
PHYSICAL REVIEW E JUNE 1998VOLUME 57, NUMBER 6
Coupling continuum to molecular-dynamics simulation: Reflecting particle method
and the field estimator

Ju Li, Dongyi Liao, and Sidney Yip
Department of Nuclear Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

~Received 11 November 1997!

We propose a method to induce microchannel~Poiseuille! flow in a molecular-dynamics simulation by
introducing a partially reflecting ‘‘membrane’’ as a means of driving the fluid flow while conserving particle
number and total energy. We also develop a method to estimate various continuous macroscopic fields from
particle data, based on maximum likelihood inference. A general statistical approach is discussed for coupling
the continuum with molecular-dynamics simulation with emphasis on minimal disturbance to particle dynam-
ics, which is to be fully developed later.@S1063-651X~98!15105-X#

PACS number~s!: 02.70.Ns, 47.11.1j, 83.10.Pp
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I. INTRODUCTION

In recent years there has been increasing interest in s
lating dynamical phenomena in statistical systems that
manifest on different length scales. In a fluid flow proble
one can imagine decomposing the domain of interest in
relatively confined region, to be treated in atomistic det
and a larger, remainder region where the continuum desc
tion is appropriate. The fundamental question then is how
optimally couple the atomistic region to the continuum@1,2#.
From the standpoint of computations at either the mic
scopic or the macroscopic level, a central issue is how
determine and impose the proper boundary conditions in
internally consistent manner.

In this two-paper sequence we describe an approac
deal with this problem, which in several aspects can
shown to be mathematically optimal. In the first paper
concentrate on two methodological developments, one
method to drive fluid flow for use in molecular-dynami
~MD! simulations, the other is a method to estimate conti
ous macroscopic fields of density, temperature, and velo

$r(x),T(x),v̄(x)% using the discrete particle data given by
MD simulation. While we demonstrate that each method
useful for its own purpose, they can be combined in a g
eral scheme for coupling continuum and atomistic simu
tions. This is the subject of the second paper@3# where we
develop a procedure for imposing desired thermodyna
field boundary conditions in an atomistic simulation, utili
ing the information given by the field estimator; it can
formulated as a transformation that is optimal in the se
that it will minimize the artificial disturbances to partic
dynamics.

II. REFLECTING PARTICLE METHOD „RPM…

Consider Poiseuille flow in a narrow channel where co
pressible fluid enters and leaves under a pressure differ
Pin2P out.0. In the channel, body forces will be neglecte
As the channel width decreases tomm range, it is expected
that significant variations in density and temperature will o
cur such that a nonlinear pressure drop develops along
channel@4#, a behavior that is different from the simple pr
571063-651X/98/57~6!/7259~9!/$15.00
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diction of incompressible Navier-Stokes equation. Furth
complications arise due to the fluid-solid interactions at
interface, where simple boundary conditions such as the
sumption of ‘‘no-slip’’ may become inadequate@5#. To
probe such fine-scale phenomena MD simulation@6# can be
used; since it is often neither possible nor necessary to t
the entire problem using discrete particles, a method
couple the MD region to the surrounding continuum wou
be needed.

In a standard continuum description, the Navier-Stok
equation for incompressible Newtonian fluid@7#, we have

rS ]v

]t
1v•¹vD52¹P1m¹2v1rg, ~2.1!

wherem is the shear viscosity. For steady state flow:]v/]t
50, and ignoring gravitational body force, the forces that
on the fluid come from the pressure gradient term2¹P and
the viscous termm¹2v, which means that the fluid unde
consideration should only be pushed by other fluids.

To simulate fluid flow in MD we imagine aregion of
interestC where the fluid atoms are not subjected to artific
forces or constraints, and another regionA sufficiently far
away from C where actions are applied to the particles
achieve the desired flow conditions. Because of molecu
chaos, perturbations to particle dynamics will decay ove
distance of a few mean free paths, thus setting a lower li
for theC-A separation. What we have in mind, in essence
a feedback control system where actions inA cause the pre-
scribed flow conditions to be induced inC, while particles in
C still follow their natural dynamics. In fact, a fluid atom i
C should not be able to distinguish any difference with re
ity, and how the flow is induced should be irrelevant~for us,
of course, there is the problem of cost effectiveness!.

Current methods simulating the Poiseuille flow seem
fall into two types, the first may be called the ‘‘gravitatio
method,’’ @8# where a constant artificial acceleration field
imposed on all the atoms of the fluid. In our opinion there a
three unsatisfactory aspects to this approach.~1! In order to
induce appreciable flow the acceleration field would need
be as high as 1012 times the earth’s gravitation. As a cons
quence, significant kinetic-energy rescaling is required to
7259 © 1998 The American Physical Society
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7260 57JU LI, DONGYI LIAO, AND SIDNEY YIP
move the heat generated.~2! In the continuum limit one does
not recover the Navier-Stokes equation~2.1! unless the pres
sure gradient2¹P is assumed to be constant everywhe
~3! The effects on local dynamics induced by constant ac
eration are quite different from those induced by2¹P,
which have microscopic spatial and temporal fluctuations
sociated with molecular collisions. Besides these drawba
the rescaling of kinetic energy to remove heat will also d
turb the particle dynamics.

The second approach to simulating Poiseuille flow may
called the ‘‘reservoir method’’@9#, where artificial particle
source and sink, at the two ends of the simulation cell,
maintained at different pressures. This approach is simila
spirit to our method; however, there are differences in imp
mentation. In the existing method, in order to maintain
inlet reservoir, the source region is compressed every
hundred steps and new particles are injected into the em
space. The source reservoir takes about 1/4 of the e
simulation cell which amounts to a considerable portion
the computational burden. Also, the compression-inject
procedure may not give a very smooth and steady flow.

Our aim is to simulate fluid flow inside a microchann
with minimal unnatural perturbations or constraints. It is w
known that this process, whether in steady state or no
dissipative in that the work to drive the fluid flow is contin
ously transformed by viscous action into heat, which th
must be removed from the simulation cell. Other requi
ments which one could demand in setting up the press
difference between inlet and outlet are current conserva
~such that steady state is attainable!, easy implementation
and smooth approach to steady state.

We propose a simple method for driving fluid flow whic
satisfies these requirements~see Fig. 1!. The method consists
of introducing a fictitious membrane to act as a filter to allo
atoms crossing from one direction to pass through with
hindrance, while atoms crossing from the other direction
elastically reflected with a certain probabilityp. The mem-

FIG. 1. The reflecting particle method. If a fluid atom cross
x50 from left (x5LX

2) to right (x501), it passes through 100%
but if it crossesx50 from right to left, then it could be elasticly
reflected with probabilityp. The membrane is otherwise transpare
in the sense that particles on two sides can interact.
.
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brane has no other effects on the atoms; atoms interact
each other across the membrane in the same manner as
where else in the fluid.

It is intuitive that in the present setup the fluid would b
driven in the direction of free pass~call this thex direction,
and let the membrane be located atx50), and a negative
pressure gradient (DP/DX,0) would be established. It is
also clear that since no new particle or energy is injected
any time, the particle number and total energy of the sys
are conserved, thus allowing steady state flow to be poss
Moreover, one does not encounter situations where parti
find themselves in energetically unfavorable positions, wh
can occur in methods using random particle insertion. It w
be seen below that our method does not require extra kine
energy rescaling, the total energy being as well conserve
in any bulk liquid simulation.

To illustrate our method we consider three-dimensio
microchannel flow~see Fig. 2! of liquids in which the atoms
interact through a Lennard-Jones 6-12 potential with rad
cutoff at 2.2s @5#. Periodic boundary conditions are impose
in all three directions. Notice that translational invarian
does not hold in thex direction because of the membrane
x50. Along thez direction the channel, with widthw, is
bounded by two parallel solid walls consisting of~001! lay-
ers of fcc planes with atoms interacting via a strong
Lennard-Jones potential, sames but with eww55ew f
55e f f , such that at the fluid temperature it is in solid pha
Also, the wall atoms are given a larger mass (mw55mf).
The choice of these parameters leads to an intrinsic w
length/time scale comparable to that of the fluid, thus
hancing fluid-wall coupling. The first two units of the wa
atoms nearx50 are fixed~to serve as nozzles! because pres

s

t
FIG. 2. Setup of the simulation cell.x501 andx5LX

2 are two
sides of the RPM membrane~see Fig. 1!, which drives the fluid
flow. The nozzle consists of two units of fixed fcc solid wall atom
because pressure variation near the membrane is big; other
atoms are movable. Between the nozzles the correct particle dyn
ics can be assumed to be restored, thus becoming our regio
interest,C.
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57 7261COUPLING CONTINUUM TO MOLECULAR-DYNAMICS . . .
sure variation near the membrane could be large, and to
vent mechanical failure at other parts of the channel we
tach fourth-order springs to the wall atoms, which und
normal conditions should not influence the equilibrium l
tice dynamics of the solid.

O(N) efficiency can be achieved in the calculation
dividing the simulation cell into a number of bins~exploiting
the short-range nature of the interactions!. Each bin main-
tains a list~the bin list! of all the particles inside and eac
particle maintains a neighbor list, whose range is sligh
larger than the potential cutoff. A ‘‘flash’’ condition is de
vised for updating the neighbor lists of atoms. The neigh
lists make force evaluationsO(N), and the bin lists make
updating the neighbor listsO(N) ~because updating is re
stricted to atoms in the nearby 27 bins if the bin size
greater than the neighbor list range!. Data dependency be
tween bins includes force evaluation, neighbor list mainta
ance, and particle transfer. The code has been impleme
on both single processor workstations and on parallel sh
memory SMP’s with excellent speed scaling.

In order to compare with literature results@5#, we have
studied Poiseuille flow with average reduced temperature
and reduced density 0.81 for both fluid and wall@10#. The
simulation cell is 51.035.1312.7 in thexyz directions and
contains 1783 fluid atoms and 900 solid wall atoms~two fcc
layers!. The run length is 53105 time steps~step size
50.005). The reflection probabilityp is chosen to be 1
After equilibrating for 40 000 steps, the RPM is activated
x50 for another 40 000 steps before starting to accumu
properties in 1003100 meshed bins alongxz. Flow rates are
measured to be 3.09360.007 atoms/reduced time at many

different x’s; the small variation alongx indicates that
steady state is well achieved.

The average cross-sectional fluid density is shown in F
3, where the vertical dotted lines indicate the positions of
fluid-solid interfaces derived from the solid density@lattice
parameter5(4/r)1/3'1.7#.

As the fluid density varies significantly near the wall, it

FIG. 3. Average cross-sectional (Z) fluid density. The vertical
dotted lines indicate the theoretical positions of fluid-solid int
faces. Empty circles are results by dividing the entire cell in
1003100 bins inxz, and average overx in the region of interest
~between the two nozzles!. The solid line is its interpolation.
re-
t-
r
-

y

r

s

-
ted
ed

.1

t
te

.
e

more helpful to look at the flow rate (}rvx) rather thanvx .
The average cross-sectional flow rate is shown in Fig. 4. O
can see that the overall shape agrees well with the parab
profile predicted by the incompressible Navier-Stokes equ
tion, and is smoother than either the particle density or t
velocity profile. Microscopic details such as layering near t
solid walls can still be distinguished.

The stress distribution (t i j [2Pi j ) throughout the chan-
nel is calculated by attributing pair interaction terms to pa
centers, and ‘‘kinetic energy’’ terms to particle sites. It i
found that the diagonal elements of the stress tensor (Pxx ,
Pyy , Pzz) are reasonably close to their average in the flu
stream. The average cross-sectional shear stress profil
shown in Fig. 5, one sees that near the stream centerPxz is
linear with z, in agreement with the continuum solution.

MidstreamPxx ~averaged across the middle 15 bins! ver-
sus x are shown in Fig. 6, where the vertical dotted line
indicate positions of the two fixed fcc wall units near th
RPM membrane. In between the dotted lines we regard
particle dynamics to be essentially restored, and it becom

-
FIG. 4. Average cross-sectional fluid flow rate. The way da

are measured is explained in Fig. 3.

FIG. 5. Average cross-sectional local shear stress (Pxz[2txz).
The way data are measured is explained in Fig. 3.
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7262 57JU LI, DONGYI LIAO, AND SIDNEY YIP
our region of interest,C. The main objective of this method
that of building up a pressure difference between two end
the channel, is seen to be realized, and its linear decay a
the channel inC is in agreement with the simple continuu
solution. Over the entire region temperature variation is l
than 5% and density variation is less than 6%, thus in
illustrative example fluid properties are not significantly
tered along the flow to produce a nonlinear pressure d
We expect that with increasing channel length, one will
able to observe nonlinear behavior, signalling that the sim
Navier-Stokes solution can no longer describe the en
channel.

For a quantitative comparison with the continuum d
scription ~2.1!, let us calculate the fluid shear viscositym,
using the measured total flow rateJ and the pressure gradien
2(DP/Dx) achieved in this simulation. Assuming Eq.~2.1!
is correct, the velocity field should be

vx~z!5
1

2m S 2
DP

Dx D F S w

2 D 2

2z2G , ~2.2!

so the total flow rate should be

J5rLYE
2w/2

w/2 1

2m S 2
DP

Dx D F S w

2 D 2

2z2Gdz5
2rDPLYw3

12Dxm
.

~2.3!

Taking J53.093, r50.81, LY55.1, w5LZ22(4/r)1/3

59.29, and obtaining2(DP/Dx)50.027 65 by least-squar
fitting of Fig. 6 insideC, we getmsim52.47, which is in fair
agreement with the valuem52.14 obtained entirely indepen
dently from a bulk liquid simulation@1#.

As a subtle feature of the RPM method proposed here,
find that the heat generated by viscous action inside the fl
and by possible fluid-solid slip at the interface@11# is actu-
ally removed by constant entropy extraction through the
tion of the membrane, which in effect constitutes a ‘‘Ma
well’s demon’’ system@12#. To quantify this claim we
propose the following heat balance equation:

FIG. 6. Midstream pressure (Pxx) with respect tox. The vertical
dotted lines indicate the positions of the nozzles. Stars are re
obtained by dividing the entire cell into 1003100 bins inxz, and
averaging over 15 bins nearz5LZ/2.
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kBT~ lnCf 11 f 2

f 1 2 lnCf 11 f 2

f 11p f2!

5kBTF f 1lnS 11
p f2

f 1
D1p f2lnS p1

f 1

f 2
D

1 f 2~12p!ln~12p!G
'E dVt i j v i , j1~ interfacial friction!, ~2.4!

where f 1( f 2) is the rate of particles hittingx50 from left
~right! when the system reaches steady state, based o
estimation of the entropy (S5kBlnV) extraction rate. The
rationale is thatif the membrane does not act, then in a u
period of time, the macroscopic parameters specifying
system aref 1 and f 2, which corresponds toCf 11 f 2

f 1 5( f 1

1 f 2)!/ f 1! f 2! microstates~ways of crossing!; after the mem-
brane interferes it is changed toCf 11 f 2

f 11p f2, as the system can

not distinguish between atoms that hit from the right and
reflected and atoms that originally hit from the left@13#. The
first term on the right-hand side~RHS! is the dissipation
kernel ~heat generation rate! integrated inside the fluid bulk
@7#, assuming the continuum approach to be applicable.
second term, due to interfacial friction, is more involved b
we expect it to be small when there is no ‘‘stick-slip’’ mo
tion @11#. The left-hand side~LHS! and RHS are equated b
the fundamental relationTDS5DQ.

Overall we should have the number balance equation

f 12~12p! f 25J, ~2.5!

to hold at steady state, whereJ is the total flow rate.
Equation~2.4! has been explicitly verified by simulatio

for many cases and is found to hold quantitatively in m
situations. Assuming the continuum treatment to be valid,
can write for the heat generated by viscous dissipation ins
the fluid @7#,

dQ

dt
5E dVt i j v i , j5E dVm S dvx

dz D 2

5
LXLYw3

12m S DP

Dx D 2

,

~2.6!

which is to be balanced with the entropy extraction rate
the membrane.

Table I summarizes all the simulation results for t
above 51.035.1312.7 system with different reflection prob
ability p’s. Depending on the magnitude ofp, the simulation
run length varies from 53105 to 33106 timesteps until all
relevant quantities have fully converged.m sim is then calcu-
lated using Eq.~2.3!, and is used to evaluate Eq.~2.6!.

Figure 7 compares the LHS and RHS of Eq.~2.4! with
varying p’s. The agreement, when 0.1,p,0.8, is within
15% as the dissipation rate varies by two decades in
range. If we take into consideration all the possible err
and ambiguities involved in evaluating Eq.~2.6!, such as that
rmidstreamis not exactlyr and w may plausibly take values
other thanLZ22(4/r)1/3, this is remarkably good agreemen
In particular, the parts of the fluid that are near the membr
~see Fig. 6! can not be taken as normal fluid, in contrast
what is assumed in deriving Eq.~2.6!, and they tend to be

lts
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3.0934
38.0656
0.02765
.4700
0.9804
.3843
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TABLE I. Verification of the heat balance equation~2.4!.

p 0.050 0.100 0.150 0.1875 0.225 0.300 0.400 0.500 0.600 0.700 0.850 1

f 1 18.2322 17.7521 17.2971 16.9136 16.5921 15.8123 14.5614 13.3660 11.8653 10.2939 7.1772
f 2 19.0759 19.5294 20.0876 20.3828 20.8076 21.6837 22.9158 24.4480 26.1611 28.3762 32.3390
2DP/DX 0.00068 0.00144 0.00227 0.00313 0.00420 0.00544 0.00744 0.01006 0.01285 0.01564 0.02115
msim 1.8291 2.0793 2.8100 2.4567 2.5776 2.3700 2.4689 2.5100 2.5100 2.4000 2.4900 2
LHS 0.0056 0.0184 0.0360 0.0725 0.1173 0.2220 0.4055 0.7660 1.2306 2.0246 4.0097 1
RHS 0.0044 0.0174 0.0318 0.0696 0.1188 0.2170 0.3904 0.7020 1.1423 1.7734 3.1262 5
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more ‘‘turbulent’’ than fluids inC and thus should generat
more heat. So the observation that the LHS of Eq.~2.4! is
consistently a little higher than the RHS seems to m
sense.

A much bigger system (76.5310.2320.4) with 10 179
fluid atoms and 2700 wall atoms has been studied i
1 000 000 time step run withp50.3, under the same tem
perature and density conditions. All the qualitative featu
of our discussion above remain valid although the system
now closer to a continuum. We find thatf 1556.8445, f 2
573.8267,2(DP/Dx)50.003 624, and the inferredmsim
52.37. In the heat balance equation, the LHS gives 1.7
while the RHS gives 1.7681.

III. THERMODYNAMIC FIELD ESTIMATOR

The problem we raise is the following. Given a set
particle data~we assume the particles to be of the same ty
with reduced mass 1! $(xi ,vi),i 51, . . . ,N%, whereN is a
large number, how does one determine the correspon
spatial distributions of fields$r(x),T(x),v̄(x)%, which have
meaning in the continuum approach. A conventional way
proceed would be to divide the cell into bins, and avera
over each bin:

FIG. 7. Simulation verification of the heat balance equat
~2.4!, with different reflection probabilityp’s. The LHS and RHS of
Eq. ~ 2.4! are both theoretical predictions of the system dissipat
rate under steady-state flow, one based on the proposed en
extraction rate from statistical mechanics, the other from the c
tinuum mechanics dissipation kernel.
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ra5Va
21 (

i Pbina
1,

v̄a5^vi& i Pbina , ~3.1!

Ta5D21^uvi2 v̄au2& i Pbina .

The set of values$ra ,Ta ,v̄a% will represent a spatial distri-
bution.

However, one could ask whether Eq.~3.1! is the best one
can do, or the given particle information has been optima
utilized. For the purpose of obtaining continuous streamlin
of a flow field, it may turn out that the bin-averaged resu

$ra ,Ta ,v̄a% are not sufficiently smooth so that addition
interpolation is necessary. Also, in dividing the cell into bi
one may be forced to compromise between spatial resolu
and statistical accuracy, which often does not lead to a
isfactory solution.

Suppose we assume that the particles of interest conf
to a local Maxwellian distribution,

dP5 f M„x,vu$r~x!,T~x!,v̄~x!%…dxdv

5r~x!dx•
1

@2pT~x!#D/2
expS 2

uv2 v̄~x!u2

2T~x!
D dv,

~3.2!

whereD is the dimensionality of the system and we ha
taken kB51. This assumption can be explicitly checke
whenever necessary; theoretically it should hold quite w
when the field gradients are small and the transients h
died away. We now propose a method that directly giv
continuous field distributions from particle data, based on
concept of maximum likelihood inference@14# in statistics.
One picks a spatial basis set:$Tl(x),l 50, . . . ,L21%, typi-
cally low-order polynomials, and expresses the field~s!, say
b(x)51/T(x), as

b~x!5 (
l 50

L21

blTl~x!. ~3.3!

One then maximizes the total probabilityP, given the set
of data points$(xi ,vi),i 51, . . . ,N%,

P~$bl%!5)
i 51

N

f M~xi ,vi u$r~x!,T~x!5b21~x!,v~x!%!

~3.4!

n
py
-



is
d

o

nl
f

o

ch

th

ns

s

n
u-

r
o
e

ta

re
se

b
ua
in

1D
e
i
o
n

es
th
m
r
a
a

m

’ in

ent
he

ase
e
in
us-
nts

een
file
the
ch a
wl-
eed
are
nd,
l be
, in
la-

ne
sible
rder
rily
tion
be

ions
o-
ut a
rst
ame
hen
ng

t is

ofile;

7264 57JU LI, DONGYI LIAO, AND SIDNEY YIP
with respect to the coefficients$bl%,l 50, . . . ,L21. The
maximum is then regarded as the most ‘‘probable’’ field d
tribution in parameter space$bl%. In this case we assume
the other two fieldsr(x) andv(x) to be known@15#.

In general the fields should be treated altogether. Fr
Eqs. (3.2) and~3.4! we see that

lnP5(
i 51

N S D

2
lnb~xi !2

b~xi !uvi2 v̄~xi !u2

2
D

1(
i 51

N

lnr~xi !1const. ~3.5!

So the density field is decoupled from$T(x),v̄(x)% and can
be treated separately. From now on we will consider o
T(x),v̄(x) fields, which have 11D functional degrees o
freedom.

We have implemented the scheme using Chebyshev p
nomials, which have better numerical stability than$xn% ’s of
the same order@16#, as the basis set. ForD.1 dimensional
system one can use their products as basis functions, su

Tlmn~x!5Tl~x!Tm~y!Tn~z!,

if the field has 3D variation.
By noticing that v̄(x) appears in Eq.~3.5! only in a

squared form, we used a two-step relaxation procedure ra
than minimizing all the coefficients at once. Givenb(x), the
field v̄(x) was relaxed by solving a linear set of equatio
using the Cholesky decomposition@16# method, in the same
manner as in the least square fitting problem. This define
function operationally that only depends onb(x). We then
relaxed b(x) using the Polak-Ribiere conjugate gradie
minimization algorithm, with force function evaluated by n
merical differentiation.

To demonstrate the power of this method, we conside
simple liquid in a two-dimensional system that is heated
one side and cooled on the other, with the simulation c
mirror-reflected to form a periodic structure. An instan
neous snapshot of the system is taken~Fig. 8! where the dots
represent discrete particle positions (x) and kinetic energies
(y). A sliding bin average with bin size 12% of the enti
cell was performed to obtain the zig-zag curve as a repre
tation of the instantaneous temperature profile. As can
seen this result is strongly fluctuating. To reduce the fluct
tions one could increase the bin size at the cost of los
spatial details.

Using the proposed temperature field estimator with
spatial dependence (L54), we obtain the smooth curv
shown in Fig. 8. It is seen that while the thermal noise
effectively suppressed, the continuous representation g
through the bin-averaged curve in a very reasonable man
The physical origin of the method, rather than somead hoc
smoothing criteria, lends confidence in the meaningfuln
of the estimation, in the sense of optimal inference from
data given. Because the estimator is insensitive to ther
noises, we expect the time evolution of the temperature p
file to be slowly varying until it eventually becomes
straight line. The fact that small deviations from a line
profile are expected justifies the use of low-order polyno
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als as a basis set, which is equivalent to choosing ‘‘priors’
statistical inference with known knowledge.

Using low-order polynomials as the basis set to repres
the fields is the crucial difference when comparing t
present method with bin averaging, Eq.~3.1!. The latter can
be shown to be equivalent to using nonoverlapping stairc
functions ~idealized asd functions! as the basis set in th
same maximum likelihood inference formalism. Thus,
contrast to representing the temperature profile in Fig. 8
ing three or four polynomials, the bin averaging represe
the same field using hundreds of ‘‘d functions,’’ which com-
pletely ignores any spatial coherence of the data betw
adjacent bins. We know that the true temperature pro
must be a continuous and smooth function irrespective of
thermal noises, nor can it be of strange shape under su
simple setup. The utilization of this spatial coherence kno
edge is the reason why polynomial basis sets often exc
bin averaging in performance, especially when the fields
smooth in a regularly shaped domain; on the other ha
under special circumstances, a localized basis may wel
helpful when used concurrently with a delocalized basis
analogy with the situation in electronic structure calcu
tions.

For a specific problem the number of polynomials o
should use as basis should correspond to the largest pos
field variations one expects to encounter, to the same o
of its Taylor series expansion, this field can be satisfacto
cut off. In practice, however, one needs to balance trunca
error with statistical error, i.e., a smaller basis set should
used when the data are scant, otherwise thermal fluctuat
could dominate the result. For an optimal choice of polyn
mial order, a detailed mathematical analysis is needed. B
trial and error procedure could be the following. One fi
proposes a smooth field that has approximately the s
magnitude and variations as the field to be estimated. T
one generates artificially a set of ‘‘particle data’’ accordi

FIG. 8. Snapshot of a 2D liquid system with 500 atoms tha
heated on one side (x51) and cooled on the other (x50), where
dots represent discrete particle positions (x) and kinetic energies
(y). A sliding bin average with size5 0.12 was taken to give the
zig-zag curve, representing an instantaneous temperature pr
our method (L54) gives the smooth curve.
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to the proposed field and Eq.~3.2!, whose size is the same a
the actual data set. Lastly, one feeds the data into the
mator. After repeating the process for a number of times,
order that gives the best average resemblance to the prop
field is the optimum choice.

As another illustration of our method we show~Fig. 9! the
streamline plot of fluids flowing over a solid obstacle lyin
perpendicular to the flow direction. The flow is driven by t
RPM. To make everything simple we use a 2D syst
(150350, 2000 particles,T51.55, mass51) with Lennard-
Jones interaction, and periodic boundary condition in thy
direction ~no wall!. The obstacle consists of three layers
fixed atoms with atomic separations 1 and occupyingX
5@74,76#,Y5@16,34#, which interact with the fluid atoms in
the same way as the fluid-fluid interaction (Rcut52.5). The
reflecting probabilityp is set equal to 1, and to further in
crease the drive,two RPM membranes@17# are employed in
series, one atx50, the other atx53. Over a period of
50 000 time steps, 200 000 particle data are collected, w
particle positions and velocities sampled in 500 time-s
intervals to eliminate redundancy due to correlation. Th
are then fed into the general field estimator defined in
rectangular domain~20,0!–~140,50! @18#, which employs
four ~5232! basis functions for the temperature field a
121 ~511311! basis functions forvx ,vy fields. The stream-
lines are plotted after the continuous temperature and ve
ity fields have been obtained. Starting at chosen initial po
tions, which are equally spaced points in the up-stre
region and several points in the down-stream region rela
to the obstacle, the positions are determined by integra
the velocity field~symmetrized betweeny and 502y! for-
ward in time using the leapfrog algorithm. For compariso
Fig. 10 shows the bin-averaged velocities using 60330 mesh

FIG. 9. Streamline plot of 2D fluid flow driven by RPM, with
arrows indicating the flow direction. The continuous velocity fie
is given by the thermodynamic field estimator, based on part
data ~system size5 2000 atoms! in 50 000 time steps during a
MD simulation. The cell size is~0,0!–~150,50!, with a wall barrier
of fixed atoms~denoted by dots! in the midstream. The fields ar
estimated inside a rectangular domain of~20,0!–~140,50! using
maximum likelihood inference, by expansion in a continuous a
slowly varying basis set.
ti-
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for the same set of particle data. The averagevx of the entire
system is 0.708.

Several interesting features can be noted. The first is
the ‘‘no-slip’’ condition holds rather well near the fixed ob
stacle, as the velocities nearby are very small~even around
the edges!, and in the region occupied by the two vortice
We are confident that the vortices are not numerical artifa
because the qualitative features of these streamlines do
change when we vary the basis sets or the domain of est
tion; they are also vaguely discernible on plots of meshed
averages. Additionally, the outer streamlines that start fr
x520 appear to be quantitatively stable against change
the estimation procedure. What is also interesting is that
vortex configurations seem to be time dependent, i.e., t
do not reach a steady state when other parts of the field
This is reasonable in that the behavior shown in Fig. 9 c
tainly is not in the steady state because mass must be
served, and there are no sources at the vortex centers.
means that using the same estimation procedure and
same number of sample data but at different time interv
during a simulation run may give different vortex shapes

To make contact with the continuum results, the Reyno
number Re5rvL/m, for the flow under discussion is aroun
10, so one may be tempted to compare with vortex gen
tion in similar fluid mechanical scenarios@7#. However, the
fact that the flow speed is very high compared to therm
velocities and that there is significant density variation alo
the flow means that the present situation cannot be f
treated by a continuum description.

IV. DISCUSSION

In this work two problems are addressed that pertain
molecular-dynamics simulation of fluid flow. For studyin
Poiseuille flow the reflecting particle method is shown to
a physically simple and computationally effective meth
that does not involve adding artificial body forces; its pri
cipal virtues are ease of implementation and good conv
gence behavior. That this method has an intrinsic mechan

le

d

FIG. 10. Corresponding bin-averaged (60330 mesh! plot of the
velocity field, using the same set of particle data as in plotting F
9. The dots indicate the centers of bins and velocities are dr
from them after scaled by 5.
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for entropy extraction is particularly noteworthy; cons
quently the need for temperature rescaling during simula
is eliminated. The thermodynamic field estimator is simpl
systematic way to represent discrete particle data in term
continuous distributions. Although it is presented in t
present context of fluid flow simulation, the utility of thi
representation clearly extends to all types of discrete-par
simulations.

While each of the two methods discussed can be u
separately in a variety of applications, we have in mind
combine them in formulating a general approach to cou
continuum with molecular-dynamics simulation. As me
tioned in the Introduction, our interest lies in a schem
where macroscopic field boundary conditions can be
posed on an MD system in a feedback control manner. As
will present in the second paper@3# this coupling can be
implemented by introducing a three-region approach. T
aim is to ensure that the region of interestC ~core! has the
desired field boundary conditionsand the natural particle
dynamics. A so-called particle controller acts in an outer M
regionA, which is based on a transformation relating tw
distributions, one derived from the particle data~current
fields! and the other from the desired fields~outer continuum
solution!. The core is surrounded by a buffer zoneB, which
separates it fromA. The function of the field estimator de
veloped here is to serve as the detector of the control lo
inferring the current fields at the core boundary]C based on
. C

,

.

y,

A

n
a
of

le

d
o
le
-
,
-
e

e

p,

particle data from theentire C region. A central control al-
gorithm now compares the estimated current fields with
desired fields on]C, and sends high-level instructions to th
particle controller acting inA. We will show through ana-
lytical arguments that an ‘‘optimal’’ particle controller in
fact exists, in the sense that its mapping from one distri
tion to the other creates the least disturbance to a ran
variable sequence.

Once we know how to impose general field bounda
conditions on a MD system in a least-disturbance or
disturbance manner, as the above discussions outline, we
combine a continuum solver with MD simulation through t
Schwarz iteration formalism@2,19#. This will enable us to
study steady-state fluid flow treating the continuum and a
mistic aspects on equal footing. The attempt to couple co
putational techniques on different scales has counterpar
other areas of simulation research@20#.

ACKNOWLEDGMENTS

This work has been supported by Sandia National La
ratory. We are grateful to C.C. Wong for discussions a
encouragement throughout the project. We also acknowle
helpful early discussions with N. G. Hadjiconstantinou. J
has received partial support from The Petroleum Resea
Fund, administered by the American Chemical Society.
s

,

we

lar
is

as

P.

ven
se
can
M

@1# S. T. O’Connell and P. A. Thompson, Phys. Rev. E52, 5792
~1995!.

@2# N. G. Hadjiconstantinou and A. T. Patera, Int. J. Mod. Phys
8, 967 ~1997!.

@3# D. Liao, J. Li, and S. Yip~to be published!.
@4# For experiments on microchannel flow see, for instance

Pfahler, J. Harley, H. Bau, and J. N. Zemel, inMicromechani-
cal Sensors, Actuators, and Systems, edited by D. Choet al.
~ASME, New York, 1991!, Vol. 32, p. 49; K. C. Pong, C. M.
Ho, J. Q. Liu, and Y. C. Tai, inApplication of Microfabrica-
tion to Fluid Mechanics, edited by P. R. Bandyopadhyay, K. S
Breuer, and J. C. Blechinger~ASME, New York, 1994!, Vol.
197, p. 51.

@5# P. A. Thompson and M. O. Robins, Phys. Rev. A41, 6830
~1990!.

@6# For an introduction to MD, see M. P. Allen and D. J. Tildesle
Computer Simulation of Liquids~Clarendon, New York,
1987!.

@7# G. K. Batchelor,An Introduction to Fluid Mechanics~Cam-
bridge University Press, Cambridge, 1967!.

@8# J. Koplik, J. R. Banavar, and J. F. Willemsen, Phys. Fluids
1, 781 ~1989!.

@9# M. Sun and C. Ebner, Phys. Rev. A46, 4813~1992!.
@10# The reduced units are length in terms ofs; energy in terms of
J.

e f f ; mass in terms ofmf . Thus one reduced time unit i
(mfs

2/e f f)
1/2, one reduced temperature unit ise f f /kB , one

reduced stress unit ise f f /s3, etc.
@11# P. A. Thompson and M. O. Robins, Science250, 792 ~1990!.
@12# Maxwell’s Demon: Entropy, Information, Computing, edited

by H. S. Leff and A. F. Rex~Princeton University Press
1990!.

@13# In a more general setup it may not be true, and perhaps
need to solve a scattering problem wheref 1,f 2 is generalized
to f 1(v), f 2(v). Here the claim holds because there is specu
symmetry in the particle speed distribution and the reflection
elastic.

@14# E. S. Keeping,Introduction to Statistical Inference~Van Nos-
trand, Princeton, 1962!.

@15# In reality certain fields may be known beforehand, such
r(x) andv(x) in convectionless heat conduction problems.

@16# W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B.
Flannery,Numerical Recipes in C, 2nd ed.~Cambridge Uni-
versity Press, Cambridge, 1992!.

@17# It is not necessary to employ two RPM membranes or e
p51 to induce appreciable flow at this condition, but we u
the example to show that it can be done. If necessary we
always have strong enough flow by placing several RP
membranes.



th
on
e
to

e,

a-
ary

57 7267COUPLING CONTINUUM TO MOLECULAR-DYNAMICS . . .
@18# Particle dynamics are strongly perturbed by RPM near
membrane, so it is advisable to discard those data and
estimate the fields inside the region of interest. The presenc
a geometrical singularity~the barrier! causes large basis sets
be used.

@19# B. F. Smith, P. E. Bjorstad, W. D. Gropp,Domain Decompo-
sition: Parallel Multilevel Methods for Elliptic Partial Differ-
e
ly
of

ential Equations~Cambridge University Press, Cambridg
1996!.

@20# Proceedings of the Workshop on Modeling of Industrial M
terials: Connecting Atomistic and Continuum Scales, Janu
7–11, 1996, UC Santa Barbara, edited by S. Yip@J. Computer-
Aided Mater. Design3 ~1996!#.


