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Abstract

In this, the second part of a theoretical study of the thermal properties of crystalline b-SiC, the thermal conductivity is
calculated by using molecular dynamics simulation to evaluate directly the heat current correlation function and thus, obtain
the conductivity through the Green–Kubo expression in linear response theory. Adopting the same empirical potential model
and the temperature scaling method as in part one, we predict absolute conductivity values for a perfect crystal which are in

Ž .satisfactory agreement with available data, except in the low-temperature region below 400 K where quantum effects
become dominant. The effects of carbon and silicon vacancies and antisite defects are studied by introducing a single defect
into the simulation cell, allowing the atomic configuration to relax, and then performing heat capacity, thermal expansion
and conductivity calculations. We find that the heat capacity and thermal expansion coefficient are affected very little by
point defects even at a high concentration of 0.5%. On the other hand, the thermal conductivity is observed to degrade
markedly as a result of the greatly enhanced decay of the heat current correlation, clearly attributable to the dominant
mechanism of defect scattering of phonons. The defect simulations also reveal that the conductivity becomes essentially
temperature independent. Both characteristics appear to have correspondence with observations on conductivity behavior in
neutron-irradiated specimens. q 1998 Elsevier Science B.V. All rights reserved.

1. Introduction

Since Debye first considered the calculation of the
thermal conductivity k of a non-metallic crystal in 1914,
simple expressions suitable for making qualitative esti-
mates have been derived in terms of physical properties
such as the Debye temperature and the Gruneisen parame-
ter, or alternatively, in terms of the phonon mean lifetime

Ž w x.and the specific heat Slack 1 . For quantitative calcula-
tions, the traditional approach has been to consider phonon
interactions explicitly but invoke continuum approxima-

Ž w xtions to make the calculations tractable Leibfried 2 ,

) Corresponding author. E-mail: syip@mit.edu.
1 Present address: Institute for Defense Analyses, Alexandria,

VA 22311, USA.

w x w x.Ziman 3 , Srivastava 4 . Recently, a calculation of the
three-phonon scattering contribution to k , which considers
directly the discrete nature of the crystal lattice has been

Ž w x.reported Omini and Sparavigna 5 , and even extended to
account for the actual structure of the Brillouin zone
Ž w x.Omini and Sparavigna 6 . While it is significant that pair
interatomic potentials yielded numerical results that com-
pare well with measurements on argon and krypton, it is
also clear that calculation of lattice contribution to thermal
resistance based on explicit account of phonon interactions

Ž w x w xwill entail formidable analysis Ziman 3 , Berman 7 ,
w x.Omini and Sparavigna 5,6 .

In contrast to the lattice dynamical approach, an alter-
native method of calculating k is available through the
Green–Kubo formalism of time correlation functions in

Ž w x w x.statistical mechanics McQuarrie 8 , Boon and Yip 9 , or
equivalently, linear response theory. In this method which
is formally exact, each transport coefficient is given by the

0022-3115r98r$19.00 q 1998 Elsevier Science B.V. All rights reserved.
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integral of a time-dependent correlation of an appropriate
microscopic flux. The entire dynamics of the system is
expressed through a time correlation function, a well de-
fined quantity that invokes no assumption concerning the
physical state of the medium. From the computational
standpoint, the fact that such correlation functions are

Ž w xamenable to molecular dynamics simulation Rahman 10 ,
w x.Alder et al. 11 is a significant advantage. Since molecu-

lar dynamics simulations require as input only the inter-
atomic interaction, once the interatomic potential for the
system of interest can be established, the calculation of k ,
and of all other physical properties of the medium for that
matter, in effect amounts to a prediction. Applications of
the Green–Kubo method to determine transport coeffi-

Ž w xcients in liquids are now quite routine Gass et al. 12 ,
w x.Hansen and McDonald 13 . Studies of thermal conductiv-

Ž w xity in solids also have been reported Ladd et al. 14 , Lee
w x w xet al. 15 , Richardson and Clancy 16 , Kitagawa et al.

w x.17 ; however, studies which address materials science
Ž w xissues are still rather limited Lee et al. 15 , Richardson

w x w x.and Clancy 16 , Kitagawa et al. 17 .
In this paper, we continue the study of thermal proper-

ties of b-SiC through molecular dynamics simulation and
the use of a many-body interatomic potential model
Ž w x.Tersoff, 18–20 which emphasizes the bond order nature

Ž w x.of covalent solids. In an earlier paper Porter et al. 21 ,
which we hereafter refer to as Paper I, we have shown that
this model provides a rather satisfactory description of the
lattice vibrations, heat capacities and thermal expansion of
the perfect crystal. Here we will apply the equilibrium
correlation function method in conjunction with molecular
dynamics simulation to determine the thermal conductivity
k over a wide temperature range. We also consider the
presence of vacancy and antisite defects and their effects
on the various physical properties including k .

Our results on the perfect crystal extend over the
temperature range 300–1600 K. Comparison with avail-

Ž w x w x.able data Taylor et al. 22 , Senor et al. 23 shows
satisfactory agreement above 500 K. This we regard as
primary validation of our study of thermal conductivity in
b-SiC, based on the combination of the Tersoff bond-order
potential model and the Green–Kubo method of transport
coefficient calculation through molecular dynamics simula-

Ž .tion. In the low temperature regime below about 400 K ,
there are issues concerning system size effects, poor statis-
tics in averaging over initial conditions, and the breakdown
of the method of temperature scaling used to apply quan-
tum corrections, which still require further investigation.
On the experimental side, there are also issues of sensitiv-
ity to sample sizes and microstructural details which intro-
duce uncertainties in any comparisons with present calcu-
lations.

On the defect studies, our results show that at concen-
trations as high as 0.5%, the point defects considered have
practically no effect on the heat capacity and expansivity.
On the other hand, their effects on k at 0.5% concentra-

tion are a pronounced reduction, up to one order of
magnitude, along with an essentially total loss of tempera-
ture dependence. Interestingly, they bear a semi-quantita-
tive correspondence with experimental observations on
SiC specimens which have undergone significant irradia-

Ž w x w x.tion Price 24 , Senor et al. 23 .

2. Methodology

The definition of k is based on a phenomenological
equation for the macroscopic heat current,

J q syk=T ; 1Ž .

Ž .here k should be a 3=3 tensor, if Eq. 1 is to hold. For
crystals with point symmetry higher than T , such asd

b-SiC, k is a scalar matrix.
The method we will use in this work to calculate the

thermal conductivity tensor k is based on the formalism of
time-correlation functions where transport coefficients of a
system of N interacting atoms are given by the time
integrals of appropriate equilibrium correlation functions
Ž w x w x.McQuarrie 8 , Boon and Yip 9 . In the case of the
thermal conductivity, the correlation function that is needed
is the heat current correlation,

1 `
q q² :ks dt J 0 J t , 2Ž . Ž . Ž .H2k T V 0B

where

EEiqJ s E yh z q r z 3Ž .Ž .Ý Ýi i i j jž /ž /Erji j/i

is the instantaneous microscopic heat current, E is thei

internal energy of atom i with velocity z , h is the averagei

enthalpy per atom, and r sr yr . The first term in Eq.i j i j
Ž .3 represents the convective contribution. The second
term describes energy transport through interatomic inter-
actions. The angular brackets denote an average over the

Ž .canonical ensemble. Eq. 2 , along with similar expres-
sions for the shear and bulk viscosities, and the self-diffu-
sion coefficient, are known as Green–Kubo formulas
Ž w x w x.Green 25 , Kubo 26 . They are consequences of the
fluctuation–dissipation theorem which relates the linear
dissipative response to external perturbations to the sponta-

Ž w x.neous fluctuations in thermal equilibrium Kubo 26 .
We evaluate the heat current correlation function

² qŽ . qŽ .:J 0 J t by molecular dynamics simulation. Classi-
cal Newtonian equations of motion for the N-particle
system are solved numerically to give the atomic positions
and velocities as the system evolves in time. These coordi-

qŽ .nates are used to compute J t , the instantaneous heat
w Ž .xcurrent see Eq. 3 . The data are first saved on disk, then
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² qŽ . qŽ .:at the end of the simulation J 0 J t is calculated
using fast Fourier transforms and the spectral method,

1 q`
q q q) q² :J 0 J t s J v J vŽ . Ž . Ž . Ž .H

2pT y`

exp yivt dv , 4Ž . Ž .
where

Tq q qi v tJ v s J t e d t . 5Ž . Ž . Ž .H
0

A flowchart of the method is given in Fig. 1. Once the
correlation function is determined, its time integral, com-

Žputed numerically, gives the thermal conductivity cf. Eq.
Ž ..2 . This is the approach we use, because we think the
correlation function is more intuitive and easier to use in

Ž .time t coordinate. Alternatively, we can determine k i j
qŽ . q) Ž .by taking the v™0 limit of J v J v r2T , wherei j

qŽ .J v is the frequency spectrum of the ith-componenti
Ž w x.heat current Lee et al. 15 . In practice, this limit should

Ž w x.be taken with some care Li and Yip 27 , as we only have
data in a finite period.

We have chosen the spectral method because, in deal-
ing with ‘stiff’ solids like b-SiC, very long runs are

² qŽ . qŽ .:required to obtain meaningful results of J 0 J t .
For instance, a minimal simulation run for b-SiC crystal at
760 K takes 1300 ps; with a stepsize of 0.3 fs to ensure
numerical accuracy, this translates to a simulation run of
Ms4=106 timesteps. On the other hand, correlation in
the heat current can extend to longer than 100 ps, which
corresponds to 105 timesteps. If we directly calculate the

qŽ . qŽcorrelation function by averaging over products J t J ti j
.qt , we face multiplication operations on the order of

1011. The computational task is significantly reduced if we
Ž . Ž .instead use the spectral method of Eqs. 4 and 5 ; the

Ž .calculation then involves only OO M log M multiplica-
tions.

In applying this procedure using the Tersoff interatomic
Ž .potential model Paper I which describes b-SiC in terms

of bond-order many-body interactions, one needs to spec-
ify how the potential energy is divided among the interact-
ing atoms. Since there is no unique way of partitioning, we

Fig. 1. Flowchart of the spectral method to calculate the thermal
conductivity.

adopt the simple procedure of dividing the potential energy
equally between the bonding atoms i and j and giving
nothing to the neighboring atoms k, which constitute the
local environment. It has been suggested that for short-

Ž .range interactions as in the present case , the details of the
Ž w x.division are not important Lee et al. 15 because temper-

ature gradients in applications have macroscopic length
scales. Accordingly, we set W sV r2 and write thei j i j

contribution to J q from D E sW r2 and D E sW r2i i j j i j

as

EW EW1 1i j i j
r z qr z 6Ž .i j j ik kž /ž /2 Er 2 Erj k

and

EW EW1 1i j i j
r z qr z , 7Ž .ji i jk kž / ž /2 Er 2 Eri k

respectively. Adding these two contributions gives

1
qJ s r D F Pz yD F PzŽ .i jk ji j j i i2

1
y r yr D F Pz , 8Ž . Ž .Ž .jk ki k k2

Ž . Ž .with D F s - EW r Er , as i, j,k, are the force contri-a i j a

Žbutions to atom a from the ijk triplet and not the net
.force on each atom . The total heat current is the sum of

all of these three-body contributions, plus the convection
w Ž .xpart cf. Eq. 3 .

Because our molecular dynamics simulation is classi-
cal, we need to apply certain quantum corrections for
neglecting discrete energy levels and zero-point vibrations,
which are important at low temperatures. As we have
discussed in Paper I, a temperature rescaling procedure
Ž w x w x.Wang et al. 28 , Lee et al. 15 has been found to be
quite effective in correcting classical simulation results for
the thermal expansion coefficient and heat capacity in
comparison with experiments. In this procedure, a molecu-
lar dynamics simulation temperature T is related to theMD

actual temperature of measurement T ,

1 1
3 Ny1 k T s "v q ,Ž . ÝB MD k ž /2 exp "v rk T y1Ž .k Bk

9Ž .
where v is the k th lattice mode eigenfrequency, and thek
Ž .Ny1 factor accounts for the fact that the center of mass
is held fixed. The idea behind this rescaling scheme is that
one hopes to establish a one-to-one correspondence be-
tween the real quantum system and the classical MD
simulation, such that all physical observables are the same.
While this hypothesis manifestly holds for the heat capac-

Ž . Žity at low temperature, since C T s 3 N yV
. Ž Ž .. Ž .1 k dT T r dT , the same cannot be said for the heatB MD

current J q. In any event, we will proceed by demanding



( )J. Li et al.rJournal of Nuclear Materials 255 1998 139–152142

equality between simulation and experiment in the physi-
cal quantity of heat current J q, then

J q syk =T 'yk=TsJ q 10Ž .MD MD MD

which requires the conductivity calculated by classical
Ž . Ž .simulation k and the observed value k to have theMD

relation

dTMD
ksk = . 11Ž .MD ž /dT

Thus, besides rescaling the temperature, we need to multi-
ply the k result of our simulation by a gradient correc-MD

Ž w x.tion, dT rdT Lee 15 .MD
Ž . Ž .There is a close relationship between Eqs. 2 and 11

Žand another frequently used semi-empirical formula Zi-
w x w x.man 3 , Ladd et al. 14 ,

ks C k t k z k z k , 12Ž . Ž . Ž . Ž . Ž .Ý V g g
k

Ž .where an empirical parameter t k , the mean lifetime of
each phonon-mode k, is introduced to represent the com-

Žbined effect of all scattering mechanisms phonon–pho-
. 2non, phonon–defect , which have actually been calcu-
Ž w x.lated by Ladd et al. Ladd 14 for argon-like materials.

We see that instead of a phonon-specific heat capacity
Ž . Ž . Ž .factor C k in Eq. 12 , 11 scales k by the overallV MD

heat capacity, as a first approximation. The decay of C asV

T™0 accounts for the vanishing of thermal conductivity
at 0 K.

3. Thermal conductivity of the perfect crystal

We have made predictions of the thermal conductivity
of a perfect crystal of b-SiC using the Green–Kubo method
described above and the Tersoff bond-order potential model
Ž w x.Tersoff 19,20 which treats b-SiC as a purely covalent

Ž .solid. Molecular dynamics MD simulations at a series of
temperatures are carried out on a cubic simulation cell
containing Ns216 b-SiC atoms under periodic boundary
conditions. The Si and C atoms interact with each other

Žthrough the modified Tersoff potential see Paper I for
.details of the potential model .

Newtonian equations of motion are integrated numeri-
cally with a time step size varying from 0.20 fs to 0.35 fs,
depending on the system temperature. Initially, the atoms
are placed in the zinc blende structure and are given
velocities sampled from Maxwellian distributions. Fifty
thousand to one hundred thousand time steps are allowed
for equilibration, during which the simulation cell is al-

2 Ž . Ž .z k is the phonon group velocity. C k is the heatg V
Ž . Ž 2 2 Žcapacity of each phonon-mode, C k s " v exp " v rV k k

.. Ž 2Ž Ž . .2 .k T r k T exp "v rk T y1 .B B k B

lowed to change shape and volume in response to the
internal stress, while the external stress is set equal to 0
Ž w x.Parrinello and Rahman 30 . Also during the equilibration
phase, the atomic velocities are scaled to the desired
temperature using the coupling scheme by Berendsen et al.
w x31 with a coupling time constant of 50 fs. After equilibra-
tion, the simulation typically continues for two to eight
million steps with the simulation cell held fixed and
temperature rescaling turned off. The atomic positions and
velocities thus generated are the data used to evaluate the
heat current correlation function.

Because b-SiC, as perfect crystal, has a high thermal
conductivity, one can expect that the phonons are not
easily scattered. For this reason, the initial condition
Ž .atomic velocity distribution of a simulation run needs to
be treated carefully. Different initial conditions, being
different samples of a thermodynamic ensemble, may lead
to very different thermal conductivity results, at least
during appreciable simulation run lengths. A relatively
elaborate initialization scheme has been implemented in
this work. We first draw atomic velocities from a

2 ŽMaxwellian distribution with s sk Trm i is the atomi B i
.index running from 1 to N , in three directions indepen-

dently. Second, we subtract the average velocity zs
Ž N . N .Ý m z rÝ m from each atom such that the total mo-i i i i i

mentum is equal to zero. Then we sum up the kinetic
energies in three directions K sÝ m Õ2 r2, as1, 2, 3.a i i i a

Lastly, we scale the velocity of each atom in direction a

Žby a factor of Ny1 k TrK in the harmonic approx-(Ž . B a

imation, the total energy is twice the kinetic energy of
.k Tr2 , such that the same amount of kinetic energy isB

introduced in each direction. Because k should be theaa

same for all three directions in b-SiC, the fact that each
direction has the same amount of kinetic energy tends to
reduce the fluctuation if we evaluate k , a scalar quantity,
using

q q² : ² :J 0 J t s J 0 J t r3. 13Ž . Ž . Ž . Ž . Ž .Ý a a

a

It can be shown that each phonon mode, be it acoustic or
optical, has the same energy expectation, as it should in
classical statistical mechanics.

Figs. 2–4 show the heat current correlation functions
obtained at three temperatures. As with time correlation

² Ž . Ž .:functions in general, J 0 J t decays over a time range
which increases as the system temperature is lowered. The
monotonic behavior seen indicates a diffusive conduction
process which is to be expected, and it seems reasonable to
regard the decay time as a convenient measure of phonon
lifetime. The MD results shown are normalized to the
initial or zero time values of the correlation function,
which has the physical interpretation of a susceptibility.
The temperature variation of this quantity, shown in Fig. 5,
is seen to be rather insignificant, which means that the
temperature dependence of the classical thermal conductiv-
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Fig. 2. Temporal decay of the equilibrium heat current correlation
Ž .function for perfect b-SiC at 1400 K T s1478 K . The dashedMD

line is the fit to exponential decay in the range from 1 to 9 ps.

ity, k , depends mainly on the characteristic decay timeMD

of the heat current correlation function.
Because the simulation results invariably show fluctua-

tions due to statistical noise, there exists some ambiguity
Ž .in carrying out the time integration in Eq. 2 . We have

Žtested two ways of computing the integral, one which we
.call First Dip or FD is to integrate out to the time where

the correlation function first reaches zero, while the other
Ž .Exponential Fit or EF is to fit the correlation function to
an exponential over some time range. In the latter proce-
dure, one fits the correlation function data in the range
w xt , t , where numerical accuracy of the results can1 2

be ensured, to an exponentially decaying curve
Ž .g exp ytrt . The major contribution to k comes from0

w xthe integration of the raw data between 0,t , but g and2
Žt are used to determine the tail contribution between t ,0 2

. Ž .q` , which is just gt exp yt rt .0 2 0

Fig. 3. Temporal decay of the equilibrium heat current correlation
Ž .function for perfect b-SiC at 760 K T s885 K . The dashedMD

line is the fit to exponential decay in the range from 10 to 30 ps.

Fig. 4. Temporal decay of the equilibrium heat current correlation
Ž .function for perfect b-SiC at 284 K T s552 K . The dashedMD

line is the fit to exponential decay in the range from 5 to 35 ps.

This method is based on the observation that the depen-
dence of the logarithm of the raw data on t , taken in the
range of t where simulation results are believed to be
good, can be fairly well approximated as a straight line,

² Ž . Ž .:leading us to believe that J 0 J t may decay asymp-
totically as an exponential. The only parameters that the
EF method requires are t and t ; our recommended1 2

values are given in Table 1.
² Ž . Ž .:Usually, J 0 J t from carefully implemented and

well-converged simulation runs will give FD and EF re-
sults close to each other, especially at high temperatures.
We think that for a single minimal run, the EF result may
be more accurate because the procedure acts as a filter.
However, when one can do very long simulations, and
many of them, the FD method will yield better results.

Table 2 gives a summary of our simulation results for
perfect crystal b-SiC: the MD value of the conductivity,

² Ž .2: 2 ² qŽ .2: 2Fig. 5. Calculated J 0 rk T V s S J 0 r3k T V inB a a B

perfect b-SiC crystal vs. temperature.
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Table 1
Recommended simulation parameters for perfect crystal b-SiC
thermal conductivity calculation

T Steps Timestep Runs EF t EF t1 2
Ž . Ž . Ž . Ž .K fs ps ps

6250–500 8=10 0.30–0.35 6–10 5.0 35.0
6500–1000 4=10 0.25–0.30 4–6 3.5 21.0
61000–1600 4=10 0.20–0.25 2–4 1.0 9.0

Ž . Ž .k , the gradient correction factor, dT r dT , theMD MD

corrected values of the conductivity, k , and conductivity
Žvalues interpolated from experimental data Taylor et al.

w x.22 . Except for the very lowest temperature value, the
agreement between simulation and measurement is seen to
be satisfactory. It is also somewhat remarkable that a
classical simulation with two corrections, a temperature
rescaling and a conductivity rescaling, is able to give
semiquantitatively accurate predictions down to about a

Žthird of the Debye temperature u f1200 K, Senor et al.D
w x.23 . In view of the fact that the Tersoff potential model
was not fitted to any thermal property, we believe this
constitutes significant evidence that this bond-order poten-
tial describes adequately the anharmonic effects in SiC,
which is consistent with what we have previously found in

Ž .the thermal expansivity calculations Paper I . The compar-
ison of simulation with two sets of experimental data
Ž w x w x.Taylor et al. 22 , Senor et al. 23 is also shown in Fig.
6. The results of Senor et al. are generally lower in value;
even though their samples are of high purity and are fully
dense, we believe the difference between these data and

w xthose of Taylor et al. 22 is an indication of higher defect
content in the former specimens.

The low temperature behavior of our simulations war-
rants further discussion. First, our simulations significantly

Fig. 6. Comparison of calculated thermal conductivity for perfect
crystal b-SiC with experiments at various temperatures. The

w xcircles are experimental results from Taylor et al. 22 , the dashed
line being its spline fit. The stars are calculated results. Experi-

w xmental results from Senor et al. 23 are plotted in crosses.

underpredict k for T-400 K; second, although qualita-
tively the same behavior in the variation of k in the form
of a sharp peak is observed both in simulation and in
experimental data, the peak in the simulation result occurs
at a much higher temperature than the experimental peak,
whereas the agreement is quite satisfactory at higher tem-
peratures.

There are several factors that contributes to the diver-
gence of our simulation results from the experimental data
at low temperatures. We note from Table 2 that below 400
K, there is a combined effect of a sharp drop in
Ž . Ž .dT r dT and a significant leveling off in the growthMD

of k . The leveling off of k occurs in part becauseMD MD
Žof the flatness of the T vs. T curve as T™0 see Fig. 2MD

Table 2
Thermal conductivity calculation for perfect SiC crystal

a a aŽ . Ž . Ž . Ž .T K T K dT r dT N Steps Runs k k ExperimentalMD MD MD

6284 552 0.429 216 8=10 12 397.3 161.3 318.6
6345 582 0.533 216 8=10 4 383.7 204.6 285.7
6436 634 0.648 216 4=10 1 374.0 252.1 235.0
6541 709 0.741 216 4=10 1 289.2 214.3 200.4
6645 790 0.804 216 4=10 1 214.7 172.6 162.4
6760 885 0.851 216 4=10 8 191.2 162.7 138.5
6876 985 0.884 216 4=10 1 134.8 119.2 120.0
61055 1150 0.917 216 2=10 2 107.0 98.1 95.8
61249 1335 0.940 216 2=10 1 102.0 95.9 78.9
61300 1383 0.944 216 2=10 1 85.0 80.2 75.0
61400 1478 0.951 216 8=10 4 90.8 86.3 68.6
61502 1575 0.958 512 2=10 1 74.4 71.2 62.6
61553 1624 0.960 216 2=10 1 86.2 82.8 60.0
61592 1661 0.962 216 2=10 1 77.0 74.1 57.3
61700 1764 0.967 216 4=10 4 80.2 77.5 51.9

aResults are in SI unit of WrMrK.
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.of Paper I . Specifically, in this temperature region, TMD

changes only from 634 K to 552 K as T changes from 436
K to 284 K. 3 Furthermore, there is a fundamental limita-
tion in our use of the gradient correction factor,
Ž . Ž . Ž .dT r dT , in Eq. 11 , which is easily understoodMD

Ž .when Eq. 11 is compared with the semi-empirical quan-
Ž .tum mechanical formula for k , Eq. 12 . There, a ‘gradient

correction factor’ is also present in the form of a mode-
Ž .specific heat capacity. Hence, in implementing Eq. 11 ,

we have assumed that we can replace the mode-specific
Ž .heat capacity, C k,T , with the overall heat capacity,V

Ž .C T .V

This introduces an error, because we believe that the
Ž . Ž . Ž . Ž .factor t k z k z k in Eq. 12 is perhaps larger atg g
Ž Ž . Ž . Ž .small k t k z k z k is just the product of the meang g

.free path and the group velocity of mode k . At low
Ž .temperatures, C k, T is larger for small k, and therefore,V

Ž . Ž . Ž .the larger values of t k Õ k Õ k corresponding to theg g

longer wavelength phonons should be weighted more
Žheavily this is true for all T;u , but is most importantD
.as T™0 . By using the overall heat capacity, we have

essentially applied equal weighting to all modes, which
therefore leads to an underestimation of k at low tempera-
tures.

In addition to the limitations to our approach discussed
above, there are two computational issues, system size
effect and statistical accuracy, which are natural causes for
concern for simulations performed at low temperatures. It
is expected that as the temperature decreases, the low
frequency, and therefore long wavelength, phonons play an
increasingly important role. This is true for two reasons.
First, as T™0, long wavelength phonons become rela-
tively more important than their high frequency counter-

Žparts, because their occupation numbers are larger i.e.,
.equipartition theorem breaks down at low temperature .

Second, as discussed above, we believe that the factor
Ž . Ž . Ž . Ž .t k Õ k Õ k appearing in Eq. 12 will be larger forg g

longer wavelength phonons. Because there is always a
wavelength cutoff associated with a finite simulation cell,
it is therefore reasonable to argue that system size effect
alone will cause the thermal conductivity to be underesti-

Ž w x.mated Lee et al. 15 . On the other hand, limited studies
Žof system size i.e., the number of atoms, N, in the

.simulation cell in rare-gas solids have shown little varia-
tion in k with N, and it was suggested that this could be
due to a cancellation effect, as newly introduced phonon
modes would increase the scattering probabilities and
therefore lower the lifetimes of phonons already in exis-

Ž w x.tence Ladd 14 . Concerning statistical accuracy, we have

3 A similar problem occurred for the MD calculations of the
thermal expansion coefficient, a , at low T in Paper I. Uncertainty
in a below 250 K resulted from the flatness of the T depen-MD

dence on T at low T.

observed that our low-temperature simulations are very
sensitive to the set up of initial conditions. This is not
surprising from the standpoint that with the crystal becom-
ing nearly harmonic, very long runs are needed to achieve
a reasonably equilibrated phonon distribution at these tem-
peratures. For example, a simulation run of eight million

Žtime steps, relatively long by present standards Ladd et al.
w x w x w x14 , Lee et al. 15 , Richardson and Clancy 16 , Kitagawa

w x.et al. 17 , still has an estimated error bar of 20%. Clearly
then, substantially greater computational efforts will be
required to obtain conductivity results below 400 K to
have the same quality as those at higher temperatures.

As far as the low temperature regime of the experimen-
tal thermal conductivity is concerned, it is well known
from studies of rare gas crystals that below approximately
u r4, the data are very sensitive to the effects of speci-D

Žmen sizes and crystal imperfections Gupta and Trikha
w x.33,34 . Thus, there is uncertainty not only in our simula-
tion results, but also in the experimental data at low
temperatures.

Before leaving this section, it should be noted that the
slow convergence problem encountered previously
Ž w x.Kitagawa et al. 17 in the low temperature region does
not occur if one uses the temperature rescaling scheme by

w xLee et al. 15 , because T is always appreciable. In theMD

present case, T is always greater than 500 K.MD

4. Point defects in b-SiC

As part of the present work, we consider how the
presence of point defects affect the thermal properties of
b-SiC. Given that a systematic study of point defect
generation under irradiation conditions and their subse-
quent distribution in the solid is beyond the scope of our
investigation, we will limit our calculations to elucidating
generic effects of defect–phonon interactions in well-char-
acterized defective lattices. Thus, we will first determine
the relaxed atomic configuration when a single point de-
fect is introduced into the simulation cell, and then apply
the methods we have described in Paper I and the forego-
ing sections to calculate the density of states, heat capacity
and thermal expansion coefficient, and the conductivity for
each type of defect. Using the previous simulation cell
containing Ns216 atoms as the natural reference system,
we note that with one isolated defect in the simulation cell,
the effective defect concentration is already 0.5%. This
concentration level, admittedly, may not be stable against
clustering and formation of extended defects such as voids
and dislocation loops. With this in mind, we do not expect
that our results can be directly compared with measure-
ments on irradiated samples. On the other hand, the simu-
lation results should provide a baseline that is useful for
interpretation purposes.
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4.1. Relaxed defect structures

We define the formation energy of a given point defect
to be the difference in total energy between the system

Ž .with the defect and the reference system perfect crystal
which has the same number of atoms,

E NŽ .0 p
E sE N y N , 14Ž .Ž .f d dNp

Ž . Ž .where E N and E N are the respective total energies,d 0 p
Ž .and N N are the number of atoms in the perfectp d

Ž .defect system. This definition is necessary because for a
multi-component system the chemical potential for differ-

Ž .ent species cannot be compared. Eq. 14 provides a
convenient basis for comparison with other studies. For the

Ž w x .present potential model Tersoff 19,20 , Paper I , we have
Ž .E N rN sy6.386497 eV and the equilibrium latticeo p p

˚constant a s4.28533 A.0

Static energy minimization in a 216-particle cell with
periodic boundary conditions has been carried out using

Ž w x.the conjugate gradient algorithm Press et al. 35 . Re-
laxed defect configurations and E , under both constantf

Ž . Žvolume lattice constantsa and constant pressure Ps0
.0 conditions have been obtained. As an independent check,

these configurations were also relaxed by molecular dy-
namics under constant volume with a simple annealing
procedure, and the results were found to be in complete
agreement with static minimizations. Ten point defects
have been studied; these include carbon and silicon vacan-

Ž . Žcies V and V , carbon and silicon antisites C andC Si Si
.Si , carbon and silicon interstitials at tetrahedral sitesC

Ž . w Ž .with four carbon silicon neighbors C C and SiTC TSi TC
Ž .x Ž .Si , antisite pair AP defect where a nearest neighborTSi

Ž .pair of Si and C atoms are switched, and divacancy DI
where a nearest neighbor pair of Si and C atoms are pulled
out.

We found that the relaxed defect configurations can
depend sensitively on the cutoff parameters of the poten-
tial. With the nearest Si–Si separation in perfect b-SiC

˚crystal at 3.03 A, Si atoms can be quite easily displaced,
by virtue of local distortion, to cross into the potential

˚cutoff of 2.7r3.0 A and give rise to undesirable interac-
tions between atoms, which ordinarily are second nearest
neighbors and therefore should be excluded by the cutoff.
The same effect could also arise from thermal motions at

Žhigh temperatures for this reason in Paper I we proposed
to discard the Si–Si interactions altogether while studying

.the thermal properties of b-SiC crystal . While this effect
on the defect formation energy is not appreciable, it does
strongly disturb the particle dynamics, such as leading to
unphysical high-frequency local modes in the vibrational

Ž .spectrum see next section . We have decided to modify
the Si–Si and C–C cutoffs by using a unified value of

˚2.36r2.56 A, which effectively blocks out second nearest
neighbor Si–Si interactions. We will call this modified
potential Ters1. For comparison, we will also give the
defect formation energies obtained using the original Ter-

Ž w x.soff potential Tersoff 19,20 which we denote as Ters2.
Our results are shown in Table 3 along with a recent

Ž w x.study Huang et al. 36 , believed to be based on the same
Tersoff model, and values from an ab initio calculation
Ž w x.Wang et al. 37 . The P or V inside the bracket denotes
whether it is a constant pressure or constant volume mini-
mization.

Ž .In comparing Ters2 V with the recently published
Ž w x.results Huang et al. 36 , we find acceptable agreement in

the case of vacancy defects, but significant disagreement in
other defects. At present we know of no other cause of this

w xdiscrepancy except that 36 possibly did not use the same
set of parameters as ours.

Adding the energies of the two antisite defects, we find
Ž .that Ters1 V predicts 6.4 eV for generating the two

defects by switching a Si atom and a C atom separated
infinitely far away. If we put them side by side, the
formation energy will be reduced to 3.9 eV, an indication
that the two defects ‘attract’ each other, which could be
interpreted as arising from a size effect where the two
antisites compensate for the excess volume of each other.
The formation energies for the vacancies and the diva-

Table 3
Ž .Defect formation energies eV

Ž . Ž . Ž . Ž . w x Ž . w xDefect Ters1 P Ters1 V Ters2 V V Ref. 36 Ab initio V Ref. 37

V 5.41 5.41 5.5 5.2 5.9C

V 6.20 6.20 6.2 6.0 6.8Si

C y0.31 y0.27 y0.2 0.6 1.1Si

Si 6.57 6.65 8.8 5.6 7.3C

C 13.67 13.75 6.2 8.7 11.0TC

C 16.48 16.57 3.1 6.7 8.6TSi

Si 19.63 19.90 20.2 14.4 15.0TSi

Si 14.98 15.47 19.7 10.5 14.7TC

AP 3.91 3.92 4.4 NrA 5.9
DI 8.71 8.71 8.7 NrA 8.1
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Table 4
Ž y3 0 3. Ž .Excess volume 10 m calculated by Ters1 P

V V C Si C C Si Si AP DIC Si Si C TC TSi TSi TC

2.68 1.85 y9.52 15.44 15.33 16.48 27.88 37.22 3.88 3.44

cancy defects agree reasonably well with the ab initio
results. As for the carbon and silicon interstitials at tetrahe-
dral sites, the disagreement shows that the Tersoff poten-
tial model is unsuitable to describe defects with large
distortions.

Ž .Using constant pressure Ps0 minimization, we have
calculated the excess volume of each defect, defined as the
change in cell volume before and after putting in the
defect. They are tabulated in Table 4.

We see that except for C antisite, all other defectsSi

cause the cell to expand. For the silicon and carbon
vacancies, the surrounding atoms are found to relax out-
ward rather than inward when the atom is removed. This is
because when one bond is broken, the remaining three
bonds are strengthened due to reduced screening, the same
effect seen in inward relaxation of silicon surfaces.

4.2. Density of states

A fundamental characterization of the vibrational prop-
Ž .erties of a solid is its density of states DOS , the distribu-

tion of lattice mode eigenfrequencies. In particle simula-
tion, we built up theoretical models for real solids by
stacking up infinitely many supercells, each containing
102 to 106 atoms, in three dimensions, to simulate the
bulk behavior of a macroscopic solid which contains 1023

atoms. Of course, as the size of the supercell grows, and
provided that the interaction potential is accurate, our
theoretical model will approach the real solid. Neverthe-
less, even for such a ‘model solid’ with a finite-size
supercell, it still can have a continuous vibrational DOS,
i.e., infinitely many possible lattice modes, because al-
though the supercell structure is duplicated spatially, the
lattice mode displacements could be multiplied by a phase
factor eik PR LM , for different supercells L and M. Here k is
called the ‘supercell k’. This continuous DOS information
is accessible to dynamical matrix studies in k-space, either
by direct diagonalization, or by various acceleration

Ž w x w xschemes Heine et al. 38 , Wu et al. 39–41 , Li and Yip
w x.42 . The underlying assumption is that the harmonic
approximation holds, which is true at low temperatures.

As one of the methods in modeling solid behavior,
molecular dynamics has many distinctive merits such as
being able to study finite temperature properties. However,
the lattice modes it has access to are only a discrete set
Ž Ž . .3 Ny1 in number of the infinitely many possible
modes, namely, they all belong to the supercell ks0
Ž .G-point set. The reason is that the periodic boundary
condition setup in MD not only means that atoms in one

supercell interact with atoms in adjacent supercells
Ž .‘images’ of the original supercell atoms , they are also
required to move ‘in phase’, i.e., the images have exactly
the same displacements as the original atom. This way
only the supercell ks0 modes are possible, and the
vibrational DOS is discrete. Note, however, that this does
not mean that there are no short or long wavelength
phonons in the supercell, as the supercell k is usually not
the primitive cell k, in the case of perfect crystal.

In studying the perfect crystal b-SiC, we have used a
Ž216-atom supercell by default ‘simulation cell’ or ‘cell’

.means supercell , consisting of 3=3=3 cubic unit cells,
each with eight atoms. Thus there should be 3=215s645
discrete lattice modes available to our MD simulation,
which are actually 645 discrete samplings of the Brillouin
zone of the b-SiC primitive cell, whose Bravais lattice is
FCC and contains one Si and one C atom. The longest
wavelength phonons available span the supercell, ks
Ž . Ž .Ž .2p r 3a "i" j"k .0

Once we put a defect in the 216-atom cell, periodicity
of the primitive cells are destroyed and phonons in the
original sense are no longer defined. However the super-
cell itself is periodic and our above discussions about the

Ž .supercell still hold. The DOS r v is defined mathemati-
cally as

r v s d vyv 15Ž . Ž . Ž .Ý n
n

where v ’s are the lattice vibrational eigenfrequencies. Inn
Ž .addition to the total DOS, we can also define a local

density of states, LDOS,

2<² < : <r v s d vyv i n , 16Ž . Ž . Ž .Ýi n
n

which not only gives frequency but also spatial informa-
< :tion. Here n denotes the nth lattice eigenmode with

eigenfrequency v , and i is a local coordinate such asn

certain direction of displacement of a given atom. Overall
there should be the relation

r v s r v . 17Ž . Ž . Ž .Ý i
i

By studying LDOS of atoms close to the defect, we can
see in much better detail how the appearance of a defect
influences the dynamics of the system by affecting the
atoms close to it.

The first step to obtain the DOS and LDOS is to
Ž .calculate the force constant matrix see Paper I , which we

Žhave analytically derived for the Tersoff potential Porter
w x.et al. 43 . We then assemble the k-space dynamical

matrix by scaling each term in the matrix with
ik PR i je r m m , which should be a positive definite Her-( i j

mitian matrix for stable systems.
The conventional method to proceed then is to directly

diagonalize the matrix to get the eigenmodes and eigenval-
ues. In Fig. 7, we show the results of direct diagonalization
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Fig. 7. Histograph of the discrete vibrational density of states
Ž .G-point, 0.5% defect concentration in a 216-atom cell for perfect

Ž . Ž .crystal, one carbon vacancy V , one silicon vacancy V , oneC Si
Ž . Ž .carbon antisite C , one silicon antisite Si , and one carbonSi C

Ž .interstitial at tetrahedral silicon site C , obtained by directTSi

diagonalization method.

of the ks0 dynamical matrix for the atomic configuration
of perfect crystal, V , V , C , Si and C interstitials,C Si Si C TSi

Ž .which are minimized under Ters1 Ps0 . These are the
lattice modes that will appear in MD and hence take effect
in the thermal conductivity calculations. We can see that
the introduction of a point defect splits the degeneracy of
the original perfect crystal spectrum, and often introduces

Ž .gap modes most obvious in Si and C and highC TSi
Ž .frequency modes C . These will be later shown to beSi

local modes that are strongly associated with the few
atoms surrounding the point defect and usually lie outside
of the continuous spectrum of lattice vibrations. We have

Ž .computed the temperature rescaling relation Eq. 9 for
each defect system using the set of vibrational frequencies
obtained, and the effects are found to be small. The
zero-point temperatures of the various defect configura-

Ž .tions at 0.5% defect concentration are listed in Table 5.
Direct diagonalization provides complete information

about the system, after which we can calculate the LDOS
Ž .r v by summing over the normal modes of the squaredi

amplitude of the eigenvectors at atomic coordinate i. How-
ever this process could be very time-consuming, because
the computational complexity scales as N 3, where N is
the number of atoms in the supercell. So although it is
possible to get continuous DOS and LDOS distribution
using direct diagonalization by sampling many supercell

Fig. 8. LDOS of Si and C in perfect b-SiC crystal: exact phonon
Ž .dispersion results by direct diagonalization solid lines , and by a

Ž . Ž w x. Ž .recently developed O N method Li and Yip 42 circles in a
Ž .much bigger supercell 4096 atoms .

k’s, most often it is only done for the perfect crystal where
we just take the smallest supercell possible—the primitive
cell, and do phonon dispersion calculations. Fig. 1a in
Paper I shows the DOS of perfect b-SiC crystal by directly
diagonalizing 6=6 matrices in the Brilluion zone of the

Ž .primitive cell k-sampling by Monte-Carlo . The corre-
sponding LDOS for individual Si and C atoms in b-SiC

Žare shown in Fig. 8 because b-SiC is equivalent in x, y, z
Ž . .and r v is the same in all directions .i

Other than direct diagonalization, there are accelerated
schemes to calculate the LDOS once the dynamical matrix
is obtained, the most notable being the recursion method
Ž w x.Heine et al. 38 and the real space Green’s function

Ž w x.method Wu et al. 39–41 . Recently we have developed a
new method called the multichannel perturbation method
Ž w x.Li and Yip 42 which seems to be quite efficient; its
computational complexity only scales as N, making it
ideal for analyzing defect configurations relaxed in large
supercells. To demonstrate the effectiveness of this new
method, we re-calculate the LDOS of Si and C in perfect
b-SiC crystal and compare with the phonon dispersion

Ž .results. Since the method is now O N , it does not matter
if we use a very large supercell, containing 4096 atoms.
The results are plotted in Fig. 8 in circles.

We then apply our method to calculate the LDOS of
Ž Ž ..various relaxed point defect configurations Ters1 Ps0

in the present 216-atom cell. At this system size the
efficiency of our method has already surpassed that of

Table 5
Ž . Ž .Zero point vibrational energy K calculated by Ters1 Ps0 at 0.5% defect concentration

Perfect V V C Si C C Si Si AP DIC Si Si C TC TSi TSi TC

512.6 510.8 510.6 514.2 508.8 508.4 508.1 505.2 510.9 511.5 509.7
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² : Ž .Fig. 9. 111 LDOS of Si atom beside V circles , relaxed in aC
Ž Ž ..216-atom cell Ters1 P s0 . It is calculated by the new method

Ž w x.Li and Yip 42 and by randomly sampling over 1000 supercell
k-points. For comparison the Si LDOS in perfect b-SiC crystal is
shown in solid lines.

direct diagonalization and it is now possible to sample
Ž 3. ² : Žmany ;10 supercell k’s. The 111 debonding direc-

.tion LDOS of the nearest Si atom adjacent to a carbon
vacancy is shown in Fig. 9 in circles, compared to the
original perfect crystal curve in solid line. The effect is
seen to be a ‘mode softener’. There are no local modes
induced in the spectrum.

ŽThe directionally independent because of T symme-d
.try LDOS of the carbon interstitial atom at TSi site is

shown in Fig. 10. We can clearly distinguish three peaks
outside the continuous band. If we look at the discrete

Ž .DOS result G-point for C in Fig. 7, we see that theirTSi

positions correspond to certain discrete eigenvalues, how-
ever the effect is much ‘magnified’ in Fig. 10 because it is

Fig. 10. LDOS of carbon interstitial atom at tetrahedral Si site,
Ž Ž ..relaxed in a 216-atom cell Ters1 P s0 . It is calculated by the

Ž w x.new method Li and Yip 42 and by randomly sampling over
2000 supercell k-points. For comparison the C LDOS in perfect
b-SiC crystal is shown in solid lines.

the LDOS of the interstitial atom. We can see much more
clearly from Fig. 10 that these modes are strongly local-
ized around the interstitial defect instead of being propa-
gating modes of a continuous band.

As we will discuss in the last subsection, once we put a
defect in the system, the main thermal resistivity mecha-

Žnism will shift from phonon–phonon collision three-pho-
. Žnon process to a phonon–defect scattering two phonon

.process mechanism. The reason that the phonons are
scattered by the point defect is because of the destruction
of the perfect periodicity of a perfect crystal, which adds a
perturbation D H to the original lattice Hamiltonian H ,0

that is strongly localized around the defect. The same D H
Ž .also alters r v around the defect. Thus, in some sensei

the change in LDOS can be used to measure the degree of
lattice distortion and hence provides some idea on how
much the drop in thermal conductivity due to the defect
should be.

4.3. Thermal expansion coefficient and heat capacity

The lattice dynamical method of determining the ther-
mal expansion coefficient a which we have used in Paper
I has difficulty whenever vibrational modes are introduced
which do not vary smoothly with volume, thus causing the
estimate of the Gruneisen parameters to be unreliable.
Since the MD method does not suffer from this effect, we
have used it exclusively in determining a . The results are
shown in Fig. 11. As in the case of perfect crystal, all
second-neighbor Si–Si interactions are turned off. It can be
seen from our results that point defects have a negligible
effect on the thermal expansion coefficient.

For the heat capacity, the lattice dynamical approach
remains useful. Fig. 12 shows that here too the point
defects have essentially no effect. The implication is that
the low-frequency portion of the density of states are
effectively unaltered by the point defect, as one could have

Fig. 11. Temperature dependence of thermal expansion coefficient
Ž . Žfor the perfect crystal solid line , one carbon vacancy dashed

. Ž .line , one silicon vacancy dashed line with circles , one carbon
Ž . Žantisite dashed–dotted line , and one silicon antisite dashed–

.dotted line with squares , in 216-atom cell.
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wŽ . Ž .Fig. 12. Temperature dependence of the heat capacity a C bV
x Ž .C for the perfect crystal solid line , one carbon vacancyP

Ž . Ž .dashed line , one silicon vacancy dashed line with circles , one
Ž .carbon antisite dashed–dotted line , and one silicon antisite

Ž .dashed–dotted line with squares , in 216-atom cell.

discerned from Fig. 7. Our results are consistent with the
insensitivity to minor constituents which has been ob-
served in comparisons between calculated specific heat CP

values and literature data on relatively low-impurity sam-
Ž w x.ples, typically 95% SiC Senor et al. 23 . Moreover,

attempts to calculate specific heats using the Debye model
for various SiC-based composites containing differing
amounts of impurities gave virtually indistinguishable re-

Ž w x.sults Senor et al. 23 .

4.4. Effects on thermal conductiÕity

We have carried out thermal conductivity calculations
Ž Ž ..using the relaxed atomic configurations Ters1 Ps0

with one point defect in the 216-atom cell. Here we report
the results for V , V , C , Si , and Si . Figs. 13 and 14C Si Si C TC

² Ž . Ž .:show the heat current autocorrelation functions J 0 J t

for a system with one V at 436 K and 1592 K, along withC

corresponding results for the perfect crystal. The most
striking feature is the much more rapid time decay of the
correlation functions in the presence of a point defect. This
illustrates clearly and directly the effect of defect–phonon

Ž .scattering two-phonon mechanism, in contrast to the
three-phonon process in phonon–phonon scattering, which

Fig. 13. Temporal decay of the equilibrium heat current autocorre-
Ž . Ž .lation function for b-SiC at 436 K T s634 K , for A perfectMD

Ž .crystal and for B with one carbon vacancy, in a 216-atom cell.
The dashed line is the fit to exponential decay from 3 to 21 ps.

is the major thermal resistivity mechanism in perfect crys-
tal. In terms of the phonon lifetime t , these two contribu-
tions may be combined by writing

1 1 1
s q , 18Ž .

t t tphonon – defect phonon – phonon

where t and t are the phonon life-phonon – defect phonon – phonon

times if only either mechanism is present. We found that
² Ž .2:the point defects cause no significant changes in J 0 .

Tables 6–10 list the point defect thermal conductivity
results we have obtained, also summarized in Fig. 15,
which show the strong conductivity degradation effects
induced by point defects. Moreover, it should be noticed
from these results that the conductivity of a defected
crystal, for the different defects examined, shows essen-
tially no variation with temperature.

Fig. 14. Temporal decay of the equilibrium heat current autocorre-
Ž . Ž .lation function for b-SiC at 1592 K T s1661 K , for AMD

Ž .perfect crystal and for B with one carbon vacancy, in a 216-atom
cell. The dashed line is the fit to exponential decay from 1 to 9 ps.
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Table 6
Ž .Thermal conductivity calculation for C vacancy 0.5%

Ž .T K 1578 1290 877 620 436

Ž . Ž .k T WrMrK 33.4 35.3 34.4 44.3 31.2

Table 7
Ž .Thermal conductivity calculation for Si vacancy 0.5%

Ž .T K 1597 1316 878 624 438

Ž . Ž .k T WrMrK 20.0 21.3 25.9 23.2 19.8

Table 8
Ž .Thermal conductivity calculation for C antisite 0.5%

Ž .T K 1652 1325 891 632 436

Ž . Ž .k T WrMrK 24.0 20.8 32.1 20.0 23.7

Table 9
Ž .Thermal conductivity calculation for Si antisite 0.5%

Ž .T K 1305 882 649

Ž . Ž .k T WrMrK 20.4 14.4 15.3

Table 10
Ž .Thermal conductivity for Si interstitial at T site 0.5%C

Ž .T K 1600 1299 875 646

Ž . Ž .k T WrMrK 14.9 17.3 15.2 14.5

Both the degradation effect and the loss of temperature
sensitivity are well documented behavior observed in con-

Ž w xductivity measurements on irradiated specimens Price 24 ,
w x w x.Rohde 44 , Senor et al. 23 . We regard this correspon-

dence between simulation results and irradiation data as a
confirmation of the validity of the simulation; on the other
hand, it is also important to recognize a significant differ-
ence exists in the defect microstructure between our simu-
lation and the irradiation experiments. Whereas in the
simulation the point defect remains as an isolated defect at
the same concentration throughout the entire range of
temperatures studied, the defect microstructure in the ac-
tual irradiated specimens can be expected to vary apprecia-
bly with temperature. For a high defect concentration of
0.5%, defect aggregation in the form of first self-interstitial
clusters and then void formation will occur as the tempera-
ture increases, particularly in the elevated range above
1200 K. The fact that in spite of this difference simulation
and experiments show the same behavior suggests that the
detrimental effects of crystal defects on thermal conduc-
tion will saturate; once this occurs how the defects are

distributed then no longer matters. We therefore believe
that relative to physical situations where a significant
fraction of the defects are in aggregate form, the present
simulation of well separated point defects can be regarded
as providing the maximum effect on a per defect basis.

We have shown that the thermal conductivity of b-SiC
can be calculated by combining the statistical mechanical
formalism of linear response theory with molecular dy-
namics simulation. Although this approach has been ap-

Ž w x w xplied previously Ladd et al. 14 , Lee et al. 15 , Kitagawa
w x.et al. 17 , our work can be said to be more comprehen-

sive and definitive in demonstrating the utility, as well as
certain limitations, of the method. The findings we have
presented in this two-part series should make it clear that
molecular dynamics simulation indeed provides a practical
and general means for determining the thermal properties
of condensed matter, so long as a sufficiently realistic
interatomic potential model is known for the system of
interest. In terms of developing a mechanistic understand-
ing of the heat conduction process, the accessibility to the
heat current correlation function appears to be a significant
advantage of the Green–Kubo approach, relative to direct
calculations of the thermal conductivity based on phonon
interactions.

The accuracy of the simulation results, obtained using a
well-known empirical many-body potential model devel-

Ž w x.oped first for Si and then adapted to SiC Tersoff 19,20 ,
is best brought out by comparison with experiments. Since
one can improve upon the potential model by incorporat-
ing some explicit electronic-structure effects, such as in the
tight-binding approximation, it remains to be seen whether
better agreement with experiments can be obtained. Even
without such improvements, our results for the perfect
crystal and various point defects are sufficiently encourag-

Fig. 15. Thermal conductivity as a function of temperature. Exper-
imental values for perfect crystal are plotted in dash line. Results

Ž .from calculations: perfect crystal ) , 0.5% concentration of
Ž . Ž .carbon vacancy q , 0.5% concentration of carbon antisite = ,

Ž .0.5% concentration of silicon vacancy ( .
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ing to indicate that extension of the present study to other
polymorphs of SiC, as well as to extended defects such as
grain boundaries, dislocations, and stacking faults will be
of value.
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