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Order-N method to calculate the local density of states
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We present a rigorous and general method to extract the local density of statesr i(v) of a system from its
time response to a specified external perturbation. This method is order-N when the matrix is sparse. In a single
run it givesr i(v),r i(2v), . . . ,r i(nv), . . . concurrently, which enhances the total efficiency by two decades.
Application to a lattice-dynamics problem of 4096 SiC particles in a supercell with a dynamical matrix
generated from an appropriate interatomic potential shows excellent agreement with exact phonon-dispersion
calculations; the accelerated algorithm yields a full local density of states spectrum for each supercellk point
in 15 min on a desktop workstation. Results showing the effects of an antisite-pair defect are given for which
methods requiring lattice periodicity cannot be used.@S0163-1829~97!06932-4#
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In the current search forO(N) methods1,2 for analyzing
the energetics of condensed-matter systems, techniques
been proposed which involve either some kind of locali
tion ~truncation of interactions! or a statistical approach, o
both. The goal in all cases is to treat large systems (N atoms!
without performingO(N3) computations such as matrix d
agonalization. In this Brief Report we present a method
calculating the local density of states~LDOS! of a system
~which could be the tight-binding Hamiltonian in an ele
tronic structure problem or the dynamical matrix in latti
dynamics!, by exploiting a fundamental relation between t
LDOS and the time response of the system to a prescr
external perturbation. The method itself, for any given m
trix, does not involve any truncation or termination of inte
actions~although the computational cost will depend on t
sparseness of the given matrix!; and it is made demonstrabl
robust by introducing a combination of projection and filte
ing techniques.

Basic definitions of LDOS and DOS are, respectively,

r i~v!5(
n

d~v2vn!z^ i un& z2, ~1!

r~v!5(
n

d~v2vn!5(
i

r i~v!, ~2!

wherevn ,un& ’s are the eigenvalues and eigenkets of the s
tem, andi denotes local coordinate. They are the most i
portant characteristics in analyzing a large, aperiodic syst
For extensive motivations and applications, see Refs. 3
4.

Many existing methods3,4 obtain the LDOS by calculating
the Green’s function in real space,

G~z5v1 i«!5
1

z2H
5(

n

un&^nu
v1 i«2vn

, ~3!

r i~v!52
1

p
Im«→01Gii ~v1 i«!, ~4!

which in essence is to replace thed function of Eq.~1! by a
sharp Lorentzian«/p(x21«2). The resolvent matrix of Eq
560163-1829/97/56~7!/3524~4!/$10.00
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~3! can be efficiently evaluated3,5 for block-tridiagonal sys-
tems using iterative procedures in which convergence
monitored by going to an increasing number of interact
shells.

Physically, the Green’s function corresponds to the
sponse~‘‘displacement’’! of the system to an external pe
turbation~‘‘force’’ !. Consider the lattice-dynamics problem

ü~ t !52Du~ t !1f~ t !, ~5!

where u(t) are atomic displacements,f(t) are the external
forces~both being column vectors!, andD is the dynamical
matrix. Let f(t)5fe2 ivt, u(t)5ue2 ivt; then

u52
1

v22D
f52G~v2!f. ~6!

So Gii (v
2) corresponds to applying unit perturbation for

on atomi and measuring the displacement ofi . Thus one can
obtain Gii (v

2) by directly integrating6 Eq. ~5!. Because
G(v2) is closely related to the LDOS, perhaps one can
tain the LDOS from a similar experiment.

For a one-dimensional problem,

ü~ t !52v0
2u~ t !1d~ t !, u~ t !50 for t,0, ~7!

the solution is G(t)5u(t)v0
21sinv0t, where u(t) is the

Heaviside step function. Generalizing this to multidime
sional systems, one has

G~ t2t8!5(
n

sinvn~ t2t8!

vn
u~ t2t8!un&^nu. ~8!

Next, consider applying instead a sinusoidal perturbat
force with frequencyv on atomi after t50,

f i~ t !5sin~vt !u~ t !, f j Þ i~ t ![0. ~9!

Then,
3524 © 1997 The American Physical Society
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ui~ t !5(
n

u^ i un&u2E
0

tsinvn~ t2t8!

vn
sinvt8dt8

5(
n

u^ i un&u2

2vn
S sinvt1sinvnt

v1vn
2

sinvt2sinvnt

v2vn
D .

~10!

In the limit of larget the last term becomes

sinvt2sinvnt

v2vn
'2pd~v2vn!cos~vt !, ~11!

which can be regarded as the resonance response to the
turbation. We can project out its amplitude by multiplyin
ui(t) with cosvt, and integrate from 0 toT52kp/v, where
k is a positive integer, such that

E
0

T

sinvtcosvt dt[0. ~12!

From Eq.~10!, we then have

E
0

T

ui~ t !cosvt dt

5(
n

z^ i un& z2

2vn
S 1

v1vn
1

1

v2vn
D E

0

T

sinvntcosvt dt

5(
n

u^ i un&u2
2v sin2~vnT/2!

~v22vn
2!2

5(
n

22z^ i un& z2

v3~11vn /v!2

sin2@kp~12vn /v!#

~12vn /v!2
. ~13!

In view of the identity

lim
a→`

sin2ax

pax2
5d~x! ~14!

~which is also the representation ofd function in deriving
Fermi’s golden rule!, we obtain the fundamental connectio
underlying our method,

r i~v!52
2v2

p2
lim
k→`

1

kE0

2kp/v

ui~ t !cosvt dt. ~15!

Our approach should be clear by now. By numerica
integrating6 the equation of motion~5! subject to a pre-
scribed perturbation~9!, one obtainsui(t), which is then
integrated with cosvt up to nodesT52kp/v. The limit of
the integral at largek givesr i(v). Because at each time ste
we only need to multiplyD by a column vectoru(t) to
calculate the force, which in the case of local interactio
must be a sparse matrix, the method will be then stric
O(N). The method is also exact in the sense that in
absence of numerical error, we know exactly what is repl
ing thed function of Eq.~1! @see Eq.~13!# for each finitek.

The main computational cost of this method is inD•u
multiplication. Applying perturbations oni and calculating
the integral~15! cost very little. It turns out that one ca
er-

s
y
e
-

extract r i(v)’s at multiples of a certain base frequencya
from a single displacement trajectory calculation as follow
Consider the perturbation

f i~ t !5 (
m851

M

A~m8!sin~m8at !u~ t !, f j Þ i~ t ![0, ~16!

where$A(m)% are arbitrary constants. Referring to Eq.~10!
and invoking linear superposition, we obtain

ui~ t !5(
n

u^ i un&u2

2vn
(

m851

M

A~m8!S sinm8at1sinvnt

m8a1vn

2
sinm8at2sinvnt

m8a2vn
D . ~17!

If we let T52kp/a, a node of thebase frequency, and inte-
grateui(t) with a specific frequency channel cos(mat), such
that

E
0

T

sin~m8at !cos~mat !dt[0 for any m8, ~18!

one has, instead of Eq.~13!,

E
0

T

ui~ t !cos~mat !dt

5(
n

2 z^ i un& z2S (
m851

M
2A~m8!m8a

m82a22vn
2 D sin2~vnT/2!

m2a22vn
2

. ~19!

In the limit of large k, factoring out a common
(m2a22vn

2)21 from the bracket would lead to ad function
in the last term by Eq.~14!, and only them85m term sur-
vives. So in the end, just like Eq.~15!, we arrive at

r i~v5ma!52
2~ma!2

p2
lim
k→`

1

A~m!mk

3E
0

2kp/a

ui~ t !cos~mat !dt. ~20!

It can be shown that, at finitek, the linewidths of the
sharply peaked functions in Eq.~19! which replace thed
functions of Eq.~1! are uniform for allm:

Dv5
a

k
, ~21!

which means that the quality of convergence is the same
all channels in a calculation.

Equation ~5! differs in its explicit form from the usual
equation of motion solved in a molecular-dynamics simu
tion. Because of this, we can construct a high-precision in
gration scheme that allows a step size 103 times larger than
those of the conventional methods, while the cost of e
step only increases by five times~for the order-12 case!. The
method is a generalization of the Verlet algorithm6
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u~ t1Dt !1u~ t2Dt !52u~ t !1~Dt !2ü~ t !1
~Dt !4

12
u~4!~ t !

1
~Dt !6

360
u~6!~ t !1•••. ~22!

Becauseü(t)52D•u(t)1f(t), so

u~4!~ t !52D•ü~ t !1 f̈~ t !,

u~6!~ t !52D•u~4!~ t !1f~4!~ t !, ~23!

•••

are exact and can beevaluatedsuccessively with only the
initial knowledge ofu(t). Thus the trajectory can be inte
grated to arbitrarily high order, as in our case, us

$u(t),ü(t), . . . ,u(10)(t)%, to the 12th order. We can also nu
merically integrate Eq.~20! up to the same order of accurac
using integration by parts:

E
t

t1Dt

ui~ t8!cos~mat8!dt8

'Fui~ t8!sin~mat8!

ma
1

u̇i~ t8!cos~mat8!

~ma!2

2
üi~ t8!sin~mat8!

~ma!3
2

ui
~3!~ t8!cos~mat8!

~ma!4
1•••

2
ui

~10!~ t8!sin~mat8!

~ma!11
2

ui
~11!~ t8!cos~mat8!

~ma!12 GU
t

t1Dt

.

~24!

The odd-ordered derivatives can be determined from ev
ordered ones to the same accuracy through the Taylor ex
sion. Notice that in Eq.~24!, by stopping the series atui

(11) ,
it is equivalent to approximatingui(t8) in the range
(t,t1Dt) by a continuous 11th-order polynomial, so th
end-point derivatives should be entirely determined from
start-point ones.

In applying this method we found that the most efficie
way to calculate the full LDOS spectrum is to setk51, and
let a be the desired resolution@see Eq.~21!#. It is best in the
sense that allvn’s of the system shall be covered by the ma
peak of one channel or the other, and so minimum inform
tion is lost. On the other hand, settingk51 can induce in-
terference between nearby channels which is significant
tween m and m61, m62. Referring to Eq.~19!, let us
define

Nm,m8~v!5
sin2~pv!m8

~m22v2!~m822v2!
, ~25!

wherev5vn /a is the reduced eigenfrequency; for a giv
v its contribution to thek51 result of themth channel is
proportional to(m851

M Am8Nm,m8(v) @see Eq.~19!#, in which
only the AmNm,m(v) term is needed. All others are nois
functions that, though they give zero dri
@*0

1`Nm,m8(v)dv50 for m8Þm#, impair the resolution.
n-
n-

e

t

-

e-

However, we can choose an$Am% series such that all nois
functions withm82m being odd are canceled out, by noti
ing that Am can be complex butNm,m8(v) is always real
~‘‘time-reversal symmetry’’!. If we assignalternating ‘‘pari-
ties’’ to each channel by letting ImAm5(21)m(ReAm), and
correspondingly extract the final result after
@Re1(21)mIm# operation, it can be shown that the noi
influence is reduced to

Am22Nm,m22~v!1Am12Nm,m12~v!1••• ~26!

because neighboring channels always have different ‘‘p
ties.’’ Furthermore, there will be cancellations ifAm22 and
Am12 are of the same sign. Combining the above we arr
at the following amplitude series:

ReAm5~21!~m div 2!, i.e.,11221122,

ImAm5~21!m~ReAm!, i.e.,12211221. ~27!

There is another issue. We wantf i(t) @see Eq.~16!# to be
well behaved in time from the standpoint of numerical in
gration. Equation~27! does not satisfy this criterion becaus
at t5p/2a there will be a sharp peak inf i(t) which is pro-
portional toM , and with even higher derivatives. Such res
nances are due to the long-range order in$Am% irrespective
of its detailed repeat pattern. We eliminate this problem
noticing that the noise cancellation scheme of Eq.~26! de-
pends only onshort-range orderin $Am%. If we multiply
$Am% by a slowly varying ‘‘spin wave:’’

Bm5eifmAm , fm115fm1jmDu, ~28!

wherejm is a random number taking equally possible valu
61, andDu is a very small angle, then long-range order w
be destroyed whereas short-range order remains. We
then use$Bm% as the amplitude series, and later ‘‘decode
the mth channel result by multiplyinge2 ifm, before the
@Re1(21)mIm# operation.

The present algorithm is found to be generally robust
cept at very low frequencies, where the first few chann
usually diverge due to the accumulation of round-off err
We can avoid this problem by applying a rigid shift transfo
mation on the dynamical matrixD→D1vshift

2 I such that all
eigenfrequencies are outside the divergence region, and
the new matrix instead. In the end we transform back
r i(v).

The method proposed here can be used to calculate
LDOS of anypositive definiteHermitian matrix. For a gen-
eral Hermitian matrix such as the electronic tight-bindi
Hamiltonian, we can use the method after shifting the sp
trum to the positive axis. There is also an entirely para
construction using the Schro¨dinger equation as evolution dy
namics which does not require the matrix to be positive d
nite; this possibility will be explored in future work.

We have calculated the vibrational LDOS of Si and C
b-SiC ~zinc-blende structure! using the above method. As
test, we first considered the perfect crystal for which ex
phonon-dispersion results can be readily obtained. The
namical matrix is generated from an appropriate many-b
interatomic potential.7 Each atom has four nearest and
second-nearest neighbors, and so total of 51 nonvanis
entries on a column ofD. We have taken a 4096-particl
cubic supercell with periodic boundary conditions and ra
domly sampled 25k points in the simple cubic Brillouin
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zone of this supercell. For each of thesek points, we have
12 288 eigenvalues. Given that the spectrum ofb-SiC covers
0–35 THz (5vmax), we have on the average 350 eigenv
ues per THz. We choose the base frequency to be 0.125 T
and turn on all multiple channels up to 35 THz, wi
vshift52 THz, for which a crude estimate gives a relati
variance of (35030.125325)21/253% for each channel’s
result. The ‘‘spin-wave’’ encoding in Eq.~28! has
Du5p/10. The derivatives ofu(t) are given att501 ac-
cording to the analytic formula, and a step size
vmaxDt52p/3 is used to do the order-12 numerical integ
tion, which gives a satisfactory convergence. The crysta
equivalent in three directions, and so we only pickx. Figure
1 shows a comparison of the LDOS of Si and C. Plotted
smooth solid lines are results from exact phonon-dispers
calculations by diagonalizing 636 matrices in thek space of
the fcc unit cell, after randomly sampling 100 000k points.
Results obtained from our method are shown in circles. T
agreement is seen to be excellent, down to the very l
frequency region, with a sharp resolution of the band gap
critical points. The computational speed for this full LDO
spectrum calculation is 15 min per supercellk point on a
desktop DECa workstation, taking into account that we a

FIG. 1. LDOS of Si and C in a perfect crystal ofb-SiC: exact
phonon-dispersion results~solid lines! and the present metho
~circles!.
in,
-

-
z,

f
-
is

n
n

e
-
d

treating a huge matrix~12 288312 288! with 51 nonvanish-
ing entries on each column. The efficiency stems from
multichannel idea and the high-precision integration sche
Memory requirement is minimal. Also, the algorithm is s
simple that it can be easily vectorized or parallelized.

Figure 2 shows the result of switching a nearest-neigh
pair of Si and C in the above supercell, thus generating
antisite-pair defect. The configuration was then relaxed us
the conjugate gradient method. The LDOS is calculated
the switched Si atom in the direction of this bond@the ~111!
direction#. All parameters remain unchanged exce
vmax540 THz. The most conspicuous effect is the splitti
of the optical LDOS and the generation of two gap modes
23.2 and 25.9 THz.
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FIG. 2. LDOS of Si in the~111! direction after introduction of
an antisite-pair defect~dashed lines!. Also shown for comparison
are the perfect crystal results from exact phonon-dispersion ca
lations ~solid lines! and from the present method~dash-dotted
lines!.
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