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1 Notation

I define dimensionless charge at an atomic site, ¢;, as

=3 3 ltafbu)’ (1)

where |ia) is the ath atomic wave-function of atom ¢ and [),) is the nth occupied wave-
function. At present I take |icr)’s to be mutually orthogonal. There are M atoms with 4
valence orbital each (in the case of Si and C) in a primitive cell and we in general do not
expect them to be equivalent (related by space group operations).

Apparently, g; is related to the real charge @); in electromagnetic sense by
Q; = —eq;, e=1.60217733 x 107°C. (2)

It is very confusing to talk about (); and ¢; at the same time, so I decide to stick to ¢; always.
In TB fitting we use A as length unit and eV as energy unit, so the SI formula

e

1 , € = 8.854187817 x 10 *F/m(vacuum permittivity) (3)
TeoT

becomes
E = )\O_qij’ Ao = 14.3996517269, (4)
T

where it is understood that F is in eV, r is in A.



2 Charge Quadratic Form

Following a review by Elstner et al', one can show that conventional (non self-consistent)
TB scheme is first-order approximation to DF'T, while self-consistent TB is second-order;
and this expansion is likely to stop here because the next orders come exclusively from F,.
which is localized.

Given the DFT total energy functional

E[P]:Z<7/}n|__|1/}n>+v;wt ,0+1 pp/2 + Exelp) + Zi J/2 /pdr—ZZz,

n 1#£] ’LJ

where I use the shorthand
1 ! o(r)p(r'
V= [ Veupte)ar, 5 pp= [ [ 202 aar. )

A true minimization of E with respect to p (equal in magnitude to a density distribution
of fictitious Kohn-Sham non-interacting electrons) yields the exact solution, pexact, but it is
sometimes a daunting task. So one can instead come up with a guess density py directly
based on {R} — the ion positions, close t0 Pexact as much as possible, and the resultant energy
Elpo] = V({R}) can be understood as a “classical” empirical potential. py, however, is not
Pexact, and one can do much better by expanding F|[p| around py and seek minima from there.
Define

5p=p— po, (7)
then there is
oF )
Elp] = Blpo] + | -dp+ 7 1 0pop/2 + ... (8)
Plo

If one approximates the landscape around pg to be 11near and relaxes once, he obtains non
self-consistent TB solution py; if one takes into account of the curvature and relaxes several
times iteratively, he obtains the self-consistent TB solution? p,. The procedure is in fact a
multi-dimensional variant of Newton’s method of root finding.

To first order,

oF oF oF
B~ Bl =B+ 5| G-m = (Bl =G| m)+ 5| 0 O
the minima of which is obtained by solving
(5E % 1 OBy,
b= (-G Vet o S ) ) = e (10
P o

!Elstner M, Porezag D, Jungnickel G, Elsner J, Haugk M, Frauenheim T, Suhai S, Seifert G, Physical
Review B 58 7260-7268 (1998).

2Called “tight-binding” because in guessing pg, one makes up the picture of each ion owning an electron
cloud and pg is some, perhaps nonlinear, combination of these clouds.



which in local basis is a set of linear equations, and (ict| § ‘ |76) are in fact just the matrix
elements that are to be parameterized, consciously followmg the above route of thinking or
not. The point is, after (10) are solved, the linear correction to (9) is entirely included in

5E

0

The leftovers,

6 Ey,
op

Erep = E[,Oo] -

“Po = E ——:popo | /2+ (E:w[pO]_ —
0 (z‘#j B 7 ) o

p) (12)

can be divided into two parts, EX_ (the first bracket), and EZ (the second). Assuming po

rep rep

is some simple combination of atomic orbital charge densities with no charge transfer, Eﬁp
is then pair-additive and should follow the Buckingham functional form 3, 4 e~P/re, since
the orbital densities decays so with r; and E Tep is of the embedded-atom form proposed by

Daw and Baskes because it is in line with their “projected charge density” idea.

In the next order, two additional terms will be included,

62 By

dp?

1
E ~ E, = E\[p| + AE = E;[p] + 1 0pdp/2 + o dpdp/2. (13)
0

Imagine that we have a cluster of 10> Si and C atoms — the guess charge density py prior
to relaxation has electron density attached to each ion with 4 electrons in each, but during
relaxation because Ej, E, of C is lower than that of Si, there is a systematic trend in the
cluster of electrons flowing from Si to C. If we plot dp(r), it will be largely positive around
C atoms and negative around Si atoms, so it would be helpful to decompose it as

= Z opi(r). (14)

In (13), when ions R; and R, are far apart, the first term ceases to contribute since E,. is
local, while the second term, a double integral

/ / 0pi(x)op;(x) , o, ([ Opi(x)dr)(["op;(x')dr’) (15)

r'| ~ R; — R

often can be well-approximated by “point-charge” interaction®. On the other hand, when R;
and R, are nearest or second nearest neighbors, clearly (15) is not a valid approximation any
more since dp;(r) and dp;(r’) overlaps — the net effect is a softening of the interaction, since,
in the numerical limit of R; — R, while “freezing” ép;(r) and ép;(r’), the integral does not
blowing up as 1/r but approaches a finite value. That is, the introduction of finite orbital
size, a;, increases the average distance between two electrons sitting on different orbitals.

3S0 long as [ 8p;(r)dr # 0, RHS of (15) is the leading-order contribution. The next order is the “atomic
polarizability” part where although there is no net transfer of charge from atom 4 to other atoms, its electron
cloud is polarized in the direction of the electric field (one sp? hybridized orbital is more favored than others).



A special case of (13) and (14) is s = j. The effect of E,. is strongest here; and the interaction,
though in a slightly different flavor ( “self” as opposed to i # j interaction), numerically must
be on the same smooth branch as ¢ # j if 7 and j are of the same type.

Let us define
Agi = [ opi(e)dr = g — 4, (16)

where we relate to another definition, (1). This association is not mathematically rigorous,
as follows. Suppose ¥ = a;¢1 + as¢, where ¢q, ¢, are orthogonal. The charge density is
p =V = ala105 01 + asasdsds + (aiasdids + c.c.). In order to derive (16) from (14), we in
fact approximate p as ajai19;p1 + asax05¢2, neglecting the interference term. That is, even
when the local orbitals are mutually orthogonal, a Mulliken analysis does not provide com-
plete information about the system charge distribution — the magnitude of the interference
charge density, say in the bonding direction, is not a simple decomposition of atomic orbital
densities. However, the situation is not too bad since the interference terms are spatially
fluctuating, while aja;¢] ¢, terms are positive definite and is concentrated around the hosting
atom.

We can now write down the general quadratic form of the second-order correction to the
(tight-binding) total energy functional using Mulliken charges,

AE =Y 7ilAG /24 7ijAqAg/2, Ag =g — 4, (17)
5 oy

under the following approximations:

e Local orbitals are mutually orthogonal.

e Leading order effect is charge transfer between atoms; charge transfer between orbitals
of the same atom (which gives rises to atomic polarizability) is not as important.

e Interaction strength is proportional to simple products of Mulliken charges; charge

density interference effects can be safely neglected.

7i; should have the following properties:

(18)
for v;; in eV and R;; in A.

e If atoms ¢ and j are of the same type, when R;; — 0, 7;; should smoothly, perhaps
monotonically, approaches the constant value of ;.



3 U-terms

The first term (single summation) in (17) is what we call the Hubbard, or u-term. As a
shorthand one writes

For carbon wu; is on the order of 3 — 4 eV. Because U is positive definite, it is a negative-
feedback or stabilizing mechanism which is always against charge transfer.

Because it happens in LDA calculation and several other cases, it is often taken for granted
that there exists a so-called double counting property for this problem. I shall show below
that it happens only if u; is the same among all atoms (and the number of valence electrons
must be identical too; GaAs, for instance, will not have this property).

This issue arises because the quadratic contribution in the total energy functional is not fully
included in the Erp = Y, €, summation, unlike the linear contribution, and would have to
be explicitly compensated for in E,.,. With functional variation 0/(0(¢,|), one can show
that the effect of (17) on band structure is merely to modify the diagonal matrix elements,
as,

OAE
dg;

When the self-consistent charge iteration has converged and one arrive at a stable set of
{Ag;}, the Erp summation would have increased by

don = D €t D (700) 4 (21)
n n 1,5

And so in order to recover the original total energy value (13), or (17), one would have to
add a term in E,,,

(ta|Holicr) — (ice|Holicr) +

= (ic|Holicr) + > 7i;Ag;. (20)
J

Erep — Erep + (Z ’YZ]AQZAQJ/Q - Z(’YZ]AQJ)QZ> . (22)

b, 1,

Let us look specifically at the u-term; the compensation due to that term alone is
If u; = u for all 7, then clearly,

:—uz (¢: — 4) /2—4u2 ;—4) = -1, (24)

as Y.;(¢: —4) = 0. But otherwise Cy = —U could not be arrived. The reason that this
“universal” feature of LDA calculation is sometimes absent here is because instead of dealing
with only the ¢;’s (p(r) of LDA), we are dealing with hybrid of ¢; and ¢; — ¢’s (¢ = 4 in
this case).



4 Off-diagonal, Bare Coulomb contributions

Let us define the bare Coulomb energy contribution, C, as

Ao
Rij .

C= ZVSAinqj/Q, ’yg =
1#£]

(25)

Although fyi(; # 74, it is useful to define C' because it can be easily summed in a crystal by
the Ewald summation techniques*. We will talk about the softening corrections ;; — %C; for
1 # j in the next section.

In a crystal, an atom in the primitive cell are replicated by the Bravais translations infinite
times; so does its Ag;. One finds it necessary to re-sum (25), where, instead of ¢ running
though the entire crystal, only runs though atoms in the primitive cell; and C' will be re-
defined as the bare Coulomb energy per cell. The new sum takes the form

primitive

C= Z PijAgiAg; /2L, (26)
Z,J

where L is some convenient characteristic length of the crystal such as lattice constant, and
P,; would be a constant matrix that only depends on the crystal structure (not its size).
Notice that unlike (25), 7 = j is not excluded from the (26) summation, because an atom
can have Coulomb interaction with its images (not literally itself). Furthermore, the matrix
P is not unique, one can re-define P by adding arbitrary rows or columns of (1,1, ..,1) to it
without changing any real results. The reason is because, in a primitive cell,

primitive primitive

> Au= 3 (a-4=0 (27)

%

Using Ewald techniques, one can quickly convert (25) to (26), calculating P for a given

crystal structure. This has been implemented in my program®, Ewald/simple_ewald.c. A
typical P;;/L [eV/A] look like

| -12.84698661332600 -0.2926096942631040 |
| -0.2926096942631040 -12.84698661332600 |

which is for 3C-SiC (ZnS) structure at L = 4.338948 A. Thus, given that there is positive
unit Ag on C and negative unit dg on Si, the bare Coulomb energy per cell should be

4Toukmaji AY, Board JA, Ewald summation techniques in perspective: a survey, Computer Physics
Communications 95 73-92 (1996).
5 simple_ewald.c does not contain the g factor, which is implemented in the main program fitall.F.



| -12.84698661332600 -0.2926096942631040 |

(1)
0.5 * (1,-1) * | -0.2926096942631040 -12.84698661332600 | (-1 ) = -12.5543769

or —6.277188 eV per atom. This agrees well with the published result of Madelung constant®
for ZnS structure, o = 1.6381, where since the nearest neighbor distance is r,, = 4.338948 x
\/3/ 4 A, predicts the bare Coulomb energy per cell to be

O = _ 2% _ 195547989 6V,

Tn

5 Off-diagonal, Softening contribution

We expect there is significant softening of +;; from \¢/R;; behavior at small and medium
R;;, such that it can smoothly turn over to a constant value at R;; = 0, which should just be
u; = 7;; if © and j are of the same type. Since u; for carbon is about 3 — 4 eV, and )\ ~ 14,
this turn-around should happen before R;; = 3.5 — 4.5 A, which for diamond at equilibrium
would be 4-Tth nearest neighbors away. We see that the softening effect is indeed important!

The requirement for the softening term

1#£] i£]

is that it must be amenable to real-space summation and cutoff schemes, which essentially
means that S;; must decay exponentially at large R;;. A basic template for achieving such
goal is to assume

Ao

5= iF] 29
i R+ Cloe_kR ! ?é J ( )
with
Ao

=2 30
w= 22 (30)

if 7 and j are of the same species. This way,

/\0 )\0 —/\ane_kR

5= R aee ™ R R(R + age ¥’

which is fast decaying at large R, just like any classical pair potential.

6pp. 228, Theory of Lattice Dynamics in the Harmonic Approzimation, second edition, ed. by A. A.
Maradudin, E. W. Montroll, G. H. Weiss and I. P. Ipatova, (Academic Press, NY, 1971).
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6 Stability Support

We see that the energy involved in the Coulomb term potentially can be quite big: for
example if one puts unit charges on Si and C atoms in a typical 3C-SiC crystal, the bare
Coulomb energy per atom is 6 eV. Although the problem is alleviated by the fact that the
actual interaction must not be bare, and usually there is not as much as unit charges on
atoms, it still can become a big stability issue in the parameter fitting stage, i.e., for some
injudicious choice of parameters all charges flow to carbon during self-consistent iteration,
and the program outputs crazy results.

As mentioned, the u-term is always stabilizing because it is positive definite. But first-
neighbor interactions in 3C-SiC are destabilizing, since if there is charge transfer between
Si and C, the total energy is reduced by that term; and second-neighbor interactions in
3C-SiC are stabilizing again, and so on. Because the intrinsic energy scale involved is so big,
a delicate balance must be established between the neighboring shells, and for all crystal
structures, be it 3C-SiC or NiAs-SiC. A slight softening of the interaction strength at one
shell without corresponding measures at other shells may lead to distaster.

There may be a fundamental way out of this problem, which overthrows some of our previous
assumptions. That is to add large screening to the bare Coulomb interactions at large R;;,

Vij Vij
LA AN L 2
R iR (32)

This screening effect must physically come from the “atomic polarizability” part” which is
missing in the “Mulliken approach” of (17), where the “atomic” dielectric constant, €4, is
related to the susceptibility of single, isolated atom in vacuum. A detailed calculation is
needed to estimate the possible order of magintude of this e4.

As a side remark, in analyzing the possible outcome of a softening scheme, it might be
helpful to first look at the structural analysis results in GR/, outputs of fitall.F, which
not only orders the interactions by separations, but also distinguishes between different
screening, thus effectively dividing the neighbors of an atom into equivalent symmetry classes
(see Appendix A). Another piece of related code is the revamped Kpts/Bin/group.f, which
enumerates the space-group operations of a given crystal structure and then automatically
generates the IBZ k-point mesh for E7g and Mulliken charge summation. Also, before the
fitting begins, fitall. F' divides the atoms in the cell into equivalent classes by comparing their
Si and C coordination numbers, so “Mulliken charges” generated by IBZ summation can be

"Imagine putting a pair of point test-charges in the crystal. The screened interaction energy is 1/er, but
€ comes from two effects: one is accounted for in (17), where electrons flows from bulk to atoms surrounding
the test charges, effectively annulling part of its gq. The other effect is that the electron clouds of atoms
sitting in between the two test-charges are polarized, as one hybrid orbital is more favored than other three,
and that although nothing flows out of the atom, it nevertheless generates a dipole, just like what happens
when we place an isolated atom in an external electric field.



symmetrized, without which are erroneous if there are non-symmorphic operations in the
space-group. For details see Appendix B.

A practical measure to guarantee that unphysical charge transfer “runaways” do not happen
in the fitting stage is to add a fictitious “stability support” term, 7', which looks like the
u-term,

Aq?a
o

TEZ 5

to (13), where « is some constant much greater than 1, that for small charge transfers
(Ag; < 1) its effect is almost negligible, but prohibiting large charge transfers. When we
have located a good set of parameters, we can then remove the T term.

: (33)

7 Conclusion

The second-order correction to the DF'T total energy, starting from a certain guess charge
density py, may be well-approximated by

AE({Aq}) =U+C+5+(T), Ag=qi—4, (34)

where U is the conventional Hubbard u-term, u; = ;;; C is the bare Coulomb energy that
can be re-summed by the Ewald technique; S is the softening correction which should decay
exponentially when R — oo so it can be summed in real-space; and T is the fictitious
stability support in parameter fitting stage to prevent charge iteration runaways. In general,
the “double counting” property occurring in LDA is non-existent here, and one adds energy

compensation
0AFE

CEZAE—Za—qqi

i

(35)
to E,¢, after the iteration has converged.

The main assumptions of (17) are the reliance on Mulliken charges and the negligence of
atomic polarizability; the major difficulty seems to be the large energy associated with
bare Coulomb interactions, which perhaps can be assuaged by throwing away the second
assumption and introduce an intrinsic, atomic dielectric constant €4.



Appendices

A Classification of Neighbors (Interactions)

We classify atom ¢’s neighbors first by their species and then distances to i. But atoms
which have the same bond length to ¢ are not necessarily equivalent: for instance in 2H-SiC
(Si ABAB stacking + C vertical shift), a Si has 12 ”second-nearest neighbors”, but only 6
are on the basal plane, the other 6 give a different coordination number contributions. Even
those 6 are inequivalent as upper 3 + lower 3, although the 6 bonds themselves are equally
screened for there is 7 4+ j exchange symmetry.

The definition of equivalent neighbors is that if you look in the second direction, after an
axial rotation the surrounding would looks exactly the same as in the first direction, which
means that the two neighbors can be related by a point group operations centered on %.
A full implementation of this definition is feasible (Kpts/Bin/group.f) but time-consuming.
Instead, I implement in the code fitall.F' a complicated checksum of screening atoms to ij
bond that would remain invariant under axial rotations, so as to verify that j indeed looks
the same to 7 as k£ to 7. And if so j and k would belong to the same equivalent class of atom
’s neighbors. This classification result is very helpful for thorough human understanding of
the structure, such as frozen phonons. It is also an error-checker.

B Symmetrization of IBZ-summed Mulliken Charges

Although IBZ k-point mesh with proper weights is sufficient for total energy summation,
it can lead to erroneous results in LDOS (Mulliken charges) summation if the symmetry
operations used in generating the IBZ k-point mesh contain non-primitive translations (non-
symmorphic); such as two Si atoms in a 2H-SiC cell, though physically equivalent, may have
different IBZ-summed charges. The reason is that although Oy(k) = 1(Ok) has the same
energy as 1 (k), the partial charge on atom ¢ due to ¥ (k) could shift to an equivalent but
different atom after the O (k) operation; thus although > 5, E(k) = 3,5, wF(k), and
> 5z P(k,x) has the full symmetry of the crystal, 3,5, wip(k, x) may not.

The above problem admits a simple solution: one can show that charges belonging to one
equivalent class of atoms (two Si above) never goes to other classes in any transformation, so
one just needs to symmetrize within each class the IBZ-summed charges in order to obtain
the actual charges that have full symmetry of the system. To determine equivalent atomic
classes without going through the trouble of generating and applying space-group operations
(Kpts/Bin/group.f), let me use a ”quick and dirty” trick of comparing coordination numbers,
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defined by quantifying the screening concept®. An agreement to the sixth digit in both Si
and C coordination numbers is a sound guarantee (against accident) that the two atoms are
actually equivalent, and should have the same charge.

8 Environment-dependent tight-binding potential model, Tang MS, Wang CZ, Chan CT, Ho KM Physical
Review B 53 979-982 (1996).
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