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The purpose of my second visit to Ames (first visit July 17 to Aug 1 ‘96) is to continue the
collaboration between Ames Lab (K. M. Ho, C. Z. Wang) and MIT (S. Yip, J. Li, L. Porter)
to develop a unified tight-binding model for Si/C systems. In the previous year we have
generated a sufficient LDA database for SiC in various crystalline phases which combined
with the established model for pure Si and C !, will enable us to start the work. New TB
fitting codes were developed based on the scaffold of a Generic Parameter Table (see report
I, page 12) which is the obvious extension of pure system models. The complete table will
have more than 200 parameters, but most of them (at least at the initial stage of fitting) are
treated as degenerate to the pure systems, that in the end we only have 21 new parameters
to fit for the electronic band structure part, and seperately another 15 parameters or so for
the repulsive terms.

The program for fitting the band structure was written by me. Dr. Lisa Porter used it
(/home/porter/main.dir/finalcodes.dir/fitbands.3rcuts.f) during her visit to Ames (Aug ‘96)
and got an average error of about 0.72 eV for the band structure of SiC in 3C (5 volumes),
2H, CsCl, NaCl, NiAs and anti-NiAs phases, which included several conduction bands with
smaller weights. She then revised a code from Ames Lab to get the Fermi energy of each
phase, by sampling weighted k-points (100 ~ 300 of them) to get a discrete spectrum,
and then Gaussian broaden each eigenvalue to width § into a continuous spectrum. After
the Fermi level was located, integration was carried out below er to get the band structure
energy Eps at 0K (./calc.ebs3.f). She then feed these information into a similiar optimization
program (./fitrep.newSi.3rcuts.f) to fit the repulsive term F,ep. Prelinminary results gave
an average error of about 0.66 eV for the total energy curve of these structures. However, a
few bugs were later found in the program.

The first task I faced was to understand the codes calculating ez and Epg, and if necessary
revise to make them work better. This is detailed in section 1; Due to charge transfer between

! Environment-dependent tight-binding potential model by M. S. Tang, C. Z. Wang, C. T. Chan and K.
M. Ho, Phys. Rev. B 53 979 (1996)



Si and C, long range Coulomb interactions may have to be taken into account in the model
in order to display, beside many things, lattice dynamical effects such as LO-TO splitting.
Thus partial charges Z* on atomic sites were calculated using the optimized electronic band
parameters for each phase. An easy-to-use, high-accuracy Ewald summation routine was
developed to calculate the total energy, force, stress tensor and the dynamical matrix of a
general PBC triclinic rigid-ion system. However, the Coulomb term we invoke in the total
energy functional is not a rigid-ion model, additional care should be taken in this aspect. This
part is detailed in section 2 and 4; The nonlinear optimization subroutine we are currently
using is MINA, developed in 1978 and may be obsolete. Many public domain optimization
packages exist nowadays on the web, so I took some time to look for alternatives. One of
them, Adaptive Simulated Annealing (ASA) developed by Lester Ingber 1993-1997 seems
up to date and was successfully ported to our programs: it is certainly working, but its
effectiveness needs to be benchmarked. And then the next step was to combine all the work
above into a single code which can do both the optimization and all the following property
calculations (its output files *.out directly feed into the repulsive term optimization). This
part is detailed in section 3. And then in the end total energy fitting is discussed, in section
4, where an average error of about 0.2 eV is obtained for the five crystalline structures of
SiC with composition ratio 1:1.

One remark about interaction cutoffs: currently we are using a direct cutoff method for
interaction strength H(r), of the form

which is continuous in both value and derivative. A unified set of (ry,rs), 4.8 and 5.2 A
for Si-Si, 3.2 and 3.6 A for C-C, 3.8 and 4.2 A for Si-C pair are being used for all kinds
of interaction strengths (they are chosen to be a little smaller than the lattice constant of
respective diamond cubic phase). Theoretically, a similiar smoother should also be applied to
the screening contributions in order to completely avoid discontinuities in the Hamiltonian;
however since the effect is so small it is neglected. There is another kind of cutoff scheme, the
indirect kind, which applies to R(the reduced distance) instead of r, because atoms in low
coordination structures (such as surfaces) naturally “see” farther. This arrangement sounds
very convincing to me.

[ am grateful to the Ames Lab for dispensing the travelling and local expenses of this visit,
and for providing this wonderful collaboration opportunity. Special thanks to C.Z. whose
intellectual guidance and hospitality as host make this visit a great experience for me.



1 Fermi Level and the Band Structure Energy

The band structure energy Fps, due to electron occupation, is the unique feature of TB
model. It corresponds to the single-(quasi)particle energy under self-consistent field in DFT:
the total energy functional indeed includes a term which is the summation of all quasi-particle
eigenvalues below the Fermi level. All other terms in the functional are local (EAM-like) ex-
cept for possible dipole-dipole Ewald summation. Were we to directly model (parameterize)
the effect of the summation of occupied eigenvalues, as classical potentials try to do, it will
be rather difficult, as anyone who has dealt with matrices knows the tricky ways eigenvalues
can vary. Sometimes the change is not even smooth, such as in level crossing. Spontaneous
symmetry breaking may happen as in Jahn-Teller distortion. All these mean that it will
require a lot of parameters, and sometimes quite impossible, for classical potential to model
these strange effects. It will be easier to parameterize the matrix elements instead of the
eigenvalues because matrix elements vary much more regularly; and if we have the intuition
to tell roughly how the trend goes, we often get surprisingly good results.

In order to get Eps, we have to sample k-points in BZ of the periodic cell (although in MD
simulation often only I'-point is needed because we have a large supercell). The way we do
it here is regular meshing. If the system has certain symmetry (rotational part « of any
space-group operation {a|R}) then only sampling the irreducible BZ will be enough. For
discrete mesh there is the problem of weights because certain high symmetry k-point should
have smaller weight.

A set of programs to automatically identify group symmetry ? and generate corresponding
k-points in the irreducible BZ are stored in “/farm2/liju/TB/Lisa/kpts.dir/”. The ready to
use k-point files are stored in “/farm2/liju/TB/Fitband/Kpts/”, where the four column are
(ks, ky, k.) in terms of m/A (A is the characteristic length such as lattice constant in cubic
structures or the equilateral triangle edge of the basal plane in hexagonal structure) and the
weight of that k-point.

We shall collect all the eigenvalues of those k-points (K of them and the cell has N atoms)
{&},1 = 1.ANK. Under Gaussian broadening with linewidth 4, let us define continuous

density of states
ANK 1 (6 o ei)Q

ple) = (4ANK) Z\/;(SGXP — 5 )

/+OO ple)de =1

— 00

such that

The Fermi level e is defined to be where

2The idea seems to be first extending the structure in three dimensions, and then look for possible atom
to atom mappings (finite number of them) which conserves norm.



for 4-4 semiconductors. LHS can be explicitly written as

Pler) = (SNK)™ :[1 n erf(ﬁF\/;;“')]

where the error function is defined as

erf(x / exp(—n~)dn
\/_

and ranging from -1 to 1 as x goes from —oo to +oc.

Theoretically, solving this nonlinear equation with non-decreasing P(¢) calls for the use of
Newton’s method (which has quadratic convergence) because the derivative of P(¢) is simply

P'(e) = p(¢)

The problem is that it may (often) occur that p(e) is very very small and P(¢) has a stair-like
behaviour. We can combine the more stable “partition” algorithm with Newton’s method to
produce a fast yet robust routine: we shall first bracket ¢r between two ¢;’s (called ¢;, and
em, respectively). If a Newton’s search exceeds either brackets we will suggest the new guess
to be (e, + €m)/2, and we shall always update ¢, and eg.

After er is located, we can calculate Fps. For consistency we should stick to the same
continuous p(e). Thus,

Egs = 8N-/EF ep(e€)de

= 8N {—52,0(6F) + (8NK)™ 4§f e[l + erf(£ NeT; Z')]} (1)
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2 Coulomb Interactions

There are a lot of subtleties involving Coulomb interaction which even today I do not fully
understand. One reason is that we have to simulate an infinite system (well, ~ 10** atoms
with complicated boundaries) with a small cell (~ 10 atoms), most often under PBC. The
prodecure which relates simulation results to real world is often overlooked, thus leading
to wrong or irrelevant conclusions. The rationale for using PBC is because in the limit
of stacking infinitely many replicas of the small cell, the surface to volume ratio of the
entire system decreases, which usually means that the exact condition of the surface and
the “surface energy” will become relatively less important and we can only account for the
bulk. Not so for Coulomb interactions, where macroscopic electric field might be set up
throughout the bulk depending on surface conditions, which induces total energy change on

the order of volume, not (volume)??. In terms of mathematics, Coulomb interactions are



conditionally convergent, while short ranged interactions such as the Lennard Jones potential
are absolutely convergent. This is understood as follows: consider stacking identical copies
of small cell of ions (with total charge summed to zero) in empty space (vaccum). The ions
interact with each other through ¢;q;/r;;. At any specific stage of the stacking the system
is finite, and we can sum over all the interactions to get the total energy, and then divide
by the number of cells to get the average energy, or energy per cell. Was the interaction to
be short-ranged such as the Lennard Jones potential, this average energy would not depend
on the ways of stacking as long as the span in any direction goes to infinity, i.e., it wouldn’t
matter if we stacks the cells as a big cube, a big sphere (roughly) or a big ellipsoid (roughly).
But with Coulomb interactions the three stacking configurations lead to three different limits
of energy per cell.

What is the case in nature? does a crystal have different energies depending on its geometrical
shape? maybe, but we should keep in mind that the actual crystal, even if it doesn’t have
internal defects which disrupt the periodicity, will have much more complicated surface
conditions by abrasion and chemisorption. It is not the perfectly stacked small cells at all.

The computational aspect of this is that if we indeed carry out the summation in the stacking
experiment, its convergence is very slow. That was the reason Ewald summation technique
was invented. The physical interpretation of Ewald summation® is that we screen each
ion by a Gaussian charged cloud of the opposite sign: because of the screening the real
space summation converges much faster. The extra interactions can be accounted for by
transforming into a reciprocal space summation, which also has fast convergence. De Leeuw,
Perram and Smith proved in 1980* that the original Ewald summation formula corresponds
to stacking infinitely many replicas of the cell in a nearly-spherical manner, with conductive
medium outside (€t = 00). Thus surface charge distribution is neutralized and there is no
static uniform macroscopic electric field. It is the only self-consistent setup for both static

and MD calculations using PBC.

For formulaes to calculate the total energy, force and stress tensor, see “/farm2/liju/Ewald/
Doc/moldy.ps”. However it is strongly believed that there is a typo in Eqn (2.19), (2.20) and
(2.24), where a factor of 2 is missing and k > 0 should be k # 0 in the 2nd (the reciprocal
summation) term, unless the author meant to utilize the inversion symmetry of the k-points
and only sum over half of them.

A lattice wave is an issue decidedly different from the static calculations using PBC. None
of the conditional convergence problem is present as long as 1/k is much smaller than the
sample size, which would not be defined anyway by then. With that constraint but as
k — 0, another signature arises: LO-TO splitting . For short ranged interactions, when
1/k >> the interaction range, one atom can not distinguish between longitudinal (variation

3see Computer Simulation of Liquids by M. P. Allen and D. J. Tildesley, Clarendon, New York, (1987).

4S. W. de Leeuw, J. W. Perram and E. R. Smith, Proc. Roy. Soc. Lond. A, 373, 27 (1980)

®see pg 218, Electronic Structure and the Properties of Solids by W. A. Harrison, Dover, New York (1989)
for a lucid explanation



of distortion parallel to the distortion) or transverse (variation of distortion perpendicular
to the distortion) modes. It is only concerned with the local distortion scenario and thus the
restoration forces and consequently the eigen-frequencies are the same for LLO and TO. Not
so for Coulomb interactions: the lattice mode creates a polarization field P exp(i(k-r—wt))®.
A charge density wave could be induced by virtue of p(r) = —V - P(r), depending on k- P is
zero or not. The charge density wave in turn induces a macroscopic electric field” with finite
wavelength, and alters the restoration force on the LO mode. This is the reason for LO-TO
splitting.

The form of the force constant matrix due to Coulomb interactions in a rigid-ion model
is given in pg 209, Theory of Lattice Dynamics in the Harmonic Approximation by A. A.
Maradudin, E. W. Montroll and G. H. Weiss, Solid State Physics Supplement 3, Academic
Press, New York (1971). Our macroscopic electrostatics argument in the above paragraph
has been rigorously confirmed by lattice summation calculations using the Ewald method in
k — 0 limit.

A high precision, easy-to-use routine (/farm2/liju/Ewald/ewald.c) to do the Ewald sum-
mation was developed. An example driver program (./driver.f) was also given, where we
calculated the Madelung constant for several structures, all of which agrees with known
results (pg 228, Maradudin) to the last digit. For compilation details see ./Makefile, or type

% make help

The make utility is used to specify machine dependencies and to avoid repetitious compila-
tions. To compile, type

% setenv SYS ‘uname‘; make

To run, type

% make run

A parameter a is needed to specify the relative importance between real and reciprocal
space summations. The bigger the « is, the faster (slower) the convergence of real (recip-
rocal) space summations. Depending on the rate of convergence, cutoffs need to be chosen
for both summations. A formula was given by D. Fincham, Molecular Simulation 13 1-9

SNote that although k£ — 0, ¢’®* can not be treated as 1 because r varies on the range of sample size.

“This electric field is actuated by polarization density caused by atomic displacements, but once it becomes
established the electrons are further relaxed. So the actual forces on atoms are proportional to the screened
electric field, scaled by the electron dielectric constant 1/€gjectron(w = 0). Here w = 0 is with respect to the
electrons.



(1994) to minimize the computation time for a given numerical accuracy (total time has
N?/? scaling). However, I found that to achieve the claimed accuracy for certain types of
quantities, additional coefficients need to be multiplied in front. They can be specified at
compilation time by setting flags _ALPHA, RCUT or - KCUT to desired ratios. If not,
default will be used which usually guarantees satisfactory accuracy. You can also chose to
save computation time sometime by defining TABULATE_SIN and “TABULATE_ERFC to

tabulate the sin/cos and error functions.

Because the method is complicated, the code can not be considered bug free yet. However
it did pass several sanity checks. The Madelung constant calculations confirm the potential
energy summation is correct; A mini-MD program (./driver2.c) was written to test the force
calculations: the total energy is conserved to the 7th digit as the potential energy varies to
the 2nd digit; A special theorem was used to test the stress calculation: because V(r) o< 1/r,
there must be V/Q = 3% | 7;; The dynamical matrix calculation and the diagonalization
subroutine in k-space was tested in two ways: first the LO-TO splitting formula was verified®;
the second test is the so called Blackman’s sum rule (pg 228, Maradudin), as 3-; w?(k) = 0
because 1/r potential is harmonic.

We now come to the question of how to account for the Coulomb interactions in our TB
model. From the physical picture of LCAQ, the first thing we calculate is the partial charge
Z* (charge transfer) on each atomic site by summing over occupied states. This leads to
Z* & 1.7 for zero pressure 3C-SiC using our current parameters. In the limit of infinite
lattice constant, Z* will goes to 2 with our model because Si p-level is the highest, so
occupied orbitals will be C(2s*2p*) and Si(3s?), which means that the big volume limit of
the total energy curve for SiC is Si**/C?~, not neutral Si/C. This would not happen in
nature, as the first and second ionization energy of Si are 786.5 kJ/mol and 1577.1 kJ/mol
respectively, while the (first) electron affinity energy is only 121.9 kJ/mol for C?. It is not
clear to me what would happen in LDA calculations: theoretically as long as the HOMO of
isolated Si and C are not equal (in fact they are not, for atoms), there will be charge transfer.
Does this mean that there will be fractional charge transfer? Reconsidering our TB model,
it seems that in order to avoid the (in reality) incredibly high energy Si**/C*~ state would
require the u-term in self-energy expression, to set up a negative feedback mechanism, as in

LDA.

When atoms move, there will be another problem: dynamic charge transfer (see pg 219,
Harrison). The so-called transverse charge ek is different from Z*, linked by relation (9-24)
in Harrison (of course the formula is not exact but from his simple TB model). We see
that the long range effect (change of forces on other atoms) of infinitesimal charge transfer
occuring in a finite region, due to the infinitesimal displacement of one atom, is equivalent to
that of the displacement itself, both by creating a small dipole upon the original structure.
For a tetrahedral system or systems with high symmetry, that dipole created by dynamic

8Because we are using a rigid-ion model, the electronic dielectric consant in (9-22) of Harrison is 1.
9This information can be obtained from http://www.shef.ac.uk/uni/academic/A-C/chem/web-elements/,
along with other properties.



charge transfer must also be in the direction of the displacement, thus defining an effective
charge e} is entirely legal.

Formally, the polarization density of k — 0 phonon can be written as

P(r) = &(u — ug)ei(k'r_‘”kt)/ﬂ

= eru (2)

where we use u to denote the lattice displacement coordinate. Everything could be explained
by a simple Hamiltonian model for the system

1
H =

_ Z(P—e}u)Z—E-P (3)

where E is taken to be a constant electric field'®, and y is the electron dielectric susceptibility.
P is used to denote the collective electron behavior, it is always relaxed first. We see that
when E is zero, H takes minimum at P = €5u, and the minima is always 0 (no force constant
contribution to u). When u is fixed at 0, the minimum happens at P = yE, conforming to
the definition of electron dielectric susceptibility.

The situation for phonon is a little different. E now depends on P itself, and on k. If k is
perpendicular to P, E = 0; if parallel then E = —47P. Also because it is self-interaction,
the second term of (3) should be divided by 2. Thus,

1
= o

H (P — e*Tu)2 +27P - P (4)

For a given u, the minimum happens at

and the minima is by then

contributing to the force constant in u that splits LO-TO modes.

Returning to the TB model, we want to construct something which can quantitatively re-
produce the LO-TO splitting. If we use the simplest rigid-ion model with constant point
charges on atoms, like in some classical potential for H;O and Si0,, that charge would have
to be

q=er/Ve

101 electrostatics E denotes the actual field, V - E = 4mp,; by definition V - P = —pp, where pp is the
induced or polarization charge density; thus V- (D = E+47P) = 4mp; where p; is the true or external charge,
which activate the field. Susceptibility is defined by P = yE; dielectric constant is defined by D = ¢E; thus
e=1+44my.




in order to correctly reproduce the splitting. If we take the experimental values'! for 3C-SiC
in: e =2.57, ¢ = 6.7, we get ¢ = 1.0. However, in general both €3 and € are environmental
dependent and sometimes directional dependent. We can not get a transferable TBMD
potential model using the rigid-ion approach.

On the other hand if we want a more basic model, we have to deal directly with the electron
dielectric constant e. We can proceed by following the procedure in calculating the electron
thermal conductivity'?, which perhaps involves matrix elements of the type <¢f|r|¢f} By
adding some empiricism we can expect a reasonable model for e. Even by itself this work
will be interesting and useful.

The total energy will then include the term:

VAN
R i o)
i>j i
where
7P =77+ Ai(E) (6)
J
such that
e—1
Y riiAj(E) = xE = i E

(5) corresponds to the Hartree term in the total energy functional of DFT. The first term of
(6) is the partial charge on site 7 when there is no E, setting up a reference; the second term
corresponds to the polarization charge transfer if there is E. This way we can avoid E(r)
directly entering the band structure part of the calculation (no self-consistent iteration),
which in essence is doing a perturbation theory. E(r) can be obtained by, for instance,
averaging over the electric field inside the Wigner-Seitz polyhedra around each atom.

In the LCAO picture, no matter how distorted the local orbital might become (for instance
due to the renormalization from the overlap matrix S), its center should be considered to
be situated on the atomic site always. If so, the polarization density or the dipole moment
per cell is exactly represented by 3, ZNZ»*I‘Z', in going from the charge density picture (LDA) to
TB. Thus, the long ranged part of the Hartree interaction is in fact equal to that of a dipole
lattice, other terms are short-ranged which can be absorbed into E,,. The catch is that the
dipole moment is dependent on both atomic positions (accounted for by term 1 in (6)), and
possible electric field E (term 2).

In a phonon frequency calculation, this formula (5) will give the correct LO-TO splitting,
because E(r) is just the coarse-grained effect of many lattice charges (dipoles) combined. As

1pg 220 and 114 of Harrison.
12 Relationship between structure and conductivity in liquid carbon, J. R. Morris, C. Z. Wang and K. M.
Ho, Phys. Rev. B 52, 4138 (1995).



we mentioned before, a straight forward lattice sum calculation'® agrees with macroscopic
electrostatics arguments in the k — 0 limit.

It is worth mentioning that since (5) is not a rigid-ion model, the program ./ewald.c can
not account for all the terms that is occurring in force, stress and Hessian expressions. In
general if we write

E.e=FE.(.,@m,Gny ey Xmy Xn, )

it is sufficient only if {g,} doesn’t depend on x,’s. There is one extra term entering the
first derivative and two extra terms entering the second derivative and unfortunately they
are both long ranged. In the k — 0 limit the extra effect is summarized by the screening
constant e.

The consistency of this approach can be examined by doing MD in a fairly large, but PBC,
supercell. The allowed phonon modes are the discrete samplings of the continuous band with
k being multiples of 1/L. So if we integrate E(r) ~ e’*T over the supercell, we get zero, in
accordance with the claim that the super-supercell is surrounded by conductive medium and
there is no uniform macroscopic electric field. However if we average E over volumes with
size around that of a primitive cell, then we would observe the ¢’** behavior if, of course,

the displacements in the supercell are LO.

3 Simulated Annealing and the Integration of Band
Structure Optimization

There are plenty of public domain optimization codes on the web!*. Adaptive simulated
annealing (ASA)', developed by Lester Ingber, seems to be the most up to date. I have
ported the code to our IBM RS6000 platform (/farm2/liju/Asa/), made it callable as a
subroutine by changing MY _TEMPLATE in asa_user.h, and it works fine. Look at ./mine.c
to see how it is called to minimize a 5-variable parabola. The code (user.c/cost_function())
looks for an error function named fe which takes in a double precision array guess and returns
the error in double precision. The interfaces conform to Fortran calling conventions. Because
some Fortran compilers like zlf on IBM RS6000 do not recognize front underline convention
for function and variable names in both compiling and linking, a special macro realname
is used in C programs like ./mine.c to conform with the Fortran compiler of that machine.
Type “make help” or look at ./Makefile for details.

The power of the code has been compromised to simplify its usage, with most of the in-
trinsic parameters taking default values. Many options could be read in at run time from

3Chap. VI, Theory of Lattice Dynamics in the Harmonic Approzimation by A. A. Maradudin, E. W.
Montroll and G. H. Weiss, Solid State Physics Supplement 3, Academic Press, New York (1971).

14Visit http://tonic.physics.sunysb.edu/docs/num_meth.html for a list, and other numerical softwares.

15Visit http://www.ingber.com/ for a free copy of the code and paper reprints.

10



“asa_opt”, although this choice was nullified currently by setting OPTIONS_FILE_DATA in
“ Jasa_user.h” to be FALSE. ASA can do a lot more, for instance, to do constraint mini-
mization only requires setting *cost_flag in user.c/cost_function() to be FALSE whenever the
parameters take impermissible values. Read /farm2/liju/Asa/Doc/README.ps for details.

Currently the annealing process is controlled by a single parameter which I call annea_rate
(default=1.0), which is the “Temperature_Ratio_Scale” in the original ASA program scaled
by 107" (the default value). The bigger it is, the faster the system cools down, and the
bigger the danger of being trapped in a local minima.

There are two output files from ASA: usr.out which contains the final results, and asa.out
which shows the list of current best at various stages of the cooling.

A unified band structure optimization program (/farm2/liju/TB/Fitband/) was developed,
which in the end does all the necessary property calculations using optimized parameters,
such as band plot, evaluating er, Fps, 7, and deducing the repulsive term from LDA

K]
database. The source codes are

o fithand.fh: all the common variables and intrinsic parameters of the code.

o fitband.F: the main program, which includes 1/0O; structure initialization; interface
to ASA or MINA (fe); construction of the overlap matrix (overlap); and property
calculations (wrapup). This part is most frequently altered.

e cnergetics. F: diagonalizing the overlap matrix in k-space (diag_k); calculating the Fermi
level, Kps and 77 (sea, calc_ebs); interface to Ewald summation routine to calculate the
electrostatic energy (calc_ec) (ewald.(SYS).o need to be in the directory — source codes
in /farm2/liju/Ewald/); and deducing the repulsive energy term from LDA database
(deduce_erep).

o mina.F: the MINA optimizer. To use it choose OPTIMIZER in con to be 1. Otherwise
ASA is used — asa.(SYS).o and user.(SYS).o must be in the current directory, the
source codes are in /farm2/liju/Asa/.

o Makefile: Machine dependencies and shorthands. Type

— ' make help
for help.

— % setenv SYS ‘uname‘; make
to compile.
— % make run

to run (input file is con).

— 7 make longrun &

to submit a long job. Screen output will be saved to file output.
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— ' make kill
to kill the process.

— % make clean

to remove the .o and .f files, such that next time everything will be re-compiled.
Use when you are not sure that the Makefile dependencies are correct and want
to watch the entire compilation.

Machine dependencies include special names for compilers on IBM RS6000'¢, and different
library environments. For instance, the subroutine name for the diagonalization of Hermitian
matrix is zhpev in both essl (IBM RS6000) and LAPACK (DEC-alpha), but the arguments
are different. To accommodate such variations to make the code as transferable as possible,
Makefile is presented and the fortran programs are written with suffix .F, meaning that
there could be epp directives in the source, such as #include, #define and #ifdef. Before
compilation, .F file is first pre-processed by ¢pp to be converted into a .f file, like

% /1ib/cpp -P -D_$(SYS) fitband.F > fitband.$(SYS).f

where on IBM RS6000 the environmetal variable SYS should be set to AIX (=‘uname’),
and 1t creates the real fortran source program “fitband.AIX.f”, customized for this machine,
which is subsequently fed into the fortran compiler!”.

The TB bands will be stored in *.band after execution. Band structure plot is detailed in
report I, where I use Matlab script to do the graphs. A more refined, dialog-driven version
(/farm2/liju/TB/Fitband/band.m) is written where the LDA results (/farm2/liju/TB/ Fit-
band/LDA/*.LDA.band) are plotted on the same graph for comparison (both set zero-level
to be the lowest eigenvalue of I'-point). The way to use band.m on Vincent (because the
IBM’s do not have Matlab) is to copy *.m, *.band files and the LDA/ directory to the cur-
rent machine, type “% mat” (csh script at ~/liju.dir/Shell/mat) and then at Matlab prompt
type “)) band”.

The LDA total energy is stored in ./LDA/Coh_LDA_Raw/ and ./LDA/Coh_LLDA_Fitted/.
The first directory stores the raw data points from LDA calculations (/farm2/1iju/SiC/) and
the second one stores the smooth curves fitted to universal binding model'®. Because raw
data points usually contain some noise, here we use results from ./LDA/Coh_LLDA _Fitted/.
The .coh.original files contain data for a pair of Si-C, the left column being the volume per
pair (in a.u.?), the right column being the total energy per pair (in Rydberg)'?. convert.m

16Many of the softwares and libraries only exist on ssibm9.ssp.ameslab.gov, like zlf, zlc, essl, zmol and
ghostuview.

1"Most Fortran compilers nowadays can directly handle .F files, but not zlf. Besides it might be desirable
to have the .f files on hand for error checking.

18In a sense they are the best fits which agree with experiments, because usually the results depend
sensitively on the range of fitting. See /farm2/liju/TB/liju.dir/SiC.m.

191 a.u. = Bohr radius = 0.529177249 angstrom; 1 Rydberg = 13.605826 eV.

12



sorts the .coh.original file according to volume, convert the data to angstrom and eV, and
stored them in .coh file: the first column of the .coh file are the characteristic lengths (lattice
constants for cubic systems and basal plane lattice for hexagonal systems) of the structure,
the second column are the volumns per atom and the third column are the total energy per
atom. The .coh files are what is directly used by our program.

In order for the code to be able to deduce the “correct” repulsive term, LDA total energy for
that volume must be in the database. If not then an error message “FError (deduce_Erep):

the piece AA=%* is nol found in LDA database LDA/Coh_LDA_Fitted/*” will appear. This

feature can be easily changed at later stages.

The major output of Fitband are the .out files, each for different structure, which are writ-
ten at the end of optimization (if MAXITER is set to 0 in con, then property calculation
immediately starts using the current parameter set in con). The meaning for each column
in the .out files are, sequentially,

1. characteristic length (A).

2. volume per atom (AB)

3. Fermi level (eV).

4. FEps per atom (eV).

5. E¢ per atom (eV).

6. Frep per atom (eV), deduced from LDA database.

7.4—771=1..N.

()

The .out files should be directly included in the con input file of Fitrep, for the next stage
of optimization.

4 Total Energy in a Unified Model

For pure element potential models, the zero-point is not important. Suppose we are only
interested in a finite volume range of the various condensed phases, we can even neglect what
is happening at the infinite volume limit and let the zero-point be a floating constant that
minimizes the error in the volume region of interest?°. It is not so for a unified multi-element
model: using the same potential we should be able to get a total energy curve for pure C, a

20In fact C.Z. has proposed a scheme to give the correct limit, by smoothly distorting the embedding
function of Ey.p at small Zj bij.
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total energy curve for pure Si and a total energy curve for SiC (let’s say all of them are in the
diamond structure). The difference of the last minima to the average of first two should be
6.34 eV, the definition of cohesive energy. By inheriting the parameters for cohesive energy
in both pure Si and C potentials, and only fit the new parameters in various SiC phases
(with a floating zero-point) without referencing to the pure Si or C curves, can we hope to
get this difference right? It seems unlikely that we will get it exactly correct the first time,
and that value becomes a prediction.

Currently the following model is being used:

Eiotal = EBS‘|‘E ‘|'E (4 —Z1)AE(1)
i>7 Tij

+2_ S5 e+ 4

1€Si JESI J€EC
+2 o fo( 05+ CK Y6 C
1€C j€C JESI
—I_ Z fSl Z 2] C) (7)
gdiff 2

where fsi, fo, gb” St and qb are from pure Si and C models. The things to be fit are fg;_¢

Z]‘ ¢ (screened interaction strength) and parameter CK. CK is the

ratio of “charge density projection” from Si to C to that of from C to Si.

(order-4 polynomial),

K. M. Ho pointed out that in order for the model to be variational, we can not simply add a
term in Flota) which involves wave functions without making corresponding changes in band
structure calculations. If for instance

Etootal tootal(57 {|¢n>})

where S genericly denotes atomic positions and {|,,)} are the occupied electron wave func-
tions. Then there is

5Etotal
6(nl

by orthonormalization constraints of eigenstates. But if we are to add a long ranged Coulomb

H0|¢n> = 62|¢n>

term to the total energy functional (which apparently plays a role in k — 0 phonon of polar
semiconductors),

_ 1y Ene 07 )( S (65 110 %)

Tij

Etotal total ‘I’ Z

>] T'ij 1>

(8)

where a(3) denotes local orbitals, then

5Etotal o
]~ ol ¥ 2

(Z ) Z|¢a (¢7] ]|¢n>=6n|¢n> (9)

JF#

14



which simply means that the on-site elements of the electronic TB Hamiltonian must be
raised by the electrostatic potential due to charge accumulation on other sites?'. If previously
there has been

Etootal = Z<r¢n|7_[0|'¢n> + Erep(S) = Z 62 + Erep(S)

T

Now there is

VAV A
Etotal - Etootal + Z :
>; i
VAV A VAV A
= D (WalHolton) + Erep(S) + D = = ——
n i T sy T
YAYM
= Yt B9 =Y 2 (10)
n i>7 7]

Now we come to the question of how to calculate the Madelung (electrostatic) potential at
each atomic site:

(i) =3 2

ii

There is a simple relation if we know the electrostatic energy per cell (from ewald.c) and if

(11)

the atoms sit at equivalent positions. For instance in 3C-SiC, since we can think of each
atom as having half of the potential energy for every pair of interaction involving it, there is

1
energy per cell = §(Z§iEM(Si) + Z&EEM(C))

By symmetry there is Ea(Si) = —Fp(C) and Z& = —Z¢&, so Ear can be known from energy
per cell. But when the atoms do not sit at equivalent positions, such as in NiAs, there is no
direct link. We have to look into the derivations for Ewald summation to know the answer.

There is a consensus among us that Z* probably should take values below 1.0,%? instead of
the current 1.7; and probably it won’t change much from structure to structure. So instead
of doing a full-blown self-consistent optimization which might be expensive, perhaps we can
first assume Z* & 1, and let the shift

AEL(C) = AE,(Si) = w + Ex(S,C) — Ex(8S, Si)

where w is a constant to be optimized in the band structure optimization. Basic self-
consistency can be achieved by calculating Z* for 3C-SiC at zero pressure using 60 k-points,
and define its deviation from 1.0 to be part of the error function.

211t is in fact just the delocalized generalization of the on-site u-term, which should be iterated up to self-
consistency. Its long-ranged effect can not be absorbed into any short-ranged environmental dependent term,
which can never distinguish LO and TO. Just as the u-term effects can not be replaced by environmental
dependent AFE; in the infinite volume limit for SiC.

Zntegration of LDA charge density inside an atomic-volume sphere for CsCl gives 4 — 7 ~ 2.99 for Si,
and Si should have a larger radius.
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