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Order-N method to calculate the local density of states
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We present a rigorous and general method to extract the local density of g(at¢@sof a system from its
time response to a specified external perturbation. This method is Nradsen the matrix is sparse. In a single
run it givesp;(w),pi(2w), . .. pi(nw), ... concurrently, which enhances the total efficiency by two decades.
Application to a lattice-dynamics problem of 4096 SiC particles in a supercell with a dynamical matrix
generated from an appropriate interatomic potential shows excellent agreement with exact phonon-dispersion
calculations; the accelerated algorithm yields a full local density of states spectrum for each skpeoa=|
in 15 min on a desktop workstation. Results showing the effects of an antisite-pair defect are given for which
methods requiring lattice periodicity cannot be ud&0163-18207)06932-4

In the current search fa®(N) method$? for analyzing  (3) can be efficiently evaluatéd for block-tridiagonal sys-
the energetics of condensed-matter systems, techniques haeens using iterative procedures in which convergence is
been proposed which involve either some kind of localiza-monitored by going to an increasing number of interacting
tion (truncation of interactionsor a statistical approach, or shells.
both. The goal in all cases is to treat large systemaifoms Physically, the Green’s function corresponds to the re-
without performing®(N®) computations such as matrix di- sponse(“displacement”) of the system to an external per-
agonalization. In this Brief Report we present a method forturbation(“force” ). Consider the lattice-dynamics problem
calculating the local density of statésDOS) of a system
(which could be the tight-binding Hamiltonian in an elec- U(t) = — Du(t) +f(t) (5)
tronic structure problem or the dynamical matrix in lattice '

dynamicg, by exploiting a fundamental relation between the,, .o /(1) are atomic displacement&(t) are the external
LDOS and the time response of the system to a prescrib (0 P Y

. . X rces(both being column vectoysandD is the dynamical
external perturbation. The method itself, for any given ma- ( g ys y

. . ' L ; matrix. Letf(t)=fe "', u(t)=ue '“!; then
trix, does not involve any truncation or termination of inter-
actions(although the computational cost will depend on the
sparseness of the given majriand it is made demonstrably B 1 f— — G 6
robust by introducing a combination of projection and filter- u=-- D —G(e)f. ©®
ing techniques.
Basic definitions of LDOS and DOS are, respectively,

So G;;(w?) corresponds to applying unit perturbation force
on atomi and measuring the displacemeni oThus one can
pi(w)=> 8(w— wy)|(i[n)?, (1)  obtain Gii(w? by directly integratin§ Eq. (5). Because

n G(w?) is closely related to the LDOS, perhaps one can ob-
tain the LDOS from a similar experiment.

p(w):; 5(w_wn)22i pi(®), ) For a one-dimensional problem,

wherew,,|n)’s are the eigenvalues and eigenkets of the sys- U(t)=—wgu(t)+8(t), u(t)=0 for t<0, (7)
tem, andi denotes local coordinate. They are the most im-
portant characteristics in analyzing a large, aperiodic systenthe solution is G(t) = 6(t) w 'sinwgt, where 6(t) is the
For extensive motivations and applications, see Refs. 3 andeaviside step function. Generalizing this to multidimen-
4. sional systems, one has

Many existing methods' obtain the LDOS by calculating
the Green’s function in real space, Sinw,(t—t")

G(t—t')= 2—n9<t—t')ln><nl- (8)

G(z=wtie)= —2 EXE' : 3
no@TiET®n Next, consider applying instead a sinusoidal perturbation
1 force with frequencyw on atomi aftert=0,
pilw)==—Im,_o:Gji(w+ie), 4
fi()=sin(wt) O(t), f;.i(t)=0. 9
which in essence is to replace thdunction of Eq.(1) by a
sharp Lorentziars/ w(x2+ £2). The resolvent matrix of Eq. Then,
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ui(t)= Z (in)[?

sinwt’ dt’ from a single displacement trajectory calculation as follows.

f sinwy(t—t') extract p;(w)’'s at multiples of a certain base frequenay
Consider the perturbation

?[sinwt+sinwpt  sinwt—sinw,t

_ [l
=> \

T Zan  wten @ en (= 3 Am)sinm at)6(t),  f,(1)=0, (16
(10) m'=1
In the limit of larget the last term becomes where{A(m)} are arbitrary constants. Referring to Ef0)

and invoking linear superposition, we obtain
Sinwt — sinw,t

o= w, ~2mé(w=wy)coswl), (1) (i | > sinm’at+sinwnt
, Uit =2 E A(m')| ———-
which can be regarded as the resonance response to the per- m a+w,
turbation. We can project out its amplitude by multiplying . )
u;(t) with coswt, and integrate from 0 t@ = 2k7/w, where _ Sinm”at—sinw,t 17
k is a positive integer, such that m a— o, ‘
T _ If we let T=2kmw/ @, a node of théase frequengyand inte-
fo sinwtcosvt dt=0. (12 grateu;(t) with a specific frequency channel cogft), such

that
From Eq.(10), we then have

T
T . , _ ,

f u;(t)coswt dt fo sin(m’ at)cogmat)dt=0 forany m’, (18)
0

one has, instead of E@13),

T
f Sinw,tcoswt dt

.
(t t)dt

, 20 SiN(0,T/2) JO it costmat)

—2 I(i[n)| oo

2
;)

M
. 2A(M )M’ a | sirf(w,T/2)
=2 —[ilmP 2 . > (19
2 . n ~1 m'2a?— 0 | m?a’—
=2|(i|m?  sir[k7(1— w,/w)] n
=2 — : T (1 . |
N o'(ltw,/w) (1-wq/w) In the limit of large k, factoring out a common
(m?a?— w?)~* from the bracket would lead to & function

in the last term by Eq(14), and only them’=m term sur-

In view of the identity

sirfax vives. So in the end, just like E@15), we arrive at
lim 5= 8(X) (14
aswm TaX 2(ma)? 1
(which is also the representation éffunction in deriving pil@=ma)=- T2 :[Tl A(m)ymk

Fermi’s golden rulg we obtain the fundamental connection
underlying our method, 2kala

ying xf u(Hcogmat)dt.  (20)

2 w2 1 [ 2kalw 0

pi(w)=——=Iim —f u;(t)coswt dt. (15
0

77'2 k— oo k

It can be shown that, at finitk, the linewidths of the
sharply peaked functions in E¢19) which replace thes
Our approach should be clear by now. By numericallyfunctions of Eq.(1) are uniform for allm:
integrating the equation of motion(5) subject to a pre-
scribed perturbation9), one obtainsu;(t), which is then
integrated with cost up to nodesT =2k/w. The limit of
the integral at larg& givesp;(w). Because at each time step
we only need to multiplyD by a column vectoru(t) to  which means that the quality of convergence is the same for
calculate the force, which in the case of local interactionsall channels in a calculation.
must be a sparse matrix, the method will be then strictly Equation(5) differs in its explicit form from the usual
O(N). The method is also exact in the sense that in theequation of motion solved in a molecular-dynamics simula-
absence of numerical error, we know exactly what is replaction. Because of this, we can construct a high-precision inte-
ing the & function of Eq.(1) [see Eq{(13)] for each finitek. gration scheme that allows a step siz€ fithes larger than
The main computational cost of this method isDAnu  those of the conventional methods, while the cost of each
multiplication. Applying perturbations oh and calculating step only increases by five timéer the order-12 cageThe
the integral(15) cost very little. It turns out that one can method is a generalization of the Verlet algorithm

a
Aw=

L (21)
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. (At)* However, we can choose d#.,} series such that all noise
u(t+At)+u(t—At)=2u(t) + (At)2u(t) + TUM)(U functions withm’ —m being odd are canceled out, by notic-
ing that A, can be complex buNy (w) is always real
(At)® (“time-reversal symmetry). If we assignalternating “pari-
* 360 u @)+ (22)  ties” to each channel by letting IA,,= (—1)™(ReA,), and
correspondingly  extract the final result after a
Becausal(t)= —D-u(t) +f(t), so [Re+(—1)™Im] operation, it can be shown that the noise
influence is reduced to
YR .
u®(t)=—D-ut)+(1), Am—2Nmm—2(®) + Api Ny mia(@) +--- (26)
u®(t)=—D-u?(t)+f4 (1), (23)  because neighboring channels always have different “pari-

ties.” Furthermore, there will be cancellationsAf,_, and
A+ - are of the same sign. Combining the above we arrive

] ) at the following amplitude series:
are exact and can bevaluatedsuccessively with only the

initial knowledge ofu(t). Thus the trajectory can be inte- ReA,=(—1)MW2  je ++——++——,
grated to arbitrarily high order, as in our case, using IMA. = (= 1)™(ReA), ie.t——++——+. (27)

{u(t),u(t), ... ,u0t)}, to the 12th order. We can also nu-
merically integrate Eq(20) up to the same order of accuracy  There is another issue. We wah(t) [see Eq(16)] to be
using integration by parts: well behaved in time from the standpoint of numerical inte-
gration. Equation(27) does not satisfy this criterion because
att= /2« there will be a sharp peak ifj(t) which is pro-
portional toM, and with even higher derivatives. Such reso-
nances are due to the long-range ordefAn,} irrespective

t+At
j ui(t"ycogmat’)dt’
t

ui(t")sin(mat’)  Ui(t’)cogmat’) of its detailed repeat pattern. We eliminate this problem by
~ — + > noticing that the noise cancellation scheme of E2f) de-
@ (Mma) pends only onshort-range orderin {A,}. If we multiply
. A} by a slowly varying “spin wave:”
ui(t)sinmat’)  u®(t")cogmat’) {Am} by y_ rying “sp
h - + Bn=¢ d)mAmv Dmi1= Pmt EmA D, (28)

(ma)® (ma)*
whereé,, is a random number taking equally possible values
+1, andA 6 is a very small angle, then long-range order will
be destroyed whereas short-range order remains. We will
t then use{B,} as the amplitude series, and later “decode”
(24)  the mth channel result by multiplyinge~'¢m, before the
e+ (—1)"Im] operation.
The present algorithm is found to be generally robust ex-

u9t)sinmat’)  utP(t")cogmat’) ||

(ma)ll (ma)12

o . R
The odd-ordered derivatives can be determined from everL
ordered ones to the same accuracy through the Taylor eXp‘"‘@épt at very low frequencies, where the first few channels

. . . . . 11) ) R
sion. Notice that in Eq(24), by sto_ppmglthe_ series af'", usually diverge due to the accumulation of round-off error.
it is equivalent to approximatingui(t) in the range e can avoid this problem by applying a rigid shift transfor-
(t,t+At) by a continuous 1lth-order polynomial, S0 the nation on the dynamical matri®— D+ w2, such that all

end-point derivatives should be entirely determined from theeigenfrequencies are outside the divergence region, and use

start-point ones. . the new matrix instead. In the end we transform back to
In applying this method we found that the most eff|C|entp_(w)
(o).

way to calculate the full LDOS spectrum is to $et 1, and The method proposed here can be used to calculate the
let o be the desired resolutidisee Eq(21)]. It is best in the _ LDOS of anypositive definiteHermitian matrix. For a gen-
sense that alb,’s of the system shall be covered by the maing 5 Hermitian matrix such as the electronic tight-binding
peak of one channel or the other, and so minimum informag, 3 mijtonian, we can use the method after shifting the spec-
tion is lost. On the other hand, settilkg=1 can induce in- ¢ 1o the positive axis. There is also an entirely parallel
terference between nearby chann_els which is significant b&sgnstruction using the Schaimger equation as evolution dy-
tweenm and m*+1, m+2. Referring to Eq.(19), let us  pamics which does not require the matrix to be positive defi-
define nite; this possibility will be explored in future work.
] , We have calculated the vibrational LDOS of Si and C in

_ sif(mw)m 25) B-SiC (zinc-blende structupeusing the above method. As a

(m2—w2)(m'2_w2)’ test, we first considered the perfect crystal for which exact
) ) . phonon-dispersion results can be readily obtained. The dy-
wherew=w,/a is the reduced eigenfrequency; for a given namijcal matrix is generated from an appropriate many-body
w Its Contr'bUt'O{A‘ to thek=1 result of themth channel is  interatomic potential. Each atom has four nearest and 12
proportional toZ ., _;Ap N v (@) [see Eq(19)], in which  second-nearest neighbors, and so total of 51 nonvanishing
only the ApNy, m(w) term is needed. All others are noise entries on a column ob. We have taken a 4096-particle
functions  that, though they give zero drift cubic supercell with periodic boundary conditions and ran-
[[o"Nmm(w)do=0 for m'#m], impair the resolution. domly sampled 2% points in the simple cubic Brillouin

Nm'ml(w
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LDOS of Si and C in perfect SiC (Lines: exact; Circles: our method) Change of Si LDOS in (111) direction after putting in an antisite-pair defect

| solid: perfect crystal (exact) i
dash-dot: perfect crystal (our method) "
| dash: defect (our method}
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FIG. 1. LDOS of Si and C in a perfect crystal BESiC: exact FIG. 2. LDOS of Si in the(111) direction after introduction of

phonon-dispersion resultésolid lines and the present method &N antisite-pair defectdashed lines Also shown for comparison
(circles. are the perfect crystal results from exact phonon-dispersion calcu-

lations (solid lines and from the present metho@lash-dotted

zone of this supercell. For each of thdsgoints, we have lines).

12 288 eigenvalues. Given that the spectrung3iC covers

0-35 THz (= w,,), we have on the average 350 eigenval-f‘reaﬂng a huge matrixl2 288x 12 288 with 51 nonvanish-

g entries on each column. The efficiency stems from the
ues per THz. We choose the base frequency 10 be 0.125 TH%ultichannel idea and the high-precision integration scheme.

and turn on all multiple channels up to 35 THz, with M ) tis minimal. Also. the algorithm i
wgni=2 THz, for which a crude estimate gives a relative remory requirement 1S minimal. Aiso, the aigorithm 1S S0

variance of (350.125x 25)12=3% for each channel’s simple that it can be easily vectorized or parallelized.
result. The “spin.-wave” encoding in Eq.(28) has Figure 2 shows the result of switching a nearest-neighbor

A6=m/10. The derivatives ofi(t) are given att=0" ac- pair of Si and C in the above supercell, thus generating an
cording tb the analytic formula a?ld a step size Ofantisite-pair defect. The configuration was then relaxed using

o AM=2713 is used to do the order-12 numerical integra_the conjugate gradient method. The LDOS is calculated for

tion, which gives a satisfactory convergence. The crystal isthe switched Si atom in the direction of this bofitle (111)

equivalent in three directions, and so we only pick-igure directior. All' parameters remain —unchanged —except

q . ' on'y peiig . wmax—=40 THz. The most conspicuous effect is the splitting
1 shows a comparison of the LDOS of Si and C. Plotted in . :

- . ._of the optical LDOS and the generation of two gap modes at
smooth solid lines are results from exact phonon-dlspersma
. . o ; . 3.2 and 25.9 THz.

calculations by diagonalizing>$6 matrices in thé& space of
the fcc unit cell, after randomly sampling 100 OR(oints. We would like to thank S. Y. Wu and C. S. Jayanthi for
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