Us,H] =0 (1.66)
as the translation of the entire system in space for § won’t change the energy. So,
L
s

< Zﬁ( ) + P >= const (1.67)
LS

as the law of total momentum conservation. This law isn’t so interesting since the recoil of

a crystal in a scattering experiment is negligible.

The other one is more subtle, which involves only the translation of labelings. Consider the
following operation

L (L L-1\ /L _/L-1

F =7+ R, u( )—)u( ), p( )—-)p(s )
with R being a lattice vector. Obviously, this will also leave the total Hamiltonian invariant,

as the incident particle would find itself in the same environment as before. The operator

for this translation is

Ug = exp(%(K-i—P) ‘R) (1.68)
where
K =Y haq(alax) (1.69)
k

12



This can be proven in the following way. Since

[ala, ax) = —ax, [alax,al] =

if we define K which operates on opertators

a},

(1.70)

(1.71)

it’s obvious that ag, d}; are the eigenvectors of K with eigenvalues —hq and hq, and so

UrarUk

= exp(%K-R)&k exp(—lK~R)

h

= exp(%f( -R)ay

= exp(—iq- R)ay

also

Then from Eq(1.56),Eq(1.57)

(1.72)

(1.73)

(1.74)
(1.75)

(1.76)

And so indeed we have proven Ug to be the the operator we descibed. This means the

measurement of Ur shall always be conserved. Note that although we used &k,dL in our

derivation, we do not have to be in the harmonic approximation.

Suppose before and after the scattering the incident particle is free, and we are not far from

a harmonic crystal such that the instantaneous configuration is represented by a number

13



state. For < Eq(1.68) > to be invariant, also for any lattice vector R, there must be
P+ Y nihg= P+ Y nihq+ G (1.77)
k k

where G is a reciprocal lattice vector. Thus we can define the concept of crystal momentum,
which is just 3", nxhq. Crystal momentum isn’t real momentum. It defines the vibrational
phase relation between different labeling but identitical atoms, and that, adding the phase

factor of the incident particle, should be conserved.

14



Chapter 2

Basics of Lattice Thermal

Conductivity

The thermal conductivity of solids usually consists of two parts: those due to electrons and
those due to the lattice. For insulators and semiconductors, the main contribution comes

from lattice conductions, and the heat influx
J9=—gVT (2.1)

where we had assumed a spatially varying local temperature to be properly defined. « is

generally a 3 x 3 tensor, but for crystals with point symmetry higher than T}, it’s a scalar.

If a crystal is purely harmonic, ¥ should be +oc0: that’s because a purely harmonic crystal
cannot support local temperature variance, since all our normal coodinates in the Hamilto-
nian are of global character. If we heat up the atoms in part of the crystal and let it go, it

will automatically do a normal coordinate analysis and the crystal will be homogeneously

15



vibrating in no time, each normal coordinate independent of other. Thus, for a solid to have
finite thermal conducitivity /resistivity, there must be anharmonicity of some sort: either it’s
the higher-order term in the expansion, or defects. The exact solution of these problems are
extremely difficult, so usually we treat the crystal as nearly harmonic and do perturbation

theories on phonons states.

Another important concept is that of lattice wave packet. When the lattice is under a heat
gradient, it can’t be descibed by a single stationary state |n,, ng,, ..., M,y >, but should
be the linear combination of many such states with time-dependent coefficients, to form a
wave packet, localized in some spatial region. It’s well known in wave mechanics that such

packets will travel in the speed of group velocity,

dw;(q)
= 2.2
Ve = oq (2.2)
and so is the energy it carries. Thus, the heat current is
QJ9 = anhkaG (23)
k

This picture might work best for lattices with some anharmonicity or defects, so that the
packet would be deflected to form a new one before it’s too much widely spread. However

when the anharmonicty is too much the fromula will also break down.

e Boltzmann’s equation and the canonical form
There is Boltzmann’s equation:
Of(k,r)

5 + V, - (f(k,7)vg(k)) + collision integral = 0 (2.4)

where f(k,r) is the local density distribution of phonon states. The 2nd term is due to the
drift of phonons in varying spatial density, the collision integral comes from local transitions
between different phonon states, which is the combination of a variety of phonon-defect,

phonon-phonon scattering mechanisms.

16



For a steady state,

05 (k1) _
BT 2y (2.5)
and
V- (ko) = Lok v, 1 (2:6)

The exact solution of Eq(2.4) is fairly difficult, so people use variational methods to get
approximate solutions. ! Here it suffices to sketch the basics of the problem. It is convenient
to cast Eq(2.4) into a canonical form. Define

dfo(k)

f(k) = fo(k) — (Pk@—Ek (2.7)

Since phonons are Bosons with zero chemical potential, in thermal equilibrium there is

folk,r) = W (28)
and so
Ofo(k) _ fo(k)(A + fo(k)) (2.9)

oFE, kgT

Take elastic phonon-defect scattering for example. Here a phonon state k£ could be scattered
into another state k' of the same energy by the defect, with positive transition rate £(k, k').

From the principle of microscopic reversiblity, and by verification, there should be

Lk, k)= L(K k) (2.10)
Then obviously, for a steady state,
aLg;—,’—ﬁvc;(k) -V, T =  —collision integral

= = [0 = £ LGk, KK

Hor details see Electrons and Phonons, Ziman, 1960

17



= (@ — B fo(R) (1 + foR) L, KK

kT
= ! i) S)P(k, k') dEk'
= 7 @ - 2Pk K) (2.11)
where we have defined
Plk,K') = fo(k) (L + fo(k))L(k, k) (2.12)

and in the derivation we have use the fact that since Fy = E}/, they have the same occupancy

in equilibrium. This is the so called canonical form of the Boltzmann’s equation.

This equation must be satisfied for all k’s. If we define X, to be what’s on the left of
Eq(2.11), it can be written as
X, = Py (2.13)

where P is a linear operator, and X is a known quantity, once the dispersion curve is
known. Further examination will show that P is a Hermitian operator too. Solution of the

inhomogenous integral equation Eq(2.13) can be sought by minimizing the functional

< (I)k,P‘I)k > 1
—_— X — 2.14
< &y, X, >2 x K ( )

where we have defined the inner product
< A, B >= /AkBkdk (215)

The physical meaning of Eq(2.14) being that nature will facilitate heat conduction, thus

maximizing the rate of entropy production, under the constraint of maintaining steady state.

¢ Relaxation time approximation
One of the most common approximations we make to Eq(2.4) is the collision time approxi-

mation, where we approximate the collision integral by

f(k) = fo(k) _ _ f(K)

collision integral = — ) ==

(2.16)

18



irrespective of the distribution of other phonon states. Then at steady state,

of(k,r) G
o vg(k) -V, T = _T(k)) (2.17)
So the heat current is
3= hwpf(k)ve(k)
_ hwk(—T(k)%vG(k) - V,T)vc(k) (2.18)
But since
J9 =3I =-kV,T
k
there is
. Ohwy f(k,T)
k= T(k k)va(k
7= vak)va (k)
= ZrRCHEvakIvelk) (2.19)
where
h2w?
Culk) = 15 folk) (1 + fo(h) (2:20)

is the heat capacity of phonon-state k.

e Isotope Scattering

Suppose an isotope with extra mass AM is situated at (LS), then

H="Ho+V (2.21)
LN\2 LN 2

i p(.) () —AM e

V= 2(MSiAM) - QJ\SZS ~ oM?Z p() (2.22)

19



And so, from Eq(1.57), there is

7= _.2% (= ik ek () explia - RL))(ax — L))

-(\k;i\/%ewsr exp(—ia’ - R(L)) (@) — 1) )

= - >_e"(S) - e"(S)" exp(i(q — q') - R(L))
2MZ 2N 4>
\/wkwk/(dk,&,t, - dk&_k/ — dtkd;rc; + CALT_kCAL_k/) (223)

Since energy is conserved in 1lst-order PT, the aza_, &T_de, terms won’t survive, also there

must be
W = Wy (224)
So,
. hAMw . . .
V==, () (S) eplila — a) -R(E)adl,
+ e (8)-e"(S) exp(—i(a — q') - R(L))ayaw } (2.25)

Now, because we are mostly interested in the scattering by a random distribution of isotope

defects, we are considering the problem,

V== (L AS)-A¥(S)" explila— a) - R(L)] )il

kk'
v (ZAR) A (S expl-ifa— ) REL)])atar (226

A*(S) = ,/rfN—Ajz“ek(S) (2.27)

where

20



For a specific scattering process, say, a phonon k — k', the matrix element is

T 2
< g — L, 4 1Viet|ng, ngy >\
- 2

= 22 AK(S) - A¥(S) exp(i(q — q') - R(Ly))

A At 2
<ng—1,np + 1|akak,fnk,nk/ >l (2.28)

Here a factor of 2 appears in the module because of the possible interchange of k, %’ in

Eq(2.26). Since L;, the position of isotopes, are uncorrelated , the average is
, 2
4D|AX(S) - A (S)"| me(mr +1)

where D is the total number of defects. So the transition probabilty from k to other states

is just, by Fermi’s Golden rule,

Wiou = = > 4D |AF(S) - A¥ (8)*] mi (i + 1)8 (heor. — huon) (2.29)

For materials with T; or higher point symmetry there can be a nice simplification, because
then all vectors (z,y, z) belong in whole to a single irreducible representation I'y,. of the

point group, and

S| AR(S) - A¥(sy i

= Z AL (S)AE*(S) A (S) A% (S)

"o ,ﬁ
_ ' Z ZAk Ak* AUkl*(S)Agk’(S)
k’,aﬁ {U}
* 1 * "% !
= X A4 ()5 (X Di ) DEyU)) 4k (5)45(5)
K08 {v}
wianl B .
= D AL(S)A% (8)57 5aﬁ5 5 AEX(S) AR ()
k'« ﬁ U

= Ll |ate)f
-

(2.30)

21



For monoatomic crystals, €*(S) is a unit vector, so

(2.31)

% Ak(s)[*|a¥ (5)] = %(—MMW’“)Z

AN Mg
If it’s not, we can approximate it by

1 (hAka)
3r2 AN Mg

¢ Exact Solution in Debye Model
Let’s assume there is a monoatomic crystal with simple dispersion relations of isotropic elastic
medium. Let the sound velocity of transverse and longitudinal wave be ¢;, ¢; respectively,

and the transverse branch is doubly degenerate. In this case,

5@)
dt / cous

= Wk,in - Wk,out

8t D (hAka>2
= N \n +1 — l'+‘1 6 h —h !
35 %: 4NMS [ k ( k ) nk(nk )] ( Wi Wk )

8rD <hAka>2(ﬁ
3h \ 4N Mg

ni) > 8(hwy — hwy) (2.32)
x

In the last step we have replaced ny by the average occupation number 7, which is like

collision-time approximation where we ignore the possiblity of “group deficiency”.

Inside the summation is just the density of states, which we can replace by integral

Z 5(7"ka — hwk:)

Q4 k2dk
= Z / T hwk — hwk/)

branches
Q1 1 2
= Q—ﬁﬁwz(g + g%‘) (2.33)

22



Combining our results, we have

@ﬂ)
dt colli

_ 87TD<hAka>2 Q1,1

(5 + ) (7 — )
T 3R \aNMs ) R T/ T
DQAM*wi 1 2
- 12N2M2% 1 (3 + g)(nk — ") (2.34)

It’s not surprising that we recover the ubiquitous w* laws again, which conforms to the

general long-wave Rayleigh scattering result of a ball (ka < 1) stuck in an infinite elastic

medium, with higher density.
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Chapter 3

3-Phonon Process

In the expansion Eq(1.2) we have ignored the cubic term in harmonic approximation

~ 1 o
V3 = E(I)mm’m”umum’um” (31)

Express it fully in normal coordinates using Eq(1.56), it becomes

R 1 h LL'L" ek (S)ek, (S") ek (S")
v q)aa o McMea Man 1/2 €a a [o}
3 6 2N {;} (SS/S//)( Sivls S ) k%// (wkwk’wk‘“)l/Q

exp (z‘[q ‘R(L)+q -R(L) +q" - R(L")J) (a +a' ) (aw + al ) (@ +al)(3.2)

Since the summation is irrelevant with repect to the translation of (LL'L") as whole, it
vanishes unless

qa+q +q9"=0 (3.3)

24



—

or

a+d +q"'=G (3.4)

where G is a reciprocal lattice vector. (3.3) is called normal or N-process, (3.4) is called

Umklapp or U-process.

Multiplying out the terms in Eq(3.2), we have

A A Atoa o~ 2 . Bt . (4]
akak’ak”[1] + aT_kakfakn + akaf_k,aku + aT_kaT_k, agr =+

(8]

A 5 N A 6 R " 7 R “ R
akak/at_k//[ ] + a‘r_kak/at_k//[ ] + akaf_k/at_ku[ ] + at_kaf_k/at_k// (35)

Term Graphic

number Representation

1 /7\
2,8,5

4,60,7

8 W

If two of the q’s are fixed, there is only one possible value for the third, either through (3.3)

25



or (3.4). The conservation of energy further requires that

+ Wk + Wi + Wi = 0 (36)

Due to this reason, the terms [1],[8] in Eq(3.5) are not possible in first order process.

- - w -
~ 4~
~ -
~ -
~ -
~ -
~ -
————x N s )
- T~ < N 4 -
1 \\\ N 4
i N N ‘< L -
S N 4 -7 i
~ N 4 -

! RS . e 1
| ~ A - 1
N \ -

1 ~. N - |
I N \ 7 =
| S \ 7 L7 |

N \ 4 P |
N \ ’ _,
i N Al 4 ’ !
| N ’ ‘. !
| \\ \ ’ // |
i N ‘o, 1
(A [
1 NN ‘. X
[ N . !
] NN / p 1
SN ’

i N |
' O ’ X
K /

1 4 4, I
N N 0 Y MU [ -

q q
qll

Construction for 3-phonon process.
circle: t+t=I. square: t+I1=I

The solutions of Eq(3.6) could be sought from the following graphical construction: First we
draw the dispersion curve. If we want to investigate possible interactions concerning (q,w),
we just translate the whole dispersion curve onto (q,w), and search for its possible crossing
with the old curve: the crossing point on the old coordinates would be (q”,w"), on the new
coordinate would be (q',w’). Note that the crossing point could be beyond 1st Brillouin
zone: if it does, then it’s U-process, otherwise it’s N-process. By careful observations of these

constructions on a simple Debye model, we arrive at only two possible types of processes:

transverse + transverse — longitudinal (3.7)
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transverse + longitudinal — longitudinal (3.8)

For multi-atom systems, we would have 3r — 3 optical branches. It’s generally believed that
optical phonons doesn’t contribute much to the thermal conductivity because they have less

group velocity. Also only one type of process is allowed for Debye model:

acoustic + acoustic — optical (3.9)

3-phonon process constitute the main part of thermal resistivity in a perfect crystal. It is
also believed that the Normal process is the main part of it. However, if there are only

N-processes in the system, the thermal resistivity will be infinite, since then the quantity

Q=> qaf(k) (3.10)
k

would be conserved always. That means once we establish Q # 0 in the system, it will
continue to be so without the ability to recover true statistical equilibrium, thus having
finite heat current (best seen in Debye model) without constant thermal gradient, which
implies infinite thermal conductivty. It follows then, that the Umklapp process plays a vital

role.

We can approximate the thermal conductivity at low temperatures (T' < ©) by the following
argument: in order for Eq(3.4) to hold, one of the phonon q must exceed G/3, while smaller
than G/2 in order to stay in the 1st B.Z. Since the Debye temperature © corresponds to G,

it follows that the probability of existence of such phonon excitation is proportional to
exp(—y©/T) (3.11)

with v between 1/3 and 2/3, for the Umklapp process to be possible. And thus the thermal

conductivity holds the same scaling.
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