#!/bin/csh -f cat $0 | select %%%%% %%%%% > $0.tex latex $0.tex dvips $0 -t landscape -o $0.ps rm -f $0.tex $0.log $0.dvi $0.aux exit % RPM; gv -seascape RPM.ps & %%%%% \documentstyle[twoside,fullpage,epsf,fancybox,simplemargins,doublespace,12pt] {report} \setlength{\topmargin}{0in} \setlength{\evensidemargin}{0in} \setlength{\oddsidemargin}{0in} \setlength{\textwidth}{9in} \setlength{\textheight}{6.5in} \setstretch{1.1} \setlength{\parskip}{1em} \setlength{\parindent}{0em} \begin{document} \pagestyle{empty} \settopmargin{1.4in} \setlength{\fboxsep}{12pt}% %%%%%%%%%%%%%%%% % 1 % %%%%%%%%%%%%%%%% \begin{LARGE} Pipe flow problem: fluid comes in with pressure $P_{\rm in}$ and exits with pressure $P_{\rm out}$. $P_{\rm in} - P_{\rm out}$ is what drives the fluid flow. \epsfbox{rpm_setup.eps} \vspace{0.4cm} {\bf How does one set up the pressure head $P_{\rm in} - P_{\rm out}$ in MD?} \end{LARGE} \newpage %%%%%%%%%%%%%%%% % 2 % %%%%%%%%%%%%%%%% \setstretch{1.0} \begin{LARGE} {\bf Reflecting Particle Method to Generate Pipe Flow:} \epsfbox{rpm_membrane.eps} \flushleft$\bullet$ Conserve {\bf number of particles} (efficient PBC setup) \flushleft$\bullet$ Conserve {\bf total energy} (no need for temperature rescaling) \flushleft$\bullet$ Faithful to Navier-Stokes eqn; reach steady-state gracefully, etc. \end{LARGE} \newpage %%%%%%%%%%%%%%%% % 3 % %%%%%%%%%%%%%%%% \setstretch{1.2} \begin{LARGE} \flushleft$\bullet\;$ {\bf Demon vs Heat -- Facts:} -- Demons don't do work; system energy stays constant. -- Heat {\em is} generated by viscous shearing inside fluid. Continuum solution predicts a dissipation rate of $$\frac{dQ}{dt} = \int \tau_{ij} v_{i,j} d\Omega =\frac{L_X L_Y w^3 }{12\mu} \left ( \frac{\Delta P}{\Delta x} \right )^2.$$ -- Steady-state is observed to be reached; system does not heat up. \vspace{0.3cm} \flushleft$\bullet\;$ {\bf Then, where does the heat go?} $\Delta Q = T\Delta S$. The demons reduce system entropy by selectively reflecting atoms at $x=0$. \end{LARGE} \newpage %%%%%%%%%%%%%%%% % 4 % %%%%%%%%%%%%%%%% \setstretch{1.1} \begin{Large} \flushleft$\bullet\;$ {\bf How to estimate $\Delta S$?} Let $f_1/f_2$ be the rate of atoms hitting $x=0$ from left/right when the system reaches steady-state. In unit time, the number of ways of crossing are $$ \Omega_1 = \frac{(f_1+f_2)!} {f_1!f_2!} \;\;\;\;\; \longrightarrow \;\;\;\;\; \Omega_2 = \frac{(f_1+f_2)!} {(f_1+pf_2)!((1-p)f_2)!}$$ \vspace{0.1cm} And, $\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \;\;\;\Delta S = k_{\rm B} \log\Omega_1 - k_{\rm B} \log\Omega_2\;$, \vspace{0.1cm} therefore, there should be (?), $$ \frac{dQ}{dt} = \frac{L_X L_Y w^3}{12\mu} \left ( \frac{\Delta P}{\Delta x} \right )^2 \;\;\;\;\;=^? $$ $$ k_{\rm B} T \log \frac{\Omega_1}{\Omega_2} \approx k_{\rm B}T \left \{ f_1 \log (1+\frac{pf_2}{f_1}) + pf_2 \log („+\frac{f_1}{f_2} ) + f_2(1-p)\log(1-p) \right \}. $$ \end{Large} \end{document} %%%%%