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Chapter 1

Overview

Defects are long-lived aberrations to a reference atomic structure (perfect crystal in most
contexts). For each aberration, it is more efficient to talk about excess quantities, contrast-
ing the present with the reference configuration (similar to the “diff” command in Unix,or

the “marginal cost” in economy). Thus a defect will have excess masses (different chemical

excess

elements ng

, ¢ = 1..C, aka segregation), excess charge QQ®*°*®, excess enthalpy H S,

VGXCGSS Sexcess

excess volume , excess entropy , excess dipole, quadrupole moments, etc. that
“belong” to the defect when it is well isolated from other defects. The detailed spatial

distribution of these aberrations / excesses, for example difference in charge density

pexcess (X) = Ppresent (X) — Dreference (X), Qexcess — / dx pexcess (X) (1 1)

some proper cutoff

tend to have quite intense amplitude in the defect core, like a delta function when viewed
at lengthscale much larger than the lattice spacing ag. These also become source terms in
continuum electrostatic/elastostatic/magentostatic... equations of the surrounding medium,

for example

excess
p

V2pexeess — , E=—-V¢, g9 :vacuum permittivity. (1.2)
€0

In the case of a monopolar excess charge QQ°*°***) the leading order asymptotic solution of
(1.2) is
(bexcess Qexcess

= Ineeyr + O ) +0(r?) (1.3)




where ¢ is the dielectric constant of the medium, and influence the medium surrounding the
defect perturbatively in ampltiude, but at distances much larger than the spatial extent
of the defect core itself. These are called long-range fields, and usually has a power-law
decay as a function of distance oc r~¢. It is customary therefore to divide up the material into
“defect core” region (rg, usually a few ag) where the atomic structure and bonding topology
are significantly different (as viewed, for example, by the atomic coordination number Z;) and
needs full atomistic treatment, and “continuum” region (r > 1) where the crystal structure

is perturbed but the atomic bonding topology is intact, and continuum equations like

(1.3) apply.

When the defects are well separated (d > rq), they “communicate” with each other and
interact via these long-range electric/stress/magnetic.. fields in the continuum medium. In
reality, there can also be a ring region where the atomic nearest-neighbor (NIN) bonding
topology maintains, but continuum treatment is not warranted. We can use Ry to denote
that. Because of such nominally divergent behavior o »r—* when r > Ry, defects are

considered to be singularities in the continuum mechanics.

By long-lived aberrations, we are contrasting with band phonons and other small-amplitude
transient excitations (e.g. fleeting band holes or electrons or magnons) in the solid. The
defects we deal with in this course do not disperse away if left alone (namely at low tem-
perature and no other defects coming into its neighborhood). So defects are metastable

configurations of the atoms.

Many defects like vacancies, dislocations and grain boundaries can also move around with-
out losing their essential characteristics (e.g. those “charges”, or “genomes”). In biology

analogue, they have “strongly conserved traits”, and so they are called defect species.

We need to study defects because they influence a lot of the material properties very sensi-
tively - in other words they are the reasons for the difference between “real material proper-
ties” and “ideal properties”. A perfect crystal without any defect should be able to sustain
the ideal shear strength, on the order of G/10 (take copper G = 45GPa, this would be
4.5GPa shear strength). With just a few initial glissile dislocations in an infinite crystal,
this value drops to essentially zero (~MPa), and would still be on the order of 107G (45
MPa) when the dislocation population grows significantly as the macroscopic plastic strain
reaches tens of percent. Pure silicon, with band gap of 1.1eV, is pretty much useless as an
electronic material - they only become useful and more valuable than gold when doped prop-

erly, by Boron (p-type), Phosphorus (n-type), etc. that substitute silicon in the lattice, that



are either chemically diffused in or ion implanted. There is a famous quote by Sir Charles
Frank, the discoverer of the Frank-Read dislocation source: “crystals are like people:

it’s the defects that make them interesting” (and in some important cases, useful).

Because the defects can move, can interact in the long-range, as well as react in the short-
range by “atomic coordination interactions” (“collision of the singularities” seen by contin-
uum mechanicians who cannot or do not care to resolve the cores’ details), the microstruc-
ture, which often consists of multiple defect species, “evolve”. For example, excess amount
of vacancies could be generated by radiation or cold work. Then if we heat up the crystal
a bit, so the vacancies can move around, the vacancies may find grain boundaries to anni-
hilate at. Since the vacancies scatter electrons, what one sees would be an reduction of the
electrical resistivity of the material. This is a simple example of the material science mantra

“microstructure controls properties”.

Now onto classification of defect structures. The biggest classification is 0D/1D/2D defects:

e 0D defects: vacancies, interstitials, solutes (in random solid solution), antisites (in

compound), stacking fault tetrahedra, bubble/void/cavity ...
e 1D defects: edge dislocations, screw dislocations, mixed dislocations, disclinations, ...

e 2D defects: surfaces, grain boundaries, stacking fault, phase boundaries, ferroelec-

tric/ferromagnetic domain walls, antiphase boundaries...

among which 1D/2D defects are also called extended defects. Extended means “almost
arbitrarily extendable in a certain dimension”. For example, a dislocation loop is generally
considered 1D, because it is straightforward to envision the loop growing and the circum-
ference L growing to arbitrarily large sizes, where one dimensional size has the ability to
diverge. In this sense, the bubble/void/cavity may also be considered “3D defects” if they
can/are expected to grow readily in all three directions, for example under heavy radiation.
And so would be the precipitates (—new phases), which can be considered 0D obstacles in
alloys if they are not growing, but can also be considered new 3D phases if they are expected

to grow.

In the list above, a crack should probably be classified as 1D /2D defects. While the crack
core is 1D line singularity (stress ¢ nominally diverging as r'/2), it also leaves behind two
open surfaces which are 2D. These open surfaces have two 2D arrays of atoms with lower

coordination numbers Z; (loss of coordination), a free surface excess energy « per area. This
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should be contrasted with the full-dislocation singularity which leaves no damages
behind.

The word “damage” is important, but still-vague concept in materials science and mechan-
ics. It generally corresponds to some kind of “total coordination deficiency” (voids, open
surfaces) in the atomic structure, and more often than not, softening of the elastic modulus.
The vaguess and difficulty in quantifying damage as a single variable stems from the great
variety of different sized voids/openings. (In this view, a vacancy is the smallest unit of
damage). Because of the softening and load shedding, there tends to be autocatalyic growth
and localization of damage, and it tends to accelerates greatly when reaching some kind of
critical lengthscale, and leading to eventual fracture of the material into topologically sepa-
rated pieces. The “extreme-value statistics” nature of this process makes the mathematical
treatment of damage evolution difficult.[1, 2, 3, 4, 5, 6, 7]

Localization is a key concept in physics and materials. A defect is just localized-in-extent,
intense-in-amplitude nonlinear ionic disorder, i.e. a soliton, in contrast to phonons, which
are diffuse in extent, but perturbational in amplitude. Similarly, a band-hole wavefunc-
tion in silicon is diffuse in extent (the idealized representation is a Bloch wavefunction
Un(X) = dn(x))e®*/v/V | a less idealized representation is a Bloch wavefunction multi-
plied by a diffuse Gaussian envelope, a “wavepack”), whereas a localized electronic state
residing on Boron or Phosphorus with energy in the band gap is exponentially localized.
Generally speaking, the more delocalized, the higher the mobility, whether electronic or
ionic excitations. Thus band-hole or band-electron states have “band transport” (because of
in-resonance condition with many many atoms), whereas the localized states must undergo
thermally activated “hopping transport”. The delocalized and localized can inter-convert
under appropriate conditions. For example the localized electron on neutral Phosphorus
atom can be “ionized” can turned into a band-electron state, which is much more mobile.
This takes energy, and thus won’t happen at zero temperature. However, at finite tem-
perature, there is entropy and as band-electron wavepack can sample many many silcon,
there is an energy-entropy tradeoff, and so a finite fraction (even a dominant fraction) of the
Phosphorus substitutional atoms will be auto-ionized, and the doped silicon gains electronic
conductivity. In reverse, delocalized phonons can also turn into a defect[8], or drive defect
to move. A basic view of transition-state theory (TST) of how a defect migrate, is that
this defect is hit by tens of phonons (which is of course very rare, and described by the
probability oc exp(—@Q/kgT)) simultaneously, throwing it over the requisite energy barrier

(. Such dualistic view of “waves” and “particles” is a key philosophy in physics.



Chapter 2
Atomistic Energy Landscape

Atomistics (and electronic structure) is the most microscopic view of this world for most
applications. Given that continuum mechanicians and thermodynamicists can do amazing
work without ever talking about atoms or electrons, it is important to acknowledge that this
is not the ONLY way, or the most efficient or elegant way, to look at this world (and go ask
economists and linguists and behavioral artists also). However, it is one way to look at what

happens in the world.

The amazing intuition of the ancient Greek philosopher Democritus (¢.460—370 BC) is that
the world is made of atoms, represented by discrete variables {x;}, i = 1..N. x; is a 3D
vector (the position of each nucleus) if we consider a monatomic material (C' = 1), but we can
also tag extra integer variables onto x; to denote the chemical species (and charge state, e.g.
Ti3+/4+ ) Fe2t/3+ Mn3+/4+ Ni2t/3+/4+  Codt/4+ 0>/~ roughly in rising voltage sequence
in transition metal-oxide Li-ion battery electrodes[9]) of the atom/ion for chemically complex

materials.

I[solated atoms have valence electrons (outer shells) that are more loosely bound to the
nuclei than the core electrons. When we assemble atoms into condensed matter by bringing
them into close proximity, these valence electrons start to move around more diffusely. In
metallically bonded system, some electrons become truly delocalized, being able to propagate
around (“itinerant”) and shared between many ions, and do not “belong” to a particular ion.
In contrast, covalent bonding is some electrons shared between 2,3,... atoms, like the shared
property of a small family or kibbutz (think covalent as “collaboration”). Ionic bonding is

one atom having conspicuously more/less electrons than neutral, like a selfish member of



a family (givers and takers), which causes long-range interactions of the form (simplified

version):

N . .
[ionic (XSN) _ Z 4:9; (2.1)

= dmego|x; — x;

where we use x*V to denote the concatenated {x;}, and 3N is to remind us that this is

usually a very very huge vector (consider typically N ~ 10%* = 10% x 108 x 10®).

Even in ionically bonded systems, there can be a degree of covalency (sharing and selfishness
co-exist). The exact meaning of bonding is that bringing the atoms together likely reduce

the total potential energy compared to the individual isolated atomic states:

U<X3N> = Etogether(N> - Neisolated <0 (22)

Before discussing defects, we start with the infinite perfect crystal reference. We define

Ey(N) = U ) (2.3)

crystalline

We can define binding energy or cohesive enery per particle:

Ey(N
o = g

(2.4)

where the surface contribution is filtered out by the large-number limit. e, of course
is crystal structure and lattice constant a (elastic strain) dependent. In FCC Cu,
en = —3.54 eV /atom and ao = 3.615A (Q = 11.81A%).

A typical way people described metallic bonding is the embedded-atom model [10]:

Ul = X2 g5 ), 25)
i i

where p(r;;) is the electron “glue projection” function, and F; is the “ion embedding” func-
tion. U(x*") is called the interatomic potential or the atomistic potential energy land-
scape (PEL). The u(r;;) is the pair and additive contributions like the simplest Lennard-
Jones potentials, but the second term makes the many-body nature of bonding manifest. The
embedding function, F;(+), is often chosen to be —4/- in the so-called Finnis-Sinclair forms.[11]
This provides a bonding energy benefit that scales as —v/Z, where Z is the coordination

number. This —v/Z form has a coordinate-saturation effect that stablizes lower-coordination



crystal lattices such as BCC, relative to the FCC and HCP close-packed lattices.

With a many-body potential form like (2.5), we can sum over lattice sites to obtain ey, for
a given lattice structure geometry at T = 0. The plot of e,(€2), where € is the atomic
volume, is called the cohesive energy curve. This would allow us to compare the stability
of different crystal structures at zero pressure, as well as at finite pressures (after adding the
+ P term). For example, when we cross-plot e£“C(Q) (Z = 12), ell°F(Q) (Z = 12), eBCC(Q)
(Z = 8), ePiamond(Q)) (7 = 4), e™M(Q) (Z = 3), elnearChain(()) (Z = 2) on one plot, we
can get the convex-hull, which tells us when we compress a material inside a diamond anvil
cell with a fixed total volume, whether it should be 1-phase, or 2-phase mixture (their volume

fraction and coexisting pressure).

With U(x3"), we can also calculate the total potential for an assmebly of non-perfectly
arranged atoms (imagine thermal fluctuations of ion positions, aka phonons, and/or defects
- a defect is defined by a set of atoms having atomic-neighbor relations or bond topologies
significantly different from those in the perfect reference lattice - defects tend to have
higher energy and sit in PEL’s metastable energy basins), and run molecular dynamics
(MD) simulations with it

Pxi _oU({xi})

From a pure theorist point of view, (2.6) creates a complete “world”, in the sense that all
crystal and defect structures, their time evolutions and therefore thermomechanical proper-

ties can in principle be obtained by integrating (2.6) forward in time.!

2.1 Elastic deformation and modulus

The lattice at mechanical equilibrium at T" = 0 is the result of

ao(co,...) = argst{nmitr&reeb. (2.7)

Elastic deformation is defined as “small”, reversible, but diffuse/delocalized change to

the Bravais lattice vectors {a;(x)} of a perfect crystal, where x is a coarse-grained posi-

IThe practical computability is another matter. In this course, even though we do not teach how to
implement (2.6) in the computer, we do want to ask people to think from the “atomistic world” perspective,
which is one of the important perspectives in thinking about materials.
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tion inside the material.[12] By definition, elastic deformation excludes highly localized
changes in atomic geometry, which samples the nonlinear nonconvex part of the atom-
istic potential energy landscape (PEL).[13, 8] The elastic response can be probed by applying

an external stress Oext:

. 1 8eb(€)

i - QT X int = < - ext - 2
min ep,(€) I(OextE) — Oing O e Oext (2.8)
We could define shear modulus G' by
8O.§hear 1 a2€b
G = nt = — 2.9
aé‘ shear |o.—( Q a&?gheanr ( )
and the bulk modulus B by
po 10 o0
a5':hydro e=0 Q agﬁydro

where eg,ear 18 the shear elastic strain. Generally, we will use the engineering shear strain,
for example

Eshear = Yoz = Optt; + Oxuy = 2e,, (2'11)

and

€hydro = Ezz + Eyy + €22 (212)

is the hydrostatic strain invariant. For pedagogical simplicity, we could imagine a prototyp-

ical elastic deformation that looks like

Ehydro Eshear
3 0 2
e=| 0 e g (2.13)
Eshear 0 Ehydro

3

In a crude sense, the elastic constants G and B (generally, Cj;i; tensor) characterize the
curvature of the energy landscape with respect to small, diffuse changes to {a;(x)} (the

elastic strains):

Q
6b(ic:hydroa Eshear) = €b<0a O) + §(G€§hear + Bgﬁydro) + 0(63) (214)

At finite T', we just need to add —T's term to ey, and use fi, = e, —T's = —N 'kgT'In Z, the

Helmholtz free energy of binding per particle, instead of ey,. This is so-called thermoelasticity

11



formalism. Z is the partition function of the x3"-system in statistical mechanics.

2.2 Non-Convexity and Barrier Hopping

The potential energy landscape U(x3") is generally a highly nonlinear and often nonconvex
function, and can have multiple local minima (metastable states) as shown in Fig. 2.1,

denoted by «. At each minima, the force is zero:

—VU’XgN =0 (2.15)
and the 3N x 3N Hessian matrix
0*U
(A)mn = DXV (2.16)

is postive definite (if one ignore the zero modes of 3 rigid-body translations and 3 rigid-body
rotations, which can be done by fixing six degrees of freedom in the particle-system and not
counting them toward the 3N DOF). These minima are denoted by {x3V U,}.

Figure 2.1: 2D illustration of potential energy landscape U(x*").

The entire configuration space is thus divided into basins. To know which configuration x3V

12



is in which basin, one just runs a steepest descent algorithm:

dX3N

X

= VU@ dx*(\)) (2.17)

Two adjacent potential energy basins are separated by the dividing surface, a 3N — 1
dimensional surface. There exists at least one saddle point ngg * that connects the two basins.

There exists so-called minimum energy path (MEP) that connects x3V « xzjg * X%N .

According to classical harmonic transition-state theory, the rate of forward transition is

[Ln=1.3n5 v U(Xi]g*) - U(XiN)
R, = 2 T - 2.18
~h —1.3n-105, P kgT ( )
whereas the rate of back transition is
[ln=1.3n Vo U(ng/}/*) - U(X%N)
Rsg g = ——=-"T - 2.19
= =1 3n-105, P kT ( )
with so-called detailed balance
« N N
Rﬁﬂa Hm:l,.SNVﬁ”L kT

where the saddle-point information gets cancelled out. It can be understood that what really
matters is the vibrational free-energy U (X%N Y+ kT In[],,—; sn v2 around the minimum, or
the constrained free-energy of the saddle-point. In this expression, we see that the softer the
mode is, the larger the vibrational entropy of that mode. Note that this expression is only
valid in the classical limit, i.e. when the atomic mass is not too light and the temperature is
quite high so the classical thermodynamics can be used. When light atoms such as hydrogen
or helium is involved, quantum tunneling and zero-point vibration makes the expression

more complicated.

Pondering on any actual photographs of geographic landscapes should convince one that
real landscapes tend to be complex and even fractalline [14]. What we perceive to be main
barriers and features of the landscape depends on the lengthscale of our “elevation”: at 10
um, we see what we see as a bacteria; at 1mm, we see what we see as an ant; at 50cm, we
see what we see as a child; at 1.7m, we see what we see as an adult; at 100m, we see what we
see on a helicopter; at 10000m, we get the jet pilot’s view; at 384,000 km, we see a smooth

sphere. In PEL, the flight “elevation” can be the energy scale. An activation energy barrier

13



Q (say 0.4eV) that can get one stuck at 30K may no longer be a problem at 300K.

The disconnectivity graph is a way to visualize the adjacency relationship between energy
basins. We know the x*"-space is partitioned into basins and dividing lines. Imagine a
playboy having a helicopter which has an absolute elevation limit (e.g. cannot fly above
900m above sea level). Starting from a leaf-node basin (labeled by solid circle), a natural
question any helicopter playboy would ask oneself is: in this mountainous terrain, where
can this helicopter get me to? Town A? B? C? Rio de Janeiro? The answer is that there
might be a handful of sibling basins one can get to with the 900m-elevation helicopter. We
can group these sibling basins as one metabasin, e.g. a family of basins, controlled by a
parameter 900m. Let us label this metabasin by an open circle symbol at elevation 900m
(z) around the z,y of this family of basins. There might be other 900m metabasins (e.g. if
you give this helicopter to another playboy in another corner of the Earth), but this 900m-
metabasin (open circle) and that 900m-metabasin (open circle) is not connected, because
they are separated by mountain passes taller than 900m. But now imagine the playboy
uprated his helicpoter to 1000m capable. Now the old metabasin might be able to join other

metabasins through the 1000m-elevation rated helicopter.

In the disconnectivity tree graph, one starts from the global ground state (say FCC crystal)
and call this elevation (altitude) 0. One then choose integer-multiple elevations, 100meV,
200meV, 300meV, ... For each elevation, one determine the metabasins (open circle symbol),
which can have other metabasins (open circle symbol) or basins (closed circle symbol) as
children. Sometimes, a metabasin can have just one metabasin children, like a 400-meV
metabasin having a single 300-meV metabasin children having a single 200-meV children, in
which case we may delete the open circles in the middle, and just draw a vertical line. This
will form a tree, like Fig.1 of [15].

The disconnectivity tree graph shows what it takes (which kind of helicopter) to go from
one place to another. The main drawback is that it does not give the exact saddle-point
energy, but only bounds (say between 700meV and 800meV, minus the basin energy one is at
now). The open circle relays some inexact information about saddle-points (there could be
multiple pathways, all with saddle-point between 700meV and 800meV, the disconnectivity

graph cannot tell that), whereas the closed symbol reflects local minimum information.
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Chapter 3

Point Defects

Point defect is the reason that some transparent ceramics becomes colored (so-called color
centers). The nitrogen-vacancy (NV) defect in diamond is now heavily investigated for quan-
tum computing and quantum sensing. Even though they are the smallest defects possible,
they can have striking macroscopic consequences. For example, diffusion drives a lot of the
phase transformations, and diffusion is often supported by lattice vacancy exchange mecha-
nism (random walk) within certain temperature range. For these reasons and more, we need

to understand the basic mechanics and properties of point defects.

We use a monatomic crystal C' = 1 to start our discussions. A “Frenkel disorder” is re-
moving an atom from the lattice and inserting it elsewhere in the crystal, creating a vacancy
(V) and a self-interestial (I). Self-interstitial tends to have a very large formation energy, for
example ef = 3eV [16], versus ef, = 1.27eV in FCC Cu [16]). Self-interstitials are so “expen-
sive” that they are often only considered under radiation or other far-from-equilibrium sit-
uations like dynamic plastic deformation, since thermal fluctuations are unlikely to generate
them. Because self-interstitials are so expensive, alternatively one can have just vacancies.
It may look as if we are breaking some kind of balance, but it actually does not. Consider
creating “Schottky disorder”, a two-step process where one (a) extracts an atom from
the lattice and put it to infinity, and (b) stick it onto a surface ledge. This “puffs” up the
solid a bit. If you don’t believe it, consider repeating the process multiple times: eventually
a new row of atoms would plate on the surface, growing the crystal, but also with inter-

nal “atomic porosities” distributed inside the crystal. The energy cost of this “Schottky

15



vacancy creation process” is called the vacancy formation energy
e, = E(Ny, Ny +1) — E(Ny, Ny) (3.1)

where V7 is the number of real atoms, and Ny is the number of vacancies. The total number

of sites occupied by the crystal is
N = N;+ Ny (3.2)

and we see N — N + 1 before and after the “Schottky vacancy creation process”. This
is what the “Schottky disorder” (vacancy creation) does, creating porosity inside the solid,
simultaneously making the solid appear larger in volume than the fully dense state (social

analogy would be “hype” or “foam”).

Here I would like to make a distinction between atomic sites and atoms in a crystal. This
distinction is similar to the difference between US government structure (white house, senate,
supreme court etc.) with who are occupying the offices now. The government structure
(site lattice) tends to be more permanent than the office holders, in crystalline solids;
although sites can also be created and destroyed as well. The sites can also be moved,
which is the essence of deformation (when we feel or see some object is deformed, we
are not really registering which labelled atom goes where, only the shifting of atomic site
which are occupied by some atom - in other word our hand canot tell tracer or self diffusion).
Adding/removing/moving the sites traditionally falls into the realm of MechE, while chemical
diffusion, e.g. swapping different atoms on sites, traditionally falls into the realm of DMSE,

even though there can be strong coupling between the two.

When one performs X-ray diffraction to measure the lattice constant, the position of diffrac-
tion peaks represents the average spacing between sites [17]. Again here it is hard to tell the
individuality of atoms. Indeed, in quantum mechanics and quantum statistical mechanics,
particle indistinguishability is a big deal and requires involved mathematical and philosophi-
cal treatment. In this course, we take the classical mechanics and statistical mechanics view,
and still assign labels on identical particles and track particle trajectories (which to a large
degree, is supported by quantum mechanics), but just keep in mind that labeling atom is
a mental accounting “trick”, and for all actual measurables a materials scientist can do, we

don’t need to keep labels.
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While (3.1) is the definition, the algorithm to calculate it is usually the following:
E(Ny,Ny+1)— E(N;,Ny) = A,E+ ALE (3.3)

ApE is just e, because we can build a perfect crystal by such sequential addition onto
surface ledges (save some small change of creating the ledges in the limit of large N). A, E
can be very easily calculated (in approximation) by an atomistic simulation under periodic
boundary condition (PBC), where we contrast Eyppc(n — 1,1) with Ey, ppc(n,0), where
n << N:

AE =~ Eyppc(n—1,1) — By, ppc(n,0) = By pee(n — 1,1) — ney, (3.4)

Thus the vacancy formation energy can be computed as

n—1

el = Fyppc(n—1,1) — By ppc(n,0). (3.5)

At finite temperature, this vacancy formation energy ef, would be modified by vibrational
contribution, so ef, — fI the vacancy formation free energy (no configurational entropy
contribution, only vibrational entropy contribution). Similarly, the cohesive energy e; will

be modified by vibrational energy contribution, e; — f7.

For sanity check, consider the special case of a Kossel crystal with nearest-neighbor springs
u(r) = —e + k(r — ag)?/2 and Z nearest neighbors (Z = 4 in 2D and 6 in 3D). At 0K, if
there is no vacancy, each atom would have e; = —Z¢/2 cohesive energy since each atom is
connected to Z springs, shared with another atom. By creating vacancy, the total energy
would have risen by ey, = Ze/2 per vacancy created, since when plucking out an atom from
Kossel crystal Z springs are broken, but when we re-attach this atom to a surface ledge, Z/2

springs are formed anew.

We can define a dimensionless vacancy fraction as

Ny
Xy = ——V 3.6
VT N+ Ny (3.6)

just like in A-B binary alloys, but with A=1 and B=Vacadium, Xy completely specify the
macrostate of the system.

It should be clear that in the dilute limit (Xy < 1), even with complicated interactomic
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potentials, the total energy Vcan be written as
E(Ny,Ny) = Nie; + Nyel, (3.7)

at 0K, so long as Ny < Nj so the probability of two vacancies sitting side by side is small,

where e; =ep+ €1,isolated -

More generally, from solution thermodynamics, arbitrary extensive quantity A (volume,

energy, entropy, enthalpy, Helmholtz free energy, Gibbs free energy)
A(Nl, N\/, T, P) = N1a1 + N\/CLV (38)

where “partial A” is defined as:

a; = 04 . (3.9)

ON; Njzi,T,P

The meaning of a; is the increase in energy, enthalpy, volume, entropy, etc. when an ad-
ditional type-i atom (1 or V “Vacadium” species) is added into the system, keeping the

temperature and pressure fixed. So this means we can write

E(Nl, N\/) = N1€1 + N\/BV (310)
V(Nl, Nv) = N1U1 + N\/Uv (311)
S(Nl, Nv) = N181 + N\/SV (312)

even if the vacancy concentration is non-dilute. But in the expressions above,
er =e1(Xv, T, P), vy =wn(Xv,T,P), s1=s(Xy,T,P), (3.13)

ey — ev(Xv,T, P), Vv = ’Uv(Xv,T, P), Sy — Sv(Xv,T, P) (314)

The “formation quantities” are defined in the dilute limit:

v = w(Xyv — 0,7, P). (3.15)
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3.1 Formation Volume and Relaxation Volume

Let us inspect vi, more carefully, because this part is critical for diffusion problem under

stress, and for interaction of point defect with other defects.

For Kossel crystal, the vacancy formation volume vf,, a concept parallel to the vacancy

formation energy e, is simply vi, = Q, where Q is the atomic volume, defined as
ov
Q=0 = AN : (3.16)
N Ny=0,T,P
That is to say, “Vacadium” is exactly as large as the solvent atom. Or, there is zero vacancy
relaxation volume after we pluck out an atom, which is true in the Kossel crystal. This is
because there is only NN springs, and all springs have zero force when at equilbiurm lattice

constant (this is NOT so for general pair potentials, lest EAM potentials).

But for real crystal, there is a relaxation effect:
vl = Q4o (3.17)

with v typically negative. As shown in the table, in BCC Li, v¥ ~ —0.8Q, so there is a
huge relaxation, and the “Schottky vacancy creation process” barely expand the crystal as
much as one expected. So Li metal is very different from a Kossel crystal. In contrast, in

FCC Cu, v ~ —0.29, so the relaxation effect is relatively small.

Intuitively, this relaxation displacement u, should have the asymptotic form that looks like

B R
U = g f o vy (3.18)
in isotropic medium. This is so that if we track a spherical boundary surrounding the vacancy
at center, the boundary would have sagged by a net volume of 473 oc vi (typically negative)
irrespective of r, which is a very good property. The reason 47 is proportional to, but not
exactly v will be discussed later. The next thing is to check whether the above satisfies

stress equilibrium in isotropic elastic medium.

The basic equations of linear elasticity are

1
Eij = §(um + ;) (3.19)
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0ij = Cijrien = Cijriug (3.20)
fj + Oiji = ,0[8,5216] + (atui)atuﬂ] (321)

where Einstein summation rule is used, and f; is body force density like gravity. Equation

(3.21) is just Newton’s 2nd law for a continuum body:
f+V-0o = ployv+v-Vyv| (3.22)

which is applicable to any solid/fluid. For a newtonian fluid, the stress is linearly related to
the strain rate, not strain, and then plugging into Equation (3.21) would give us the famed
Navier-Stokes equation. But for a linear elastic medium, the stress is linearly related to the

strain, and not strain rate.

Assuming 3D isotropic medium
Cijrt = N0ijOp + p(0irdji + 040j). (3.23)

where p is equivalent to G (now the same no matter which direction the shear), we have

Oij = )\5kk5ij —|—2,u5ij, o = )\tr(e)I—l—Q,us (324)
we note that
Shtr(e) + 2utr(e) = tr(o), tr(e) = —\I) (3.25)
’ 3N+ 21
SO
o _ A ulo) (3.26)

2 23N+ 2u

From above, the relationship between the Lamé parameters A, u and F, v, B can be derived:

2vp Ev E E 21
A= = =— B=—""=\+ —. 3.27
1-2v (I+v(-2) " 20+u) 30-20) " 3 (3:27)
We then have
O’ij = )\uk,k&-j + [L'LLZ‘J‘ + ,uuj,i, (328)
and in elastostatic situation
fj + )\Uk,kj + Ui i + Hujei = 0 = fj + ()\ + N)Ui,ji + MU 44 (329)

20



In vector notation it is

A+ pw)V(V-u) + pVia = —f (3.30)
which is the governing equation.

For w; = r—3x;, we have

U5 = 7’_3(57;]' - 3T_5IZ'IEJ‘ = Uy, (331)
Uj iz = _37'_5xi5ij + 157"_7xixixj — 37"_531']' — 3r_5$i5ij =0 (332)
wi; = 3r 3 —3r°r? = 0. (3.33)

32, satisfies

so indeed u; = r~
A+ u)V(V-u) +puViu = 0 (3.34)

everywhere except x = 0, where the differentibility of terms can give source terms at the

origin, akin to the classic Coulombic potential (¢(r) = 1%):
Vi(r) = VP—— — —§() (3.35)
4drr

which can be proven by applying the Gauss theorem:

/ dAn- (V) = / dxV2¢ (3.36)

when the origin is included. Indeed what we are doing with the elasticity governing equa-
tion (3.30), since we seek vector u solution, is a hack on the electrostatic equation by re-

differetiating the scalar potential:
~Vé(x) = V(V?¢(r)) = V*(V9) (3.37)

so away from the origin, u = —47V¢ is engineered to satisfy (3.30) because VZu would be

zero, and so is V - u by definition, since according to (3.35):
V-u = —47V%¢ = 475(x). (3.38)

Right at the origin, though, we need to be very careful. Since analytically, by multiplying
—4m on both sides of (3.37)
Viu = 47Vé(x) (3.39)
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we end up discovering that the external forcing density needs to be
—f = A+ p)VHArd(x)) + pdrVi(x) = 4r (A +2u)Vo(x) (3.40)

What, exactly, is the meaning of an external forcing density f = —4r(A+2u)V(x)? Consider

the literal interpretation:

Ar(\ + 2p) O =3

m

£ x Eolim | 6(x — Ses) — d(x + Sey) (3.41)
5(x — Ze3) — 0(x+ Ses)

So the interpretation of the u; = r~3x; self-balancing displacement field is that it is generated

by 3 self-balancing “force pairs” (for lack of better word), each with a moment of

A(X +2p)

M =
A

A = dr(\+ 2p). (3.42)

There is a very good physical interpretation: bonds in real metals are pre-stressed: that is,
at the rest configuration, the NN bond is repulsive, whereas the 2NN and 3NN bonds are
attractive. When we remove the center atom, the nearby Z atoms lose their NN and the

repulsive force, and the net effect would be these atoms feel inward “sagging” force.

To double check the above, we also invoke the Green’s function solution derived in (A.68)

by Fourier transform

F a A 1
— _ F - = = 4
uG(X) 47T/L|X| 87TIUV< V|X|)7 «@ )\ + 2# 2(1 — I/)’ (3 3)
which solves
A+ pV(V-u)+pViu = —Fi(x) (3.44)

In index form and if the source is shifted to x’, the solution is

F; 1 0?lx — x|
i = — E; 3.45
uai(¥) drplx — x| 167p(l —v) Ox;0z; 7 (3:45)
so the convolution kernel is
O 1 2 -
K, = i OFhx=x| _ Kj; (3.46)

Arplx — x| 167p(l —v) Ox;0x;
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which agrees with Eqn (2.5) of [18]. (3.46) is a very handy expression, not only for the point

defect problem but in other context as well, since a general solution to (3.30) is
wi(x) = / dx' K (x — x') f; (') (3.47)

Now imagine we have a bunch of forces near the origin (|x’| small) but we are looking at
far-field effects (|x| > |x'|), then it is legitimate the do Taylor expansion of the kernel and

take the leading order term:

ui(x) ~ _/dleij,k(X>x;cfj = —Kim(x)/dx’x;fj = UiePjr (3.48)

where 5 . o
Ui = —Kiji(x) = 4WZT;|3 + 167p(1 —v) 8:Ei8:|vj('|9xk (349)
P = [ dxag fi(x) (3.50)

So in the far field, the leading-order contribution comes from the force-dipole tensor, P. The
physical interpretation of P is that before adding the defect, the force on atoms are zero.
After adding the defect (say removing an atom to create a vacancy), but before the atomic
relaxation, there will be excess forces on the atoms surrounding the defect {x", F"}. F™’s

are called the Kanzaki forces, which satisfy

SF = 0 (3.51)

but with finite moments:

P =) x"(F")" (3.52)

This is the atomistic view. In order to relax the F™’s, the atoms need to move, and this can
be done at the atomistic level by Lattice Green’s function method. But if we coarse-grain
the atoms into a continuum elastic medium, then the solution would be that shown in (3.48).
P has the unit of eV.

We need to talk about the symmetry properties of these tensors. General speaking, U,y is
symmetric with respect to ¢j permutation, but not symmetric with respect to jk permutation.
We would like to argue that under normal circumstances, not only are the forces self-

balancing as expressed in (3.51), but also P should be a symmetric tensor
Py, = Py (3.53)
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due to zeroing of net torque:

T=3x"xF'"=0 (3.54)
n
where in index form,
6123$§F§L+6132£L’§F; l’gF?? —.’L’SLFZR
T = Zezykl'ij = D | emaF +enzaiFy | = Y | afF — 2 Fj (3.55)
n n n
6312$?F;+6321$3F1n I?Fgl —lL‘gFln

and ¢,y is the Levi-Civita permutation symbol. By normal circumstances, we mean when the
defect is at equilibrium. Imagine drawing a free-body diagram of a closed surface around
the defect, that separates the “inside” with the “outside”. There are inside-on-inside forces
and outside-to-inside forces, but the sum of the outside-to-inside forces should be zero if the
atoms enclosed are not gaining net momentum. But the outside-to-inside forces are just the
negative of the inside-to-outside forces, i.e. Kanzaki forces. The Kanzaki forces are nothing
other than what the defect’s “inside” transmit to the “outside” continuum jelly through the
dividing boundary. Thus, the sum of these Kanzaki forces are zero, and the torque vector
should also be zero (which means P tensor has 9-3=6 degrees of freedom, and is a symmetric
tensor - the same proof that stresss must be a symmetric tensor). The above argument
does have an exception if there is very long-range interactions through gravity or electric
field. Imagine a charged defect in insulator and there is electric field E that penetrates the
boundary. In this case, one can say there is net force on the free-body diagram, or the better
way to say it is that there are two kinds of forces: one is long-ranged interaction through the
charge interaction with excess charges very far away on two parallel plates that generates
the electric field, and one is through shorter-ranged “contact” forces through the bounday.
The Kanzaki forces are the “contact” forces through the bounday (thus it has the concept of
locality on the boundary), that needs to balance the long-ranged and remote-action forces
if any. For such charged defect under external electric field, the general approach would be
to first consider the situation without electric field, and then add on the electric field. In
the first step, we still have (3.51) and Pj; = Fy;. In the second step, we may consider the

charged driving force as a point force.

In the case of (3.41), it is clearly
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and then the continuum relaxation field prediction is

drplx®  167p(l —v) Ox;

(V?x]) (3.57)

ui(x) =

Recall that in spherical coordinate

V? = r720,(r%0,) + r*(sin0) ' Op(sin 69y) + (rsin ) >0 (3.58)
we get
2
Vir = r20,(r*0,r) = o (3.59)
so we end up with
wi(x) = o7 (3.60)

drapP  Smu(l— o) <P X
and double-checking is complete. That is, we've verfied the Green’s function solution agrees

totally with our guessed trial solution.

The stress field (3.28) can be computed, by using (3.31), (3.33), as
oy = 2u(r 36, — 3rxx;) (3.61)
which projected in the radial direction, is
Opp = r’Q:ciijM(r’B&j — 3r’5xixj) = 2u(r=5r? = 3r Tr?r?) = —4ur—3. (3.62)

r~3 is the scaling form of the long-range stress field of point defect with relaxation volume.

Theorem: In infinite isotropic medium, a \)% displacement field corresponds to a Kan-
zaki Force Dipole tensor P = 4m(\ 4 2p)1 at the origin, and long-range stress field o;; =

2u(r=36;; — 3r~°z;x;) whose radial component is —4pr 2.

The above did not consider the boundary condition of the medium. When there is free
surface, there is an image effect just like the electric charges. Suppose there is a large sphere
of radius R > Ry > 1o surrounding the point defect, which sits at the origin. At the
boundary, the stress needs to be zero, which is clearly violated by the particular solution
which gives 0,.(R) = —4uR™3. However, we can add a general solution, corresponding to
uniform dilation of the sphere:

o° = 4uR°1 (3.63)
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everywhere inside the body. Then the boundary traction would be zero when these two

solutions are superimposed (added). The strain field is just, according to (3.26):

(¢}

€ —_=

4uR3T X 12uR™3 4p _3 4y 4
— — = R™ = —R™I 3.64
2/ 203N+ 2p 3N+ 2 3B ( )

So the total displacement in this case becomes modified to

T 4
= 4+ Rz, 3.65
FERE: (3:65)

Uy

If one multiplies S onto the solution above, one would get

4
AViphere = 47B(1 + 3%) (3.66)

where the LHS is the volume change of sphere with traction-free surface in the relaxation
process, and 47f is the volume increase of a virtual boundary in infinite medium after the
relaxation process (but stress is still transmitting through the virtual boundary). On first
look this seems quite paradoxial. Is AV phere Or 473 the true relaxation volume we are going

to use for thermodynamics?

The answer is that it should be AV here:

v = (1+ ;Lg)zmg (3.67)
The reason is not as obvious as it seems. In the special image solution above, we put the
vacancy at the center of the sphere, a very special position. Stress gradient exists at the
longest lengthscale of the problem, which is R. The image correction is a response to that. If
we place the single vacancy off-ceter, the total volume change of the sphere with traction-free
surface might be different from (3.66).

Now consider populating the interior of the sphere with regularly placed vacancies, with
regular spacing L < R, but both L and R going to co. L is a coarse-graining unit. From
our experience with coarse-gaining (after all, the electron density p(x) have gradients on
the order of ag, but it does not prevent us from defining a uniform stress over a crystal),
the coarse-graining unit at center is then no different from the other coarse-graining units
(one cannot say this for the single-vacancy-in-sphere case). Then, at the sphere lengthscale

level, there should be at most a uniform expansion with no coarse-grained stress gradient.
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In other words, there should only be stress gradient at lengthscale L, but not at lengthscale

R. Since the sphere is stress free, we therefore must have
0 =o (3.68)

where & is the supercell average stress, containing a single vacancy within L. Setting & to
zero in a PBC supercell calculation is therefore the true definition of relaxation volume that
one can use in thermodynamics. This brings a out a lesson: when one talks about chemical
potential, formation volume etc. one is never talking about a single point defect, but a cloud

of point defects.

The remaining work is to show that (3.68) gives as described above. Consider a unit volume
containing ¢y vacancies (a large number), randomly distributed inside. The sum of dipole-

force tensors would be
> / dx'z) fi(x) = eyfam() + 2u)1 (3.69)

But the LHS is actually an expression for the stress tensor (Virial stress summation [19]), now
uniformly distributed inside the unit volume. Relaxing this uniformly distributed hydrostatic

stress requires

R evam BN+ 2p)I
= 3.70
€ oV (3.70)
and total volume expansion
AV evarB(\ + 2u) cvdnB(B + %“)I 4u
= = 1+—)4 71
1 B B ev(l+gp)ins (3.71)

So finally, the elastic displacement and stress field associated with a high-symmetry vacancy

configuration is

T

oy = 2Bp(r—38;; — 3r °z;x;) + image terms from BC (3.73)

image terms from BC (3.72)

and the thermodynamic consequence is

— (14 2Eyars B<0 (3.74)

= 24w, 3B

with the first term corresponding to growing the crystal by 1 site (rigorous) and happening

at the boundary of this block of single crystal, and the second term is internal sagging
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and happening inside the crystal (especially near the point defect core).

3.2 Thermodynamics in Dilute Limit

The total thermodynamic potential for a variable-vacancy system looks like

(N7 + Ny)!

G(Ny, Ny) = Niey — Ny(Qypy + Tr(oewQ)) + Ny(hl, — Ts') — Tk In N
1:4Vv.

(3.75)

where Nje, refers to a (Ny,0) full dense system, Qt,, is the boundary work done, A, is the

interal enthalpy to be defined later, si, is the vibrational excess entropy, and the last term

(N1 +Ny)!
N1INy!

internal quantity, is defined as h = e + Pv in hydrostatic systems, but more generally can
be defined by

is the configurational entropy term due to number of microstates. Enthalpy, an

h = e— Tr(ew™Q) (3.76)

where o is stress in the interior (close to the surface), and w?(Q is called relaxation strain-

volume. By definition, there will be for arbitrary defect

R = Tr(whQ) (3.77)
For vacancy, we therefore have
R
Wi = %VI (3.78)
and therefore "
h, = el — %Tr(a) (3.79)

with —% recognized as P, agreeing with previous expression of internal enthalpy.

The effects of internal stress on f; and f{; are 2nd order in stress (strain energy), which in
most cases may be ignored, whereas stress come into the boundary condition as f{; = tnf2,
which is linear order in stress if ¢,,,, # 0. In the case of uniform hydrostatic pressure, t,,, = — P
for whichever exposed surface, so the solid body can be in global thermodynamic equilibrium
if the vacancy density is uniform Xy = exp(—(f{, + PQ)/ksT). On the other hand, if the
solid is in uniaxial tension or shear, the solid body can never be in global thermodynamic
equilibrium. This is because the local equilibrium value of Xy, would depend on which surface
the RVE is adjacent to (which “market” the RVE is “trading with”, and like people, the
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closest market is the most important one). There will be more vacancies near surface under
tensile normal traction, and less vacancies near surface under compressive normal traction.
The vacancy flux will move to surface under compression, which will drive deformation of

the solid by diffusional creep.

We can define the “price” that the solid negotiates with the vacuum for Schottky vacancy
creation to be
fv = hYy —Ts + kgT'n Xy — Qt,, — Tr(ow®Q) (3.80)

which is the derivative of (3.75) with respect to Ny — Ny + 1 (since Vacadium is not a real
atom, this can be done if the vaccum is willing to lend some volume with price t,,,). So when
the universe is happy (reflected by the total potential (3.75)), there is

0 = jiy = bl — T\, + kgTln Xy — Qt,, — Tr(ow™Q) (3.81)
" Q Tr(owhQ
t
Xy = X\O/exp< m + Tr{ow )> (3.82)
ks T

where XY is the reference vacancy fraction in the stress-free condition. Note however (3.81)
is only for the deal struck at the particular boundary “market” (or “car dealership”). Tt
provides boundary condition for Xy, but does not describe possible other deals inside the
crystal. In particular, once a vacancy is created (a car was sold to a customer at the
boundary), it can migrate inside. The migration does not change (N, Nv), but it can
change the position of the vacancy, which gradually can experience a different o (x), T'(x).

Generally speaking, we will have the vacany flux Jy(x) given by
Jy(x) = ey Myvgys@iiame — o M (= Vi), (3.83)
Now I want to argue that the universal “diffusional exchange potential” uy is
py = hi, —Tsh 4+ kgTn Xy — Tr(ow™Q) (3.84)

without the —Qt,,, term of (3.81). Another way to say this is that all that matters, as far

as the interior diffusional PDE is concerned, is the gradient
Viy = V(B = s\, + ksT'ln Xy — Tr(ow™Q)) (3.85)

The mathematical way to argue this is that —t,,, is a boundary quantity (a constant) that
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one does not bring into the interior x-dependency for the PDE. But the physical way is to
argue the following: the car (vacancy) was sold at a particular dealership. The price that was
struck depend on the local condition (principally, the moods of the salesman’s boss and the
customer), and that do control how many cars get sold in that dealership. But once
there is a vacancy in the interior (someone takes ownership of the car and drives it away),
whether the customer got a good deal or bad deal was in the past, and that should not
affect how the car is driven in the future. Indeed, not all cars are sold in surface dealerships.
There are also GB dealerships, dislocation climb dealerships, Frenkel (radiation) processes,
etc. Once you have a vacancy in the interior, how it was created should no longer be material
- in other words, it should not influence how this particular vacancy moves or reacts in the
future. So the only potential that controls how the vacancy moves in the interior should be
(3.84). The —t,,, term does matter, but only through boundary condition for Xy (x).

The —Qt,, and —Tr(ocw™Q) terms are all linear in o. Occasionally we see second-order
terms in o in the thermodynamic driving force. This has to do with so-called “compliance
change” term attributed to a defect. Indeed, unless otherwise specified (usually forbidden by
symmetry), a defect will have excess in every physical characteristics, including 2nd-order
elastic modulus (and 3rd,4th,5th-order moduli if you want). When we think of a point
defect, the sum of contact Kanzaki forces and torques are generally zero, so the only linear-
order excess that survives is P, and it indeed rules supreme in the theory of defects. We
frequently ignore high-order excesses because they are asymptotically small. However, if the
linear term vanishes (“the King dies”), we can no longer do so. And this is the case when
we apply a tranverse load on the material, but only allowing horizontal surface to evolve
kinetically,[20] in which case the linear term does vanish, so we need to consider 2nd-order
elastic compliance effects on the evolution of solid morphology (Asaro-Tiller [21] / Srolovitz
[20] instabilities).

3.2.1 Creep Rate of Single-crystalline Nanowire

Consider a single-crystalline cylindrical nanowire of diameter d and height H, under uniform
uniaxial stress o, with no other vacancy sinks or sources inside like GBs and dislocations. To
first order in o, the equilibrium chemical potential of the loaded surface is p; = of), where
2 is atomic/molecular volume, and the equilibrium chemical potential of the free surface is
o = 0 (there is 2nd-order stress contribution to pp which drives Asaro-Tiller [21] / Srolovitz

[20] instabilities, but they should not contribute to the creep rate to the leading order in
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Figure 3.1: .

stress).

The bulk flux that drives Nabarro-Herring creep [22] is given by J = pv, where p is atomic
density in #/m?, and v is velocity. The velocity is given by v = (D*/kgT)V 1, where D* is the
self diffusivity. Vu can be estimated to be (3 — uo)/d = 02/d, as a scaling relation. Thus,
the flux is J = pD*0Q/dkgT = D*o/dkgT, in unit of #/m?/s. Thus, per unit time, there
are extra volume J(2 arriving per unit area of the loaded surface, so the surface displacement
rate due to bulk flux is H = D*oQ /dkgT. The strain rate due to Nabarro-Herring creep is
then éxabarro—Herring = D*0Q/dHkgT.

3.3 Interstitials

Interstitial sites: octahedral (6 NN) and tetrahedral (4 NN), in FCC, BCC and HCP.
Consider a small atom like H occupying O and T positions in BCC Fe.

Self-interstitials (SIA) are usually very expensive, because of the insufficient volume inside
the original lattice to accommodate an additional atom with the same size. We write their

formation volume as
via = —Q 4 vk, (3.86)

where the —) term corresponds to destruction of an atomic site on the surface/grain bound-

ary. However the fact that the atoms are very uncomfortable is reflected in very large and
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positive vE, (see Table 4.1 of [23]), which makes vi;, positive overall.

The Kanzaki Force Dipole tensor is usually not an identity matrix, but looks like

15 0 0
P=|0 16 0 |eV (3.87)
0 0 16

for (100)pcc dumbell in FCC Al [24], which is the ground-state SIA in FCC; and even more
complicated-looking for (110)pcc type dumbells, which are ground-state in BCC crystals.

Virial stress relaxation LP =C: <8R>
V(RVE)

(")

Figure 3.2: .

Suppose we have concentration ¢;; of these [100]pcc variant dumbels randomly distributed

in a representative volume element (RVE). The sum of dipole-force tensors would be
Z/dx':v;c j(x') = NyP (3.88)

1

Veve

3 / dx'z) f;(x) = ey P (3.89)

But the LHS is actually an expression for the negative stress tensor (Virial stress summation
[19]) applied by “God’s hands”. If we relax the stress to zero, the relaxation strain of the
RVE would be

C: (™ = ¢P (3.90)
or
R -1 Ny -1
<€ > = cﬂC P = C P (391)
VRvE



where C™! is the elastic compliance tensor of the crystal (unit GPa™'). C~! : P has the
unit of volume, but symmetry of rank-2 strain tensor, so we can define a relaxation strain-
volume tensor wi() as

Wt = C P (3.92)

Let us pick (100)pcc dumbell. This will generate a stress field with tetragonal symmetry.
If we believe isotropic elasticity works, then we can work out the stress field according to
(3.48). But even if one has to use anisotropic elasticity, the analytical framework is already

laid out.

We can work out the relaxation strain-volume tensor w®Q) according to (3.92):

Wt = | 0 Wk 0 (3.93)

analytically, where the total relaxation volume is
vy = Tr(whQ) = (W + why + w)Q. (3.94)

For (100)pcc dumbell in FCC Al [24], the final outcome is

05 0 0
wlt=1 0 07 0 — vea = 1.9Q, — vl = 0.9Q (3.95)
0 0 07

A stress field °**(x) on RVE at position x will modify the chemical potential of the defect

at position x as:
ux) = p(e”™ = 0) - Tr(e™ (x)wQ) + O((e™)?) (3.96)

analogous to the scalar foom G = F—TS+ PV = F+ PV or u/OP|r = v. The O((o")?)
term is change in elastic compliance due to presence of defect, which is often ignored (unless
the linear term vanishes). Note that o®*(x) is the stress at x, if the defect were not at x:
it can include the stress field from other defects, and this is how defects interact with each
other.

The expression (3.96) describes the “interior” stress effect, which always accompany the
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defect no matter where it goes, be it interstitial or vacancy. It is proportional to the relax-
ational Kanzaki Force Dipole tensor, because pulling on surrounding medium is how defects
interact with each other. If there is no relaxation, then as far as continuum mechanics
stress equilibiurm is concerned, there is no defect there (to leading order), like a submarine
that generates no noise. p(x) of (3.96), with concentration dependence also, is what drives

diffusion in the interior.

There is also an exterior effect that sets the boundary condition for p(x), with

p¥)lpe = (1) + kT X(x) = Tr(e™ (x)w Q)| = taenn? (3.97)
where f(7T') is the Helmholtz free energy of formation that includes the vibrational excess
entropy, but not the configurational excess entropy; kg1 In X (x) is the configurational excess
entropy contribuion to the chemical potential; t, = no®*n|gc is the normal traction at
the border, and ¢,, is the uniaxial transformation strain of the surface source, which is
+1 for vacancy surface source (Schottky), and —1 for interstitial surface source (this is
not the Frenkel process). For Frenkel process, where vacancy and interstial are created
simultaneously inside with no change of exterior sites, €,,, = 0. Take ¢,, = +1 and t,, > 0,
what (3.97) is saying is that because work gets done when the crystal surface pops out (site
creation), the thermodynamic God is happy (accomplishing mechanical work) and so can
tolerate a bit more expensive defect (u(x)|z > 0) to be created inside (but very close to
the surface), and a bit higher X (x)|zc.

(3.96) applies to arbitrary point defect of type d, and drive diffusion of such defects:
Jd = CqUq = cd(—MdV,ud(x)) (398)

in any interior point of the domain, where M, is its mobility. This applies to anywhere inside
the domain. (3.97) applies to boundary of the domain, and this completes the stress-diffusion

problem for uncharged defects in metals, where the only long-ranged interaction is elastic.

The interior p(x) in (3.96) will also cause an interstitial to re-orient itself, with an applied
stress. Consider carbon interstitial in BCC iron lattice, with three variants of relaxation

strain-volume tensor:

/\1 0 0 )\2 0 0 /\2 0 0
whi=10 2% 0|, wh=10 XN 0], wi=]0 X 0], (39
0 0 X\ 0 0 X 0 0 A
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using the atomic volume of iron €2 as unit. Suppose we apply uniform but time-dependent

ext

o'(t), we will have energy of the three defects shifted as

M0, — A0, —NoQ0us, (3.100)

and this will induce a net thermally activated transition rate of

rotate
r = 2uexp <— kll/; ) lexp <>\2Q%;k 7/}19%‘%) — exp (Algazgk ;\29%36)] (3.101)
B B B

per il defect, where fo}ia;e is the rotational energy barrier that controls i1<»i2. The factor
of 2 is to account for i1<+i3 exchanges as well. Suppose the initial concentration is cf

(#/volume), we then have a net change of the stress-free transformation strain as:

J 5 Q) X 0 0 A 0 O X 0 0 A 000
dt=T10>\10—0)\20+0>\20—0/\20
0 0 X 0 0 X 0 0 XN 0 0 X
1 0 0 0 9 1 0 0
2vexp (—+% ) (Ao — A\1)*Qogy
= reg QA —A) | 0 —% 0 ~~ ( kBT}z T2 - 0 —% (3002
B
0 0 —% 0 0 —%
where we have used the relation
o 1 Fif
Gi = &P <_k‘BT> (3.103)

where & is the site concentration of the crystal lattice in FCC structure (each dumbell in

FCC is centered at an original lattice site), and F} is the formation Helmholtz free energy of
this dumbbell. The effective activation energy is the sum of formation free energy (il) plus

rotational free-energy barrier (il1<»i2/i3):

Q = F + Qs (3.104)

The linear relationship between plastic strain rate and stress is indicative a linear vis-
coelastic system, resembled by a spring connected to a dashpot. Generally speaking, we

can represent a defected solid with internal “strain memory” by
gi(t) = no(t) (3.105)
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where 1) has the unit of inverse viscosity.

The elastic strain is the difference between imposed total strain € and the inelastic strain g;,

and the stress is proportional to the elastic strain, so
o = Cl(e(t) —e&it)) (3.106)

and
o = C(e(t) —&l(t)) = C(e(t) — no) (3.107)

Suppose the externally applied strain is a sinusoidal function (displacement controlled bound-

ary condition)

Et) = ée ™! (3.108)
and o = ge ™!, we will have
(—iw+ Cn)e = —iwCE, (3.109)
or
6 = (iw— Cn) HiwCe (3.110)

We see there is an w — oo response, which is purely elastic. But there is also a w — 0

response, which is purely viscous. The complex modulus:

& 1 1—iCn/w
= ——C = ————C 3.111
5 1+iCn/w 1+ C?*n?/w? ( )
has a real part
0 1
ReZ = — _ __C (3.112)

H 1+ C?*n?/w?
and an imaginary part
o Cn/w
Im— = ————-C 3.113
5 1+ C?n?/w? ( )
The most rapid change in the real part, or the peak in the imaginary part, occurs at
C1/Wresonance = 1. This is where the external agitation wave resonate with the internal

“fopping around” rate.

Friction between two bodies is well known effect, but internal friction within a single solid
body is a little bit less well known, which characterizes how much the solid deviates from

perfect elastic body. Internal friction can be characterized by a torsion balance [25]. This
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instrumentation, and the more general machinery of Dynamic Mechanical Analysis (DMA)
spectroscopy, studies small-stress dynamical behavior of materials. Unlike plasticity which
is large-stress nonlinear behavior, the DMA spectroscopy is linear-response but focusing on

frequency space characteristics. Consider the following partition:
E = €o+ 6 (3.114)

where ¢; is the inelastic strain, also called stress-free strain, transformation strain. To appre-
ciate this concept of transformation strain, consider the state of affairs of carbon interstitials
in a-iron. Without carbon, a-iron would be perfectly cubic. With carbon, it is not neces-
sarily so. The carbon can sit at edge centers or face centers, which are actually equivalent
(octahedral site), so we only need consider edge center. Clearly, if the carbon is on [100]-
bond, there will be uniaxial dilation in z. The only reason that ferrite (with carbon) is still

cubic is because the three populations of carbon interstials have equal concentration:
o = & = ¢ (3.115)

However, if somehow we can accomplish a population bias, then that configuration will no
longer be cubic, and will have a transformation strain with respect to the cubic state. We

can model this transformation strain as

o, — et 0 0
g = a 0 ct — % 0 +0(cg 4+t +cE)I  (3.116)
0 0 ¢ — catectee

c 3

the second term above is irrelevant in the present discussion, because we presume the total

carbon concentration in DMA experiment is unchanged.

To develop a model for torsion balance, we note that the amount of torsion 6 « e, and
to achieve apparent acceleration 0 requires force o< ml x o = Ge,, where G is the shear

modulus, so the basic kinematic equation is
€ = kGe, = €.+ & (3.117)

where k depends on the geometry. In above, the only question is how £; depends on Ge,. If
we assume that

G
Sy = —Ee 3.118
£ 1/8 ( )
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where v is an apparent “viscosity” that relates the inelastic strain rate with stress.

In dynamical mechanical analysis (DMA), one applies a perturbational stress, of varying fre-
quency w. We will see a peak corresponding to eigenvalues of C'n). These are called internal
friction peaks, the location and amplitude characterizes the types and concentrations of

defects inside the solid, whose has configuration mobility (either positional or orientation).

This is also called Zener peak, discovered by Clarence Zener (the namesake for Zener pinning
as well) who first worked out so-called anelasticity kinetics in metals. This affects, among
other things, how ultrasound is attenuated inside metals, and damping coefficient of springs

and piano strings etc.

3.4 Elastic Interactions Between Defects

Even in anisotropic elastic continuum medium, we have Green’s function
wi(x) = / dx' K (x — ) f; (') (3.119)
with K;; = Kj;. From this it is easy to derive
wi(x) = —Kijr(x)Pj. (3.120)
for a single defect of Kanzaki force dipole tensor P at location x = 0.
Consider point defect n at position x,,, which creates a long range elastic displacement field
u,(x—x,) = Ux-—x,):P, (3.121)

where U is a rank-3 tensor,
Uij. = —Kijk- (3.122)

Then the unsymmetrized strain field (deformation gradient) is
sp(x —x,) = —S(x—x,): P, (3.123)

where

Sijr = Kiju- (3.124)
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It is easy to prove that S has the very good symmetry properties:
Sitik = Sjkil (3.125)

required for the order of its contraction, since i <+ j are symmtric and k <+ [ are symmetric.

S tensor is independent of the defect type. It has the unit of inverse energy.

The stress field would be

o.(x—x%x,) x C:(-S(x—x,):P,) (3.126)

Now imagine creating a new defect m at position x,,, we will have the excess energy (or

more appropriately, enthalpy Hi, if we think in terms of generalized ensemble) to be

Epi = —Tr(0n(Xm — X))@l Q) = —wlQ: 0, (%, — X,) (3.127)
This excess is in reference to when the two defects are infinitely separated x,, — x, — o0
and non-interacting.

But recall that
wiQ = Cct:P, (3.128)

m

so we get the interaction energy to be
Fwni = Pp:S(x,m —x,) : Py, (3.129)

which is a beautiful expression. P,, and P,, are symmetrical matrices, so the rank-4 tensor

S can be further symmetrized to have the same symmetry as elastic constant tensor:

Euy = P S(x, —x,) : Py, (3.130)
where
Suip = Sitik + Stijk 1— Sitkj + Slilcj, (3.131)
with
Siljlc = Slijk = Sjkil = Sk:jil (3132)

(3.129) show that the defect-defect interaction energy is manifestly independent of the order

of creation. That is, we can create defect m first, and then defect n later, and the interaction
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energy would still be the same, because of the symmetry property we have derived for

S(xm — Xp).

Because we have a linear elastic system (quadratic energy landscape), the above process can

be generalized to multiple defects:

ox) =Y oux—x%x,) = —-C:> Sx—x,):P, (3.133)
and
B = ;Z S P, S(xm — %) : Pa (3.134)
n#Em

Again, S(x,, — x,) is a universal function independent of defect type, and only depends on
the elastic constants of the medium. This allows defect to align with each other, forming

defect clusters of favorable configurations.

More explicitly, the impact of other defects on the chemical potential of defect m is just:

Aply (X)) = Py Z S(xy —%xp) : Py (3.135)

n#m

since defect m (say interstitial dumbbell) can reorient, and this would cause P,, to change,
we now have an explicit driving force and can derive the Transition State Theory (TST)

expression for defect m’s reorientation kinetics, like what we did in Zener anelasticity.

The above is when the point defects are well separated (|x,, — x,| > Ry). When they are

close, there will be atomistic coordination interactions.

3.5 Ceramics

I adopt the Kroger-Vink notation [26, 27] system S§, where S is species, P is position and
C'is excess charge (positive: '; negative: ’; neutral: x) except for the charge, which I found
obstructive: the dot - invokes the image of an electron and should denote negative instead
of positive charge; indeed chemists use - to denote Lewis electrons. But in the Kroger-Vink
notation, it denotes a positive charge. Kroger-Vink also use ’ to denote -e, and ”’ to denote

-3e, which I found very awkward to use. So I use numeral 2+,4,0,-,2- instead.
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Examples:

e Vy.: vacancy on Na site in NaCl, with excess electric charge -e.
e V{;: vacancy on Cl site in NaCl, with excess electric charge +e.

e V&: vacancy on CI site in NaCl, with an electron trapped inside. This is called F-
center (F for German word Farbe or color). It is made by exposing NaCl to Na vapor,
so one gets slight off-stoichiometry overall NaCl;_,. The Na metal on the surface
attracts Cl~ to diffuse toward the surface. The Na metal atoms gets ionized to Na™,
and the free electrons diffuses inside to occupy the vacancy position. NaCl has band
gap 8.5 eV, and is transparent in visible spectrum. However, the confined electron in
the vacancy space has a number of additional levels, whose transition falls into the
visible regime. This gives a greenish-yellow color. If one exposes NaCl to K vapor, this
gives the same greenish-yellow color. But exposing KCI to K vapor, the color is violet.
The F-center has an unpaired electron spin, and therefore can be detected by Electron

paramagnetic resonance (EPR) or electron spin resonance (ESR) spectroscopy.

Cd{,: a Cd*" cation on a Na site in NaCl. This has net charge -+e.

Ag: a silver cation on an interstitial site in NaCl, net charge +e.

F;: a fluorine anion on an interstitial site, net charge -e.

e ¢ : an excess band electron in conduction band, net charge -e.

h*: an excess band hole in valence band, net charge +e.

In my notation, I will use V& instead of V{, to denote oxygen vacancy in ZnO, and Vg,
instead of V{, to denote sodium vacancy in NaCl. e and h denotes excess band electron and
band hole, respectively. Since they are well known to carry charge —1 and +1, the charge
is sometime omitted from the notation. It is important to remember that the Kroger-Vink
charge is the excess charge. So e~ here has different connotation from el, the latter being
the abbreviation for a physical electron (could be bound to a molecule, could also be free,

and can have a wide range of energies).

Consider ZrOs in cubic fluorite structure. I may have both V& and Of™ point defects in

the lattice. When they are in equal numbers, this is called (anion) Frenkel disorder. I will
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use cy2+ to denote the concentration (number of VT (RVE) / volume(RVE)). However, the
O

subscript and superscript are bit too small to read. So we will also use chemists notation
V3] = Cyz (3.136)

so you can read it clearer. Chemists’ preferred unit for concentration is 1 molar (1 M), which
equals to 1 mole/Liter = 6.022 x 10%°/cm?.

Band electron e and band hole h are delocalized. They can be created in the following

reaction:
base = e+h (3.137)

where base is the reference perfect crystal. The mental picture is that e takes a quantum
state |1e) from Conduction Band (CB), or h takes a quantum state |¢,) from Valence Band
(VB), both infinite Bloch waves (consisting of many planewaves) in this perfect crystal.
A more sophisticated view is that we make a Gaussian wavepack of the Bloch wave, with

wavepack width > ag.

As a matter of notation, we use upright e to denote the physical object of a conduction band
electron, and upright h to denote the physical object of a valence band hole. We use the

italic e to denote the absolute magnitude of elementary charge
e = 1.60217662 x 10~"?Coulombs (3.138)

So h carries excess charge e, and e carries excess charge —e. el carries physical charge

—e (but may be bound to something else). OK?

For simplicity, we will assume all e has the same energy (at the conduction band minimum,
CBM) and all h has the same energy (at the valence band maximum, VBM). A reaction

equilibrium can be established:

[e][b] = Ken(T) (3.139)
where K, (T') is proportional to
Ka(T) o e ( Ee ) (3.140)
o Xp | ——= .
h p kpT
where F, is the band gap:
E, = CBM — VBM. (3.141)
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E, varies from narrow bandgap of 0.17 eV of InSb used for infrared detectors (visible light
spectrum is from 2-3 eV), to 7.8 eV of MgO and 8.8 eV of Al,O3(«).

Electrical conductivity is the relationship between current j and electric field E:

j = oE. (3.142)
If electronic carriers dominate, then
Jj = ceve(—e) + epvin(e) (3.143)
But
Ve = Mc(—eE), vy, = My(eE), (3.144)
so we get
o = e*(ceM, + cpMy) (3.145)

there are generally differences between M, and M), depending on the effective masses of CBM
and VBM and scattering rates, but they usually do not differ by a large order of magnitude.
So the question of whether e dominates (n-type) or h dominates (p-type) depends largely on
whether ¢, > ¢, or ¢, < ¢, and this, as we shall see later, has a lot to do with charged point
defects. If ceM., ~ ¢, My, this is called ambipolar, meaning we cannot consider just one
carrier species as the single dominant one. More generally, we can include the contribution

of mobile charge defects:
o =Y ezlcaM, (3.146)

and transference number
622§05M 8

tg = ——————— 3.147
p Yo €222ca M, ( )

However, such delocalized e or h may also be captured by a localized defect. In the F-center

example above, we can express this by:
Vi +e = VY (3.148)

The RHS may have the enthalpic advantage, but the LHS can have entropic advantage. We

will end up with a reaction equilibrium

Vel
[Vélle]

= K(T), (3.149)
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where LHS is called the reaction quotient, and RHS is called the equilibrium constant, of
this defect reaction. For this classic equation to hold, we assume (a) thermal equilibrium,
(b) a dilute-solution expression for the configurational entropy (if not, then we have to use
activity /activity coefficient language). With (a),(b) satisfied, K (T') is defined as

AGO(T)) (3.150)

K(T) = Kyexp (— kr];‘%

where AG?

rxXn

(T') is the driving force for the reaction without the configurational entropies

contribution. Kj is a site-density prefactor, that normalizes the left-hand side for the entropy.

Note that not only V& +e — V&, (the capture) process is possible, the reverse V& — V& +e
(the ionization) is also possible. This is what mainly happens when we put Phosphorus
into Silicon:

P§+e = Py (3.151)

Since diamond cubic Si is covalent and has 0 reference charge in the base structure (monatomic),
the PY; state denotes an unionized neutral P atom stuck inside a vacant Si site (substitu-
tional). The P is the post-ionized state, a local defect with positive charge (but low
mobilty). e, however, can have very high band mobility (limited by electron-phonon /
electron-electron scattering, etc., but moves ballistically as a band state and still has much
higher mobility than that of localized defects). Whether the capture or the ionization
dominates depends on the temperature, the nature of the trapping defect itself, and all
other defects in the system which could trap/donate electrons. The ionization/trapping is
also a self-stopping process. When there is too much ionization and electrons in the bands,

the electrons chemical potential pe = Ef rises:

1
Cel ~Hel

e BT 41

Czl<€elv T) = DOS<€el)fo(€elﬂ T)? fo<€e17 T) = (3152)

Using the notation Eg for the Fermi energy is a big notation mistake. The Fermi energy has
the unit of eV, but is really a chemical potential which includes entropic contribution, and
not just the energy (and not just the energy of any particular electron). This can be seen
from the fact that peg = Er = —eU falls in between [VBM, CBM] for ceramics, often in a
no man’s land for €¢,;. Being an intensive quantity, Er should really be called ug, or ep, if

the latter is also understood to contain entropy/occupancy contribution.

To summarize, there are many physical electron states (el): the conduction band states e €

el, the valance band states h € el, and even the defect-trapped electrons with mid-gap defect
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charging level and exponentially localized wavefunction € el. We use ¢, to denote their
individual energy, DOS(ey) to denote their energy degeneracy, and f(eq) to denote their
occupation, which may or may not be at thermal equilibrium f°(e, 7). If not, then the
process of f(eq) — f°(ea, 1) is called electronic relaxation, which is often on the order of
nanoseconds or less, after external excitation like radiation is taken away. Once f°(€q,T)
is reached, there is a global property called p = Er = —eU for all el’s, irrespective of
whether they are e, h, or defect-trapped local states. The reason that there should be a
collective constant called Fr at thermal equilibrium for all electrons (those with higher
€ Will be compensated by lower occupation, and those with lower ¢, will be compensated
by higher occuptation, just like air molecules at sea level vs at Mount Everest) if at thermal
equilibrium, is because electrons interact with each other and exchange energy, and there is
entropy/occupancy vs. energy tradeoff, so at equilibrium all electrons are “equally happy”,
since they are the same electrons (indistinguishable) to begin with, and constantly exchange

energy /position anyway.

To connect with what we’ve done before, the rigorous definition of [e] and [h] are:

o] = /C:MdeelDOS(eel)f"(eel,T), ] /\fMdeelDOS(eel)(l— Folea,T))  (3.153)

There are two different modes of transport: band transport, vs. hopping transport. The mo-
bilty of the former typically decreases with increasing temperature, due to higher probability
of scattering. (So M, and M), decrease with T, usually in a power-law fashion Mg oc T
with a between 0.5 and 3). The mobility of hopping typically increases with temperature,

due to thermally activated nature of the hopping, e.g. MV& and MVOC 1 should increase greatly

m

_ (T
with 7" in the Arrhenius fashion M o« e #7 | where Q™(T') is the migration free-energy
barrier in transition-state theory (TST) for hopping transport. TST hopping transport
(total-energy-below-the-barrier) is generally much slower and has much lower mobility than

ballistic (total-energy-over-the-barrier) transport.

When a photon comes in, it can create e and h pair, if

hv > E, (3.154)

In (3.137), even though people some time use the name “pair”, they are physically well
separated band states (or wide Gaussian packs). However, the e and h can also self-trap, and

form an association called exciton, denoted by (e, h), which is a bound pair with distance
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in between few-nm (small exciton) to hundred of nm (large exciton). We can express this
assoclation as:
e+h = (e h) (3.155)

(e,h) is charge neutral, but there are other associations like trion (e e, h) which would
carry both charge, enthalpy and spin. With photons, or other ionizing radiation, the actual
electronic distribution f(eq) can deviate from the thermal equilibrium distribution f°(eq, T)
just like the point defects during temperature quenches. This is called electronic out-of-
equilibrium (similar to plasma), and with time, the process of f(eq) — f°(€a,T) is called

electronic relaxation.

Reaction involving a generic electron of variable energy e, looks like:
DD+ o] = Dt (3.156)

The driving force for this reaction without the configurational entropies contribution, AG?,_ (T,
should look like
AGO (T) = €pm+D+/n+ (T) — €el (3157)

rxn

where epmin)+/mt(T) is called the charging level (the T-dependence can come from the vi-
brational entropy of the defect before and after electron capture), and is the free-energy
difference of the lattice defect at electron-captured state (reduced) vs the same defect at
oxidized state. By “same”, we do not exclude some nuclear displacements or even recon-
structions - loosely called “electron-phonon coupling” by some people - and thus D"* and

D®+D+ can have different Kanzaki force dipoles
P(D"") # P(D" D) (3.158)

and even different symmetries. epm+n+/qm+ (1) can be computed in a supercell with D" +D+,
and a supercell with D™* (which is one electron heavier), and subtracting the free energies
of the two. In a periodic boundary condition supercell calculation, to balance the charge
brought by the real quantum electron to prevent Coulomb explosion, we also need to concep-
tually add a massless ether-like jellium that smears opposite charge uniformly in the supercell

- but this is done automatically by planewave calculations by their G = 0 non-treatment.

epm+n+/m+ (1) (sometimes abbrevated as €,/,41 if we understand it’s about lattice defect D)
is called the defect charging level of charged defect D from (n 4+ 1)+ — n+. It reflects
the composite property of an electron trapped by phonon/defect, but it has the unit of
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eV, and can be plotted on the €, axis. In fact, if €pmi1)+/mt (1) falls midway between CBM
and VBM, then it can be proven that the trapped electronic wavefunction |i¢) will have
exponentially localized tail spatially (thus “trapped”). If e is close to the band edges (either
CBM/VBM), then it is called a shallow-level donor/acceptor. If it is not close to either
band edges, then this defect charging level is called a deep level. The key is to remember
that epmin+/m+ (T) is not the defect formation energy, but how much the defect formation
energy would change if one more electron is added - thus epm+1)+/+ (T') has the connotation
of how happy one electron would be if trapped, ie. marginal energy of the electron, thus this

value can be and should be plotted on the ¢,-axis along with the band DOS features.

Now imagine el in the defect redox reaction (3.156) is sourced from the CBM of the ceramic,
el = e €1 =CBM (3.159)

then the configurational entropy of el can be well approximated by —kgIn[e], and we will

have at thermal equilibrium

[D"+] B epmin i/t (T) — €q
m = Constl xXexp| — k‘BT (3160)
[Dn+] . ED(n+1)+/n+ (T) — CBM
W = const; X exp | — ]{;BT (3161)
But by the Fermi-Dirac distribution, and if Ep is in gap, we know [e] is basically
oo CBM — F
le] = /CBM deaDOS(€q) [ (€1, ') ~ consty X exp <_kBTF> (3.162)
so we get
[Dnt ] B P ksT P kgT
= const X exp _ ety (1) d (3.163)
kgT
. Thus the reduction fraction of the defect would be
[D™+] 1 1
_ - — (3.164)
(D] + [Pt 1+ % 1 + const™! x exp (GD(nle)Jrk/g;(T)EF)
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Obviously, const = constconsts should be equal to 1, and a more physically motivated way
is to think of the reduced defect as a trapped electron with marginal price €, = €pmi1y+/nt (1),

and then applying the same Fermi-Dirac distribution as for other band electrons:

[D™] B 1 '
D] + DO+~ peni/me D (3.165)
e kT + 1

even though the trapped electron is in reality an electron-phonon/defect coupled composite
particle. D in fact can also be a perfect lattice site, in which case such trapped electron
is called a polaron. For example in battery material LiCoO2, where all Co cations are
Co**. But suppose there happens to be a Co*" with a localized hole. This localized hole
will polarize the lattice, generating a Kanzaki force dipole P(Co?"). This trapped hole can
hop from place to place, and this will be the main contribution to electronic conduction in
LiCoO2 (there can also polaron on Oxygen, but that is much less likely). On the other hand,
there are special layered planes for Li cations to hop, so the Li* ion mobility is also good. A
good electronic conductivity and a good ionic conductivity (both relative to other ceramics)

is the fundamental reason that LiCoO2 is used as battery cathode material.

From the defect reduction fraction (3.165), whether the defect is mostly oxidized or reduced

depends on where the voltage is (Er = pe = —elU) compared to the defect charging levels.

In a “normal” (positive-U) defect, we should have
€Epnt/(n—1)+ > €Ep(n+1)+/n+ (3.166)

In other words, as we raises Ep, the defect taking DD+ state will first reduce to D", and
later if we keep increasing Ep, D™t will reduce to D™D+ We see that the above equation

means
F(D"= V) — F(D") > F(D™) — F(D+DH) (3.167)

where F' is the Helmholtz free energy of the supercell, and we omitted the temperature

dependence, or
F(D"=D+) —2p(D™) + F(D™DT) > 0 (3.168)

This means if we interpolate the defect free energy with its charge number, we get positive
curvature. (This curvature is the “electronic stiffness” or “hardness”, or how much the going

price of electrons is changing with more and more acquired). We can define
U = F(D" V) —2FD") + FO"DT) > 0 (3.169)

48



A positive U means the electronic subsystem is locally stable. This would be same as
mechanical system with positive modulus, or chemical system before spinodal decomposition.

But what happens with negative U? We would have
€pnt/m-n+ < €pminime, F(DODT) —2pD") 4 F(D™DF) < 0 (3.170)
Suppose we have two D", it would actually choose to change to
D" + D" — DU+ L pi-b (3.171)

In other words, negative-U defects would be locally unstable in charge, and would sponta-

neoulsy takes on charge state above and below.

There are really lots of parallels between electronic disorder and point-defect disorder,
and the two are intimately coupled. Indeed, uo = Er controls what kind of charged defects
exist in a dominant fashion in the lattice, and their populations, as we will see later in the
Brouwer diagram section. The biggest difference is in the mobility, and the temperature

dependence of mobility.

Schottky disorder

This is expressed as
base = Vy, + V& + Nal,, + Clgy, (3.172)

where a Na, (base) atom is moved to a new surface site and becomes Nag,, and a CI¢,(base)
atom is moved to a new surface site and becomes CI%,. We can also express Nag,, + CI2,

as simply NaCl to resemble a newly grown piece of crystal, and reexpress (3.172) as
base = Vy, + V¢ + NaCl (3.173)

Since the LHS contains just base, the RHS may have different energy/entropy, but its chem-
istry will be unchanged from perfect crystalline base. This is called stoichiometric defect

reaction. Some people also choose to write (3.173) as

nil = Vg, +V{§ (3.174)
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In this notation, the charge is obviously balanced, and mass is balanced, but the site creation
part (and surface traction sensitivity) is not easily seen. So I prefer (3.173) notation over
(3.174) notation.

The defect equilibrium at zero stress would give us

Vi [Val = K(T) (3.175)
where -
K = cnaccrexp <_f:]£T)> , (3.176)

where fg(7T) is the Helmholtz free energy of creation, that includes the energy cost of creating
two well-separated vacancies, as well as the vibrational entropy gain (not configurational)
when that happens; cn, is the concentration of Na-sublattice sites; c¢ is the concentration
of Cl-sublattice sites. (these are not defect concentrations, but site concentrations). If we

call the volume per formula unit of NaCl Qn,c1, we should have cx, = co1 = 1/Qnacr-

Frenkel disorder

Many ceramics has smaller cations than anions, for example AgBr (ionic radius Br: 1.96A,
Agt: 1.26A). They tend to have cation Frenkel disorder:

base = Agi +Vj, (3.177)

with equilibrium

(3.178)

AefIVa] = K(T) = exaesn (~200D)

where ¢ is the number of possible interstial sites, that may be different from cay = 1/Qagp:

but fractional multiples. This can be proven by looking at the total energy - entropy tradeoft:

NAg! Nl'

Nefe(T) — Tkgl X 3.179
rfr(T) ~Tkaln (Nag — Vag)WVig! (Vi — Agi)!Ag! 1)
when one extra Ag;", Vi, is introduced into the system, the differential cost is
Vi Agt
Fo(T) + kpTIn ~28 + kgTln 2L = ¢ (3.180)

Nag N;
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so we get

Npas N; fe(T)
K(T) = —=2 1 —— 3.181
(T) Vave VeRve P ( ksT ( )

In AgCl, each cube has 4 Ag and 4 Cl. Each cube can take one interstitial, so N is the
number of cubes. However, each cube has half Na atom (or each Na atom owns two cubes).

So N; = 2Njg. One can therefore also write, in the case of Schottky disorder:

AgH] = [V = vaeagexp (—g;?) (3182)

where o = 2, the ratio of interstitial sites to silver sublattice sites.

Ag; is exceptionally mobile in silver halide crystals. When light is absorbed, it can create

well-separated e and h. Then, this electronic disorder can induce
Agi +e = Ag) (3.183)

which can migrate to the surface of a Ag(Br,I) grain. This is how traditional photography
works. As the film containing colloidal suspension of the Ag(Br,I) grains (in gelatin) were
exposed to light, as few as four Ag atoms on the surface of forms a neutral Ag metal cluster,
which becomes the latent image (the holes are collected by the Br~, oxidizing them and
forming Bry(g), which leaves from the surface, making this photo-decomposition irreversible).
Later, in developing the film by exposing the grains to a reducing solution of hydroquinone,
the remaining silver cations in Ag(Br,I) will be reduced to silver metal, but they preferentially
precipitate and grow at regions with pre-existing Ag clusters (serving as nuclei), forming the
image consisting of metallic {Ag, } clusters. (If one exposes to hydroquinone for too long,
eventually all region would turn black). Afterwards, one washes away the unreduced Ag(Br,I)

by exposing to “hypo”.

Anion Frenkel disorder however are found in fluorite structures like CaFy, UQOq, ZrOs,
ThO,, etc. One reason is that the fluorite structure has open cubic holes in 50% of the
anion cubes (the other 50% was filled by cations, so the cube is large). The other reason
is that the anion charge is half that of the cation charge, and therefore the anion-anion
electrostatic repulsion is less than the cation-cation electrostatic repulsion. So we can have
O?” in cubic ZrO,, alongside V&'. There are cation interstitials Zr®", but they are not

dominant anywhere with changing Er (Fig. 4 of [28]).

There is no site creation in Frenkel disorder, thus no traction dependence in K(T'). There is
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however interior stress dependence, and they bias the internal diffusion potentials for both
cation and anion, by the relaxation strain-volumes of each, wg;, 070, and w5%+ Qze0,. K(T)

would be affected by interior stress o according to

R R R
<"‘JFrenkelg-ZZrOz = Wph2- er02 + wVé+ QZrOQ (3184)

Similarly, we can have antisite disorder
base = NaZl + CI3, (3.185)

These are all stoichiometric disorders. One can think of stoichiometric disordering as “civil
war”. Non-stoichiometric disordering would be like with additional combatants (reactants)

from foreign countries.

Non-stoichiometric disorders

Consider FeO as our base structure. It turns out that this base is fictional, as there is always
cation deficiency Fe;_,O, with cation vacancies. This is created by the further oxidation of
FeO:

base + ;()2(9) = 2Fef, + Vi, + O + FeO (3.186)

where we first invoke stoichiometric
base = Vi, + Vg + FeO (3.187)

to create the site for incorporating external oxygen (mass action). But then we have a charge
compensation problem (see 3.5.1), so we use Fej,, which is just Fe** cation! (Ferric: Fe**

or iron(III); Ferrous: Fe?* or iron(II))

The equilibrium is just
[Fer|*[Vie]
172
Po,

— K(T) (3.188)

The Fej,, or trapped hole, is not as mobile as the band hole h, but is probably still more
mobile than ionic defect since its motion requires only small ionic motion followed by eletron
tunneling (Rudolph A. Marcus won Chemistry Nobel Prize in 1992 for coming up with rate

expression for such electron transfer reactions). Thus, it is reasonable to postulate that po,
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will impact the electronic conductivity of this material.

Alternatively, one can think of the process to be dissolving Fe,O3 into base:
base + Fe;03 = Vi + 2Fef, + 304 + 3FeO (3.189)

which is an equivalent way to think about the mass action. In above we don’t seem to have
po, in the equation, though. Later, when we reveal the relationship between various point-
defect disorders and phase free energy ¢*(Xo) in (3.5.2), it will be obvious that when we
put Fe;O3 phase in contact with FeO phase, the po, will be pinned by the common tangent

between Fe;_,O and Fe,O3_, single phases. This is often written in abbreviation as

1

which gives an equilibrium (pinned) po, value. But the notation in the reaction (3.190)
above is a bit of simplification, because in individual crystalline phases of FeO and Fe;Og,
there are defect disorders. The rigorous notation would think of both as alloy phases with

degrees of off-stoichiometry, albeit small.

The reaction
base +h = Fey, (3.191)

converts delocalized band hole to a localized polaron. Rigorously speaking, polaron is not
an ionic disorder, because unlike V or Ag?, the hole is not trapped by a lattice defect.
However, there is some phonon (elastic displacement) that is dressing the localized hole.
Fef,, moves faster than normal lattice defects, but is much slower than a normal band hole,

since its motion does involve some small lattice motion.

Another polaron example is Li;_,CoOs that is used as cathode in Li-ion batteries. When
x = 0, the lithium cobalt(III) oxide is easy to handle in air. Then once sealed in the battery,

we can delithiate it:
base = Li*(electrolyte) + e(metal current collector) + Vi; + h (3.192)
but the hole is likely trapped by Co cation at room temperature:
base +h = Cof, (3.193)
which is really cobalt(IV). The multi-valency of Co,Ni,Mn,Fe first-row transition metals
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supports the Li-ion battery technology today. When V|, diffuses in and out of the cathode,
it needs to be accompanied by equal amount of polaron motion localized on the transition

metal cations.

Cation Interstitials

Cation interstitial becomes possible for ZnO, since Zn?* has very small ionic radius, 0.74A,
and the Frenkel disorder energy is only 2.51 eV (table 11.8 of [29]). Let us exclude the
possibility of vacancies (either V3" or Vi;) for the moment. (They are still there, but are

“deep under the ocean” that they don’t matter)

Consider a base crystal ZnO exposed to Zn vapor:
base + 7Zn(g) = 2e + Zn?* (3.194)

This creates off-stoichiometry, Zn;,,0O. Note that in our notation, subscript 1 — x implies
vacancies and 1 + = implies interstials. Even though M;_,O;4, is chemically identical to
M1—2)/(144)O1, the former notation gives richer information about the point-defect disorder

inside.

Also, the e find it easier to be trapped by Zn?", and turn into Zn;” (a Zn™ or zinc(I) cation),
and so we also have
base + Zn(g) = e+ Zni " (3.195)

and
[e][Zn{*]pzn = K (3.196)

The trapping energy is sufficiently large that [Zn"] < [Zn! "], so we get
[e] ~ [Zn/T] (3.197)

and so
le] ~ [Znf*] o« pg o poy . (3.198)

In above we have used the relation pangf = K, derived from

zn(g)+;og(g) = 7n0 (3.199)
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Alternatively, we may also write

1
base = 7Zn’t + 5()2(g) +2e — ZnO (3.200)

1
base = Znit + 502(9) +e—7n0 (3.201)

where the -ZnO is to denote the destruction of lattice sites at surface. From above we can
also see that
2+1,,1/27 12 147,.1/2
[Zni"pg, le]” = Ka,  [Zny7]po, ] = Ki (3.202)
/*is what is experimentally found, so [Zn!*] ~ [e] is the actual situation. If
/6

Indeed ¢ o pc_);

2[Zni*] ~ [e], then we should have g, o pgi instead.

Zn0O is n-type semiconductor (Ep high and likely larger than e;/5(Zn;)), and used to make
sensors like variable resistor (varistor). Since the electronic conductivity o [e], we will have
its total electrical conductivity decreases with increasing po,, which makes it a possible
OXygen gas Sensor.

To summarize

Ceramics entertain a richer zoo of electronic and ionic disorder. For electronic disorder, in
metals there is just “el” around the Fermi energy (so-called Landau-Fermi liquid theory,
think of it as an ocean, with “foams” at sea level). In ceramics, “el” breaks up into two
levels, e and h. Think of it as stone slab separating ground water below from dry floor above.
e,h can associate with each other (excitons, trions) and with ionic defects (color centers like
VY, and diamond NV, non-Kroger Vink charged Ag{ for photography and Zn;" for gas
sensing, polarons like Fey, in FeO and Cof, in Li;_,CoO, for battery). With association,

the enthalpy, entropy and mobility all tends to reduce.

3.5.1 Charge compensation

The excess charge density p®*®(x) defined in (1.1), which consists of ionic and electronic
contributions:

PR (K) = pion(x) + par(x) (3.203)

needs to respect certain constraints. pion(x) consists of the formal charge of all localized

ionic defects (Vir, V5", M7T, O™, etc). pe(x) consists of delocalized band electrons (e) and



holes (h):

It turns out that the positive cloud of p™“*(x) has to be screened by equal and opposite
cloud. In other words, the positive cloud cannot be infinitely separated from the negative
cloud, otherwise something called Coulombic explosion would happen. Suppose a region

of positive average

(p™=(x)y = p > 0 (3.204)
extends to a sphere of radius R:
pXp 5
1n eraction d /d ! R 3205
teract] / X 477550|X x| > ( )

so the interaction energy density actually scales as

Ein eraction
% = R > (3.206)

In other words, it becomes infinitely costly to insert the same charge in the same voume.

The only way to avoid Coulombic explosion is therefore to have
(P (x)) = 0 (3.207)

which includes the sum of charged defect (localized), and electrons and holes (delocalized
band transport). Coulombic explosion actually happens in materials under ultrahigh pow-
ered laser, where some electrons are instantaneously excited out of the material, and the

remainder crystal would just have to explode over picoseconds timescale.

Consider Schottky disorder in M5Os3:
2MY + 302 = 2Vi; +3V3" + M,03 (3.208)

When we write down the chemical potential balance, we get:

Nys- Nyer
= AG° + 2kgT In Mo+ 3kgT In ° (3.209)
Nu No

where Ny is the number of metal sites in a certain volume:

Ny 3— N oot 2+
vii - Ml Sver _ Vol (3.210)
NM CK/[ NO C%
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which gives us

VA PIVET]? = Ks(T) (3.211)
where ACS
K = icg exp (— k‘BT> (3.212)

is temperature and surface traction t,, dependent.

(3.211) is true, but it does not fully close the problem. If we assume the charge compensation
is done only between V3" and V3, that there are no other significant contributors to p

(the essence of “Schottky disorder” dominant), then we will have
2[VE] = 3[Vii] = 0, (3.213)

and then we can close the equation

2

GIMI’IVOT = K (3.214)
V3] o« K'Y° o exp (—?}ff;) (3.215)

But if the system is electronically compensated, the above would not be true. When we

consider ceramics or semiconductor:

Egap)
. 21
T (3.216)

e[h] = Kan(T) x exp (-

and the difference between majority carrier and minority carrier is usally pretty stark. (If
[e] is the majority carrier, it is called n-typed, and if [h] is the majority carrier, it is called
p-typed). Electronically compensated means the magnitude of the majority carrier becomes
comparable to that of the highest-concentration charged defect, and must be taken into

consideration. So in principle we could have for example
2[VET] = 3[Vir ]+ [b] = [e] = 0, (3.217)

or even more ionic defects in the above, and the equation is dominated by [V3;] and [h], for

instance, instead of the other terms.

For stoichiometric situation, we have three equations, (3.217), (3.211) and (3.216) and what

appears to be four variables. But those four variables are given by two reaction progress
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variables: [e] = [h] = Aen, [Vi] = 2)s, [V5'] = 3)s, so the charge balance equation is doubly
satisfied (one has an intrinsic semiconductor with Fr perfectly midgap, and the ionic disorder
and the electronc disorder are individually charge balanced), and because these reaction
progress variables individually satisfy charge balance, the total charge balance equation is
not a true equation, so we have two true equations (Ks(T) and K.,(7T)) and two true
unknowns (Ag(7") and Aen(77)). But for non-stoichiometric (NS) situation, there is foreign

combatant, with price controlled by pp,. One adds another reaction progress variable \o:

3
base + §Og(g) = 2Vi; + 6h + M,03 (3.218)

One also gets one more equation Ko(T'), so there are three true equations and three true
unknowns, each derived from one independent reaction. Here, because of the introduction
of foreign combatant (more oxygen would make the environment more oxidative, favoring

more holes), the semiconductor is no longer “intrinsic”, and since

CBM — Ey
kgT

VBM — Ep

~E ), (3.219)

le] = const x exp(— ), [h] = const x exp(

changing po, would shift Ep.

3.5.2 Brouwer diagram

Suppose a metal oxide of base form MO can have vacancy disorder Vi; or V(Q)Jr, but the
interstials are so expensive that they are forbidden. Thus, the actual metal oxide can deviate
from its base and become off-stoichiometric M;_,O;_,, where x oc [Vi;] and y oc [V3'].
When x = y, we say stoichiometry is maintained (Schottky disorder), but clearly, a very
large or very small po, can drive the system off-stoichiometry. In reality, materials are not
isolated: they are open systems where mass action (like immigration) is kinetically possible,
in particular the exchange of oxygen with the air bath environment. In considering charge
compensation:

2[VET —2[Virl+ ] —[e] = 0 (3.220)

there are multiple possibilities:

o 2[VET] ~ 2[Vy]

* 2[VE'] ~ [e]
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where ~ denotes the two major actors, fighting to a near draw. The remaining two
minor actors may have large ratio amongst themselves, but it won’t matter because they
are of minor concentrations. When we plot the four actors on log-axis, we get the Brouwer
diagrams as shown in FIGURE 11.4 of [29], which have three regimes as a function of po,.

Clearly, when po, is humongous, [V3'] < [Vi;]. When po, is tiny (on the log-scale),
[V&F] > [Vir]. So there must exist a special po,, where

V&T = [Vy] (3.221)

exactly. This special po, is defined as p%Q, which may stand for either Schottky or stoichiom-

etry in this context.

To orient ourselves, let us distinguish two situations A and B, at the stoichiometric p%Q.
Since by definition [V§'] = [Vi[], there must also be [¢] = [h] exactly. If there are
more ionic disorder than electronic disorder at point of stoichiometry, then we call this
situation A. Otherwise, we call this situation B. Whether A/B pretty much depends on
whether fs(T") < E, or not.

Take situation A, we have regime I and III where one vacancy defect is compensated elec-

tronically. Consider the reaction:

1
base = Vi + 502(9) + 2e (3.222)
base = V&t + Vi + MO (3.223)
1
base + 5Oz(g) = 2h + O + V3 + MO (3.224)

The first equation is oxygen release, whereas the third equation is oxidation. There is

V& lel’pg, = K (3.225)
[VEIVir] = Ks (3.226)
VEPpo,” = K (3.227)
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In the very low ps(’)2 regime, we will have a lot of reaction 1, and as a result we will have

2[VET] ~ [e] (3.228)
so with
VEQIVE )Py, ~ K (3.229)

we get [V5'], [e] o p(_);/ O Then, [V ], [h] pg % even though they are much lower than [e].

2
This is regime I.

For scenario A, because Kg is big, [Vi; ] is not very low to begin with and catches up fast with
decreasing [e]. Once we get to a cross-over point where [Vi; | becomes comparable to [e], we
change from electronically compensated to ionically compensated: 2[Vg'] ~ 2[Vi;]. Then,
/* and [h] pg4. This

for a while [V3'] no longer changes with po,, and we get [e] o pai )

is called regime II. Even though we introduce foreign combatant and the external condition
changes quite a lot, the two majority combatants populations are basically pinned. This is
similar to a chemical buffer solution. The trick is to introduce other players in the phase

of interest that are locked in combat.

The situation has mirror symmetry afterwards. With the continuous rise of [h], eventually
[h] catches up to [V5], and the system becomes electronically compensated again, this time
between [h] and [V} ]. We get

2[Vi] ~ [h] (3.230)

and
V1@V ) o, = Ks (3.231)

so [Vir],[h] o pé/ 26. This is regime III.

The Brouwer diagram shows the degree and nature of the non-stoichiometry of an oxide
as po, is varied. The above illustrates the situation with M;_,0O,_, where interstitials are
scarce, but interstitial concentration can also show up in the Brouwer diagram [28] (see next
subsection), and then maybe the oxide can be denoted as M;;,0;_,. Generally speaking,
the range of continuously varying x and y that M;4,0;4, can exist stably in the same lattice
structure is called the solubility range of the MO phase, just like the solubility range
of metallic alloy phases. Typically one thinks of the ceramic as compounds, because the
solubility range tends to be much smaller than that of metallic alloys. Still, there is always
a small amount of defects in a large enough crystal, and this crystal will breathe in and out

small amount of oxygen depending on the po, of the environment. This means the solubility
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range of any compound may be very small, but not perfect zero. And defects is what we

deal with in this course, so we must face up to this reality.

We see from FIGURE 11.4 of [29] that the dominant defect concentration would shift up
or down depending on fg(7"). Thus, for MgO which has a huge fs(7T) = 6.6eV, the solu-
bility range is tiny (less than tens of ppm), so for most practical purposes people call MgO
“stoichiometric oxide”. On the other hand, well-known oxides TiO,, VO, FeO, Fe3Oy,, etc.
have solubility range exceeding tens of ppm (see TABLE 6.1 of [30]), and thus are called
“nonstoichiometric oxides”. (even though in principles everyone is nonstoichiometric). The
difference lies in the magnitude of the defect formation energies. This is because the ac-
tual way the lattice can accommodate a chemical composition expression like M;1,014, is
through the physical creation of point defects, and it is more costly in some materials than

others.

We can now apply solution thermodynamics to analyze the stability of any M,,+,0,4, phase.
There is a local stability analysis where M,,1,0,,4, is just competing with small variations
of itself, either vibrational perturbations to its own structure, or composition perturbations
like the spinodal instability. The local stability range XY is probably quite large, like
tens of percent. However, there is also a global stability analysis where M,,,+,0,4, has to
compete with far-away phases {M,,/1,0,/1,} that have very dissimilar lattice structures and
chemistries, by mass action. The basic tool one uses in this is the tangent theorem, where
the tangent extrapolation of g(X, T, P) to X = p; is identified to be the chemical potential
wi(X, T, P). If we take i=Oxygen, and use ideal Oy gas as reference, then

. 1
po = fio(T) + SksT Inpo, (3.232)

where more generally po, is the gas fugacity of Oz(g). Thus, according to the Gibbs phase
rule, at an arbitrary temperature T, the competition of different forms of {M,,1,0,,+,} gives
either 1-phase or 2-phase regions. The 2-phase region is denoted by a constant po,, given
by the common tangent construction. At this po,, there is a jump from M,,_,O, to
M,y O, —y, say, i.e. there is a sharp change of oxygen ratio. For oxygen ratio in between,
it is a 2-phase mixture rather than 1-phase. Below and above that fixed po,, there are two

single-phase regions, where pp, varies continuously and z or y varies continuously also.

61



3.5.3 Diffusion in Nonstoichiometric Ceramics
Stabilized Cubic ZrO,

Stoichiometric cubic fluorite ZrOy does not compete well with monoclinic ZrOs (stable below
1170 °C) or tetragonal ZrO, (stable between 1170-2370 °C). But by mixing in CaO, MgO or
Y103 on the order of few percent up to 20%, the fluorite structure can be stablized to room

temperature. We have
CaO + base = Cay, + O + V3T + ZrO, (3.233)

So if we have a few percent CaZ,, we will have a few percent V2", with a chemical formula
that reads Ca,Zr;_,Oy_,. Naively, one can think of this composition as zCaO - (1 — x)ZrOs,
but this notation seems to suggest 2-phase mixture, whereas in reality we are talking about
a single-phase solid solution, so I prefer the Ca,Zr;_,O5_, notation. If necessary, we can

write down
zCaO + (1 — 2)ZrOy — Ca,Zr;_,0q_,. (3.234)

The above is called Calcia-Stabilized Zirconia. One can also have similar Y503 mixing and
Yttria-stabilized zirconia (YSZ) like 8YSZ where 8% of the original Zr site is taken up by

Y, and there are 4% vacancies on the oxygen sublattice.

The mobility of V2" is quite high in the fluorite structure. So YSZ is used as the solid
electrolyte in high temperature fuel cells. The basic idea of fuel cell (and battery) is pretty
much the same as burning the fuel, where one needs to either bring the oxygen to the
fuel, or the fuel (like hydrogen fuel cell) to oxygen, with only one additional trick: so-called
electrolyte contrast in transference number. Solid electrolyte like YSZ conduct ions (V3 )
but not e. Metal wire conducts e but not ions. So the neutral Oy(g) would split up into
oxygen ion and electrons, and go separate ways. The electrons that goes through the metal

wire will be “taxed” to drive the outer circuit.

In such case, there is clearly Do oc [CaZ;], since the probability of any particular oxygen
tracer moving is proportional to the probability there is an oxygen vacancy sitting next to
it.
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KCI doped by CaCl,

KCl is still dominated by vacancies. We have
CaCly + base = Cay; + Vg + 2C1Y, + 2KCl (3.235)

base = 2V + 2V{; + 2KCl (3.236)

We can define two reaction progress variables, A\; and Ag, that describes how much cases of
reaction (3.235) and reaction (3.236) have occured. The former is called extrinsic, whereas
the latter is called intrinsic. Extrinsic cases requires external “intervention”. In most sit-
uations, the extrinsic contribution (\;) can dominate over the intrinsic contribution. So
D o [Cagf]. This relation works because (a) the intrinsic vacancies, due to thermal fluctu-
ations, is quite low and not comparable with the amount of Ca dopants in the system. (b)

the mobility of Vi has a limiting value in the dilute [Caf] limit.

It is interesting that the transport of K can be dominated by externally added impurities
like Ca. In Fig. 11.11 of [29], we see that going from high temperature to low temperature,
there are three ranges of log Dk vs. 1/T. At very high temperature, the intrinsic behavior
dominates, and the slope is hs/2kg + hy,/kg, where hy, is the saddle-point enthalpy change
(migration enthalpy) of V. hg/2 is just 1.3eV, as shown in the inset. In intermediate
temperature, the slope is just hy,/kg, but with the intercept influenced by whether [Cal
is 107%ck or 10~°ck. In very low temperature, we see a break again. This is due to the
association reaction:

Cajt + Vi = (Caf, Vi) (3.237)

The LHS represents two well-separated (divorced) point defects. The RHS represents a
defect association, where the two are tightly bound together. The RHS has an enthalpy
advantage of hp =0.8eV, as shown in the inset, but the LHS has entropy advantage. We can

write down

[Cay][V]
[(Cay, Vi)]

where K (T') has 1/T sensitivity of hp. This is exactly like an exciton - an electron tied to a

= K(T) (3.238)

hole - but for ionic disorder. (3.237) is very similar to a evaporation/condensation reaction.
When the temperature reachs a certain level, the water molecule would evaporate despite
higher enthalpy. So (Caj, Vi), despite Coulombic binding, might self-ionize. This is the

same story with exciton (e, h), etc.
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When temperature is in regime III, we are going to assume that the RHS of (3.237) is
immobile, and we still need to rely on the LHS of (3.237) for shuffling of K. (In reality, the
(Cag;, V) of course also has certain rotational and translational mobility, but that could be
very low.) In this case, most of the 107* or 107 of [Ca] is tied down by vacancy, and free
vacancy concentration (LHS of (3.237)) needs to be thermally activated, with a population
that goes as 10 °ck exp(—hp/2kgT). Thus the third segement of Fig. 11.11 of [29] has yet
another slope of hp/2kp + hmigration/kB-

It is reasonable to ask what is the scale of binding energy to temperature that one needs to
consider something as clearly tight bound. Consider we have a Avogadro number of atoms
(e.g. 12 grams of carbon). This is a macroscopic piece with cm dimension. What is the

temperature at which there is just a single vacancy in the piece? We have

h
6.022 x 10 exp(——=) ~ 1 (3.239)
kgT
and this gives hy = In(6.022 x 10%)kgT = 55kpT. For Tioom = 300K, we get 1.4 eV; so for
600K it is 2.8 eV; 1000K it is 4.7 eV, etc.

3.5.4 Ambipolar transport of oxygen

Consider a binary oxide M,,,0,,, where n, m are the formal valence charge (absolute value)
of the cation and anion, respectively. Usually m = 2, and M,,,0,, may be further factorized
like Zny,Os = ZnO, but here we just keep them unfactorized. The following defects (and
their ionized versions perhaps) are usual suspects: Vi, Vot M O"~. The presence of

an oxidizing environment may bias the stoichiometry of the crystal, in the following ways:

1
5OQ(g) + Vg +me = Oo, (3.240)

or
1
502(9) = O"" +mh. (3.241)

Consider the permeation of Oy(g) from pg, at © = H to Os(g) from pg, at @ = L through
an oxide membrane. The physical reality is that Oy/2 must be disassembled into a charged
defect plus excess band e/h in order to be transported through. After disassembly, there

is no reason microscopically that the e/h must move in lock step with the charged defect;
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Ay

Figure 3.3: Permeation across oxide layer.

they can go their separate ways. Indeed, if there is an external circuit as shown in Fig. 3.3,
the e/h would go through that external circuit as shortcut. But, if no such electrical circuit
exist as in most cases of metal oxidation, the e/h must go through the same oxide scale as
the charged defect. Usually there are large differences in the mobilities of e/h and charged
defect, so the center-of-mass of e/h cloud will initially have a relative velocity versus that of
the charged defect cloud. This would establish an electric field across the entire scale which
would accelerate one cloud and decelerate the other, until eventually the two centers-of-
mass have a finite but no longer increasing separation. This coupling of two mobile species,
through the same electrostatic potential ¢(z) that they must share inside the oxide, is called

ambipolar diffusion [30].

The dynamics of ambipolar diffusion is quite complex, so we will only solve for the steady-
state in the case of Oy permeation [31]. Consider the situation where Vg is the dominant

species. On either surface where V™ is able to equilibrate with Oy(g), we would have:
o eymcl = K. (3.242)

Electro-neutrality condition is only broken at the surface, and even there only slightly, o

log(pG,/p6,)- In the spirit of 1st-order perturbation theory, we can ignore this and assume:

MCymt = Ce. (3.243)
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Thus,

1/2 14m, m

PO, Cymim™ = Ky = cypr = Kll/(Hm)m_m/(Hm)pgi/Q(Hm). (3.244)

In other words with increasing po,, Cym+ gOes down, and so does c..

With an external electric field E = —V ¢ in a compositionally homogeneous oxide, the current

carried by Vg™ is
Vyme = MymimeE = Iymi = cymimeMymimeE. (3.245)

So the electrical conductivity contribution from V{* is

O'VgL+ = MVgL+CVgL+m262. (3.246)
Similarly,
v, = —M.eE, 0. = M.c.e>. (3.247)
The transference numbers are
M. m+ C m+m2 M
byt = Yo Vo t, = eCe (3.248)

, .
MVQ+Cng+m2 + M.c, Mvg+cvg+m2 + M.c,.

Eq. 3.240 has no meaning physically far away from the surface, but we can use po, as a
fictitious tracking variable, which however must be reconciled with real p& and pI()Q atx = H

and x = L. With a varying concentration, we should have

Otyym+
Vo

Jymt = cyme Mymi (=Viyme —meVe) = W(_V“VT — meVo) (3.249)
jo = ceMc(=Vpe +eVo) = CZQ (—Vie +eVo). (3.250)
At steady state, the net electrical current should be zero,
0 = mejym+ —€je = o(=Vo) + 7ty (—V piym+) + U—tEVue, (3.251)
o me 0 e
or
meo(—V¢) = Otymt Vs — moteVpe, (3.252)

in other words, the electric-field driven electrical current should balance the chemically driven
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electrical current. Then,

tvm+
-]VghL = m;)ez (—O'Vluvg+ — m@O’V¢)
tvm+
- mggQ (—UteVquL+ — mot.Vie)
Jtetvm+
— m%g (—V,uvgw —mV ). (3.253)
We have, from Eq. 3.240,
kgT
BT log po., + frymt & Mple = const, (3.254)
SO
kBTUtetV'm+
ng+ = WVIngOQ. (3255)

Inside the scale, pp, as a variable is a patsy: it adjust itself so that jvg” is a constant. But

we can pretend to play this game by:

H . P, kgTottym+
/L Jymeda = jyn-(H—L) = /p D
/pg2 kBTUtetvg+
PS, 2m2e?

3 (3.256)

V log po,dx

L
Og

d log Po,

The nice thing is that k is apparently independent of oxide thickness.

The parabolic scale growth law [32] can then be derived straightforwardly,

(H—L)* = 2kt. (3.257)

An interesting fact [33] about V™ dominated diffusion is that k is almost independent of
p6,- This is because Cymt s Ce, 0 X pgi/ 204m) 4 Eq. (3.244). The transference numbers are
dimensionless and should only depend weakly on po,. So,

Po, _ m - . -
k o 2poi/2(1+ )po;dpog - (pI()Q) 1/2(1+ )_(pgz) 1/2(1+m) (3.258)

p02

Since the solubility of O in metal is very small, p§ , 1s millions of times smaller than ng, SO
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the first term dominates over the second term. Therefore, by doubling p&, it can only make

very small impact on k.

3.5.5 Coulomb interaction and Electrolyte theory

We have seen how elastic interactions impact point defects in metals. Their =2 stress field
governs the long-range attraction/repulsion. This begs the question of how charged defects

in ceramics interact, since we expect a long-range Coulombic interaction behavior like

Vi) = S5 —dnim (3.259)

— = Ameeg|xXn — X |

on top of the elastic interactions, where q,, ¢, are the Kroger-Vink formal charges of the
point defects, and ¢ is the zero-frequency dielectric constant of the base insulator medium
(including both electronic polarization and ionic relaxation effects, but both for completely

bound charges).

The above assumes we have negligible amount of free [e], [h] compensation. If there are, then
we need to bring pejectronic(X) = (cn(X) — ¢o(x))e into the interaction. Classical electrostatics

would do a good job.

Here it is important to distinguish between

e free charge / monopole / mobility / electrolyte / metal

e bound charge / dipole / polarizability / dielectric / dielectric breakdown

The dielectric constant characterizes the second group. The utility of this quantity can be
seen in the definition of a parallel plate capacitor:
Q eggA

c=t== (3.260)

where a dielectric medium of thickness d separates two sides with —(@) and () charges. In
such ideal capacitor, the ideal dielectric should not allow to leak current (in other words,
it can sustain a finite electric field E = —V¢ through itself without a current). Although
in real gate “dielectric” material, especially when it’s very thin, the charge leakage through

point defects could be a real problem.[34]

68



With the first group, one gets complete screening of arbitrary external charge. With the
second group, one gets only partial screening by an amount 1/e. Even though ¢ can vary
from 1.00059 for air, to 233 for SrTiO5 at RT and even up to 10* near its ferroelectric phase
transition, there is always a difference with the first group. It’s like the difference between

“free lunch” and “discounted cheaper lunch”.

When free charge / monopole has mobility and can move by an unbounded distance (sample
size), this enables modern wonders like the electric grid, where free charges circulate over
thousands of miles and energy flows. If the free charge / monopole is band electron, this is
called a metal or semiconductor. If the free charge / monopole is charged ionic defect
like charged vacancies or interstitials, this is called an ionic conductor or electrolyte. One
may also have the possibility of mixed ionic-electronic conductors (MIEC). The relative
contribution of different physical carriers of charge to the total conductivity is described by

the transference number t.

When free charges, say ionic defects, can arbitrarily redistribute, how would they respond to
an inhomogeneity like a grain boundary? It turns out there will be an entropy-energy trade-
off also, giving rise to the Poisson-Boltzmann equation (called Poisson-Fermi for electronic

carriers, since the electrons satisfy Fermi statistics instead of Boltzmann statistics).

Suppose that due to segregation (short-range coordination action), the grain boundary ac-
quires positive excess charge density pgg > 0 in NaCl. NaCl is traditionally considered an
insulator, but suppose there are enough Schottky disorder in the system, which becomes pos-
sible when the temperature rises to like 8O0K. Before the introduction of the inhomogeneity;,
there is

V&l = Vs (3.261)

But with a positively charged GB, it will repel V{; while attract Vy,, and this would build
up an excess of negative charge around the GB. (alternatively, one can think that some V{

gets attached to the GB in the first place to create the positive pgg > 0). One should have

d2 ¢ _ pexcess

—_— = 3.262
dx? €€ ( )

But
P = (B(Acvé1 — Acvg’). (3.263)
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Under external potential ¢ (reference ¢ = 0 is for x — o), we should have simple

o) €¢ O €¢
Cyg, = s XD <_kBT> ) Cyg, = Cys €XP (kBT) : (3.264)
Thus 8
@ _ eci/él(exp (_k;%> o eXp (k;T)) (3 265)
dx? £€0 ' '

The above is the nonlinear Poisson-Boltzmann equation. In regions with e¢ < kg7, we can

further linearize it

(o}
+
VCI

dz?2  eeokpT

dQ(b 2620

(3.266)

Clearly, we can define a length scale

T

Ny = | Z50kB , (3.267)
2e2cl
Cl

and get
d’¢ ¢
_— = = 3.268
dz? b ( )
and since we need to go to x — oo, the only allowed asymptote would be
3(z) = poe o (3.269)

The above linearized form can also be apply to 3D for screening a point charge itself, and

one gets
[0} = ¢ 3.270
(T) dmeeqr ( ) )

that has the same form as the Yukawa potential in particle physics.

When there are multiple species of mobile charge carriers in the system, the most general

form of the Debye length is
ceoksT
AD = (| =———— 3.271
P TV e (321
the bottom is also called the ionic strength, describing the strength of ionic screening in the
system (if free electronic carrier density is negligle). In metals, where free electronic carrier

density is dominant, A\p is called the Thomas—Fermi screening distance, usually of the order
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of Angstroms. Ap is much larger in ceramics, that can range from tens of nanometers to
infinity, since c; appear in the denominator. This is the distance the electric field line can

penetrate an ionic conductor.

(3.271) is a very fundamental relation in charged matter. It says that even though the mobile
carriers has the ability to go very far indidually, as a collective the cloud of positive
charge does not want to separate from the cloud of negative charge by more than a few
Ap. So screening is always complete in an electrolyte/metal, if we give it enough time and
space to occur. (In (3.271) there is no hard requirement on mobility, only that it can move

over the observation time).
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Chapter 4

Dislocations

4.1 Branch cut

Just like point defects can be represented by Eshelby operation of cutting a hole in continuous
medium (jellium), and sticking in an ellipsoid and sewing them back together, dislocations
(stacking faults), disclinations (grain boundaries) and cracks (surfaces) can also be repre-
sented by some operations on continuous medium called Branch cut. These operations are
extremely violent on the branch cut plane, B, like surgery knife on tissue cells that the plane
happens to pass - totally splattered - or think of a war zone. We call this set of points on the
2D plane the trauma zone. But the knife is often wielded by a plastic surgeon - so after
the cut, the surgeon may pull the tissue on both sides in a certain way (like in a facelift),
then sew the cut back. Two things will then happen: (a) the tissue right at the cut may
“heal” after sewing back, even though cells on two sides of the cut were initially “strangers”
(before the cut and shift, those cells were not the the same kind of NN). (b) Many many
other cells will also feel the long-range effect of the cut and shift (“Nip/Tuck”). After all,
this is the point of plastic surgery: not to mangle up a small number of cells and leave a
scar (although sometimes do happen), but to make a large number of cells look better. If we
speak of elasticity RVE instead of cells, then the original ERVE that B happens to passes
are destroyed (inelastic), while the rest of the ERVEs are preserved and deforming in a

diffuse way (elastic).

Mathematically, branch cut is a 2D plane B {xp} embedded in 3D space. It can be a

curved plane, and terminate at a line denoted by . [ is certainly curved in general and can
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form a loop, but it can contain piecewise straight segements. B is the trauma zone, where
inelasticity happens (so inelasticity is local) with areal energy penalty (unit J/m?).
The rest of the 3D space is called B, and are elastic. There is a normal direction n, and x;

and xp which are infinitely close to xg.

To illustrate the generality of this language, a crack is a produced by branch cut. Imagine
before the cracking, the material is whole, and suppose there is far-field stress o> pulling on
the jellium. One can consider a ERVE straddling xp, and this ERVE would be transmitting
stress:

n-o =T, #0 (4.1)

we use capital T, to denote traction that’s transmitted inside the jellium (and t,, to denote
traction that’s transmitted across surface or interface). Since o x Vu in ERVE;, a finite T,
would mean finite Vu, or

u(xg) = u(xg). (4.2)

du

51 = - Vuis finite, with infinitesimal dl.

since u(xg) — u(xg) = 2%dl, where

But once a crack has occured, the ERVE straddling xp are destroyed and lose their load-
carrying ability completely (100% — 0%). We open up two new boundaries, the free

surfaces on x;; and x5, and the new boundary conditions are
n-o(xt) =0, n-okxg) =0 (4.3)

since free surfaces can not take load (0%) and are traction free. Since o x Vu, these
new BCs are like the Neumann boundary condition in PDEs. If the crack front § moves
and B expands, one has to solve a Stefan problem which moving boundaries. In a finite
element calculation, what one usually has to do is to delete the elastic elements straddling

an expanding B.

It turns out, from fracture mechanics, one can derive that
1
u(xg) —u(xg) = v(xp) o |xp —xp2 (4.4)

where x5 is the closest point on 5 to xg. The above says there will be a singular jump in
u across the branch-cut plane, with an amount that is square root of the distance to the

crack tip. v(xp) can be called branch-cut displacement, or “v for Violence”. From fracture
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mechanics, one can also derive that
o x f(O)x —xa| (4.5)

where the angle 6 is defined with respect to the branch cut. In cracks, the branch cut plane
B obviously matters. So f(#) for crack goes like cos(6/2), when 6 for x5 goes from -180° to
180° (0° belong to x5, the good material, whereas £180° belongs to xp, the bad material).
Consider (o*°),,, > 0, whether B is aligned with x or y matter, not only with regard to where

the “trauma zone” is, but also with regard to stress distribution in the rest of the material.

The crack plane and crack-front singularity is easy to understand. But there are other
branch-cut inelastic operations on elastic jellium that is slightly more difficult to explain. In
1907, Volterra envisioned 6 new classes of operations on aether he called distorsioni, three of
which are dislocations, and the other three are disclinations. They are defined by Dirichlet
type boundary condition of the discontinuous u on B. Dislocations are 1D bounding rim
B of v(xg) = b type displacement discontinuity on B: on B there is a translational fault
of magnitude b. Disclinations are 1D bounding rim 3 of v(xg) = (RT — R7)xp type
displacement discontinuity on B: where Rt and R~ are rotational matrices. So on B there
is a rotational fault, a grain boundary. In the Volterra sense, the cut B matters locally,
since both translational fault (aka stacking fault) and rotational fault (aka grain boundary)
- the trauma zone - costs areal energy. But Volterra showed that the rest of the ERVEs
actually does not care how the branch cut was made (aligned with x or y, or even curved).
The elastic strain and stress in the remaining ERVEs just care about 8, b or Rt,R™, and

not about details of B, which is a great simplification. Later, we will demonstrate this by a

ou
?{Cdl (al>elastic a b (46)

where the branch cut has been removed from the specification.

loop intergral form of the strain:

Finally, it turns out that for the dislocations, if b = a, where a is any of the Bravais lattice
vectors, then the local trauma disappears once sewed back, so even the local trauma does

not care about B any more. (The global strain still cares about details of B, though).

Dislocation is a finely crafted machine to achieve inelastic deformation of crystals. In above
we pretend the medium is continuum jellium, and ignored the discrete-atom character of

the medium. In reality xg;, x5 cannot be infinitely close to each other, but separated by a
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single atomic plane distance dy, usually. This indicates it is probably meaningless to talk
about a core that is infinitely narrow. So unlike a Volterra dislocation where the core is
infinitely narrow, in reality the core of 3 is probably spread over a few atomic distances in
B and over 1 atomic distance exactly perpendicular to B. This means the singularity (in
the continuum sense) is not really singular at the atomic scale. Section 4.6 discusses about
a semi-continuum version of the dislocation core, mixing inelastic interactions on B with

elastic interactions in B.

Suppose B lies on a crystallographic flat plane for a moment. We can have a “phase field”

description of the branch cut, by defining an order parameter for each xg:
v(xg) = n(xp)a (4.7)

where 7 is a continuous variable. This may not seem to be doing much, except the following.
Previously B is a half-plane that terminates at 5. Now n(z,y) is defined on the full-plane,
and we use (92 +02)n to track where 8 is. The width of the core can be introduced in phase
field model, by adding local gradient terms like [ dAx((9.n)* + (9,n)?)/2, or more realistic

nonlocal gradient terms like in the Peierls model.

Since Volterra inelastic operation for disclination/grain boundary is defined by a linearly

growing cut displacement:
v(xg) = Axp (4.8)

we see that it can be understood, at the continuum mechanics level, by a regularly space
array of dislocations, with gradually increasing (step wise) order parameter. In other words,
a roational fault (a grain boundary) can be understood as a combination of dislocations.
So, a grain boundary contains so-called Frank-Bilby dislocation content, and this is the
basis for the Read-Shockley model of GB energy. For low-angle grain boundaries, the
atomistic versions of the dislocation cores can be visualized directly. Even for high-angle
grain boundaries, even though the atomistic versions of the dislocation cores cannot be
made out, they are still there. For example, if a GB absorbs a lattice dislocation, the local
lattice misorientation angle would change a bit, according to the Frank-Bilby equation. This
Frank-Bilby dislocation content is similar to the concept of “money”. Money is not real
(it’s just a piece of paper), except it is used to track the exchange of real products and

services.

For both dislocation and disclination, B still carries load, so f(¢) for both dislocation and

disclination goes like cos(f), when 6 for xg goes from -180° to 180° (0° belong to xg, the
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good material, whereas +180° belongs to xg, the bad material).

4.2 Dislocation Geometry and Process of Creation

Consider 3D space x and a closed loop C in the jellium. Now imagine a branch cut plane B
that penetrates C but terminates inside. Let us denote points on branch cut plane B by xg,
and those slightly above B as xf; and slightly below B as x5. Then consider achieving the
following displacement:

u(x) = uf(x) +u(x) (4.9)

where ul(x) is relaxational displacement, but one enforces

uP(x}) —uP(xg) = v(xp) (4.10)

Note that x; and xg are limiting to the same point xg, so (4.10) enforces a sharp discon-
tinuity in uB(x) on the branch-cut plane, with branch-cut amount v(xg), guaranteed by
the “hands of God”. In all the other point besides xg, u®(x) is set to be continuous and
differentiable. So VuP® is finite everywhere else, except a delta function like feature at xp.
Note that while u®(x) can be finite everywhere else (and they depend on how uP(x) is set

outside of the branch-cut plane), by definition
u(xf) = uf(xg) = 0 (4.11)
because that is where the “hands of God” enforces. And so

u(xg) —u(xg) = v(xp) (4.12)

By imposing different v(xp) functions and letting u®(x) run its course, we can get the
dislocations (if v(xg) = b), the disclinations (if v(xg) = Axg), and other kinds of defects.
uB(x) is like the guess solution, and u®(x) is like the correction, in an iterative numerical
solver. Despite the slight arbitrariness of the guess solution, the final solution u®(x) +u®(x)

removes this arbitrariness by adjusting u®*(x) correspondingly.

Now further consider the scenario where

v(xg) = b = Ja (4.13)
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where a is a Bravais lattice vector, and A continuously changes from 0 to 1. In other words,
we imposes a translational fault pattern on the branch cut plane B. One can come up
with some reasonable u®(x) initialization like that rendered in Fig. 4 or Fig. 5 of Balluffi
(3D version), and then let the material respond to that imposed u®(x) displacement by a
corrective u®(x). All this will have to be supported by finite forces on xj and xg from
the “hands of God” (in atomistic simulation, one can just compute these forces), except at
A =0, and at A = 1,2,3,.... The reason that for integer values of A = n, the enforcing
hands on x§ can let go, is because the “trauma” across the branch cut periodically
heals. The material that we obtain across the branch cut, as long as it stays a short
distance away from the edge of B (i.e. 3), is a perfect crystal again based on any kind
of NN bond topology characterization with the newly shifted-in neighbors, despite the sharp
discontinuity in u®(x) and u(x). In fact, stress o can transmit perfectly (100%) across this
reformed perfect crystal, and while the branch cut imposes some kind of global boundary
condition (the dislocation), locally the crystal would be completely unaware of the particular
details of the branch cut. Note that b does not have to be parallel to the branch-cut plane.
If b has some perpendicular component to the branch-cut plane, one just needs to add or

remove atoms as needed, and still obtains a seamless perfect crystal.
If we ponder on the nature of u(x) and Vu(x) away from the dislocation, we can decompose
it into

VU(X> = vuelaustic(x) + vuinelastic(x) (414)

where VUiyenastic(X) is a delta funciton like quantity that is localized on xp, and Vuepastic(X)
is diffuse but long-ranged. Note that it is initially quite challenging to write the above as
U(X) = Uelastic(X) 4 Winelastic(X) and then differentiate. It is only possible to first differentiate

and then decompose into elastic and inelastic strains. Mathematically, let us define
Viinelastic(X) = / dAs(x — xg)n’b (4.15)
B

SO

/ dl - Vitjnerastic (X) = / /B dAS(x — xg)(dl-nT)b = b. (4.16)

This fully account for the branch cut discontinuity. Therefore
/ dl - Vitgaetie(x) = 0 (4.17)

and the value of Vugpstic(x) is therefore finite across the branch cut. Furthermore, when
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A = n, the perfect crystal which has 100% load-bearing ability (no damage) sustains
o(xt) = ol(x) (4.18)

SO
vuelastic (Xg) = vuelastic (Xﬁ) (419)

Thus, despite the branch cut, Vugasic(xp) itself is analytical function in all space away from
the dislocation, even though integration of it would give a discontinuity across B. An analogy
would be that a constant 1 is clearly an analytical function in all space. But if 0f/00 = 1,
f(0) = 0 would be a multiple-valued function. The key point is that we are not interested in
1 (0o Uglastic (X)), but only Vuepstic(x) because it has to do with stress, and u(x) occasionally

if we are interested in the process.
q . .
CIZ; b 5 n Sign convention:
2 inelastic strain n'b
B right-handed
¢ helical to n

E=-p

C dx’ ( Cu j =b
¢ aX' elastic

Figure 4.1: It is necessary to have B running opposite to & to respect all the right-handed
sign conventions for defining the normal n of B, the inelastic strain of B as n”b, the loop
integral form b = ¢ %—‘;dl , and that C is a right-handed loop around &.

4y
B )
~b 2

A dislocation is characterized by its line direction &, |&| = 1, and the Burgers vector b, with

Ju ou
b= aadl a }2<E>elastic « (420)

where the line integral is taken in a right-handed sense relative to &. C is a closed loop in an
original perfect crystal far from the dislocation core (the Lagrangian frame of reference), and
u is the total displacement after the dislocation has sheared into inside the loop, creating a

branch cut. C is the same loop as C, except it is open and avoiding the branch cut. %—‘l‘ is a
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strain-like quantity, so we have

ou ou ou
du  (0Ou Ju 4.21
al < al )elastic " ( al >inelastic ( )

du du :
where (—) —) is a
Ol J elastic Ol /) inelastic

delta-function like quantity in space, tracking the 2D branch cut. (The 2D branch cut ends
ou

ol ) elastic
cut is perfectly repaired and has the same load-bearing ability as the uncut material, o is

is small-amplitude but diffuse (away from the core), and (
, and the material at the branch

at the 1D dislocation core.) Since stress o o (

continuous across the branch cut and in fact is not even aware of its existence. (We will

later see this from the stress solution of screw and edge dislocations). Because (%‘l‘). i is
a delta-function like quantity, it is zero away from the branch cut, so %—‘l‘ = (%)elastic away
from the branch cut, and
Ju ou
M = f My 4.22
c al c ( al )elastic ( )

The second equality in (4.20) holds because in the continuum representation of u(x), the 2D

branch cut is infinitely thin, and since (%—‘l‘) st is finite, integrating (%‘l‘) gy ACTOSS the
elastic elastic
zero-thickness branch cut gives zero anyway. In the literature, one often sees
ou
b = —dl 4.23
c ol ( )

But one must understand this is an abbreviated notation due to “notational laziness”. The
branch cut unaware second equality in (4.20) is my favorite version because of its subtlety,
and to make it even more subtle we can even use the (4.23) form, but keeping in mind that
u there is the elastic component, i.e. modulo b at the branch cut plane (wherever it is) to

make %—‘l‘ not divergent.

From (4.20) we see that £ definition and b definition is related. (—&, —b) actually describes
the same dislocation as (£, b). To make the whole thing work in a right-handed manner, we
need to have & = —(3, though. So once we have chosen the direction of n (“up”), we have
chosen B and therefore &. (For a physical slip operation, we can either say (n,b), or call
it (—n, —b), so this binary-choice gauge freedom is not removed, but to make everything
consistent we need to always have & = —3). We need to maintain right-handed loop between

n and 3 because we will use the Stokes theorem later.

If b | &, it is called screw dislocation. If b L &, it is called edge dislocation. Otherwise it is

called mixed dislocation.
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Because a loop integral of purely elastic displacements §. (a—';) st

(imagine we apply a diffuse but single-valued elastic distortion field in which C is embedded),

dl should always give 0

(4.20) gives the purely inelastic excess displacement, which is the slip displacement b between
two adjacent atomic planes (in continuum mechanics, this is idealized as infinitely sharp slip

fault). Because of this, there should be Burgers vector conservation law:
by = by + bs. (4.24)

as one could distort C purely elastically from one location to another in Fig. 1-24 of [35].

ou
b — ]{ gu dl 1425
C ( al >elastic ( )

enables one to completely determine the stress-elastic strain field around /3 regardless of B,

To prove that

let us consider a screw dislocation
b = be,, £ = e.. (4.26)
In isotropic medium we have
A+ u)V(V-u) +puViu = 0 (4.27)
Note that above applies only to the elastic region. We seek solution of the type
u = e,h(z,y) (4.28)
so the first term drops out, and we end up with
(024 0)h = 0 (4.29)
a Poisson equation. In the rest of the branch cut, let us use radial coordinate:
r10.(ro.h) +r20;h = 0. (4.30)
Suppose the branch cut is flat, and we call that § = 0, then we need to satisfy

h(r,2mw) — h(r,0) = b (4.31)
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so our guess would be

0
o

which satisfy stress-equilibrium. There is a jump in displacement at the branch cut, but the

h(r,0) = h(0) (4.32)

stress above the cut and below the cut depends only on Vu, not u. Vu is continuous in

the solution above:

0 0 O0,h b 0 0 0,0 0 0 —sinf
_ - = 4.
Vu 0 0 0,h o 0 0 0,0 - 0 0 cosf (4.33)
00 O 00 O 0 0 0
So b ;
M Y M x
Ogz = —ﬂm, Oyz = %m, Opy = Ogz = Oyy = 0, =0 (4-34)
and since ny = — sinfe, + cos fle,, n, = cosfe, + sin fe,, we have
0p, = —sinbo,, +cosbo,, = —, 0y, =0, =0y =0p9p =0 (4.35)

2rr

We then noticed the above solution is “seamless”, that is the stress and the elastic strain
field has excellent analytical properties away from [, regardless of B. We can cut a curvy
B, and still the same solution would apply. This is because Vu, or actually (Vu)epastic, by
setup has such analytical seamless property. We can convert a u(x) solution from a simple

branch cut B to u(x) of a more complex branch cut B by simply adding

—b, x € wedge
u(x) = u(x)+ (4.36)

0, otherwise

where the wedge is the sliver of material between B and B. The above operation would not
cause any change to the self-equilibrating stress field, and therefore is a valid solution for

the new branch cut condition.

The stress solution of edge dislocation is a bit more challenging. So we proceed to derive the
general expression for a curved dislocation loop! Recall that the interaction energy between
two point defects are independent of the order of which they are created. Imagine
the following two process, which should give the same interaction energy (reciprocity)

regardless of the order of two operations. In process I, one first imposes a point force F on
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X in a perfect jellium, which creates
ﬂi(x') = Kij (X, — X)Fj lNLZ"k(X/) = Z‘ij(X, - X)Fj, (437)

and stress
Uml(X/) = mlz’kKij7k(X/ - X)Fj (4.38)

at x’. We then induce the branch-cut strain
Vityaaic(x) = [ dAS(X' ~ x3)n"b (4.39)
B
so the interaction (additional work of creation) energy would be

W= / AA by Cotin K i0(x — %), (4.40)
B

On the other hand, in process II, one first creates the dislocation loop with self-equilibriating
displacement field u;(x) (what we want to solve), and then, if one adds the force, this would
cause additional work

W = Fju;(x) (4.41)

Equating the W in process I and 11, we would get
u;j(x) = AdA’nmblleikKij,k(x’ —X) = — /B dA M0 Crnpie K 1o (x — X) (4.42)
This is reconnaissance by fire using a small point force! So the strain field is:
ujs(x) = — /B dA;, biCrii K s (x — X') (4.43)

where we removed the Branch cut label B and define dA], = dA'n,,. The above trick is

actually very general, and can apply to all different kinds of transformations. We will define
R =x-%x', R =|R| (4.44)
From now on, by default f = f(R). We define

of  of m _ Of
Ry, omy = aw

fm = = —fm (4.45)
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Later, we will use the following variant of Stokes” theorem:

[ A = dA, S = [ dA 0sfn = L) = ey §, S, (4:46)
B B B
This is because §3g - dx' = [pdA’"- (V' x g) and
ﬁ fda!, = ]é Fopgda!, = /B dA Mg f Opg = /B dA Mo (4.47)
EmspCowp — 5sw5mv - §sv5mw (448>
So
men §, Fda, = [ A Goulis = Sttt = [ A (fon = mf)  (449)
B
QED.
For isotropic medium, we have
0; i L 1 83|X|
Cma - >\5m 5L 6m15 : 6m“5i7 _KL : - G
i 10 F HOmiOt + HOmk Oy sk (X) 4| x|3 N 16mp(1 — v) 0z,0z 0z,
(4.50)
So the contraction over i, k gives
O K — Ny + p0 T + 01T, pY oV?|x| 1 03 |x|
iR 4 pu|x|3 167u(l —v) Oz 87(1 — v) Oz, ;0
(4.51)
Since V2|x| = 2/|x|, and
A 2
AR (4.52)
7 1—-2v
the first two big terms are grouped as
Ny + [0y + 1101 T, B VOmi
A7 plx|? 4r(1 —2v)(1 —v)|x|?
B OmjT1 + 01T, 200,12 V0T
B 4r|x |3 dr(1 =2v)|x]3  4Ar(1—2v)(1 —v)|x]3
OmjTi + 0T, VOmi%
_ 4.53
4|x|3 dr(1 —v)|x[|3 (4:53)
So finally we get
OmiZi + 01 Tm, VO, 1 x|
—CouinKiin = J J 4.54
it K (%) 47r|x|3 Ar(1 —v)|x|? * 8n(1 — v) Ox,,0x ;0 (4:54)
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The beautiful contraction (4.54) can also be used in (4.42)

wx) = = [ dAn b (R)
, 5ijl + 5[]'Rm Vamle 1 83’]‘:{"
= / dA by
I RP 4r(1— )R]  8a(l— 1) OROR,0R,
_ / dA’ njblRl —+ bjIl ‘R I/nlble nmbl 83‘R’ (455)
irRP? 41— )R 8a(l — 1) ORMOR,0R,

We are going to take out the 2nd term separately, which is

b
dA / = —0 4.56
47/ |R|3 Am (4.56)
where R
n.
Q= / dA’ 457
B |R|3 ( )

is the solid angle extended by the branch cut: 27 when x is a little bit above B, and —27
when x is a little bit below B, thus giving the sharp discontinuity in displacement. The rest

of the terms should be continuous and branch cut independent:

n blRl z/nlblR- nmbl 83|R|
4 _ dA | =2 J 4.58
4 (x) +/ [47T|R|3 ix(1— )R " 8x(1 — v) OROR,0R, (4.58)
We note that
l/nlble _ nlble 4 nlble _ nlble . nlb18j8m8m|R] (4 59>
4r(1 —v)|RJ? A|RPP - 4n(1 —v)|RJ? 47|RJ3 8r(1 —v) .
So we can group above as
b]’ n‘blRl — nleR‘ nmbl]R| mil — nlbl\R| mim
' _ Yg / A | j M mg
4 (x) 4 * B d [ 47|R|? 8n(1 —v)
_ big +/ g | ORI 5 = b (BRI i Rt = 1ubolR] g
B A 8r(1—v)
b b1 (IRI™Y)  €tmpbi|R | m;
= O+ S d I da! 4.60
47 3 [ 47 8n(1 —v) xp (4.60)
The above can be written in vector format as
b b x dx’ R x dx’
_ 2 el 4.61
u(x) 4w * 3 4m|R| N fﬁ 8n(1 —v)R| (461)
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This agrees with Equation (4-20) of [35] but with the following translations: in [35] R is
defined as x' — x (Equation (4-16)) which I think is awkward. In Figure 4-4 of [35], n is
defined to form right-handed loop to &, so it is opposite to our n. Their & and b are the

same as our £ and b.

(4.61) was first worked out by Johannes Martinus Burgers in 1939. It is clear that u(x) has
a B dependent part, and a [-dependent but B-independent part. Later, we will show that
Vu(x) consists of the [ dAd(x —xp)n’b singular piece that is B dependent, but the rest is
[B-dependent but B-independent.

Let us consider a screw dislocation loop with ¢ running from (0,0, —oc0) — (0,0,00) —
(—00,0,00) = (—00,0,—00) — (0,0, —00), and b = be,. Note that the branch cut B has
n = e,. In the loop integral, only the (0,0, —c0) — (0,0, 00) segment matters because of
closer distance. But the second and third terms are zero, because b// dx’. It’s easy to see

that the first term gives what we want, with u(xf;) = b2* and u(xz) = b=2".

Now consider the edge dislocation loop with ¢ running from (0,0, —oc0) — (0,0,00) —
(—00,0,00) = (—00,0,—00) — (0,0, —00), and b = be,. In our notation system this has [

running backwards and n = e,. Then for the 2nd term:

s drR| V)R]

b x dx’' o I b
Y 27

1
=T const> (4.62)

where dI’ > 0 always. Some explanation is needed for the 2nd equality, where the minus sign

can be really surprising since we are integrating a positive integrand.

al’ 00 dz
Ar|R| /—00 47r\/(x — 02+ (y—0)2+ (2 — 2')? (463)

is the same form as the repulsive electrostatic potential between a point charge and a line of

charges (if ey = 1). In electrostatics, one applies Gauss theorem to V- E = p (E = -V ¢,

er
2mr

V2¢ = —p), so for a wire with uniform charge density of 1, E = (which is one order

longer-ranged than point-charge), and

o) —dlro) = — [ A (4.64)

ro 277" 2 1o
There is clearly a divergence problem, however. Indeed, it is clear that when I’ — +oo,

the vector integral [ 4;[‘[;{'

won’t converge unconditionally. Nontheless, careful analysis
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shows that this conditional convergence just results in a different const, which is rigid-body

translation and immaterial to the solution, and won’t really affect the active term, which is

_Inr
2 "

The 3rd term is easy too, we have

R x dx’ rdl’

= e (4.65)
IR| IR
so the integral gives
R x dx’ rb - ey Inr ) Inr bylnr
b-———m—— == —[——]| =0 0 = 4.66
ﬁ s$r(1— )[R x1—m( 2ﬂ> rinb T T =y (466)
w0 byl be, 1 b
ylnr e, Inr ye,
= 4.
v47T(1 —v) 4r(1 —v) * A (1 —v)r (467)
Thus the total displacement is
be,, be, 2v—1 bye,
— By P 4.
ul) = S S o Ty Y i — o (4.68)
%0 b b b bsin(20)
Ty sin(2
e = —F+—— = — |0+ —-= 4.
“ 27 * A (1 —v)r? 27 [ * 4(1 — 1/)] (4.69)
2v —1)bl by?
Uy = (2v— )by Y (4.70)

m1—v)  dm(l—o)?
To make the symmetry more apparent, we can subtract 7?/2 from the numerator of the

second term (a constant), and get

(4.71)

u (2v—1blnr  b(y* —a®) b cos(20)
, = _
2

Am(1 —v) 8r(l —v)r2  4n(l —v) (2v —1)Inr

4.3 Stress and Strain of Arbitrary Loop

For dislocation loop, we would like to transform (4.43) to a 1D loop integral () instead of

2D area integral (B). Mura came up with the following transformation. He noticed that as
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along as x is not on B, we have
CouinKijrm(x —x') = 0 (4.72)

for all [, 7 due to self-balancing nature of the Green’s function displacement. So there is

[ AABCta Ko (x = X)) = 0 (4.73)
and we get
Us(%) = bCluih ( /B dA' K om(R) — /B dA;nKij,ks(R)) (4.74)
But then applying (4.49),
Ws(X) = BCominEmsp 72 Kyr(R)dz, ¥x¢B (4.75)

The above is called Mura’s formula, which works in anisotropic medium. There is a delta-
function singularity in u;,(x) at x = xp as we have discussed before (see Branch cut setup

(4.14)). But after getting rid of that singularity, we get the elastic part:
(uj,s)elastic(x) = blleikEmspjiKij,k(R)dm;w VX (476>

It is clear that (u;s)elastic(x) is B independent, which is the main result of the previous

section.

Plugging in the beautiful contraction (4.54) for isitropic medium,

5m 'Rl —+ (Sl Rm V(SmlR‘ 1 83|R‘
j,8 =D ms % ’ ! r d ,'
UisX) = biemsp ) [ i |RJ? (= )RP " 87(1 =) ORmOR0R | 7
(4.77)
For stress field,
Owv (X) = wujsUjs = ()\511)1)5]'5 + ,u(swj(svs + [L(Sws(svj)uj,s (478)
and
vajsemspgmj = wvjs€sjp — 0 (479)

vajsblemsp(slj = bj(/\5wv6js_’_Ndwj(;vs'}_,u&wsévj)emsp = bj)\éwvejmp—l—bj,uéwjevmp+bjM5Uj€wmp
(4.80)
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vajsblemspéml - vajsbleslp - ()\51111)6]'5 + ,uawjévs + ,U(Swsévj>bl€slp

= )\(SwvblEjlp + ,u5wjblevlp + ,U(Svjblelp (481)
vajsblemspR,mjl = (Adwv(Sjs + /Léwjdus + ﬂéwsdvj)blﬁmspR,mjl
= AdwvéjsemspR,mjlbl + M(SwjdvsblemspR,mjl + M(Sws(svjblemspR,mjl
= Mbl€vmpR,mwl + MblewmpR,mvl (482)
So the first two terms give
47TR3 b 1 0wv€jmpLm + 050w €vmp R + 004 €mpRm +

1 _ 2V)(1 — )5wvbl€jlpRj + 1 — 5w]bl€fulpR —+ 11— 5v]bl€wlpR ]dl‘;

- 47T33 b 0w €impLem + D €ompPm + by€wmpim +
(1— QV)(l _ )5wvbl€jlpRj + 11— bleulpR + - blewlpR Jdz;,
— 47TR3 b 5wvejmpRm + b evmpRm + b Ew’mpRm +
1 blEUlpR + 1 blewlpR ]d,l?;) (483)

So the total stress is

2v
B m[mb](swve]mp}%m + b’wevmpRm + bvewmpRm +

Owp(X) =

14 b vm me b wm, Rmv
7bl€’vlpr+17bl€wlpR’U+ (Comp L, L Oe P mul

. — 20— 1) Jdx;, (4.84)

4.4 Peach-Koehler force, Glide vs Climb

The so-called Peach-Koehler force on a dislocation can be derived by virtual work:

SW = VTr(o6€nasic) = b' o(€dlx0x) = di(b-0)-(€x6x) = diox-((b-a)x &) (4.85)
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since a- (b x ¢) = c- (a x b). So the force per unit length of dislocation is

dF
¥ = (b-o)xE&. (4.86)

In index form this would be F
dll = Gijkblo-ljék' (487)

where repeated indices are summed over, and ¢;;; is the Levi-Civita permutation symbol:
€123 — €931 — €312 — 1, €913 — €132 — €321 — —1, all others = 0. (488)

This force is always perpendicular to §&. For a non-screw dislocation, the slip plane would

have normal

Exb
m — 4.89
€ bl 59
with m 1 &, and gliding direction
g = mxE¢. (4.90)

So the total force can be written as

dj o nglide + chlimb
i dl dl

(4.91)

with
dFjlhde _ g(g . ((b . 0') > 5))7 dFC(;limb _ m(m . ((b . 0-) X 5)) (4'92)

Generally speaking, dislocation climb is called “non-conservative” process, because a net
flux of atoms toward the core by diffusion is needed in order to drive climb. Thus at lower
temperatures when long-range diffusion is impossible, even with finite driving force dF;%,

dislocation won’t climb.

Dislocation glide, however, is called “conservative” or displacive process, where all that is

needed is for the atoms that are already there to shift their positions by a small and semi-

dFg1ide

deterministic amount. Dislocation glide is much more ready process when —5¢ exceeds

some threshold.
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4.5 Ideal Strength vs Actual Strength

The ideal strength ogea is defined by the following thought experiment (Gedankenexper-
iment). Imagine a perfect crystal without any defects and at 7" = 0. Now we gradually
elastically strain up the lattice, according to a path €(\), which could be a simple straight
line in the 6D strain space

e(\) = Xey, A=10,Ac), (4.93)

at what point would a critical A\¢ be reached, that the homogeneity of the lattice can no

longer be maintained, and the deformation loses reversibility?

We could imagine that along the €gear axis, we can shear the bonds more and more, until at
some point, the original set of nearest-neighbor bonds snap, or break spontaneously. Then we
reach the ideal shear strength o£f°¥ and ideal shear strain €. We could also imagine that
along the epyar, axis, we stretch the bonds more and more, until the nearest-neighbor bonds

snap; then we reach the ideal hydrostatic tensile strength Uﬁiyeiﬁo and ideal hydrostatic tensile

strain ei*gyeiﬁ(’. Generally speaking, €;4.a1 is a 5-dimensional surface in the 6-dimensional strain
space. Moving the strain path €(\) anyway inside the €qea surface is completely reversible
- one can fully recover the perfect crystal upon unloading (all at 0K). But if the path ever

touches the surface, BOOM!

Ab initio calculations can be used to calculate €jgea; and oigear. The results tend to be huge
values [36]. For instance, BCC Fe has €i°¥ = (0.178 and ot = 8 GPa. (Have you ever seen
a piece of bulk Fe that can elastically shear 17% and sustain critical resolved shear stress
(CRSS) of 8 GPa reversibly? The key, however, is the qualifier bulk Fe and what defects may
be contained in your typical polycrystalline bulk Fe: dislocations, GBs, inclusions, surface

damages, voids, microcracks, outright macrocracks...)

If you don’t believe the numerical ab initio calculations, the large ideal strength can be still
be justified on theoretical grounds. The renowned physicist Yakov Frenkel proposed the
famous “Frenkel sinusoid”[37] in 1926. Imagine a material whose electron glue is local, i.e.,
its energy response only cares about the atomic plane immediately above, and the atomic
plane immediately below. We can then perform the so-called generalized stacking fault
(GSF) energy calculation, which characterize a sharp slip between two rigidly upright blocks
of crystals. Let us define the slip displacement as x (note x does not mean position here!),
and we can calculate the energy increase as the top plane rides above the bottom plane,
AFE;(x), the subscript 1 denotes there is just one glue layer that is being sheared (between
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just two planes). Clearly, AF;(x) is extensive quantity and needs to be normalized by the
slip plane area Ay, and we can define an intensive quantity called one-layer GSF:
AEl (X)

N(x) = " (4.94)

We note that v, (x) resembles the most localized deformation possible in the vertical direction,
very distinct from the elastic deformation before. We will address this difference later.
Right now, however, focus on v;(x), which has the unit of energy per area, same as the
surface or interfacial energies (it is a kind of stacking fault). We note that ~;(x) must be a

periodic function:

nx+b) = n(x) (4.95)

where b is a Bravais translational vector. And
7(0) = 1(nb) = 0 (4.96)

where for a simple cubic solid, one likely have a very high energy for x ~ b/2, since we will
have an energy saddle point. Thus, a most crude fitting form for the slip-shear response

would be

n(zr) = ?[1 — o8 (2721-)] (4.97)

where 77 is the unstable stacking energy. We can also define

b

= Sin

dvy () ™ . (27r.7c>
dx b ’

(4.98)

which can be regarded as the traction-displacement response of the local electron glue.

(The “metallic bonding” really comes from the electron glue, as we have seen before). dwéifc)
has the unit of stress.
Now consider a series of constrained deformation, Fs(x), E5(x), F4y(X), ..., E£,(x), where the

deformation is more and more delocalized (diffuse) in the z-direction. But we can normalize

the energy by n, the number of glue layers being sheared:

AE,(x)
" = ) 4.99
) = S (499
There is clearly also:
x+b) = 7,(x) (4.100)
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and we can now directly compare intensive quantity -, (x) with intensive quantity v;(x). As
it turns out, in FCC Cu,

Yo(X) = 71(x) (4.101)

indicating the electron glue in Cu is indeed quite local [13]. In FCC Al, v,(x) and v;(x)
differ somewhat - the difference thus indicates the glue is not entirely local, there is some
bond angle dependence in the energy which generate triple-layer interactions. Nontheless,
Yn(X) (uUp to Yoo (X), which characterizes elastic deformation) are of similar magnitude with

7 (x). For pedagogical simplicity, let us pretend

Yoo (X) = M (%) (4.102)
and the electron glue is very local in this course.

From (2.8), we see that

.1 0F, 1 OnAyya(x) dyoo ()
shear — 1 - = 4.103
Fsh nglgo Vn 865hear TLAon a(ﬂf/do) dx ( )

From (4.102) and (4.98), we then get

dy(x) 7wy . (27x
shear — = — - 4.104
Osh. T ) sm( 2 ) ( )
From the very simple physical reasoning above, two conclusions can be drawn:
1. For small deformation, = < b,
WVT 2mx 7T’}/T 27r€SheardO
shear ~ = 4.105
7sh bbb b (4.105)
so we get
2’/T2")/*d0
G = b; (4.106)
or o
= —. 4.107

as an estimate of the energy barrier (actually energy/area) for localized shear, or slip.
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2. The peak shear stress is obtained at:

ideal 7T’7T Gb

Toher = 5 = rdc (4.108)
when z = b/4 and
eifeal - — 420. (4.109)
At this point, ,
igfar _ 0, (4.110)

and one enters into the non-convex region of the PEL. The local elastic stability is lost,

and homogeneity of the lattice can no longer be maintained.

(4.108) is called the Frenkel ideal shear strength estimate. Generally speaking, in a simple
metal, b = |b| is the nearest-neighbor distance. With respect to the reference atom on
one plane, the adjacent plane below should also have one of its nearest neighbors, but the

separation is not perfectly parallel to the plane normal n, so there tends to be
b > dy (4.111)

Thus, a reasonable estimate for the ideal shear strength is

ideal G

Oshear "~ g (4112)

from the Frenkel sinusoid model. However, as we have mentioned before, metals are “shear-
soft”, and the sinusiod is actually tilted [38] and peaks earlier than b/4, so a better

approximation for metals might be

ideal
N o—. 4.113
Oghear 10 ( )

Thus, if we take the {0001}(1120) shear system of HCP Mg, G = 19.2 GPa, the ideal shear
strength should be around 2 GPa, which is close to the density functional theory (DFT)
calculated value of 1.84 GPa[39).

In an actual experiment on a bulk metal, say HCP Mg, what one gets is a plastically flowing
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metal at much lower stresses than the ideal strength:
o = o(e), e=¢ét (4.114)

where a typical applied strain rate is ¢ = 107*/s. A notable bend occurs in the curve at
o = oy. People usually define oy, by the “0.2% offset strain” rule. The rationale for this is
that the unloading modulus is often a good (sometimes even better) estimate of the elastic
modulus as the loading modulus, so if one imagines unloading, the amount of residual plastic
strain at zero load would be 0.2%, which is small but measurable amount of sample-scale
plasticity. Thus, the point of oy can be considered to have initiated measurable sample-scale

plasticity, on top of whatever elasticity that have occurred. Hollomon’s equation is
o = Kep, (4.115)

where n is the (plastic) strain hardening exponent (between 0.1 and 0.5 for most metals),

and ¢, is the plastic strain component of the total applied strain
€ = €+6 (4.116)

and €, is the elastic component of the total applied strain. Also, for traditional macroscopic

experiments, it is a very good approximation to have
o = Fe, (4.117)
where F is the Young’s modulus. Thus, combining the equations, we have

g = K(e—2>n, (4.118)

which gives the total stress-strain curve.

oy is very small for pure bulk Mg, if we align (0001)y 45° to the uniaxial pulling direction.
The contrast between oy ~ 0.7 MPa and o3i¢% = 1.8 GPa is really stark, off by a factor of
more than 2000! Has Frenkel gone mad?
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4.6 Peierls-Nabarro Model of Dislocation Core and Lat-

tice Friction

In 1934, G. 1. Taylor [40], Egon Orowan [41] ! and Michael Polanyi [42] simultaneously
introduced the concept of dislocations, which resolve the paradox or discord between ideal
strength and practically observed strength of bulk metals. If we regard Frenkel’s estimate as
pure physicists’ answer to strength of crystals, the answer by Taylor, Orowan and Polanyi
has more pessimistic realism in it, which is the typical view of material scientists. The
2000-fold difference is attributed to initial condition in the material, ie. microstructures or
defects, namely dislocations. These dislocations are line defects that move inside the crystal,
like crawling caterpillars or rolling carpet creases [43]. Dislocations are giant atomic-bond
harvesting machines: as a dislocation core move in the crystal, it cuts some old bonds but
also simultaneously stitches some new bonds together, promoting so-called bond-switching
(not permanent bond-loss as in crack propagation), which is the essence of inelastic or
plastic shear. Dislocations are not thermal-equilibrium defects: they must be generated by

“beating”.

Let us back up a little. Scientists in the 1800s have envisioned elastic distortions on aether
[43] that contain localized defects. Anton Timpe [44] and Vito Volterra [45] indeed solved the
elastic stress fields of these defects. Volterra further classified these line defects into six types
of distorsioni, three turns out to be dislocations, and three turns out to be disclinations. The
dislocations are the 1D edges of a 2D translational fault (Ax =b to Ax =0 ), or slip fault.
The disclinations are the 1D edges of a 2D rotational fault (A0 = 10°, a grain boundary, to
Af# = 0, no grain boundary). Disclinations are prohibitively expensive in 3D crystals, but
they can exist in 2D crystals embedded in 3D [46, 47] and liquid crystals [48, 49].

Dislocations were first directly observed by transmission electron microscopy (TEM) by the
team led by Sir Peter B. Hirsch at Oxford in 1956. [50] Thus, in this case, materials theory

was ahead of experimentation by more than 20 years!

Dislocations are created to relax (gradually reduce) elastic strain energy. As previously men-
tioned, elastic strain energy is small (small amplitude) but diffuse (long wavelength) “pain”
inside the crystal. The most common treatment of such small-amplitude, long-wavelength
pain is so-called linear elasticity theory, where stress-strain relation is linear but energy is
approximately by quadratic fitting of the bottom. Basically one attempts to fit the PEL by a

!Orowan was a professor of metallurgy at the MIT from 1950.
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quadratic expansion near the local minimum. But even if the strain amplitude is somewhat
larger and needs to go beyond the quadratic fitting (so-called nonlinear elasticity), the main
toplogical features of crystal bonding remains as at the bottom of the energy basin, and re-
versibility is ensured upon unloading. In contrast, dislocations represent extremely localized,
large-amplitude, highly nonlinear (convex—concave—convex) and metastable deformation.
The key to plasticity is the lock-in effect, which can be seen from (4.95) and (4.100) already.
Namely, if one abuses a crystal by shearing, initially the crystal will cry out for pain, but
if one keeps up the abuse, and push it through the nonlinear regime, then the crystal will
start to feel less pain, and in the end would see no difference from its comfort zone. Until
the next round of abuse starts. This “locks in” the large-amplitude, highly localized slip dis-
placement. Nonlinearity and non-convexity in the PEL is the essence of plasticity.

(as versus elasticity, which focusses on and is limited by the quadratic fit).

Why then, is dislocation slip preferred over, say, shearing 3 layers together? (From here
on, slip means most localized, large shearing between two atomic planes.) We notice even
that the generalized stacking fault calculation of v;(x) looks kind of “unnatural”, in that
one must rigidly constrains the top and bottom blocks, and only allow relative displacement

between the two rigid block. Why would one artificially apply such constraint?

The reason turns out to have more to do with the nonlinear response, than with the linear
response of the crystal. If one fixes the external displacement A that spreads over n layers,
one should plot and compare v, (A) with nv,(A/n) (From now on, we use A to denote shear
displacement instead of x, since we will talk about spatially dependent displacement A(x)).

It turns out that, if we assume the local electron glue, (4.101), then for small A:
M (A) < ny,(A/n) (4.119)

Indeed, the curvature of the former is n times larger than that of the latter. So, for small A,
diffuse deformation is preferred, the more diffuse, the better. However, once we requires large
shear offset A, the situation is seen to be reversed. The saddle-point energy to overcome a
diffuse barrier is n times larger than that of 71 (A)! Thus, for the most localized slip defor-
mation, the pain comes quickly, but peaks earlier; whereas for the delocalized deformation,
the pain comes later, but is ultimately greater. This basically says that, if one must cuts
bonds to achieve large traction relaxation, then doing the bond cutting on one atomic plane

is the best choice.

The above is the argument for the strongest possible localization in the z-direction, which
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is localizing down to a single slip plane between two adjacent atomic planes. There is
also an argument for localization in the zy-plane, the so-called Peierls-Nabarro theory of
the dislocation core. [51, 52] Basically, Peierls argues that if only pain on the slip plane

(“localized pain”) is counted:

Esi —inelastic >
Swdete S (A & [ den(v() (4.120)
atom 7 in core %

this energy would prefer a core as narrow as possible. In above we have made a discrete to

continuum mapping {A;} — v(x)

However, since a dislocation must make the transition from v = 0 (outside of slipped plate)
to v = b (inside slipped plate), the slip offset v changes with position x, and therefore elastic
energy in other places (“diffuse pain”) must also be involved. One could show it is of the

form

Eeastic dV dV(CC,)
= 2/ dm/ dx’ (—KIn |z — 2’| 4 const) T (4.121)

where K depends on the elastic constants only. The floating constant that accompanies

— K In |z — 2’| does not matter, since we have the constraint:
o© dv(z
/ dxd() = v(rz=00)—v(r=—-00)=Db (4.122)
—00 T
The above is a quadratic form: it is easy to show that if the dislocation core is wider by 2:

v(z) — v@) (4.123)

FEaastic would drop by a factor of 4. Therefore Eg.qic prefers as wide core as possible. The

competition of the two gives the equilibrium core width of dislocation.

Peierls solved the variational problem:

Edlslocatlon dV(l’/)
—delocaton _/ dryi (v / / d ) ey | — g V) SRS CBETY

and obtained the in-plane size of the dislocation core.[51] Imagine a variation v(z) — v(x)+
dv(x). One gets:

a“+/ K|z — | ( Vg 0. (4.125)

The above is an integral equation. Suppose we take the Frenkel form of the non-linear glue
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(4.97):

! 2
i) = [ = cos (7”’)] (4.126)
2 b
4 2
g’\yfl - ”Zl sin< Z”) e, (4.127)
and v = v(x)e,, we get
. (2mv\ Kb >~ 1 dv(2),,
sm< 5 ) = /_OO R dx (4.128)

For edge dislocation in simple cubic (or simple tetragonal with dy > b) material,

b2
K = ’“‘) vi= gy = (4.129)

so the dimensionless number

po= B0 ( L )do (4.130)

*
™

and is d—lf for screw dislocation. So we get

sin (2m) — /@/OO L@, (4.131)

b oo X' —x dx!

k is a dimensionless constant symbolizing the ratio of strength of delocalized elastic constant
(7o) to localized glue (71 [13]). The larger is x, the wider the dislocation core should be

from previous discussions.

We first get rid of all the constants, by defining

2
V= %U (4.132)
" b 1 V()
_ Kb [ T ,
= — . 4.1
sin V' o /_OO pR—— dx (4.133)
and then we rescale the distance
x = (4.134)
= — )
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so integral equation is as simple as possible

0o 1 dV(X')
mv = [ X', 4.1
v = [T AT (4135)
% is the core spread function: it be a smooth peaked function like a Gaussian, which
also decays as X — +o0o. The above looks awfully like a contour integral, if we identify
z = X', and assume d‘g( 2) to contain one pole z, in the upper complex plane and vanishes in
the big arc (we are already guessing dg(, ) to look like a Lorentzian shaped function with
algebraic decay at least, and possibly even faster), so
X—e 1 (2) . dV(X) 2m . av
s — 0 = 1 — ) — 4.136
/ /X+EZ—X = T ax zp—ngl;lp(z zp)dz ( )
o v (X o
sinV —im dg( ) = - imXap (4.137)

We are not in bad shape, because the above is ODE. If
X
V(X) = 2arctan () + (4.138)
T

which satisfied the boundary conditions, then

av(X) 2 1 27 27

- = = = 4.139
dX w1+ (X/7)? X2 + 72 (X +im)(X —im) ( )
then zp = 7 and a, = %, and
X 271 2
sin V(X) = /T g, =" (4.140)
\/1+ (X/m)2 /1 + ( X/7r p—X " X
so we get
X 21 X/pi+ 1 —2 2
) /M _ ! - 9 piti = T (4141)
1+ (X/m)?) 1+ (X/m)? (X/m+i)(X/m—1) X/m—1 im—X

QED. The above solution to (4.135) can be verified numerically.

mesh = 1024;
Xmax = 60;
Xmin = -Xmax;
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Xdel = (Xmax - Xmin)/1024;
X = Xmin+Xdel/2 : Xdel : Xmax;
V=pi+2* atan(X / pi);

plot (X,V);

dvdX = 2/pi./(1+(X/pi)."2);

n = floor(mesh * 2.7/5);

plot (X,dVdX, X(n),(V(n+1)-V(n-1))/2/Xdel,’ro’);

kernel = 1./(X-X(n));

kernel(n) = 0;
plot(X,sin(V), X(n),kernel*dVdX’#*Xdel,’ro’);

So the Peierls solution gives

2T 2
- = 2 arctan (/d)) + 7 (4.142)
or ; )
T
= — t — —. 4.14
v(x) - arctan (w) + ) ( 3)

where the core width w (one half of Full Width at Half Maximum (FWHM)) is given by

2
w = KD (4.144)
> = 2y

in this particular case.

The problem with (4.124) is that there is no barrier against the translation
v(z) — v(z—s) (4.145)

for arbitrary shift s of the dislocation core, forming so-called Goldstone mode, due to the
continuum formulation. This is not true in reality, because so-called lattice friction does
exist on all dislocations, for example screw dislocation in BCC metal, and dislocations in

semiconductors, are known to have very significant lattice frictions.

Nabarro removed the zero-friction problem by resorting back to the atomistic sum:

Esi —inelastic e
% = / dey(v(z)) — > n(vi)a (4.146)

atom 7 in core
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using the Peierls core solution, where a is the distance between atoms on the slip plane that is
sampling the v(x). For simple 2D lattice and edge dislocation, there should be a = b, but we
will keep using a for conceptual clarity (in 3D solid, the sampling can get more interesting).
We have

00 * b Zn b
Eslip—inelastic o Z /751 |:1 _ cos (27T(7r arctan ( w ) + 2))

La = b
= Z n [1 + cos (2 arctan (9%))}
e 2 w
> o (et (7))
= Z 7, cos” [ arctan ([ —
n=—oo w

S > (4.147)
ne 1t (%)
Since
T, = (n+s)b, s=10,1) (4.148)
we have = (s) - .
slip—inelastic (S *
= S 4.149
La/ ’yl n;OO 1 " (b(n+s))2 ( )
The summation can be mappled to a contour integral, and one gets
i 1 1 mcosh(%)sinh(%) (4.150)
W L+ (n+5)2  ccosh®(Z) — cos?(rs) '
>> pi/c*xcosh(pi/c)*sinh(pi/c)/(cosh(pi/c) "2-cos(pi*s)~2)
>> ¢=3; 8=0.34; n = -10000:10000; sum(1l./(1+c"2*(n+s)."2))
We have b
= — 4.151
= (1151)
here, so the lattice friction barrier can be written as
Eslip—inelastic(‘S) _ 'yfmu COSh(%) Slnh(%) (4 152)
La b cosh’(Z2) — cos?(rs) '
Recall that N P
sinh(z) = %, cosh(x) = 6+26 (4.153)



so when mw/b — oo (in simple cubic it is 1.57 for screw and 2.3 for edge), we would have

FEqip—inelastic (5) Yimw cos?(ms) ViTw cos®(ms)
La b cosh?(T2) b e’ /4 ( )
That is, the barrier height scales as
W 4myy w
= = mblwae_zT (4.155)

The key results from Nabarro’s work [52] are: (a) Nabarro obtained an energy barrier for
dislocation translation, paradoxially called the Peierls energy barrier (in terms of stress
needed to overcome this barrier, the Peierls stress), and (b) the Peierls barrier has strong
(exponential) dependence on the core size. The wider the dislocation core, the lower the
Peierls barrier. So, dislocations in FCC metals have wider cores (due to Shockley partials
splitting), and the lattice friction is small. But screw dislocation in BCC crystals have narrow
cores, and therefore the lattice friction can be very large, with the Peierls stress as high

as on the order of 1GPa, so large that it can dominate the overall plastic flow strength.

This turns out to be general for all extensive defects. The narrower the core, the stronger the
lattice pins it, and the more difficult it is to move. This is even true for “electronic” defects,
e.g. polarons. Small polarons have low mobility and is strongly trapped and required 7" to
activate its hopping, where large polarons have high mobility and is more band transport or
ballistic like.

This kind of discrete sampling trapping also occurs in numerical simulations and causes
“numerical friction” as well. That is, when we use PDE solver, we need a mesh to discretize
and represent the continuum field by a discrete points, and invariably such representation
error causes “artificial” undulation of the numerical Hamiltonian when the field solution is

being translated in space.

So dislocation is basically a machine to cut bonds on one plane, and then re-stitch them
together. It should not be surprising that dislocation is the fundamental agent of plastic
deformation, which is basically irreversible shape change, because dislocation slip gives the

most localized (in z and in x) way to cut the bonds.

We know that k = ;ili is the dimensionless “ratio” of v (v) to 71(v), and the dislocation
1

half-FWHM w = %b will depend on this material-dependent ratio. For simplicity let us
assume Kk = 2 and w = b. In this case, e = 72 = 0.00186, and this is before the
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thermal activation effect (double kink mechanism) kicks in. Furthermore, when w increases
by 50%, e~ %" = ¢=37 = 8 x 10~°. These factors are indeed what one needs to compare the
experimentally observed “Peierls stress” (to move a single glissible dislocation, in say, in situ
TEM) with the ideal strength. In reality, the Peiels-Nabarro model is not that numerically
precise, and also we have ignored thermal activation, so these numbers should not be taken
literally, but the 1072 — 10~* order of magnitude, and the fact that even small changes in w

results in huge variation in the lattice friction, are the take-home messages.

4.7 Line Defect Picture and Equation of Motion

For an infinite straight dislocation in isotropic elastic medium, the stress field is

poy pb x
Ogz = _%ma Oyz = EW, Opy = Ogg = Oyy = 0, =0 (4-156)
for “positive” screw dislocation:
b
E = — =e,. (4.157)
|b|

where p is the shear modulus (we use G for crystallographic shear modulus). In cylindrical

coordinate, this is

b

ry = Opp = Opp = = zz:o. 4158
o © O = 0O Opg = O ( )

09, =

For edge dislocation,

£ =e, b=le (4.159)

the formula is a little bit more complicated:

pb  y(32® +y7) ph y(a® —y?)

rr — — s = 5 xz — Z:O 4160
7 27(1 —v) (224 y?)? Tyy 27(1 — v) (22 + y?)? g Ty ( )

pb w(a® —y?) pubv y
Ty — ) zz — Tz = - ) 4.161
Tay 2r(1 —v) (22 + y?)? ’ V(022 + o) (1l —v)z?+y? ( )

In cylindrical coordinates:
pbsin 0 b cosd

= - _ - ) = ——— 4.162
7 700 27(1 —v)r oro 27(1 —v)r ( )
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_ pbrsin 0

HOVEMT gy = 0. 4163
7(1—v)r’ ? o6 ( )

Ozz = V<Urr+009) =

Taking the screw dislocation as example (the edge dislocation has the same scaling, but is

algebraically more complex). We note in above that the dislocation stress field decays as 7.

This means the elastic strain field decays also as r~!

behaves like

, and the elastic strain energy density

2 272
Og, 1% b —2
elastic = = 4.164
Celastic(X) 20 872Mr ( )
Thus, with a standalone dislocation, the total elastic energy per length scales as
FEelastic R ,Ub2 _9 Ry /JJbQ _ MbQ R,
= dr2mr— :/ dr—r~!' =" " n—, 4.165
L R 8w R 4r " 4m "Ry (4.165)

which is the diffuse “pain” in a ring of materials between Ry and R;. Obviously there is a
problem with convergence in both the inner cutoff Ry and the outer cutoff R;. The inner
cutoff can be handled by recognizing that elastic strain has a limit of ~ 10%. Once that
limit is reached, we get into the inelastic region of the core, and the pure elasticity theory
no longer applies, and one has to use the Peierls-Nabarro theory of the dislocation core that
has some handle on the nonlinear non-convex part of PEL, the Egip_inelastic term in (4.120).
[51, 52]. When that nonlinear energy inside Ry is included, the self energy can be written as

Eg ub® Ry ub® Ry

= —In— inelastic = .
L dr DR, T Cnelstie = MR

(4.166)

Quite often people find Ry to be around the order of b from exact atomistic calculations.
[53].

There is also a problem with the outer cutoff R;. This in fact means the dislocation cares
about its environment. If a single screw dislocation exists in the center of a nanowire [54],
then one can expect R; to be of the order the cylinder radius R. Generally speaking, in a
bulk metal, if there are other dislocations which screen the field of the dislocation in question,
and those nearest-neighbor screening dislocations are of the order Ry rcen, we would have the

dislocation self energy as
Eself o Lbzl Rscreen

- ¢ 4.167
L AT Ro ( )
A rule of thumb in the literature is to take
Ese
n = Llf ~ apub? (4.168)
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with a ~ 0.5 — 1. From (4.167), we see this implies the screening distance is of the order
@ =0.5: Rereen ~ €"Ry=535R), a=1:Rereen ~ €™Ry=286751R,  (4.169)

Assuming f%o =b= ao/\/§ = 2.556A in Cu, this converts to Rgereen = 137nm for a = 0.5, to
Rgreen = 73pm for o = 1, which covers most of the physically sensible ranges, from heavily
work-hardened metal (a mediumly cold-worked Cu has dislocation density p = 4 x 10'*/m?

[55], which implies a characteristic spacing of 50 nm), to highly annealed metal.

Below we look at glide-only motion. Consider a pure applied shear stress o,, = 7 for a
curved dislocation on y-plane with b = be,, and

§(1) = ey + /1 —EZe.. (4.170)

chlimb -0 nglide
dl ’ dl

= bre, x €, (4.171)

We can call n in (4.168) the line tension of a dislocation. If we pretend

1. 1 to be independent of €. (In reality n depends on &.)

2. Besides the self energy, the dislocations do not interact with each other elastically. (In

reality, they do).

we come to the so-called line tension model of a dislocations. This is an extremely simple
model because it is local.

Consider the line direction £(1) as a function of the dislocation length [. If the dislocation is
a straight line, then locally we have force equilibrium from the line tension. But, if £(I) has

curvature, this would generate

dg

_dg er(l)
T

R()

dF = n&(l+dl) — né(l) dl = n—=qp (4.172)

where R([) is the radius of curvature, and eg points towards the center of the local tangent

circle.

If a dislocation is pinned between two fixed ends with distance 2¢, then we would have a
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circular segment, with line tension balancing the PK force:

U
br = — — R(l)=— 4.173
T o RO (1173)
From the derivation above, we see R is actually independent of [ when the dislocation reaches
equilibrium. This means at equilibrium, the dislocation is always arc of a perfect circle in

the isotropic line tension model.

The critical configuration is actually when R = ¢ (R first decreases with 7 1, but after
reaching the minimum value of ¢, would start to increase again, so R = ¢ is the “saddle”

configuration), so the critical external stress for bow-out is

n _ aGb*  aGb

= L = 4.174
e be be c ( )

In reality, ¢ = 107%m, but b ~ 2 x 107'%m, so we get
¢ ~ 107'G. (4.175)

The above immediately explains the 1000x difference with Frenkel estimate of ideal shear

strength.

The dislocation density p [unit 1/m?] is defined as the total length of all dislocations in
a unit volume of material. p in mediumly work-hardened Cu is typically on the order of
4 x 10" /m? (number of etch pits per unit area) = 4 x 10m/m? (dislocation line length
per m? of material - in reference, circumference of earth is 4 x 10'm, circumference of sun is
4 x 10°m - it would take light 15 days to traverse the dislocation line in 1m?® of copper! so to
simulate plasticity by tracking dislocations is quite a challenge). We can estimate the mean

spacing between between dislocations to be
2 = p /2 (4.176)

Plugging into (4.174), we get
T« = 204Gbp1/2 (4.177)

The above p'/? dependence is called the Taylor hardening law. It comes from forest dislo-
cation resistance. There can be other sources of plastic flow resistance, for example lattice

friction, solute hardening, precipitate/dispersion hardening, grain boundary hardening etc.
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The typical way of modeling them is to add all together:

1/2
TC = 20(Gb,0 / + TLatticeFriction 1 Tsolute 1 7—precipita‘ce/dispersion + TGB (4178)

7c is called the critical resolved shear stress (CRSS). The resolved shear stress 7 on a slip
system is generally computed as
(b . 0') 1 biO'ijTLj

T = D] = — (4.179)

If we put uniaxial tension/compression along a direction u, we have
_ T
o = ouu (4.180)

we have
T o= o(b- ulz(n ) = o cos(by) cos(b,) (4.181)

where 6, is angle between u and b, and 0, is angle between u and n. cos(6,) cos(6,,) is called

the Schmid factor. Since n L b, the maximum Schmid factor is %, when u is 45° between n
and b.

The so-called Schmid’s Law means all that matter is scalar CRSS 7¢, no matter what is the

tensor o that generates this scalar.

So far we considered stationary dislocation. To establish an equation of motion for gliding

dislocation, we need to consider elastodynamic equation:
V.o = puy (4.182)
where p is the mass density (unit kg/m?). For isotropic medium we have
A+ p)V(V-u) +pViu = pdiu (4.183)

For simplicity, let us consider a moving straight screw dislocation. We are going to assume
the property of
u, = uy(z,y,t), uy, =u, =0, (4.184)

so the divergence-free property V - u = 0 stays even in transients. Let us then ignore the
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subscript and define v = u,. Then

1
E(@i—l—({)j)u = O%u (4.185)
Without the dislocation singularity, the above defines transverse shear waves, with wave
speed
1
c = |- (4.186)
P

The stationary singularity would posses displacement field

u = b0 0=—m.m (4.187)

%7
if the branch cut is from (—o0,0) to (0,0).

Now consider a uniformly moving dislocation singularity with speed v. We would like to

comove with the dislocation, so we will perform Galileo transform
=t 2=z—vt, y=y (4.188)
and we want to re-express
[y t) = [y 1) = fle—vt,y,1) (4.189)

So the idea is someone gives you the explicit form for the 2nd expression, and you wonder

about the sensitivity of f to the former arguments. We then have
ax = ) 8y = ay/7 815 = at’ — Uam’a (4190)

so we get
G2+ u = (y — v0y)*u (4.191)

Now suppose we have reached stationary speed, then dyu = 0, so we end up with
(2 = v})Pu+0u = 0 (4.192)

If we define dimensionless speed

@
Il

ol

(4.193)
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then
(1—-8%%u+0ju = 0 (4.194)

So we see the structure of the steady-state equation is the same as that of the stationary

equation, if we just perform Lorentz contraction of x:

- T
P = = (4.195)
Bu+0u =0 (4.196)

then everything stays the same (including the essential branch cut discontinuity condi-

tion). In other words, in the & — y frame, we can define

0 = arctan (%) (4.197)
T
and -
b6
- 4.1
u o (4.198)

This moving dislocation has both kinetic and elastic energy. The stationary elastic energy

was
2 2
Ey = aub® = /d:vdyuwxu) + 1(0yu) (4.199)
2
w0 Oy u)? Oyu)? v?
/da:dyu( ;u) = /d:wly/L< ;u) = a/; (4.200)

and with the Lorentz contraction, the first term is scaled by

o) g e

whereas the second term is scaled only by y/1 — 52, so the new potential energy is

aub? L + 1- /5 —ab272_62
o= 2 -

But there is also kinetic energy

/d ay PO &*u /d d ’”’(2“) — Baph— (4.203)

(4.202)
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So the total energy is now

apb? Ey
E(v) = (4.204)
V1 —v?/c? V1—v?/c?
In the small v limit, we get
2
Ew) — Ey = Ey(1+ ) (4.205)

so we can identify “inertial mass” of the dislocation (if we want to have E(v) — Ey = $mgv?)
to be

E b2 ln ngreen
my = 2 = T _ gl Ro (4.206)
c? w/p Am

The interpretation of the above is that as far as inertial mass goes, those near the core are

more important than those far away from the core (by (r—1)?).

Energy conservation tells us that for a straight dislocation
foide - (¢ —x1)) = (8- (x¢ = x1))(g - (b- o) X §)) = E(v) — Eo + Waissipation  (4.207)

We can convert the above to an ordinary differential equation:

dv

m% = fglide + fdissipation (4208>

Jaissipation consists of lattice friction (section 4.6), solute drag (section 4.10), and phonon

drag, where

fdissipation/phonon = —Bv (4209)

with BT
B = By 4 "B 4.210
° wDebyeQ ( )

where By is phonon emission (1-phonon process) and Bj is phonon scattering (2-phonon
process). The linear scaling with temperature of the phonon scattering process is due to
the fact that the higher the phonons, the more phonons there are per volume and the more

phonon “raindrops” would bounce off the moving dislocation.

If we have an edge dislocation initially lined along &, = e,, with b = be,, under shear stress
0y:, then
b-o = bo,e, (4.211)
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(b ' U) X 50 = bayzey = lglide (4212)

Then for a gentle variation in the dislocation profile y(z):

dy
- 1 4.213
dx < ( )
the equation of motion would read:
d*y d*y dy
mﬁ - bO'yz + nﬁ - bTLatticeFriction - BE + fﬂuctuation (42]_4)

The LHS is “inertial”. On the RHS, the first term is Peach-Koehler, the 2nd term is line
tension, the 3rd term is from atomic nature of lattice, the 4th term is from phonon scattering,
and the 5th term is the random thermal force fluctuation (Langevin equation), usually
modelled as white noise

5(t —t)

<fﬁuctuation (t)fﬁuctuation (t/)> X dl

(4.215)

where all the forces above are averaged over segement length dl.

4.8 Crystallographic Effects

From (4.168), we see the cost of creating a dislocation scales with »?. Thus, whenever
possible, the dislocation tends to split into the smallest crystallographic unit. Also, if the
interplanar spacing d; is large, one tends to have smaller shear moduli. So to minimize
the cost of dislocation ub?, the preferred slip system tend to have (a) the smallest Burgers
vector, and (b) the widest planar spacing. (a) and (b) are in fact not unrelated, because the
smallest Burgers vector tend to occur on in the closest packing plane. But since the atomic
density (a scalar) is the same no matter which planes and corresponding normal direction we
count, the closest packing plane also tends to be the loosest stacking plane. All these point

to choice of slip plane with the largest dy and smallest b.

Thus, in HCP metals, when the c¢/a-ratio is significantly smaller than the ideal value of
\/8/3 = 1.633, like in Ti and Zr, the prismatic slip {1010}(1210) is triggered, instead of
basal slip {0001}(1210).

The above logic naturally leads to Shockley partials. Assuming G is isotropic in plane (it is
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if the plane has 3-fold symmetry), the Frank’s rule says that whenever
b1 = bQ —f-bg, Ib1|2 > |b2|2 + |b3|2 (4216)

the by dislocation can reduce its energy by splitting into a by dislocation separated some

distance from the bs dislocation.

basal plane
O O
O O
y > 5
O O
[112] ™ -

[111]

Figure 4.2: Looking down onto the (111) plane.

Consider (111) plane. The normal of this plane is n = [111]/(v/3ag). To orient ourselves
(see Fig.4.2), we can take

112 110 111
o = [ ], g = [ ]7 o = [111] (4.217)
V6ayg V2ag V3ag
we can check that e,y X e,, = e.,. On this plane, there are six full Burgers vectors:
011 101 11
bl = u, bQ = u, b3 = u, (4218)
2 2
and —by, —by, —bs. Generally,
; AgipnbT
et = SR (4.219)

where V' is the total same volume, Agj, is how much area has slip occurred on this slip plane,
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and the superscript “unsymmetrized” means we have not carried out the symmetrization
process in computing strain:

unsymmetrized +( unsymmetrized)T

— €inelastic €inelastic (4 220)

€inelastic 9

So (n, —b) are often considered to be a different slip system from (n,b).

Bruce Lee: Now you put water in a cup, it becomes the cup; You put water into a bottle it
becomes the bottle; You put it in a teapot it becomes the teapot. Now water can flow or it
can crash. Be water, my friend. One needs 5 indepedent slip systems to be able to deform

arbitrarily.

The point here is that

b; = by + by, (4.221)
where the partial dislocations
by — [1612] byy — “21] (4.222)
Since )
[bpi|* = [bp|* = %, (4.223)
we have 5
Bt + [byal® = 2 (4.224)
which is smaller than )
by|? = % (4.225)

Thus, two partials, separated far away, would have smaller energy than a full dislocation. In

reality, they will not separate infinitely far apart because of the stacking fault ribbon they

generated. Roughly speaking, the reduction in elastic energy is proportional to
GA(B?) | s

In —
4m R,

(4.226)

where s is the splitting separation between the two partials, so the total energy is like

A 2
_GAWY) In }; + SY1sF, (4.227)

FE =
4m 0
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where vgr is the intrinsic stacking fault energy. So the equilibrium splitting distance scales

. GA®)
Seq = . 4.228
4 4Ty1sF ( )

For low-stacking fault FCC crystal like pure Cu, y1sr = 40 mJ/m?, the splitting distance is
large, like s = 2nm. For high-stacking fault FCC crystal like pure Al, yisp = 160 mJ/m?,
the splitting distance is small, like s = 4A. This has severe consequences on the dislocation
dynamics. For example, it is much more difficult for screw dislocations in Cu to cross-slip,
because in order to do so, it must first constrict. But a widely separated ribbon would make

the energy barrier for constriction larger.

The so-called Thompson tetrahedron describes the arrangement of full and partial Burgers
vectors on slip planes. There are four faces (ABCd, BCDa, CDAS, DAB~, the last Greek
letter is the center of each equilateral triangle), representing the {111} planes. Clearly, if we

want to have ]ﬂ slip on DAB~ slip plane, we can go:
DX = D4 +74 (4.229)

or

DX = A& + D5 (4.230)

where ]ﬁ = A — D denotes the translation direction of the top block versus the bottom
block across the slip plane (7). The order of the decomposition matters, as one moves from
A = 0 region across the dislocation core, to the A = DA region. Only one choice among
(4.229), (4.230) would be allowed. For (4.229), the atom at D site in the top block would be
translated to

D+D7 = 4 (4.231)

at the intermediate state. For (4.230), the atom at D site in the top block would be translated
to
D+ 74 (4.232)

which is also a crystallographic site. The key question here is whether v or D + ’y? is on top
of a - site, or on top of an () site. The former (intrinsic stacking fault) is the much lower
in energy than the latter on-top configuration. Since v is on top of C when we look down
on the DAB~ plane of a Thompson’s tetrahedron, we can determine that (4.230) is always
right, when we perceive DAB~y to be the top (+) plane. There is no b, <+ —b,, symmetry
in FCC or HCP crystals.
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The Lomer-Cottrell (LC) lock is formed by the following reaction:

112 121] 1 011
[ 6]3(111) + [ é(lll) — [ 6 ] = bLC, (4233)
since ) ) )
% + % > ‘1% (4.234)
However, note that by = @ is not our usual Burgers vector. Slip by ? on any atomic

plane is likely to creates a very high energy stacking fault. Furthermore, there is another
fundamental conflict if the Lomer-Cottrell dislocation is to move by glide. Note that by the
way LC is formed, its line direction &€pc must be a common direction on both (111) and
(111) planes, namely &rc || [111] x [111] || [011]. However, byc = [O;%ﬂ does not belong to
either (111) or (111) “old” planes. It does belong to the (111) and (111) “new” planes, but
&1c does not belong to these “new” planes. Thus, there is no {111} plane where the LC
dislocation could move as edge dislocation. That plane should be by ¢ x &Lc = (100), but
this cube plane is unusual for slip. For this reason, the Lomer-Cottrell dislocation is called
“sessile”, or “lock” or “junction”, meaning it is a low-energy trap state, but once formed, it
would be difficult to move. The LC dislocations are important for dislocation storage and

forest dislocation hardening in FCC metals. 2

4.9 Shear-Cleavage Competition

In above we have been talking about shear, i.e. bond switching, where there is transient
loss of coordination for the atoms involved, but over long timescale no net loss of total
coordination (or very little). This is fundamentally different from the cleavage process, where
there is often irreversible loss of metal-metal coordination * Shear and cleavage are the two
fundamental categories of inelastic events inside the solid. For small elastic deformation, they
are roughly characterized by G and B, respectively. Then for ideal strength calculation, there
is no formal distinction, but practially the tensile and shear ideal strength and strains can
be used to characterize the intrisic brittleness of materials [39, 36]. But for large nonlinear

inelasticity, the inelastic shear and inelastic cleavage are very different. The metal-metal

2It is not impossible to move, or at least remove LC dislocations, however, if we consider dislocation
reactions under stress, or dislocation climb.

3Imagine, that, once two metal surfaces are opened by the Griffith process [56], the metal surfaces are
passivated by oxygen, and one cannot recover the metal-metal coordination even if the crack is closed later.
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bond switching is a reversible source of dissipation: an arrays of bond switched this way can
be reswitched later, converting mechanical energy to heat many many times. But if there
is a loss of coordination, for example by voiding and surface creation, then this can only be
used one time. For this reason, metals which are shear soft have a larger fracture toughness,
because the soft shear entices the shear relaxation again and again. Bonding shearing is a

sustainable way of dissipating energy, whereas cleavage is basically a one-off thing.

Just like the Frenkel relation for shear, there is a popular form for fitting decohesion called
Universal Binding Energy Relation (UBER)[57]. The details are not that important, the
key is that ey, (€enydro) is nOt a periodic function, but is a function with a minimum, followed
by a turning point where the 2nd derivative vaishes. S0 ohydro(€nydro) has a maximum, then
decays to zero as €pyaro — 0. Also, it can be shown that to separate a material, the best way
is to localize the bond cutting on one plane. In other words, consider a crystal with 10%*
atoms, thus 10® planes on each side. It takes only cutting the bonds on one plane out of the
108 to achieve separation. Brittle ceramics basically do this. It turns out that metals are
wily, and do not fall for this generally. It takes a whole lot of bond shearing in metals before
one coordination loss is achieve in metals, by for instance dislocation emission in front of the

crack tip.

Having reconciled the oid¢dl = 2GPa for Mg vesus the measured CRSS = 0.35 MPa for
Mg (Basically dislocation is like a lever, that breaks bond in its core, and then restitches
them back together), I would like to mention an interesting possibility of elastic strain engi-
neering [58, 59]. All physical properties are function of the elastic strain. Because “smaller
is stronger”, nanostructured materials such as nanowires, nanotubes, nanoparticles, thin
films, atomic sheets etc. can dynamically withstand non-hydrostatic (e.g. tensile and shear)
stresses up to a significant fraction of its ideal strength without inelastic relaxation by plas-
ticity or fracture. For example, large elastic strains can be generated by epitaxy in thin films,
or by static or dynamical external loading on small-volume materials, and can be spatially
homogeneous or inhomogeneous. This leads to new possibilities for tuning the physical and
chemical (e.g. electronic, optical, magnetic, phononic, catalytic, etc.) properties of a mate-
rial, by varying the 6-dimensional elastic strain as continuous variables. By controlling the
elastic strain field statically or dynamically, one opens up a much larger parameter space
(probably on par with chemical alloying) for optimizing functional properties of materials,

imparting a new meaning to Feynman’s statement ”there’s plenty of room at the bottom”.
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4.10 Dislocation-Point Defect Coupling

When point defects are mobile, they would be able to respond to fields. In the case of
electric field, we have seen how mobile charge defects can screen out any imposed electric
field completely given sufficient time and space to do so, which is the property of an
electrolyte. This is because a point defect carries charge monopole that couples to the
electric potential as —V(z;e¢). The same thing can happen to an imposed stress, as (3.96)
show us that there is a driving force —V(=Tr(o®*(x)w?Q)) for indiviual (isolated) point
defects to move in the interior. Suppose w® is identity matrix, then Tr(a®*(x)) plays the
role of ¢, and the mobile defects would completely screen out internal pressure gradient, if
given sufficient time and space to do so. Also, point defects can plate out on surfaces and
dislocation half-planes to give uniaxial transformation strain, even for isotropic vacancies
(because when they plate out, they are densely packed ranks which has packing direction,

and no longer isolated individuals).

Note that o®' is in paralell position to scalar electric potential ¢ in the energy expres-
sion, not E. (wR?Q is similar to ¢). In electrolyte theory between two parallel plates, E is
screened exponentially in the far-field, not ¢. So given infinite supply of point defects, the
exponentially screened is not in the value of stress, but the stress gradient that can drive
point-defect flux (like E that drives electrical current, which needs to be zeroed deep inside
a bulk metal). Also, only certain component of the stress gradient can be screened by a cer-
tain type of point defect. For example, isotropic vacancy can only screen pressure gradient,
but cannot do much to the shear stress. Therefore, Cottrell/Suzuki atmosphere of V¢, may
change the pressure distribution around a dislocation somewhat, but cannot really screen
the 1/r screw dislocation-screw dislocation long-range interaction that is mediated by pure
shear stress, nor can they screen the 1/r edge dislocation - screw dislocation interaction.
Substitutional solutes like Alc, would be similar as they have isotropic w®€). Interstitial
solutes like Hey, Ocy, Coy may have somewhat richer behavior, but remember they can only
screen flux-driving stress gradient component, but not necessarily stress. Another thing I
should mention is that Cottrell/Suzuki atmosphere involve many-body interactions between
point-defects, and not just between point-defect and dislocation, and such many-body en-
tanglement can have more complex correlation effect beyond the mean-field ” Debye”-type
treatment. The treatment that follows are effective two-body simplification (even without

the ”Debye” screening), that I will further comment at the end.

Interstitials are very mobile. And radiation generates a lot of self-interstials. In addition to
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hydrostatic component, they also possess several orientational variants, and therefore they
would be able to screen out more stress components inside the solid. This is indeed the
lesson we've learned from anelastic relaxation. This means therefore long-range dislocation-

dislocation interactions can be partially screened by redistribution of point defects.

There are roughly speaking two kinds of point defect - dislocation coupling. One is long-
ranged (LR), and one is short-ranged (SR), like solute segregation in the dislocation core. The
LR coupling, which induces a “cloud” effect, changes the long-range interactions. The SR
or coordination interaction changes dislocation mobility significantly. Suppose b = ag/v/2 =
2.556A as in copper, a LR intraction would be something like 200 lattice spacing away, or
50nm. SR interaction would be like 0, 1 or 2 lattice spacing away. For discussion below,
it is also useful to define something called thermal-escape (TE) point-defect / dislocation
distance, where the elastic interaction energy is significantly less than kg7. Suppose the

vacancy relaxation volume is v = 0.1 = 1.18A° we have

kBTroom

R
Uy

— 3.5GPa, (4.235)

(A very useful number to keep in mind is kg Tr0om / AP =414 GPa). Therefore, the hydrostatic
stress of an edge dislocation
Ozz + Oyy + 022 pb(l+v) gy b

_ ~ 4.236
3 3n(l—v) a2+ y? 5y ( )

we see that if the interaction energy is 0.01kgT which would only cause 1% change in
population (e~ = 0.9900498), y ~ =% sap: = 45/0.175 = 250b. The thermal-escape
range rTg obviously belongs to LR, and can be used as a reference energy position for point
defects. When point defects gets closer than rrg, we need continuum solution to consider
their coupling, and if still closer, we need atomistics. 77y is fortunately shorter than péi/jocation

in most situations.

Imagine a RVE containing a mixed dislocation with

¢=[001], b=[0b 0b] (4.237)
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and consider the RVE to be under a shear stress

0 0 o0
o = 0O 0 O (4.238)
0y, 0 0
SO
b-oc = [ 0z:0s 0 04.be } (4.239)

and the Peach-Koehler force would be

(b-o)x & = | 0ubs 0 0ube | = —0a:be,. (4.240)
0 0 1

The above shows that shear stress (not necessarily normal stress) can drive dislocation climb.

In monatomic metal, we have previous derived

oI5 (D) /keT
) = —5— (4.241)

by considering a free surface or a grain boundary “market” for atomoporosity. But with
dislocations as markets, these 2D markets are not really necessary. One can consider trad-
ing atomoporosity directly with dislocation. The kinematics of the trading process is the
following. For the dislocation above to move by —de,, the branch-cut equation would give

transformation strain-volume contribution from the core region:

be 0 %
Aw™Q) = Symmetrize((dl€ x (—de,))b) = ddlSymmetrize(e,b) = ddl| 0 0 0
20 0

(4.242)

and indeed this is the basis for deriving the Peach-Koehler force, both the coupling to the
shear stress, and the normal strain response in the core region. However, it is noted that the
xx component cannot be accomplished without increasing atomoporosity within the RVE,

so the total transformation strain-volume of the process is actually

b. 0 %
R > Sdlbe  w
whQ = 6dl| 0 0 |+ xwe (4.243)
b 0
2
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where ‘Sd# is the number of isolated vacancies that needs to be injected. If the above
were accomplished by absorbing interstitials instead, then the corresponding transformation
strain-volume of the RVE would be

be 0
U.)RQ = odl 0 —Ailng—Aigng—Aigwgﬁ, Au—l—Aig‘{'Aig =

o
o O vl

55
When the above processes occur at zero external stress, the above transformations can
happen without penalty /reward, and the entropy-energy balance (same as the free-surface

market) gives:

0dlbe
Q

Note that the X5 that we consider should be outside the stress range of the dislocation,

0+

< (FUT) + ksTIn Xy) = 0 (4.245)

since rigorously speaking a vacancy within the stress range of a dislocation is a (vacancy,
dislocation) complex, and not an isolated vacancy. Thus, the market operates between the

dislocation core and perfect crystal rrg ~ 50nm distance away from it.

But then, suppose there is external stress o added to both RVE and RVE’, then things

get interesting, and the total balance reads:

ddlb,
Q

—o WO+ < (FHT) + keTIn Xy) = 0 (4.246)

SO

(4.247)

o:wh
ET) = (T) eXp( “)

The above is actually the most general expression and works for surfaces/dislocations/GBs.
W’ includes both the “core plating” part (which is uni-axial) and the isolated vacancy

relaxation in the interior (which is tri-axial). If we take the (4.244) example, we get

be 0 b
cwiQ) Q N 2 0
7 é =, 9 0 0 |+o:wi = F(Uxxbe 4 04.0s) + 0w (4.248)
Q e b e
=0 0

2

The first term is just the Peach-Koehler force we have derived time and again (now pro-
rated to a single vacancy), and the second term is the hydrostatic coupling used for driving

PDE. So essentially all we have done is to replace the free surface by the branch cut! For
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interstitial, this stress biasing is

b bs
o Wi Q : 2 Q
T, = 50 0 | —0o:wiQ = b—(ombe + b)) — 0 whQ) (4.249)
. ’ 50 0 )
2

and there needs to be an extra - factor if put inside the exponential, since we would be
pro-rating to adding an il.

Suppose one is in an out-of-equilibrium situation, where the actual ¢y in surrounding RVE’s

are smaller than the ¢{, then the net thermodynamic benefit for the —de, climb would be

odlb, o
kBTln cl = _5dlfclimb (4250)
Q Cvy
i b beksT b
o e Cy eVB Cv e
fclimb = ﬁkBTln @ = O In g — 50’ : W\P;Q — (O’wae + O-xzbs) (4251)

The last term is the familiar Peach-Koehler force. The first term is defined as osmotic
force on climb. The second term is due to the internal stress effect on vacancy formation

Gibbs free energy which would show up regardless of vacancy source.

To appreciate how large the osmotic force is, we know that

T,
kBAr;jOm — 4.14GPa (4.252)
so with Q = 11.84” in Cu, we get
k: TI‘OOIH
& 5" = 350MPa (4.253)

so with & = 2, we will need the equivalence of 243 MPa of Peach-Koehler force to balance
A%

the osmotic force that would otherwise drive the edge dislocation “up” in y. So this is not

a small effect.

If 0., = 0, then we are lucky because wir does not couple to shear stress, and the third term

vanishes. Then b T
eVB Cy
dimb = In — — o,,b 4.254
Jfelimb 0 HC% g ( )

which agrees with (15-77) to (15-80) of [35]. The only nitpick would be that I would call Fy
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in (15-77) of [35] Fechanical, Since this term derives from the inelastic “plating” operation

performed on the branch cut!

But it turns out even if the vacancy feel the interaction stress with the dislocation, the
formalism do not change. From the market trading virtual work, we can rewrite
bekBT Cy be

dimb = Q In @ — ﬁa(x) : w\P;Q — (0zzbe + 042b) (4.255)

where o (x) includes both the externally applied stress, and the stress of the dislocation on
RVE’. That is, the atomoporosity is created under the influence of the pre-existing dislocation
stress field, and this describes the interaction energy. Note however, that we can combine
the first and second term as:
bekpT . cy(o)
n

climb = 1
fom, = g

- (Umcbe + szbs) (4.256)
and it is ¢y (o) that drives diffusion equation in any case. So we would get the same result
to leading order.

Now consider this market to be highly efficient, so the dislocation can shed vacancies and

climb to a position with surrounding RVE’s that has

c 025082
Jetimp = 0 — c%/ = eXp<b kBT>' (4.257)
% e

This is assuming SR process is efficient relative to LR transport. (not necessarily true
always) But far field has just cy = ¢§ because they were not aware of this dislocation (and
the opposite dislocation in a dipole, for simplicity let us assume that one is pinned somehow).

Then, we can use cylindrical coordinate to solve the LR transport limited climb rate:
r10,.(rDy0,cy) = 0 (4.258)

The above has some assumptions: (a) there is no stress gradient, and (b) we are assuming
that even though the center is translating, this translation has no effect on the diffusion

equation. As a general remark, the flux expression changes from crystal lattice frame:

J = C\/M\/(—V/{ZBTID Cv> (4259)
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upon Galileo transformation ¢’ = t,x’ = x — vt, to
J, = CvM\/(—Vk?BTlnCV) — CyV (4260)

We note that v is supported by vacancy diffusion, and the rate is proportional to c5;, so the
2nd term is actually proportional to (¢{;)?. Thus, in the dilute vacancy limit, the effect

of Galileo transformation on the diffusion equation can be ignored.
Thus, we derive a steady-state (but out-of-equilibrium) vacancy distribution of

Vclimb be

—27mrDyO,cy = q (4.261)
and so ; R
Vclimb Ve
= In — 4.262
ev(r) cv(R) + 2x DV anE (4.262)

We have the customary divergence problem at both small r» and large R again! These

dislocation lines are real divas.

If we identify cy(r) as

I‘ZbSQ
cv(r) = exp <Ubek‘BT> cy (4.263)
and cv(R) as 5, and also assuming

[N Y
1 4.264
bokel (4.264)

we can derive the standard climbing rate law:

21 Dv§) 04,0582 27 Dy ey 22

clim! - S - gjzbs X ——————5— 4265
fetmh = g I YV ks T (02:bs) X oy T E (4.265)

The latter object is defined as the climbing mobility (but note this mobility is long-range

diffusion controlled, not short-range reaction controlled)

2Dy, 2wD*Q
WkgTIn £ b2kgTIn L
TTE TTE

Meimb = (4.266)

where we identify ¢{,QDy = X{QDy as the self- or tracer diffusivity (which is directly

measurable, unlike Dy itself).
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In solving the above diffusion equation, we ignored (a) vacancy-vacancy interactions (“Debye
screening” effect), (b) vacancy-dislocation stress term, and (c) transport resistance from SR
to rrg. Now let us try to add these effects back, by talking about what happens when a
vacancy gets inside rrg. When we examine (a) and (b), it is like adding an effective potential

U(x) to the diffusion potential of a single vacancy
py(x) = kgT'ln Xy (x) + U(x) (4.267)

the kgT In Xy (x) term is the thermodynamic entropy term, the second term is the mechanical
work term that includes both self-interaction and external stress-vacancy interaction. The
diffusion flux in the PDE is

Jv = cvMy(=Vuy) = —eyMy(kgTcy'Vey + VU(x)) = —MykgTVey — ey My VU (x)
(4.268)
Before we suddenly increase the externally applied stress and the Peach-Koehler mechanical
driving force APK = 0%, + 0%, there is already self-equilibrating U(x) = Uy(x), cv(x)

and Jy = 0, i.e. at equilibrium. With the additional U(x) = Uy(x) + 60U inside the PDE

where U = —Tr(o®™*wRQ), therefore,

JV = O+5JV = —kaBTv5CV—CvMVvéU—écvM\/vUo = —kaBTV§C\/—5CVM\/VU0,
(4.269)
where the first term is no different from without (a),(b), the second term is zero for uniform

external stress. Let us define effective concentration

Ug

¢ = (dey)ersT (4.270)
we then have y
Jyv = —MykgTe TVe (4.271)
and since y ;
Oi(bey) = —V-Jy = V- MykpTe TVE = (¢ 7) (4.272)
there is . y U . Uz
06 = eIV - MykpTe TVE = MykT (V2 — k"i'Tc) (4.273)
B

which gracefully recovers to the equation without (a),(b) effects at large x. Furthermore, at

steady state, we just have
Up(r)

2nrDye *sT 9,¢(r) = const (4.274)
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It is basically saying that mass diffusivity is not a constant near the core. But as we have

seen before, this modification effect is really quite small for vacancies.

Thus, even though the system has (a),(b), because we start the external stress jump from
an already self-equilibrated system, the diffusion equation for dcy is not much different from
the reference system without (a),(b). Therefore, to include (c), all we need to do is to add

the transport impedance from SR to rrg, and we get

27 Dy ey 22 2 D*Q)
Mg, = = 4.275
T kT A B2k TIn £ (4.275)
where Ry is on the order of b.
Next, we employ the usual trick-of-hat that
In £
Ry _

= 4.276
pm a (4.276)

with « likely ranging between 0.5 and 1, and very insensitive to the choice of R and r. So
we end up with
D*Q
Qngk}BT
which agrees with equation (15-91) of ([35]), if we take v = .

very similar to the fluctuation-dissipation theorem, where one relates random-walk kind of

Mclimb - (4277)

The above equation looks

“diffusivity” with driven “mobility” for the defect. This kind of random-walk formula also
applies to other extended defects like grain boundaries.[60] Indeed grain boundaries can be

thougt of as regularly spaced dislocations.

In radiation damage, we create a lot of interstitials. These interstials interact with each
other strongly, and since they have high mobility, they will aggregate into plates. When the
plates are small, we have a nucleation problem of Frank loop by point defect aggregation,
that can later be unfaulted into a stacking fault tetrahedron. [61]
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Chapter 5
Interfaces

Interfaces such as grain boundaries, phase boundaries (free surface is the phase boundary
between condensed and vapor phase), stacking faults, domain walls are locations where 3D
order parameter field (phase field) sustains a finite jump. They are extended defects like
the dislocations, and therefore do not have an equilibrium distribution. In other words,
they must be produced as a cause of dissipative processes (mechanical work done, radiation,

thermal quench) that gives rise to emergent behavior.

5.1 Interfacial Segregation

Gibbs developed the theory of chemical potential for homogeneous 3D phases in 1870s at
Yale, but he also thought about the problem of interfaces very carefully. At his time there
was no instrument that could directly visualize the atoms in the interface. But by the power
of imagination Gibbs developed the concept of interfacial excesses and Gibbs Adsorption

Equation.

Gibbs developed the theory for interface between a, 8 phases under the following assump-
tions: (a) spatial inhomogeneity only exists near the physical interface region, which is very
thin; away from the interfaces, both phases are homogeneous with particle concentrations
c® and c”, respectively. (b) both o and 3 are fluid phases that can only sustain hydrostatic
pressures. Away from the physical interface region, the hydrostatic pressures are P® and

P? . respectively.

126



periodic boundary condition Concentrations

3
VB, oB. pb (#afoms/m’) The Gibbsian
w’/on u’ u’ y bulk reference
ye, e, pe state is a mental
‘/\ a A construct
& Gibbs ref
i }
B ¥
N \\: o \, (//g\\\,
Lo
(a A
S / \ o) o
La ) Gibbs ref ¢l
A C radius
(a) (b)

Figure 5.1: Gibbs excess.

The Gibbs interfacial excess is defined by (a) consider a cutout region C: the cutout exists
in mind only and not in reality. Or we could consider periodic bondary condition (PBC),
where the o phase is encased in § phase matrix, so we can forget about free surfaces all
together. (b) choose an arbitrary geometric partition surface A between « and f, as long
as the arbitrary choice is consistently applied and near the physical interface region. Thus,
we have volume partition C = V® + V8. The Gibbs bulk reference state is a state with
Ve 4 cPV? particles, which is different from N, what the system really has inside C, as
Fig. 5.1(b) illustrates. The difference is defined as the Gibbs excess:

N* = ¢*V*, N = VP, N = N*+N° N (5.1)

Note that N is real, but N® and N? are not, and only serve in the bulk reference state.

Define interfacial excesses:
B = E— E*(N*V* 5% — E°(N° V# §9) (5.2)

ST =85 —-8°-5° (5.3)

The point is that there is a unique mapping from (N, E, C) — (N, E*, V) + (NP EF VF)+
(N7, E7, A), once an arbitrary but consistent choice (a gauge choice) for A is taken, that
the physical system “naturally” lends itself to such decomposition under the assumptions

stated above.
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For the physical system, when C and A is fixed,

dE = TdS+> pdN;, (5.4)

for the injection of heat and particles into C. Let them equilibrate inside C, and remeasure

(S, N%), (8%,N”), and recalculate the tracking reference quantities:

dE® = TdS® +3" wdNg, dE® = TdS® +Y pdN/ (5.5)

recognizing the intensive quantities 7" and yu; are the same everywhere in the physical system,
and that the reference system and the physical system agree in these intensive quantities.

So we have:
dEY = TdS7 + Z widN; . (5.6)

In essence, the perspective is to map the physical system, which has small but finite interfacial
thickness, to a fictitious system of three phases «, 3,7, where v has zero volume but finite

particle number and energy as well as entropy.

The ~ phase does have finite area A, which can vary as shown in Fig. 5.1(a). Drawing

analogy to isotropic PdV term for «, 8 phases, one can propose vdA term for A variations:

dE" = TdS"+ > pdN] +~vdA, (5.7)

where v is called the interfacial tension [62], and like P has the connotation of force.

The above allows A to change. If we also allow C to change, we should have:

dE® = TdS* + 3 udNy — P*dv®,  dE” = Tds" + 37 wdNP — P2ave  (5.8)
Thus, the total differential in C is:
dE = TdS + Z pidN; — P*dV® — PPV 4 ~vdA. (5.9)
For fixed C, but dV* = —dV?, it is then easy to show the Young-Laplace relation:

dA 1 1
pP* = pPo~N—"—" — pB - pP ( ) 10
Ve + v(k1 + K2) + R1+R2 : (5.10)
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where k1 and ks are the two principal curvatures.

Consider a 2-phase emulsion illustrated in Fig. 5.1(a), imagine instead of 1 liter of such

emulsion, we create A liters of such emulsion, we will have
E\S, AN, AV AVP NA) = AE(S,N,V* VA A). (5.11)

In other words, we keep the same microstructure (denoted by vector A = A/A) and the
same interfacial-area-to-volume ratio, and just make more quantity of this composite

materials, then we have:

E = TS+> uN;— P*V* — PPVF + yA. (5.12)

The grand potential for the system is:

QT {p},C,A) = F—> j;N; = yA— PV — PPV?P, (5.13)

whereas for the Gibbs bulk reference states:

0" = F* =Y Nt = —P°V®, Q* = F* =Y ;N = —P°V*® (5.14)

so 7, the tension, can be understood as the excess grand potential per unit area:

V= F =Y N = Q-Q"-Q°F = yA (5.15)

It is clear that the V® — A%% and —P* — +*# analogy holds exactly between 3D bulk and
2D interfacial area in the free energy expression. Thus, we can simply regard the interface
between aff as zero-volume, finite-area 2D phase, and v as the “minus pressure” of this
infinitely thin 2D phase. The interpretation of the Gibbs isotherm is that it is exactly
the same analog to the Gibbs-Duhem relation in 3D bulk system.

v is also an excess Helmholtz free energy density, but one must take a homogeneous bulk
reference state (JL ref) that has the same number of atoms as N, as illustrated in Fig. 5.1(a),
instead of the Gibbs bulk reference state that has different number of atoms. This is only
reasonable, since to obtain a measurable energy difference/change one should compare two

systems with the same number of atoms, so the Einstein £ = mc? does not come into play.
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It is clear from Fig. 5.1(a) that

F§ = F*4 Y N, (5.16)
since 5
Fa
ON; Ne T Ve

for a homogeneous bulk phase, where N/ is the Gibbs particle excess to the left of the
geometric cut A, so Fjj has the same number of atoms as the physical system to the left of
A. Similarly

Fu, = P+ 3 N, (5.18)

so the JL ref state is different from the Gibbs ref state

Fy, = F§ +Fy = F*+ F°F + 3 N, (5.19)

by ¥ N7 i Thus,
F_FJL = F’Y—ZNZMZ = O = ’)/A (520)

In the context of the JL reference state, then, interfacial tension is also understood as the

interfacial free energy (excess Helmholtz free energy).

Differentiating (5.12) and subtracting off (5.9):

0 = SdT + > Nidu; — VedP* — VPdP’® + Ady. (5.21)

We also have Gibbs-Duhem relations for the Gibbs ref states:

0 = ST + > Nfdu; — VedP®, 0 = SPdT +> N/dy; — VPdP®, (5.22)

so the “Gibbs-Duhem analog” relation for the infinitely thin 2D ~ phase is just:

0 = ST+ Njdu; + Ady, (5.23)

thus o A
dy = —Z-dT =Y “Ldy, 24
Y 1T =2 —du (5.24)

%
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is called the Gibbs adsorption equation [62]. One can define interfacial excess as

N7
I = f{ (5.25)
which has unit of mol/m”.
So we have 5 &
Y
{n;}
and 5 N
87 == =T (5.27)
Hi {mjzi},T

I'; can be measured by so-called contact angles. Suppose we have three phases «, (3, §, then

by force balance we should have

,yaﬁ ,yaJ ,}/ﬁJ

sinfef  sinf*®  sin B’

(5.28)

By studying the contact-angle change with respect to temperature and chemical environment,

we can infer about the entropy excess and particle excess on the interface.

dividing surface

(a) (b)

Figure 5.2: (a) Consistency needs to be maintained in defining the Dividing Surface. (b)
Measuring how interfacial energies change with 7" and {y;}
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We note that in the original definition, I'; depends on the exact location of the dividing
surface (a gauge freedom). In the contact angle experiment, say between «, 3, §, with af,
ad, B interfaces, this depth has to be consistent though across different phase boundaries.
In other words, if we retreat the dividing surface location with respect to the actual ¢’ A (x)
toward the « side, then it has to retreat by the same distance with respect to ¢°(x) toward
the a side as well, otherwise there will be a gap left at the triple junction. Indeed, while inter-
facial excess entropy S7/A, excess energy E7/A, and excess masses ['; are gauge-dependent,
macro-measurables like the liquid-air surface tensions 7%, %, 4% and dihedral angles are
gauge-independent (and this have to do with the fact that when changing the dividing
surface by a few Angstroms, the former atomistic-scale quantities change a lot and can go
from positive to negative, while the numerical value of A will change relatively little, and ~,
which is like a “pressure”-conjugate to A in the free energy, won’t change much with respect

to the definition of the dividing surface).

To remove this uncertainty in the dividing surface location, one can define relative surface

excess: 5
r'=r,-n%"% (5.29)
-

When there is shift in the dividing surface toward a by A, the actual number of atoms
does not change, but the reference state changes, with (cf — ¢)A more type-1 atoms in the

reference state, and (¢! — ¢*)A more type-i atoms in the reference state, so we will get:
c
Ty — Ty (= DA, Ty = Tyt (¢ = )A, AP = AP 157 (e — ) A (5.30)
i=1

and it is easy to see that I'} is independent of A. Type-1 is usually chosen to the solvent

molecule. Alternatively, we can just define the dividing surface so that
rh =20 (5.31)

so there is no solvent-molecule excess at the interface. When we take a dividing surface so
(5.31) is true, we can directly read off the dividing-surface-independent I'} by T; (which is
dividing-surface-dependent) at that particular dividing surface. This is the dividing surface

we will choose next.

Soap molecules like sodium dodecyl sulfate (SDS) has a hydrophilic head and a fatty hy-

drophobic tail. It dissolves in water, but prefers to segregate to the water-air interface, to
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reduce the pain of loss of hydrogen bonds, thus
Isps > 0 (5.32)
From the Gibbs adsorption equation, we see that
dy ~ —T'spsdkpT Inagps(aq) (5.33)

where agps(ag) is the activity of the SDS molecule solvated in the water, which is close to

the mole fraction when dilute. Then

I'spsksT

dy ~ —
7 CSDS(GQ)

desps(aq). (5.34)
Experimentally, the surface tension of the aqueous phase can be reduced by as much as 70%
from that of plain water. This allows the aqueous solution to wet solids and spread on solid
surfaces more easily. Also, because the soap water has lower surface tension, it delays the
Rayleigh-Plateau instability, and cause soap bubble to be more stable (it also reduces the

rate of water evaporation kinetically).

Also, by varying the temperature or composition spatially, the surface tension (7'(x), X(x))
can change, and this gradient in v induces so-called Gibbs-Marangoni flow or convection
of the fluid:

Vy = =s'VT = > I'iVyp, (5.35)

since V~ causes direct imbalance of force per length. The first term above is called thermo-
capillary force, while the rest are called chemo-capillary force. Such transient imbalance
imposes a calming effect on the surface wave, which is used by spear fisherman: they throw
grease into the water, and this calm the water (transiently) so they could see inside the ocean.
According to Franklin’s 1774 paper, “not more than a tea spoonful produced an instant calm
over a space of several yards square, . . . , making all that quarter of the pond, perhaps half
an acre, as smooth as a looking-glass.” [63] This effect can be explained by greatly increased
shear-dissipation due to Gibbs-Marangoni flow.[64]

To explain Franklin’s and other experiments, let us define o« = oil phase, f = water phase,
o/ = vapor phase, and solutes like SDS can dissolve in 3 as well as segregate into a3 interface.
Oil phase wets water, meaning;:

AP 5 yPa g e (5.36)
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So there is an effective reduction of surface energy after the oil wetting. However, with SDS
dissolved in 3 (soap water), 7°* can drop even more, as the polar head of SDS likes water,
and the non-polar tail of SDS likes oil. This further reduced v*® would make it even easier
for water solvent (f phase) to surround oil phase (o phase) under washing conditions. Thus

SDS is a detergent, that helps to remove oil patches on cloth.

When there is a sinusoidal water (3) wave, even when the a phase is very thin, the density
of oil molecules in flat interfacial region and the curved interfacial region will be different.
This difference in oil molecule density will cause Vy;, and will actuate the chemo-capillary
force gradient in (5.35), which will then drag the oil film and shear the water beneath it. The
sliding and slippage of § beneath « film will induce a much larger dissipation rate than a
bare 7%’ interface would - it is like a moving solid on top of fluid[64] Only about 15% of the
enhanced water wave damping comes directly from reduced surface tension value. In other
words, the gradient in surface tension is more important than the value of surface tension in

this problem.

The above discussions all assume the interfacial excess free energy (if we take (5.12) to
be definition of v and think Y, u;dN; as the “free energy”). What if the excess energy

is a function of inclination angle ¢? Consider the following classic problem of optimizing

Jdlv(¢):

dx 5.37
/ cos gb ( )
subjected to the constraint that the curve must pass through (z;,v;) and (zy,yy):
Tf zf - sing
—u= [y = [Ta 5.38
ur—y /:r Y ;i xcosé (5.38)

Imagine any arbitrary change ¢(z) — ¢(x) + d¢p(x) that satisfies the constraint:

[ cos¢  sing
0 = / dx lcosqﬁ - COS2¢(—sm¢] / dz c032 (5.39)
which will cause / '
0 = / " da lzogb; + V(i)s?; ﬂ (). (5.40)
The above can only be correct, if
Y(0)  2@)sing A -

cos ¢ cos2¢p  cos?o
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where A is a position-independent Lagrange multiplier. Therefore, mechanical equilibrium is

achieved only if
Y(¢)cosd+y(¢)sing = A (5.42)

for all x. Since in this example, the interface is just a line, force equilibrium along a line
suggest A is exactly this force. (¢)sin¢ is the traditional line tension, projected in the

y-direction. If 7/(¢) = ;% = 0, then solving (5.42) as an ODE would give us

sing(z) = i —  ¢(x) = const (5.43)

e.g. a straight line. But if v(¢) then generally it will be a curved, or even kinked line. The

v (@) cos ¢ is easily explained as torque term. So the surface tension is just

d
t = d;meg (5.44)

for a 1D line, where £ is the line direction and m 1 &.

5.1.1 McLean Isotherm for Interfacial Segregation

The interfacial excess of a solute I'; usually takes a “Fermi-Dirac” shape when p; is varied

(kgT In~; X;). That is, for very small or very large y;, there is vanishing slope:

ar;

0 5.45

indicating there is a fixed number of sites in the solid interface that is either all empty (“0”)

or all occupied (“1”). Thus there is a peak slope location:

ar;

_— 4
max - X (5.46)
Imagine a dilute 1-2 solid solution in the bulk lattice:
Xy, <1 (5.47)

and a grain boundary. Suppose the GB has a site density I'° (mole/area, or #/area), forming
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a monolayer. So at most, we have occupancy:
max [y = I (5.48)

(In above, we ignore the dividing plane choice, since X5 is very small in either side of the
interface). We can define interfacial composition to be
Iy

X) = =. 5.49
7= 2 (549

We can also define solute enrichment factor s to be

Ty X7
s = = =
X, X,

(5.50)

Suppose these sites are either occupied by 1 or 2, and cannot be vacant (e.g. the energy
penalty is too high, or the barrier is too sluggish since this requires long-range transport).
In other words, we should only consider 1-2 exchanges with the bulk. The equilibrium of

this facile exchange requires:

v v

Mo — H1 = Ho— [ (5.51)

We model the right-hand side by an ideal solution:

99| _
0Xa|,

Y2 X2

a(T) + kgTIn ——————
() + ks 7(1 - Xs)

M2 — p1 = (5.52)
with v = 7, = 1. We will model the left hand side by a regular solution. Basically, let us
assume the interfacial site lattice has coordination number Z (Z = 4 if simple cubic, and 6
if close packed), and suppose only NN interaction on the interfacial site layer is important,

then
9'(X3) = X3g"(1)+(1-X3)g"(0)+ kT [X3 In X3 + (1 — XJ) In(1 — XJ)]+ [ (5.53)
where 7
foes = Z0X3(1— X3) = 5 X 6 x 2X7(1 - X3), (5.54)
in which 6 is the excess bonding energy between 1-2:

€11 + €22

9 = —612+ 9

(5.55)
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where —ep5 is the amount of energy stablization gained by a 1-2 bond, and 2XJ (1 — X3) is

the probability that a certain bond is a 1-2 bond in the mean-field approximation.

If # < 0, then the system prefers to mix in 2D inside the interface layer. If 8 > 0, it prefers

to 2D phase separate (inside the interface layer). Then

ag” . X3
— = 1)—g” T1
MU BTN AT &

therefore we get the isotherm:

X2 _b(T) X; _229)(;
e kBT — e kgl
1-X, 1—- X7
with
b(T) = g"(1) —g7(0) + Z0 — a(T)
If we define
270 X5 ]
a = ———, w = e *B
kgT’ 1— X5
then
In Xy —In(l — XJ)+aX] = lnw
SO
dX7] L—|—;—1-a = dlhw
2\Xx) T 1-X] B
SO
dX; B 1
dlnw Xi;—i—ﬁ%—o/

We see from above that indeed when X3 — 0,

dX]

+
dlnw -0

and when X — 1,
dX]

+
dlnw -0

+(1-2X7)20

(5.56)

(5.57)

(5.58)

(5.59)

(5.60)

(5.61)

(5.62)

(5.63)

(5.64)

which are saturation behaviors. The peak slope is always reached at X3 = 0.5. We see that

if
a > —4
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or

270

knT
we will always have a single “solid-solution” interface. But otherwise the interface could
phase separate in 2D (Fig. 7.11 of [65]).

< 4 (5.66)

5.2 Moire Bicrystallography, Coincidence Site Lattice,
O-Lattice

A lattice is described by
gi-a; = 2mo;; (5.67)

where ay, as, ag are the primitive cell vectors, and g1, g2, g3 are the corresponding primitive
reciprocal vectors. (in Bragg diffraction, we see mig; + moags + msgs). We use b to denote

a certain integer combination of the primitive vectors:

b = nia; + ngas + nsas (568)
and the fundamental relation
g -b = 2mn, (5.69)
More generally, we use
As; = g; - Ax (5.70)

to measure the change in internal coordinate. {s;} can be futher expressed as

s = 27TQ2SJ —H}@-) (5.71)

™

so v; € [0,1). Clearly, two different s with the same v are equivalent cell interior positions.

e}
K3

Now consider two lattices {g®, a®}, {g’,a’}. o and S can be rotationally related:

a! = Ra® (5.72)

(3

where

R'R = RR” =1 (5.73)

which is the situation for a grain boundary, or they may not (in which case we have a phase
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boundary, and o and ( are phase labels).

With 2D grids, we can do an experiment, where as we rotate 3, a pattern coarser than
either o and ( are sometime clearly discernible by the human eye. Such pattern is called the
Moire pattern. Aside from lattices in materials science, Moire pattern also arises in digitial

photography, when we try to tilt a digital photograph on an upright pixelated display.

A coarse Moire pattern arises when the magnitude of one or more Moire reciprocal vector:

g' =g —g° (5.74)
where
g’ = lLigl +hgh + 185, g = mugd + mags +magh (5.75)
gets much smaller than the primitives:
Y| < gt g5l lesl, lerl. lghl, Igsl- (5.76)

This is shown by considering the interference between two periodic patterns f¢(x), f#(x)

with lattice periods. To leading order, two pattern interact through multiplication:
finteraction(x) X fa(X)fﬁ<X) (577)

Consider a black-and-white image where f*(x) and f?(x) is either 0 (white) or 1 (black). A
combined picture has a black pixel at x if either f%(x) is 1 or f#(x) is 1, so that is expressed

as

image(x) = 1—(1— f*(x))(1 - f7(x)) = f*(x)+ f7(x) - f*(x) 7 (x) (5.78)

The first two terms are superposition without interaction. The third term represents the

interaction effect. (This is also true for the elastic energy between two defects).

With Fourier transformation,

FAx) = 3 fge® ™ fA(x) = Y foee® ™ (5.79)

It is clear that
FAX)fPx) = )P (x) (5.80)
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will generate various harmonic waves containing —g® + g® with amplitude Jgofge. Indeed,
the above conclusion is still true for arbitrary interaction of the form (f*(x))™(f*(x))™ which

we will obtain in a Taylor expansion of arbitrary nonlinear interaction
U(f*(), f7(x) = 3 Unn(f* ()" (f* ()™ (5.81)

Since human eyes pick out long-range patterns very well, we notice these very small gM’s,
if the amplitude is not too small. So the composite image after interference consists of

multiple scattering of the crystal momenta of both crystals.

All possible {gM}’s form a “group”, that is, arbitrary integer combinations of arbitrary
gM vectors still belongs to the set, since g”’s and the g® also form “groups”. The key
question is how many integers are needed to basis-expand entire {gM}. If 3 = a (self
multiple scattering), the answer is 3. For arbitrary «, 5, however, the answer is unfortunately
6 and not 3 (if 3, then it is a lattice, since we would be able to expand every gM as
mg)' + nagd' + nagl!). You can convince yourself of this by considering 1D, with two

irrationally incommensurate g%, ¢°:

B
g ﬂ, Vn, m (5.82)
n

gO[
Since one can use rational number to infinitely approach irrational number

B
SR (5.83)
“  n

where € is small number, it is possible to imagine a situation where:

g™ = ngﬁ—mgo‘ = neg” (5.84)

gets really small. But note that just small |gM| does not necessarily this interaction will be
important, since the amplitude of pre-interaction Fourier components could decay rapidly
with n, m respectively. The most conspicuous Moire wave component visually should be

the one with (a) small gV, and (b) its generators, g’ and g® are themselves not too big.

Now consider a special rational situation, where there exists a “relatively small” gM that is
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a rational fraction of a certain crystal momentum g° of 3

M=ghf_gv=_"g0 [<n. (5.85)

S|~

Note that g° is some not-too-big brother of g*.

In 2D square lattice of lattice constant a (with square reciprocal lattice of lattice constant

g = 2m/a), for example, by rotating a downward by —g and 8 upward by g, we create

0
gV = ey2gsin§ (5.86)

if we use g[1,0]* and g[1,0]® as generators.

We may indeed get lucky, for example, so rational multiples of g™ hits one of {gf }:

l
g’ = ﬁgﬁ (5.87)
where | < n are both integers. Since
0 0
Cos 5 —sin g
gfzg[.ﬁl,ggzg[ 92] (5.88)
sin 5 cos 5
We need
- _ _ i cos ¢ —n?sin ¢
g’ = n'gl +i’g, = g[ R (5.89)
N s 5 + N7 cos 5

We need g° to be parallel to e, in this particular construction (doing so, because choosing
a small 6 is a sure-fire way to generate small g™ using not-too-large generators). Thus:

=1

n 0

— = tan - 5.90
and

.0 L. 0 5 0
2981n§ = ﬁg(n sin o + 72 cosg) (5.91)

or
(ﬁl)Z + (ﬁ2)2 m

—_— = — 5.92

n! [ ( )

So this amazing construction is indeed achievable for a number of !, 72, I, n choices. We

can select arbitrary n', n? tuple, then compute the integer (2')? + (72)%. If it is even, then
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we identify
n=-+—~——~—7 1= (5.93)

because we want [, n to be integer but as small as possible. Note that when (7!)? + (7?)?
is even, it can be (a) n', n? both even, or (b) 7', 72 both odd. But (a) can be reduced to (b),
because before meeting that long g°, the Moire vector is in resonance with another shorter
g” half as long. Generally speaking, we require the two generating integers 7', 72 to have no
common denominator:

ged(Rt,n?) = 1. (5.94)

If on the other hand (n')? 4 (72?)? is odd (one even, one odd), still no problem, we can pick

n = (') + (%2 [ = 2¢n. (5.95)

Now let us see what this special alignment (5.85) will bring to us. If

l .
g =g’ —g* = ;gﬁ (5.96)
then

ng” — g’ = ng® (5.97)

so the two sets of reciprocal lattices are in resonance for some special subset of wavevectors
(clearly not all of them usually, e.g. in cubic lattices unless § = m7 - the group symmetry
rotation angles). This means there is some Coincidence Site Lattice (CSL) in reciprocal
lattice. This special condition is called commensurate. I believe this concept aroses ealiest
in civilization in measurement and trading (e.g. five cat’s length is three dog’s length, and
when values are commensurate, one can make easy barter, e.g. three sacks of grain to trade

ten bottles of wine, without either side of the trade having to make sacrifice due to roundoft).

When some reciprocal lattice vectors are in resonance, some real lattice vectors might also
be in resonance. Consider taking arbitrary Burgers vector b? and multiplying on both
sides:

(ng® —1g°) - b’ = ng®-b’ = 2mr (5.98)

This means arbitrary Bravais translation in 8 would be fractionally reciprocal to this
particular reciprocal vector of a, g*! One could indeed say that every nb? hits some m-

tuple planes of a. The m-tuple planes of o forms a grid, and 1/nth division of this form

142



a sub-grid, like a Lined Paper with real and dash lines. So (5.97) is saying that every
equivalent atom of [ is sitting on some sub-grid of «, if one atom of [ is aligned
with one equivalent atom of o at x = 0. Isn’t this cool? Next we will try to make more

explicit the structure of this sub-grid.

(5.97) in the above is getting lucky once (rational, commensurate or resonant in some
special direction). If we get lucky three times, then we will get a bicrystallographic super-
lattice. In real space this will give us Coincidence Site Lattice (CSL), as well as the
O-lattice (which CSL is a sublattice of). We would require

mgr — LEl = mgd, nagh — &) = nogs, nagh — l38s = nagd (5.99)

where g, g5, g4 are linearly independent. Even though it does not have to be, without
losing generality we can actually require the generators gf , g7, gg , 89, gg , g5 to be primitive

reciprocal vectors of each lattice. Then, arbitrary b® can be resolved fractionally:
nigd - b’ =2 &b =2 &bl =2 5.100
181 Ty, N28 T2, 7383 3. (5.100)

So every atom of 3 falls onto a 3D sub-grid of « if they are atomically aligned at some point,
and vice versa. The above still applies to generic phase boundaries - one could make certain

phase boundaries (like between Si and Ge) commensurate by applying epitaxial elastic strain.

Also, we would have

li . ly . I3 .
g =g, &' =—8, & =& (5.101)
ny Mo ng
Consider the real-space lattice formed by lattice vectors ¢y, ¢, c3:

g'-c; = 2mhy (5.102)

C1, Co, €3 can be obtained by matrix inversion, where gM’s form the rows of a G matrix, and

c¢;’s form the column of an A matrix. So we get
Li s B _ o
—gl-c; = (g —gf)-¢c; = 2mdy;. (5.103)

The above can still apply to generic phase boundaries.
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Suppose « and [ lattice are affinely related, for example by elastic strain and/or rotation:
x? = Ax®, gl = g®A7!, i=1.3 (5.104)

and suppose i = 1..3 are chosen to be the primitive reciprocal vectors (reciprocal to the
primitive lattice vectors), so (5.104) defines a lattice correspondence relation. Then the
definition (5.103) {c,} has an interesting interpretation. Let us align an atom of o with an
atom of # and call that point x = 0, and the bicrystal atomically aligned. (But it does
not have to atom-onto-atom, but could be an equivalent interior position onto an equivalent
interior position). The dimensionless internal coordinate with respect to the orgin is defined
by

g1 -
s = | gy -

g3 -

(5.105)

xoK X

But obviously if we add a 27 or subtract a 27 from one of the entries, the internal coordinate
is identical. So (5.103) means x = c; represent a identical interior position to both «a
and (. Thus, the lattice formed by

X = ’i1C1 -+ ’iQCQ -+ ’i3C3 (5106)

are locations of good alignment, where either (a) identical atom lies on top of identical
atom, or (b) no atoms, but identical charge density / wavefunction value on top of identical
charge density / wavefunction value. Indeed, these points can all be chosen to be the origin
of alignment, thus the name O-lattice, which stands for “lattice of origins” by Bollmann
[65]. The key feature when sampling alignment on O-lattice is all-or-nothingness: if o and
[ are atomically aligned, then all the equivalent positions are also aligned (and this should
be low-energy configuration in construction grain boundary). But if one is misaligned, then
all others are misaligned. It is as if « carries its O-lattice subgrid paper (the subgrid we
mentioned before) that is partially atomically occupied by a’s atoms, and f carries its O-
lattice subgrid paper (the subgrid we mentioned before) that is partially atomically occupied
by (£’s atoms, and when atomically aligned, the two subgrid papers overlap at some grid

points both atomically occupied.

We see the above grid paper provides a good basis to talk about relative shifts between o and
B. So far we have focussed heavily on reciprocal space structure of the bi-crystallography,

and in real space, focusing on atomically aligned situation which is supposed to be low-
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energy, high-symmetry configuration for the interface. However, when this interface absorbs
a lattice dislocation, then there will be relative translations between the o block and the

block. For example, since

(g7 —gf)-¢; = g'a] (5.107)
from (5.103), we have
giﬂ c; = gi(c; +af). (5.108)
and thus
gl Ac; = g Alcj+at), VA=0.1 (5.109)

This corresponds to a special situation where, when the « block is shifting along A(c; + a;?‘)
while the 3 block is shifting along Ac; (thus the relative shift is A\af), they would be each
individually moving in their own equivalent (but diverging) trajectories, and so there will be
an energy cost Q(A). When A = 1, the grain boundary has absorbed a lattice dislocation and
has also shifted the location of atomic alignment to x = ¢;j, so QA =0) = QA =1) = 0.
We can use the above set-up to calculate the GB shear generalized stacking fault energy
Q(A), where both crystals shift in the calculation. Aside from certain symmetry beauty
(each moving in their own equivalent (but diverging) trajectories), there does not seem to
be more general meaning to this exercise. It is like a couple doing what each believes is the

“right” thing, but forming a “dislocation”.

Plugging in

(g?A‘1 —g¥)-c; = 2wl = g?(A‘1 —I)c; (5.110)
we see there needs to be
(A" =TI)c; = af (5.111)
or
c; = (A" =I)'af. (5.112)
Since we can map
at = A~'al (5.113)
we can also write it as
¢, = I-A ) 'a) (5.114)

which is the same as p.28 of 2.1.3. of Balluffi notes.

The concept of phase matching and constructive interference is well appreciated in the

time domain. Suppose we have two sources of sound: cos(¢1(t)) and cos(¢2(t)) with different
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frequencies, at time points of ¢1(t) = ¢2(t) + 2nm we say they constructively interfere. At
time points of ¢1(t) = ¢o(t)+ (2n+1)7 we say they destructively interfere. Supposet = 01is a
special point: ¢1(t = 0) = ¢o(t = 0) = 0, say ¢1(t) = wit and ¢o(t) = wot. If the frequencies
of ¢1(t) and ¢o(t) are irrationally related, i.e. wq/wy is not integer fraction, then these points
of phase matching will appear periodically, but these points are usually not special points
(e.g. ¢1(t) = 2lm) of ¢1(t) or ¢o(t). However, if the two frequencies are fractionally related,
then some kind of resonance condition is satisfied, and the phase-matching points can be

special points (like the minimum valley points) for both cos(¢(t)) and cos(¢pa(t)).

We are dealing with essentially the same thing now, but in the spatial domain. The bicrys-
tallography (aka dichromatic pattern, e.g. black and white circles) can have phase-matching
at many points, which are the O-points. If furthermore the spatial frequencies, e.g. the
wavevectors are fractionally related, i.e. commensurate for special rotations, then it is fur-
ther possible for these points to be special points of a and 3, like the atom-to-atom matching
of the CSL lattice (phase 0-or-integer to phase 0-or-integer matching). The O-lattice are all
locations of phase matching gf -¢; = g - ¢ + 2mn, which can include fractional phase to

fractional phase matching.

It is clear that CSL must be part of the O-lattice. Consider (5.103), which can be
rewritten as
gzﬁ . (lej) = 27mj5,-j. (5115)

(since if i # j, the RHS is zero, so we can multiply /;/l;). This means the lattice {/;c;} has

a good chance of being on §’s atoms. And if they are, they must also be on a’s atoms.

Note however that the above is not a proof that {l;c;} must be on #’s atoms. It could also

be {2l;c;}, for instance.

If we are dealing with simple cubic lattice grain boundary, then with the particular gener-
ation scheme ([001] twist), getting lucky once means getting lucky three times automatically.

Since we do [001] twist generation,
g = g (5.116)

for arbitrary 6. Then, since 90-degree rotation is symmetry operation of both lattices, if
nigy — Lg) = mgf (5.117)

then
nigiRyy — Lg/ Ry = nigi Ry (5.118)
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is automatically true.

According to previous calculations

ntcos? — n2sin?
l~5 l 2 2
gllvlzﬁglzfg n'sing +n?cost | =g
0
N ~1
g = 2 0
0

0
¢ = a| VEEEE | o, =g
2nt
0
and with
cosg
gl = g|sing |,
0

We therefore have

& o, &) — om (

(gg'cl, gg'CQ) = 27T<

. ~1
= 2g | sinarctan Z;

. (ﬁ1)2+(ﬁ2)2

2nt

1

ﬁ2

2" 2p!

n? 1
2nt’ 2

If (n')? 4+ (7?)? is even (both odd, like 1,3), then we identify

and {l;c;} for j = 1,2 gives

(gf -7ler, gi -nlcy) = 277(
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).

0

So the superlattice would also have 90-degree in-plane symmetry.

(ﬁ1)2+(ﬁ2)2

(5.119)

(5.120)

(5.121)

(5.122)

(5.123)

(5.124)

(5.125)

(5.126)



n?  nl
(g5 -nlcy, gh-n'ey) = 2m <2, 2) . (5.127)
Plugging in odd-odd gives a lattice pattern that is one-quarter of a BCC pattern (see Fig.1
of Balluffi for 1,3 pattern, where there is a 45° twin plane) and half occupied by atoms, so

we identify the square CSL pattern to be half as the size of the BCC CSL pattern:

Y = 2% — =n (5128)

n = (') + (72 | = 2¢n. (5.129)

{l;c;} for j = 1,2 gives
(gf -2’y gl -2i'cy) = 2m (A', —i?), (5.130)
(g5 -2i'cy, gb-2i'cy) = 2r (A2 @'). (5.131)

the pattern that forms is a square pattern (fully occupied CSL, with 90° twin plane), so

Y= 7Y+ (7H)* = n. (5.132)

As generators, the (n')? + (n2)? odd generator (n' = 2, n? = 1, with 90° twin plane) and
the (n')? + (n2)? even generators (7' = 3, n? = 1, with 45° twin plane) can generate the

dichromatic pattern, with the same CSL and same ¥ = 5.

We also note that the CSL should have the same point group as the original lattice. The

space group situation is more complicated.[65]

What is the utility of O-lattice? The O-points are where fractional good matching occurs,
and therefore when the interface reconstructs, it is likely that the dislocations will avoid the
O-points. This is shown for the case of twist boundary, where the dislocation laying in the
GB avoid the O-points in Balluffi Fig.9, and the tilt boundary, where the dislocation core
avoid thes O-points in Balluffi Fig.10.

The O-lattice is what the eye picks out, and its spacing is not really changing when there
is arbitrary (even irrational) translation between § and « (for example, when there is no

atom-to-atom matching). This is because of the reciprocal space formulation does not really
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care about translations.

Because its existence depends on it, the CSL lattice obviously depends on translation (for
example, in the simplest case of misorientation 6 = 0, with slight translation there will be
no CSL). When there is CSL, the O-lattice then is a superset of CSL. But the relationship
between CSL and O-lattice is not too simple, and involves space group and integer ged.[65]
The O-lattice gives strong hints as to what the CSL might be (like our {l;c;} for simple
cubic, but which could be half filled), but the final integers needs to be worked out explicitly
depending on the detailed structure of {g®,a%}, {g’, a’}.

7

5.2.1 DSC lattice

The DSC lattice is formed when there is a CSL pattern, e.g. commensurability in real- and
reciprocal space lattices. It is defined by all possible translation vectors, that would take a
black atom () onto a white atom («) in the dichromatic pattern:
t = x% —x°. (5.133)
When we already have a CSL arrangement, t can be zero, small or large (comparable to af
or even the the CSL spacing, which are all legitimate DSC translations). Clearly, when we
drag 3 by t above while fixing «, the atom that was originally sitting on x? will now move
to
xP 4 (x% —xP) = x2 (5.134)

o
m?

In other words, x%, which originally may not be a location of atom-to-atom matching
(“loner”), now is (“paired up”). The boundary energy would be the same as before, ex-
cept the dichromatic pattern shifted by

T = x3 — x5, (5.135)

m m

where x¢, was a nearest atom-to-atom matching point

, = %P, (5.136)

X n

«
m

before the shift. Generally speaking
T # t, (5.137)
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that is to say, how much  is physically shifted is different from how much the dichromatic

pattern appears to have shifted (“pattern is mental”).

We may insert (5.136) into (5.133), and get
t = x% —x2 +x), —x% = b2 —bf (5.138)

The bg,,bS pair can therefore be thought as the generator of the DSC lattice. An obvious
property of t is that when the interface absorbs a full lattice dislocation from 3 (t — t+b?),
or a full dislocation from « (t — t — b?), it still belongs to the group, for obvious reason

and as a sanity check. However, we can achieve
t| < [af| (5.139)

under appropriate conditions.

To see this, consider the fact that there must be

b? = Ab® (5.140)
t = b, — Ab? (5.141)
If A corresponds to a small rotation
A = R(a,0) = I+6J(a) (5.142)
where J(a) is an anti-symmetric matrix, then by making b%, = b¢%, we can make t as

small as we want. Indeed we have previously solved this problem for simple cubic lattice in
reciprocal space. By using the generator 7', 7% to produce the rotation, we get the same

kind of condition for commensurability, and we will get
t = b*—b’=-b* I<n. (5.143)
where the only difference with (5.85) is a label switch. This can work for all axis:

li -
t; = a¥—a’ = Lb®, I<n. (5.144)
n;
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We’ve shown before that for simple cubic, ¥ = n. Also, recall that

li ~ (e
—glc; = (g —gY)c; = 27y (5.145)

from (5.103). {l;c;} for j = 1,2 is actually the CSL lattice as we have explicitly shown
before. So nigf = %gf is reciprocal to CSL. On the other hand, we have

2

o B a B o ~0
0 of o t, = : 5.146
a; i o (gl g ) ; %gl ( )

|
o
I

So we get a%—”zti = %Zti to be reciprocal to CSL. This means {3t;} is actually the CSL,
and so the DSC lattice {t;} is ¥ times smaller than the CSL lattice in linear dimension.
Since the CSL lattice is area-wise X times the original lattice area, this means the DSC

lattice is area-wise X! times the original lattice area, for simple cubic.

5.2.2 Grain Boundary As Source/Sink of Incompatibility

In bicrystallography of GB, we talked about misorientation generated by rotation A =
R(r,0) (3 rotational DOF), and translation in reference to the lattice frame of the DSC
{t;} (3 translational DOF). The last thing to choose is an inclination plane, which has 2
rotational DOF symbolized by n, and 1 translational intercept:

n-x = d. (5.147)

There are also Gibbs excess { N;'(T')/A} to describe the chemistry, and excess grand potential
~(T) per area to describe the energy penalty of creating the GB. And the above describes
only an infinite, flat GB!

If r lies in the GB plane:
n-a=>0 (5.148)

this is called a tilt boundary. If r is perpendicular to the inclination plane, this is called
a twist boundary. Otherwise, the GB is called mixed.

In reality the GB can be curvy, and can also interact with lattice dislocation flux, and they

can have even more internal state variables.

We have seen previously that if a GB slides by a direction shift complete (DSC) lattice vector
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t, then the GB energy stays unchanged (or the pre-relaxation geometry stays unchanged,
therefore after relaxation the energy is still the same). Since {t;} is ©~2 times the length
of the lattice vector, from the elastic energy expression o b2, we see that grain boundary
could be really easy to shear. Indeed, a full Burgers vector lattice dislocation, once it is
absorbed into GB, may decompose into many small DSC dislocations, and have a very wide
core. Concurrently, the dislocation core drops in energy, so the grain boundary becomes a

trap for lattice incompatibility.

Recall that we used no crystallography at all in the definition of the Burger vector

ou
— = 14
72 dl ( al )elastic b (5 9)

So even if this dislocation transformed to many smaller dislocations with reduced energy,
the incompatibility content is still there, localized in the GB. It is like in fair trading
involving multiple currencies, the same amount of “value” is always there regardless of how
we trade (euro to dollar to pound). This dislocation content in GB is called the Frank-Bilby
content, which trades with the dislocation content inside the lattice. Even in the situation
where we cannot clearly see sharp dislocation cores (smeared cores), the incompatibility

content is still there.

There are low-angle (0 < 10—15°) GBs, special high-angle GBs such as twin boundaries, and
high-angle “random” GBs (see Fig. 3 of [66]). Near 6 = 0 as well as the special high-angle
GBs, the grain boundary energy varies with Af as:

Ay = AJA6|(B — 1n|Ad)) (5.150)

which represents the cusps (vicinal boundaries are those that are few degrees off from special
high-angle GBs). This Read-Shockley formula is explained by so-called dislocation repre-
sentation of crystal-crystal interfaces. Because dislocations have 1/r like stress field, the
strain energy density is o< 1/r%, and so the energy stored near one such dislocation is
I} 11%0 2mrdr/r?* o« In(l/Ry), where Ry is some cutoff distance. The dislocation density on
the interface (unit 1/m) can be shown to be py,y = 1/1 o< |Af| > 0, thus the energy goes like
—|AO|In(|Ab|Ry). Similar kind of argument can be made for ¢-dependence: it is “cuspy”,
because crystallographically the vicinal boundaries must exist as long stretches of coherent
GBs, plus misfit steps. The energy landscape (6, ¢) contain fractal features like the surface
roughness [67], since any irrational # can be made infinitely close to a rational special bound-

ary. This mathematical problem can be resolved though by considering thermal fluctuations
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and gradient energies.

5.3 Wulff stability analysis

Wulff plot: v(n)n, and inverse Wulff plot: v~ !(n)n.

Kossel crystal show that surface energy naturally have sin |¢| type singularities, with cusps
(locally minimal surface energy) occurring at certain special ¢’s that have especially well
packed surface structure ({111}, {110}, {100} surfaces in FCC crystals). When ¢ deviates
just a little bit (either + or —) from these special angles, there will be crystallographic ledges
whose density is o sin |[A¢|, causing a singular cusp in the energy vs ¢ plot. Such singularity

is due to crystallography, and ultimately, the discreteness of atoms.

(a) (b) (c)

Figure 5.3:

Stability of a certain thin film surface (constrained on substrate) against decomposition.

Consider a; + a; = az. First we would like to show
a1ny + asNy = agng (5151)
where |a;| = ay, |ag| = as, |ag| = az. Since a1a; + asas = azaz, we only need to apply 90°

rotation matrix R to both left and right-hand side to prove (5.151). There is a more general
proof (applicable to tetrahedron in 3D) using Gauss theorem. Define all n; of a polyhedra
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to be pointing outward. The claim is that
> An; = 0. (5.152)
The proof is to consider

dAb-n:/ Px(V -b) = 0. (5.153)

body

l)' j{: jqilli =
i surface

for arbitrary b. So (5.152) must be true, and (5.151) is a 2D special case, with normal of
1,2 defined inward as shown in Fig. 5.3(c).

Now the energy of 1+2 combination is vyya; + y2as. Define

)y = DU TRt (5.154)
as
If the actual v3 > ~;, the n3 facet would be unstable against decomposition into 142.

However, the geometric equality (5.151) could be rewritten as

awwflnl + aﬂwglm = agvg‘y;’lng = vlawg’lng + vgawg"lng (5.155)

So:
a1vi(7r ' — 757 'n;) = aeye(3 ns — 5 'ny) (5.156)

which means 75~ 'ns must be on the straightline connecting ~; 'n; and ~; 'ny. If the actual

75 ! lies inside of this vi ! line segment, then 73 will be unstable against decomposition.

So when we plot the inverse Wulff plot, 7~ !(n)n. Any facet that is inside the common
tangent construction of v~!(n)n will be unstable against decomposition (read p. 346-349,
608-615 of [68], ignore the discussion about the capillary vector £(n)). Note that it is possible
to adjust the relative position of 142 to 3, such that beneath 3 contains exactly the same

number of atoms.

Define the angle between ns and n; to be ¢. From the law of sine in inverse Wulff plot, we

get
sin(m — a — ¢) sin «v

— o (5.157)
it !

In above ¢ is variable as ns scans between n; and n,, but « is constant, set by 7 'n; and
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Figure 5.4: .

75 'ny. We may rewrite the equation then as

) = n 22

(5.158)

sin «

It turns out that v3(¢) must be part of a circle which goes through three points: the origin,
~vn; and yeny. This can proven by the following, consider Fig. 5.4(b). Let us call the angle
shown in Fig. 5.4(b) as /. By the law of sine, we have

sin(m — o/ — ¢) sin o sin(m — o’ — ¢)

+(0) = — 7)) =m

T sin o/

(5.159)

Comparing with (5.158), the only way this can be true is o' = «a, which is constant. The
set of points with such property forms a perfect circle (inscribed angle inside a circle facing
a constant chord is constant). An alternative and simpler proof is that a straight line with

unity distance to the origin maps to a circle after r~! transformation.

Define v*(n)n as the stable Wulff plot. Given y(n)n (from say, a first-principles total en-
ergy calculation), one plots v~ (n)n and eliminate segments of y~!(n)n that lies inside the
common tangent construction. The montage of straight-line common tangent segments plus

uneliminated v~!(n)n segments form v*~*(n)n. We then invert v*~*(n) to get v*(n)n.

Alternatively, the above can be formulated in Wulff space directly. Tangent circle the-
orem: Given y(n)n, both the necessary and sufficient condition that v*(n’) = v(n’) for a
particular n’ is that if one draws a circle through the origin and tangent to v(n)n at n’, such
tangent circle lies completely within v(n)n and do not hit any other points on (n)n. This

is because a tangent line of y~!(n)n that does not hit y~!(n)n at any other point maps to
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a tangent circle inside v(n)n.

The tangent circle theorem and decomposition test is useful for thin-film surface on substrate.
For free-standing crystallite such as formed in deposition, where surface energy dominates the
shape, we need Wulff construction: consider a crystal with f possible surface orientations

n;. Denote their distance to the center as h;. Then the exposed length is a;. Clearly,
a; = ai(hi,l,hi,hiﬂ). (5160)

We also have the following reciprocal relation:

aai . 8ai,1 . 1
8hi,1 N 8hl N Sin9i7i,1’

(5.161)
which can be proven from inspecting the geometry, where 6, ,_; is the angle between n; and
n;, 1.

Now consider a free-standing particle of fixed volume V. We seek the shape that minimizes

its surface energy:

surface Z i@, (5162)

with the shape completely determined by the {h;}. Change in volume must be constrained

to zero:
= S aidhs, (5.163)
and 8 D, 5
a;—1 az+1
E. rface — i— I 7 d 164
so there must be 9 da, 9
a;—1 Q41
1 ; 1
Yi—1 8hl +%ah +%+l 8h Baza (5 65)

where a; is the Lagrange multiplier. Using the reciprocal relation:

da; da; da;

ahl . +7zah +7z+lahi+1 ﬂaz (5 66)

On the other hand, a;(h;_1, h;, hiv1) is a homogeneous function of degree 1 (in 2D):

ai(lhz-_l, lh“ lhi+1) == lai(hi_l, ]’LZ', hi+1) (5167)
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So by taking derivative against [ on both sides, and then setting [ = 1, there is

da; da; da;
hii—— +h,— +h o= q. 1
i 1ahi_1 + "on, + z+18h2+1 a (5.168)

In 3D, there is ai(lh,-_l, lhw lhi+1> = l2ai(hi_1, hi, hi+1) and hl 18h 4 +hz gzl +hi+18276~i1 = 20@'.

Comparing the two equations, we see that

Yi-1 i i+l
.= =— = = .= 5.169
hiox hi  hipy p ( )
for all 4, will be a variational extremum. In fact, dFyuface = dFpux = (Put — Pext)dV
is the original Young-Laplace pressure argument (Fig. ?7?(a)), and the facet-independent

Lagrange multiplier 5 can be identified to be simply the Young-Laplace pressure difference
AP = Py — Py So in 2D, we have AP = J.

The above means that the inner envelope formed by all Wulff planes (a Wulff plane lies
perpendicular to y(n)n at vy(n)n) gives the equilibrium shape of a free-standing nanocrystal.
This is called Wulff construction, which minimizes the total surface energy of a free-
standing nanoparticle. Note that the Wulff construction serves a different purpose from the
tangent circle theorem. The tangent circle theorem deals with the stability of one surface
constrained to have overall inclination n’ because it must conform to the substrate, whereas

the Wulff construction needs to optimize all facets of the nanocrystal simultaneously.

In 3D, there is an extra factor of % on RHS, and we get

Yi-1 i Vvl :ﬁzg
hi-v hi  hipq 2 2

(5.170)

or AP = 2,7 to be the pressure increase inside the solid particle. We see that for isotropic

surface energy and spherical particle, this reduces to the familiar expression AP = 2.

5.4 Gradient Thermodynamics Description of the In-

terface

First-order phase transition is characterized by finite jump in the order parameter n® — n°

as soon as T' = T* (the nucleation rate may be very small, but theoretically suppose one

157



waits long enough one can witness this finite jump at 7F). For example, melting of ice
at P = latm is a first-order transition because as soon as T rises up to 0.0001°C and
melting can occur, there is a finite density change from ice to liquid water, and there is an
obvious change in the viscosity as well. Also spatially, the transition from n(x) = n* to
n(x") = n? typically occurs over a very narrow region: the shortest distance between x and
x' (interfacial thickness w) is typically less than Inm. Previously, we assigned a capillary
energy < to this interfacial region without discussing this region’s detailed structure. Such
“sharp interface” view, where one ignores the detailed interfacial structure and represent it
as a geometric dividing surface, is sufficient for most first-order phase transition problems.
If one is really interested in the physical thickness of this interfacial region however, one
must use so-called gradient thermodynamics formulation [69] to be introduced below, where
the capillary energy [ ~vdA in the sharp-interface representation is replaced by a 3D integral
involving a gradient squared term [ K|Vn(x)[?d®*x with K > 0. The above replacement
makes sense intuitively, since the interfacial region is characterized by large gradients in
n(x), absent in the homogeneous bulk regions of o or 5. Nucleation and growth is a must
for all first-order phase transitions, where large change (n® — 1) occurs in a narrow region

(the interface) even during nucleation.

In contrast, second-order phase transition is characterized by initially infinitesimal changes
over a wide region. These initially infinitesimal changes appear spontaneously in the system
and grow with time, without going through a nucleation (large change in a small region)
stage. For example, in the paramagnetic («)—ferromagnetic (al,a2) transition of pure iron
as T is cooled below T, = 1043K (the Curie temperature, also called the critical point), both
the spin-down a1 and the spin-up a2 phase have very small magnetic moments: n®* = —m,
n*? = m, with m o (T, — T)"2. Microscopically, going from al to a2 near T, would
involve the flipping of a very small number of spins. So the high-temperature paramagnetic
phase, and the two low-temperature ferromagnetic phases are very similar to each other
near T.: [n® — 0|, |n® — n°?| o< (T, — T)'/2, where 7 is the magnetic moment. The breakup
of a uniform paramagnetic domain into multiple ferromagnetic domains upon a drop in
temperature below T, is spontaneous and instantaneous and does not require a nucleation
stage: it is growth, off the bat. In other words, no under-cooling is required for observing
the start of second-order phase transition within a given observation period. The growth
happens essentially instantaneously at 7' = T. Although, to see the growth and coarsening

to a certain amplitude would require time.

The way a system can accomplish second-order transition vis-a-vis first-order transition is
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best illustrated using the binary solution example: gsom (X2, T) = Geom(N1, No, T) /(N1+ No).

Suppose 2] = )y = 2, we may define specific volume free energy as
gU(Cz) = Q_lgSOIH(XQ = C2Q) (5171)

so the bulk solution free energy for a homogeneous system is just

Geoln = </ d3x) gu(C2). (5.172)

gu(c2) is the same function as gsom (X2) after horizontal and vertical scaling. So the tangent
extrapolation of g,(cz) to ¢ = 0 (corresponding to X = p;) would give Q~'y;, and tangent
extrapolation of g,(cy) to co = Q7! (corresponding to X = ps) would give Q 1y, co(x) is
our order parameter field 7(x) here. For an inhomogeneous system, the solution free energy
should intuitively be written as

G = / Bxgy(ca(%)). (5.173)
Using the above as reference, the total free energy then looks like:
G = / Ex(go(ca(x)) + K|Vea(x)]?) + Gotastic (5.174)

where the gradient squared term replaces the capillary energy [~vdA. Gepstic = 0 if 27 =
Qy = Q. (5.174) is a unified model that can be used to investigate both finite interfacial
thickness in first-order transitions [69], as well as second-order transitions [70]. Since K > 0,
the model (5.174) punishes sharp spatial gradients, the origin of interfacial energy. On the
other hand if all changes occur smoothly over a large wavelength with small spatial gradients,
then G approaches G- Since Gy, is the driver of phase transformation (gradient /capillary

and elastic energies are typically positive), let us consider what Gy, wants to do first.

For a closed system, ¢y is conserved:
/d3x02(x) = const (5.175)

which means it is possible to partition the solutes, but it is not possible to change the
total amount of solutes in the entire system. For instance, if one starts out with a uniform

concentration ca(x) = ¢§, a partition may roughly speaking occur as:
s = frreyt 4+ fo2e8?, (5.176)
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where volume fraction

S ) 1 5 — 5!
1" = g fe? = (5.177)

of the region has cy(x) = ¢! and cy(x) = 52, respectively, separated by sharp interfaces.
The solution free energy of the partitioned system is then

Gew = ([ %) (F1gu(c8") + F29(c5) (5178)

compared to the unpartitioned and uniform original system ([ d*x) g,(c5).

Local stability means G, is stable against small perturbations in cp(x). The necessary and
sufficient condition for local stability is that

0?g,
oc3

> 0. (5.179)

If aa%“ < 0, a small partition with ¢! ~ ¢§ &~ ¢§? would be able to decrease Ggo,. For
example, with ¢§? = ¢§ + Ac, ¢§! = & — Ac, f' = f*2 = 1/2, one has

Gsoln 1 1 1 82 v

T = le5 — A0+ 50u(f + A) = () + 555

(cS)(Ac)* + ... (5.180)

which would be lower than uniform g,(c§) if a 1

< 0. A sinusoidal perturbation
c(x) = ¢§ +a(t)sin(k - x) (5.181)

would also have equal amount of “ups and downs”, and would thus also reduce Gyo,. The
reason sinusoidal perturbation is preferred (at least initially) compared to the step function

between ¢§ — Ac and ¢§ + Ac is that it minimizes the gradient energy by spreading the
a

gradients around. Therefore if

, its amplitude a(t) will increase with time. This is
the trick behind spinodal decomp031t10n, or more generally second-order phase transitions,
which can reduce the system free energy without nucleation. Nucleation is not needed here
because the system’s initial state does not have local stability. The loss of local stability is

induced by temperature, i.e.

g,
dc3

g,
ac3

(. T8) > 0, T2, T5) < 0 (5.182)
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thus
9%g,
oc3

(¢5,Tc) = 0. (5.183)

During initial growth of the sinusoidal profile in the unstable composition range, the solutes
appears to diffuse up the concentration gradient (Fig. 5.39 of [71]). According to the
phenomenological Fick’s 1st law Jo = —DVes,, this would mean a negative interdiffusivity
D(cy) < 0. This is in fact not surprising, because D (from Dy, Dy) contains thermodynamic

Xa(1-X
factor 1+ dln”, which can be shown to be ZkiTQ)gX%

When 2 aXQ is negative, D is negative. This means that at the most fundamental level,

and thus have the same sign as
8X2
d1ffus1on is drlven by the desire to reduce free energy or chemical potential, and not by the

desire to smear out the concentration gradient.

Mathematically, while a positive diffusivity tends to smear out the profile (the shorter the
wavelength, the faster the decay of the Fourier component amplitude), a negative diffusivity
would tend to increase the roughness of the profile. The growth of very-small wavelength
fluctuations in spinodal decomposition will be punished by the gradient energy, though.
Thus an optimal wavelength will be selected initially, which can be tens of nms. Later,
after the compositions have deviated largely from cJ, the microstructural lengthscale may
further coarsen, although the interfacial lengthscale will sharpen. Because a1 and a2 do not
come out of a nucleation and growth process, but amplification of sinusoidal waves of certain

optimal wavelength, they lead to unique-looking interpenetrating microstructures.

In contrast to spinodal instability, in a first-order phase transition the system’s initial state
has never lost its local stability. At T = T., one is in a globally stable uniform composition,

which means
gu(c5, TH) < fg, (5", T + f2g,(c52, To) (5.184)

for small and large deviations |c§* — & alike (thus a globally stable system must be locally
stable, but not vice versa). Then at T' =T, ", co(x) = ¢§ becomes locally stable only, which
means small deviations would still induce the system energy to go up, but large deviations
may induce the system energy to go down. Thus, small perturbations like (5.181) would
decay and die, but large enough perturbations may survive. The chance survival of large

enough perturbations/fluctuations in the order-parameter field is just nucleation.

(5.174) can be used to estimate interfacial thickness w in the following manner. Since
Ve o (5 —¢%) /w inside the interface, the gradient energy integral scales as K (5 —c§)? /w, so
the wider the interface the better for the gradient energy. On the other hand, right at T' =T,
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gu(c2) of the first term connects two energy-degenerate states gy(c; = ¢3) = go(ca = ¢2),

with a bump ¢ — g,(c§) in between. The solution free energy first term thus gives an excess
x (g> — go(c§))w, that punishes wide interfaces. The best compromised is thus reached at
w o< KY2|c5 — ) (gr — go(c)) /2, with interfacial energy v o< KV/2|ch — ¢2|(g" — gu(c3))Y2.
It turns out that for T, near T, |cj — ¢$| < (AT)Y2, where AT = T, — T, and g* — g, (c§)

-1/2

(AT)?, so the interfacial width near the critical temperature would diverge as (AT)~%/2 and

the interfacial energy would vanish as (AT)3/2 [69).

Science advances greatly when two seemingly different concepts are connected, for instance
the Einstein relation M = D /kgT. Cahn and Hilliard made a similar contribution when they
connected interfacial energy to critical temperature and second-order phase transformation.
Based on the insight that gradient term should be added to thermodynamic field theories
(fundamentally this is because of atomic discreteness), they developed gradient thermody-
namics formalism for chemical solution systems that predict finite interfacial width, interfa-
cial energy, as well as wavelength selection in spinodal decomposition [70], under one unified
framework. The development can in fact be traced back to the work of van der Waals for
single-component systems, using density as order parameter[72]. Another offshoot of this

approach was provided by Ginzburg and Landau in the theory of superconductivity.

Finally, if £2; # €5 the 1-rich al phase and 2-rich a2 will have different stress-free volumes,
and to accommodate this mismatch coherently would involve finite elastic energy Gejastic >
0. Growth of the sinusoidal concentration wave would require growth of the associated

transformation strain wave. This would delay the onset of the spinodal instability.
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Appendix A

Notes on Transformation Elasticity

A.1 Inhomogeneous Elasticity Solver in Supercell un-

der Periodic Boundary Condition

Given an original supercell [73] Hy, with x = sHy, s € [0,1), we would like to solve the

following problem:

FIH, (%)) = rl{&r)l Fu(x)|H, €*(x)] (A1)
PO EL )] = L [ dxei () (e (3) — 00N (e0) — () (A2)

where u(x) = x’ — x, the difference between the new position x" and the old position x, and

e;(x) = “J"Z”‘J (A.3)
H is the new supercell: H = Ho(I + €). Global rotation of H does not matter anyhow to
(A.2) to first order in the global rotation angle, and is therefore ignored in this leading-order
theory. Note that the untransformed material in Hy does not have to be stress free. The

entire role of Hy in the above is to provide a reference grid.

(A.2) is motivated by the following idea experiment. One first cuts up the untransformed
supercell Hy into many blocks d®x. Then imagine for instance the temperature is raised,
and phase transformation / plasticity may induce some blocks to transform to a new state.

Each block, if left alone (stress free), would like to transform to a new strain state €°(x).
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Additional local rotation R(x) of the block does not matter to the internal Helmholtz free
energy of this block [74, 75], but needs to be globally optimized since R(x) must be globally

consistent with u(x).

Because of the periodic boundary condition, there must be
u(x + hg) —u(x) = hge (A.4)

where hg is one of the Hy edge vectors. So

h d ! d
g X))y [ xS = det [Hyle (A.5)
0 dx’ dx

Note that {¢;;(x)}, because of (A.3), need to satisfy three compatibility constraints
€iijj + €jjii = 2€ij45, ViF ] (A.6)

which means the {¢;;(x)} fields are not independent fields in the variational functional (the
{u;(x)} fields are). On the other hand, there is no compatibility constraint [76] on the stress-

free strain fields {€);(x)}, which are “given” in the elastic constant minimization problem.

The functional to be minimized in (A.2) represents a quadratic expansion approximation of
the Helmholtz free energy [75] around the freely transformed block. As such, there should
be a conversion factor det |d®x’|/ det |d*x| as well as tensor rotation using R(x) to convert
the isothermal elastic constant of the transformed material to ¢;;p,(x), which is based on the
original volume and observation coordinates. However, this effect is higher order, same as

the higher-order terms ignored in (A.3).

Unlike the more general nonlinear formulation of [76], the merit of the quadratic expansion is
that (A.2) is quadratic in u(x), whose minimization (in principle at least) entertains a close-
formed solution in the form of a matrix inverse, after real-space discretization of u(x) and
representation of V2-like operators. We have the stress equilibrium equation in structurally

inhomogeneous and elastically inhomogeneous material:

(Cijpg (%) (tpg (%) — €9(x))); = 0, Vi=1.3 (A7)
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A.1.1 Homogeneous Special Case

0

If the system is elastically homogeneous [77], cijp(X) = i}, there is translational symmetry

in the problem:

0

ciqu(upﬂ(x) — egq(x))J =0, Vi=1.3 (A.8)

and the inverse can be done in the Fourier space on a k-by-k basis. We first note that u,(x)

can be decomposed into a secularly growing component in x, plus a periodic component:
Up(X) = X€ + Upy(x) (A.9)

Then stress equilibrium requires that in k-space:

= akakity (k) = ic); e (K)k; (A.10)
where ~ — 3 —ik-x ~ 1 ~ ik-x
a,(k) = /d XUy (x)e™ %, a,(x) = det|Ho|Zup(k)e : (A.11)
K

and similarly €, (k) <> €% (x). If we define symmetric matrix C(k) [77]

(A.12)

~ ~

the inverse matrix is also real and symmetric: (k) = C~!(k). Let us also define strain-free

stress:
03(X) = Gaba(X), on(k) = ceni(k), (A.13)

then
—[k[2Cip(k)iy(k) = iol(k)k; (A.14)

and u,(k) is obtained explicitly as

3 Qi (k)09 (K)o
(k) = 2 i‘k’g L, (A.15)

Qpi(k)
[k

space Green’s function relating force to displacement in this translationally invariant system.

Since ia?j(k)kj represents the divergence of stress, or net force, — is just the infinite-

This Green’s function is short-ranged in reciprocal space (in fact k-by-k local), but long-

ranged in real space. Thus it is advantageous to solve homogeneous-material problems in
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reciprocal space, which is more generally called the spectral method.

The strain field that corresponds to the (A.15) displacement field is

ki, (K) + ikyiig(K) Qi (K)o (K) kg + Qi (K) 0% () k
gpq(k) — unp( );Zpuq( ) — P()U'LJ(>J q2 q ( )01]()] P7 <A16)

€pg(X) = Epg T Epg(X), /d3x€pq(x) = 0. (A.17)

The rotation field R(x) = I + W(x) that corresponds to (A.15) displacement field is

Wiq(k) = 92 (A.18)
The stress field is
Oij (X) - C?qugpq + C?qugpq(x) - O_?j (X) (Alg)
oij(k) = det |H0|Cszq€pq5k + cszqepq( )—o ](k) (A.20)
Qi (K)o, (K)kjiky + 2 Qi (K)ol () ko k
— det|Ho|prq€pq5k ijq D ( )Uz]( ) J q_;_cupq q ( )gz]( ) 7P —O'?J(k)
We see that the o;;(k) solution above satisfy stress equilibrium:
QQZ'/IA{ ka/%'/]%];"—i-o‘Ql/lA{ /'/kff//;‘ff
Uij<k)kj — ‘k’cupq P ( )02]( ) 7774 2 ngpq q ( )Uzj< ) VAR S o ‘k’O’?](k)k’]
Cip(K) Qi (K)o, (K) ks 4 Cig(K) Qi (k)09 (K)
— |k’ P( ) p ( )Uz]( ) J ; q( ) q ( )Uzg( ) J —|k’0'?](k)k?]
511/0—/ /( )k + 5“/0-/ /( )l;’ i’
= Ik . " Koy (0,
= 0. (A.21)
(A.2) is then relaxed to be:
d3x d3x
Fel[H’ GO(X)] = 2 C?]pq 1] /dgxcz]pq ’Lj pq +/ ?]pqelj qu(X)
d3x
- 9 C?Jpq €ij / dgxcwm €ij X)Epq + / wpqewepq
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- /dgxcmpq z] pq + / p qpqEP q X)gPQ<X)
d3x _ det |H0| _
= / ?]pq z] 2q (X) — €pq / dgxcgquegj (X) + 2 C?queijepq

© det |H | < Z Tpq pz(k) (k)l;; /;;

e Y
2det [Hy| 4 Catpat o

+ k)0 (k) kg (k) o% (k) sk, (A.22)

where we have used the property: o,,(—k) = o7 (k) for real o,,(x) field.

pq
But
it (K) 00 () ki i (K)o (K)ejky = Cop (k) Qpir (K) 00 (k) hejr Qs (k) (k) K

= 51/pa?,j/(k)kj/§2pi k O'?J*(k)]fj
= 0, (K)kyQi(k)oy (k)k;
= kyoy,(K)Qi(k)o)y (K)k;. (A.23)

So the final relaxed elastic energy [77] is

i d*x B det |H o
F 1[67 EO(X)] = 7C?qu€?j<x)€2q<x) - qu/d?’XC?quE?j (X) + ‘2 chgqueijepq
1 - 5 el
k

the last term being the non-affine relaxation energy.
The supercell stress & is

1 OF%Ye € (x)]

% = det ‘ HQ ’ 361-]-

€0(x)

1
_ 0o - 3.0 0
= Cijpg€pa — et TEL ) /d xciquepq(x)
1 3.0 1 3.0 0
- det |Hy| /d Xciquepq(x)  det |H,| /d XCiquGPq(X)

1 3

which is physically intuitive.
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A.1.2 General Solver

Wang, Jin and Khachaturyan (WJK) proposed an iterative solver to (A.7) based on an
operator splitting technique. The idea is one wants to avoid direct handling of u(x), and
real-space representations of V2-like operators, as in the usual finite-difference scheme. The
finite-difference or finite-element schemes are philosophically similar to atomistic simulations.
It is known that solving elasticity problems in real space often have slow convergence. In the
WIJK treatment, the section A.1.1 solver is used as a “pre-conditioner”. If the system is close
to an elastically homogeneous state, the inhomogeneity can be regarded as a perturbation

and convergence should be fast.

The key idea in [77] is the introduction of a reference homogeneous system cf; ., which

has the same displacement field u(x), strain field e€(x) and stress field o(x) as the real
inhomogeneous system. This can always be done by tuning the virtual stress-free strain field
€g(X):

Cijpa (%) (Upq(X) = €q(X)) = 50 (Upg(X) — €5, (x)) (A.26)

where there are as many equations (stress components) as unknowns (stress-free strain com-
ponents, which do not need to satisfy compatibility [76]), and have unique solution for pos-
itive definite cfj,,.
to a virtual homogeneous system, and vice versa, similar to the mapping from interacting-

So there is one-to-one mapping between a given inhomogeneous system

electrons system to fictitious non-interacting-electrons system in density functional theory
(DFT) [78]. In hindsight, the success of the Kohn-Sham treatment of DFT and associated
planewave solvers (in contrast to older Thomas-Fermi treatment, which forced to be com-
pletely local) largely originated from the splitting of the kinetic energy V? operator which
has nonlocal effects, such as boundary sensitivity, from the total energy, Eq. (2) in [78]. The
remainder part, defined as exchange-correlation energy, is more local. The WJK treatment
which takes advantage of planewave solver for virtual homogeneous system is philosophically

quite similar to the Kohn-Sham treatment.

Suppose we know what €°(x) should be used, it is easy to obtain u(x), €(x) and o (x) based

on section A.1.1 nonlocal planewave solver:
€ (x) — u(x),e(x),o(x). (A.27)

This set of €(x), o(x) is supposed to be identical as that of the inhomogeneous system. But,
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is is true? We can plug into (A.26) locally and check:

C,?quE;q(X) = Ciqu(x)egq(x) + (ijpq - CijPQ<X>>€Pq<X>‘ (A28)

The above should be satisfied exactly if we have an exact guess for €°(x). But if our guess
of €°(x) contains some error, the LHS will not be exactly the same as the RHS. But then we
can invert the RHS to update the guess e;q(x), and repeat the process until convergence is

reached.

When convergence is reached, we have from (A.2)

FIle @0 = 5 [ @500 (ep(x) — 65,6) + €5, () — €2,(2))
= e e (x)] + d;{apq(x)(e;q(x) - egq(x)). (A.29)

So the mapping of energy needs a correction.
The supercell stress & is

1 OFYe e (x)]

det |H0| aEij €9 (x)
_ 1 OF%[e € (x)] (A.30)
det ’Ho‘ 8@]- (%)

The reason is that in (A.29), the value of F*' obviously depends parametrically on €°(x),

and with change in € there will be associated de°(x). However,

5P e (x) €, ()]

=0 A.31
Je°(x) ( )
so (A.25) can still be used, which is physically intuitive.
A.1.3 3D Isotropic Media
A 3D isotropic medium has
Cijpg = A0ijOpg + 1(0ipdjq + Gigljp)- (A.32)
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The relationship between the Lamé parameters A\, p and E, v are:

2vp Ev E
AW T Ut —w) Moty (4.33)
and the relationship between stress and strain is:
opi(k) = (Aey, (k))dij + 2ue;(k), o5 (x) = (Aep,(x))di; 4 2pueg; (x). (A.34)
Then (A.12) becomes:
Cip(f{) = Ciqu]%jl%q = )‘];71‘ Ap + poiyp + :ul%pl%i = [10ip + (A + :u)];’z‘]%p (A.35)
or
Ck) = pI+ (M pK (A.36)

with K;), = /%il%p. The K matrix is real and symmetric. It is also idempotent: K" = K.

The inversion of C(R) can be done by matrix series expansion:

1 &, At ppen 1 A K 1 At
Qk) = -3 (-—)K'=-(I-"—F—)=—-(1- 3 K). (A.37)
[ S I poo 1+ =50 p +2p
Define dimensionless quantity
A 1
o= 2FE (A.38)

A2 2(1—v)’
we then have Q(k) = (I — aK)/p.
So (A.15) would become

ap(}{) _ (51"-/ — Oékpl?’i/)a'?/j/(k)kj/ _ O'gj/ (k)k‘j/ — qkpag -/(k)ki/kj/ . (A39)
pi K| K|

Define vector and scalar

f(k) = o'k) -k, gk) = k-f(k), (A.40)
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which can be pre-computed, we then have

W(k) =
(k) on
The ¢};,,€pq(k) stress component in (A.20) is simplified to be
1— k P .
Atr(€(k))I 4 2ué(k) = MI + f(k)k + kf (k) — 2ag9(k)K
v
= Bg(k)I+f(k)k + kf(k) — 2ag(k)K
where
A1 — ) v
5 = =
7 1—v
S0
0 - A I— K 0
ok)= det ]H0|ciquepq5k + f(k)k + kf(k) + T g(k) — 0 (k).

In the real-space inversion of (A.28):

o (o}

Cipg€pa(X) = Tij(x),  Atr(e®)I+2ue® = T,

we note that
tr(T)

3Atr(€°) + 2utr(e’) = tr(7), tr(e?) = It
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(A.43)

(A.44)

(A.45)

(A.46)

(A.47)

(A.48)
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SO
T A tr(7)

€ = TR R (A.50)
Sanity Check 1
To perform a sanity check, consider:
v’ =0, \°=0, o/’:;, B° =0 (A51)
In this case
o°(x) = 2ué°(x). (A.52)
One requires:
V.-o(x) = V-0°(x) (A.53)
ik-6((k) = ik-o°(k) = ilk|(k - 6°(k)) = i|k|f(Kk) (A.54)
But
ik - o (k) = i|k|2uk - €(k) = i|k|uk - (iku(k) + in(k)k), (A.55)
SO ~ o - £(K)
a(k) + (k-a(k))k = i (A.56)
A — k- f(k)
2k - (k) Tl (A57)
Pk (k- f(l)k
B T PR (455)
i 1 kf(k) k(k-f(k)k f(kk k(k-f(k)k kf (k) + f(k)k — (k - f(k))kk
e(k) = ( - + - ) = :
Y @ % % @
(A.59)
&(k) = kf(k)+ f(k)k — (k - f(k))kk (A.60)
It’s clear that
k-6(k) = f(k)+ (k- f(k)k— (k- f(k))(k -kk = f(k) (A.61)
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which satisfies the stress equilibrium condition.

Sanity Check 2: Green’s function

Imagine a point force F at x = 0, compensated by a uniform —F (jellium) spread over the
entire supercell. When one performs Fourier transform on this external force field Fo(x) —
F/ det |[Hy|, all finite-k Fourier component are F, while the k = 0 component is 0. We can
identify —i|k|f(k) in (A.54) with F, in which case

£(k) — |21f! g(k) = k - £(k) = ZlTk|F (A.62)

The displacement, according to (A.41), should be

F —ak-F)k

uk) = —————. A.63
1) = =5 (A.63)
Consider a problem
AT
2 = — — A.64
Vepa(x) det [Hy 476 (x), (A.64)

from electrostatics point-charge solution we know that near x = 0, ¢g(x) should behave as

L On the other hand, if we do Fourier transform in the supercell, we will have

x|

—|k2oc(k) = —4r, Yk 0. (A.65)
Thus 47|k|2 is the Fourier transform of ¢g(x) ~ Kll Furthermore, suppose
Via(x) = 2¢a(x) (A.66)

from real space we see that 1)g(x) ~ |x| would work well near x = 0. Thus,

206 (k) 8
_ |1i|2 :_|kT4’ (A.67)

Ya(k) =

and so the real-space correspondent to —Tk]rj would be 0,0;(—¢a(x)/87) = —@@%. Thus,
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the real-space displacement near the origin (or anywhere, with Hy — o0) is

Fog(x)/4m —aV(F - Vig(x)) /87 F a

~ - F- A.68
. Tl SV E VI (A68)

ug (X) =

which agrees with Eqn (2.5) of [18].

Sanity Check 3: Cylindrical Inclusion

Imagine a cylindrical inclusion of radius R which would like to undergo spontaneous trans-
formation strain €J,, with equal modulus before and after the transformation. According to
Eqn (2.8) of [18]:

._¢¢. _Eoﬁqg 5._i¢ 5. (A.69)
U; = 47r(1 — 1/) 412 o 1042 o ,2041 .
3/ r — 4 - 2
H(x) = / d'x :/ 7Tindr = —27rR*Inr (A.70)
cylinder ’X — X/‘ R 2rr
Also from Eqn (2.9) of [18],
V3(x) = 20(x) — r10,(ro(r)) = —4rR*Inr (A.71)

so (r) = mR*(r* — r?Inr).

- -1 p= 0 _
Hn—l, H22—l, R—O.OZﬁXy—O.Ol, mes[F512, mesp:512

0.6 T . .

A — Analytical
0.5+ i o Fourier
0.4 b 4

0.0996094)
o
)

0, Xy
(=}

-0.1F

0 0.2 0.4 0.6 0.8 1
X

Figure A.1:
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Using Mathematica[79] to do the differentiations, we obtain:

pely 2 (2 — 62%y? + %)

2 2 2
@2+ (1 — 1) , x4+ y" >R (A.72)

Oy, y) =

The comparison with numerical solution is shown in Fig. A.1.

Sanity Check 4: Cylindrical Void

Imagine a cylindrical hole of radius R under a far field stress o7 = 0 except o33 > 0. This
is a plane-strain condition, where o33(x,y) is tuned to make e33(z,y) = 0. We have non-zero

en(z,y), €2(x,y), €12(x,y) that must satisfy the compatibility constraint:
€11,22 + €211 = 2€1212. (A.73)
There are two stress equilibrium equations:
o1y to2 = 0, 0211 +0222 = 0 (A.74)

the finite o33(z, y) is canceled for finite-thickness samples near the hole exit by 3D indentation

like local stress field. Define Airy stress function:

P22 =011, P12 = —012, P11 = 022 (A.75)

Stress equilibrium is satisfied. We also have o33 = A(€11 + €22), 022 = A(€11 + €92) + 2pu€92,
011 = A€11 + €22) + 2péq1, so tr(o) = (3N + 2u) (€11 + €22), and based on (A.50):
o ) tr(o)

= — - — I A.T6
€ 20 23N+ 2u ( )

Plugging above back into (A.73), we get
V4Q0 = (811 + 822)<811 + 822)§0 = (ril&n(r&n) + 7’72892)%0 = 0. <A77)
Converting to cylindrical coordinate, we also have

O =17 1000 + 172050, 099 = 020, 0,9 = —0.(1"0pp) (A.78)
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Since 055 = o9a(x,y — 00) = @ 11(x,y — o), we see that ¢(z,y) must contain o55z%/2 =
o512 cos?(0)/2 = o55r%(cos(20) + 1) /4 as the leading-order term. Presume ¢ = r"g(0), a

cos(nf) angular term excites in (A.77):
0 = (r10.(rd,) —n*r 2)2f(r) = r™*((m —2)* = n?)(m* —n?), (A.79)

which means m = £n,2 £+ n. For n = 0, the solution can be r2, r?Inr, 1, Inr. So we know

the general solution should look like

p = % {(7"2 +ar 2+ b+ 0r*) cos(20) + (cInr + r?) cos(OH)] (A.80)

0r* because we know it does not satisfy the far-field asymptote. Thus,

Orr = T_largp + T_28390
= % [COS(QQ)(T_I(QT —2ar ) —4r?(r +ar? + b)) +r ' (2r + Cr_l)}

= % [005(28)(—2 —6ar ™t —4br=?) + 2+ CT_Q} (A.81)
Org = _87‘(74718990)
- % [25in(20) (9, (r + ar™® + b))
= 72 [26in(26)(1 — 3ar~" — b~ (A.82)

To satisfy the traction-free boundary condition: 0 = o,..(r = R,0), 0 = o.9(r = R,0), we
should have: ¢ = —2R?, 1+ 3aR™*+ 2bR™2 = 0. Also,

1—-3aR™*—bR? =0 (A.83)
then b = —2R?, a = R*. So
Y = 0%) [008(29)(7“2 + R ™2 - 2R*) +1* —2R*In r} (A.84)
Og9 = 053 [COS(QQ)(l +3RY T + 1+ RQT_Q} . (A.85)
o “55 [cos(20)(—1 = 3R'r™* + 4R* %) +1 - R*r?]. (A.86)
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09 = % [sin(20)(1 - 3R*r~* + 2R* )] . (A.87)
And

2(z% + y?)* + 3R*(2* — 62%y* + y*) + R?(a® + 13zy* + Ta?y* — 5y°)

oyy(,y) = 03 2+ ) (A.88)

0 _ o 0 _1 140 _1 p - -
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Figure A.2:

The above solution is independent of v and plane strain vs plane stress condition. The only
difference between those lies in the displacement field, not in the stress field.

A.1.4 2D Isotropic Media

A 2D isotropic medium has

Cijpg = Adij0pg + 1(dip0jq + bighjp)- (A.89)
The relationship between the Lamé parameters A\, p and E, v are:

Ev 2v E

\ = = = — A.90
12 1-v F 2(1+v)’ ( )

and the relationship between stress and strain is:

a?j(k) = (/\egp(k))éij + 2ue?j(k), afj(x) = ()\egp(x))éij + 2ue?j(x). (A.91)
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Then (A.12) becomes:

~ ~

Cin(K) = Cijpghshy = Mk + 63, + plioki = oy, + (A + )ik, (A.92)

or

Ck) = uI+ (M pK (A.93)
with K, = /%il%p. The K matrix is real and symmetric. It is also idempotent: K" = K.

The inversion of C(R) can be done by matrix series expansion:

s A—I—un a1 A K 1 A+ 1
LS A g L )=La-

K). A.94
Ty A R Y A+2u) (4.99)

Define dimensionless quantity

A+ 1+v
= = A.
“ A+ 20 2 (4.95)

we then have Q(k) = (I — oK) /p.

So (A.15) would become

. (0p — ik )00, (K)ky 0% (K)k; — ko, (K) ik
K) — vJ = £J : A.96
iy (k) wilk| ik ( )

Define vector and scalar
f(k) = 6°(k) -k, g(k) = k-f(k), (A.97)
which can be pre-computed, we then have

f(k) — ag(k)k

uk) = : A.98
(k) i (A.99)
The periodic part of the strain field is then
a(k)k + ika(k f(k)k + kf(k) — 2ag(k)K
o 0k k() £k + kf(k) 209K A9

2 20
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with tr(f(k)k) = tr(kf(k)) = k - f(k) = g(k), tr(é(k)) = (1 — a)g(k)/u, and
€(x) = €+ é(x), / dxé(x) = 0, (A.100)

The rotation field R(x) = I + W(x) field is

W(k) = : A.101
() o (A10)
The ¢};,,6pq(k) stress component in (A.20) is simplified to be
1-— k P .
Mtr(€(k))I+ 2ué(k) = wl + f(k)k + kf(k) — 2ag(k)K
i
= By(k)I+ f(k)k + kf(k) — 209(k)K (A.102)
where N
B = M=o =v (A.103)
I
S0
ok) = det|Ho|c;, 0k + £(k)k + kf(k) + (VI — (1 + v)K)g(k) — oy (k)(A.104)
In the real-space inversion of (A.28):
cfque;q(x) = 71;(x), Atr(e’)I+2pe’ = T, (A.105)
we note that
IAt(€?) + 2ute(€”) = tr(r), to(e®) = — ) (A.106)
/’L - ) - 2)\ 4 2M7 .
S0
e - T _ At (A.107)
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A.2 Isotropically Random Strain Matrix

A.2.1 2D

Consider stress-free transformation strain €” of volume elements in an isotropically random

material like bulk glass:

0 0

o_ | €11 €12
6 fr—

eV €l

12 €22

where we have decomposed € into a hydrostatic part €} and a deviatoric part . Assuming

T 0
Qin= gy ™ B (A.108)
2 N3 —M

the hydrostatic part is decoupled from the deviatoric part, one wonders how to sample 7,

73, so the distribution of m is indistinguishable from that viewed in a rotated frame

n=R"nR, ;= nyy Ry Ry, (A.109)
where the rotation matrix is
R = [ os0 —sinf ) (A.110)
sinf  cosf

RR” =1, connecting dx = Rdx, and (dl)? = dx* (I + 2n)dx = dx* (1 + 2n7)dx.

We have
.
m = { cosf sinf } ( e [ ijs = 11 cos 20 + n3 sin 26. (A.111)
N3y —m sin ¢
g
N3 = [ cosf siné } ( e ) S = —1 sin 260 + n3 cos 26. (A.112)
N3 —™ cos
The above is basically Mohr’s circle.
Because
7:]1 _ co§ 20 sin 26 i W = co.s 20 sin 26 (A113)
73 —sin260 cos?26 73 —sin260 cos?26

is a rotational matrix, we get the feeling that 7; and 73 are “equivalent” like z- and y-axis.
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Therefore, the proposal is to sample 7; and 73 as independent Gaussians.

The Jy invariant is
Jo = —det(n) =n; +n; (A.114)

confirming the view that n; and 73 are “equivalent” dimensions in strain space.

A.2.2 3D

Consider
m s 15
n = M6 12 T4 (A.115)
N5 M4 —Th — 12

This is more complicated because clearly n; and 7, cannot be drawn independently, because
if drawn independently, the first and second diagonals will be uncorrelated, but the first with

third diagonals will be negatively correlated, making the third dimension “special”.

Because 1 is a symmetric real matrix, which can always be diagonalized into

ki 0 0
n=R'| 0 k 0 |R (A.116)
0 0 ks

i.e. principal-axes representation, we come up with the following algorithm:

1. Draw hq, hs, h3 as three independent Gaussian random variables with equal variance
2

%
, 2
dP(h;, h; + dh;) = dhs exp(—ﬂ) (A.117)
2mo? 20°

This creates a spherically symmetric cloud.
2. Compute h = (hy + hy + h3)/3

3. Compute k?l = hl — B, ]{32 = hg — ]TL, k?g = h3 — ]_1 The [k’l, ]{32, ]{33] cloud falls onto the
(111) plane that passes through the origin, which is the requirement, but otherwise
has no preference among 1-2-3 permutations.

4. Create a “spherically isotropic” random rotation matrix R (see below).
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5. Plug into (A.116), do the matrix multiplications, to get 7.

To obtain “spherically isotropic” random rotation matrix R, one must first know how to
draw “spherically isotropic” vector v. This can be done by looking at the 47 solid angle in
3D:

2

dr = —/ﬂ deosd [ do. (A.118)
=0 $=0

The algorithm is

1. Draw a uniformly random number « from -1 to 1.

2. Obtain 6 = cos™'(a) € (0,7)

3. Draw a uniformly random number ¢ € (0, 27)

4. Compute v = [sin # cos ¢, sin 0 sin ¢, cos ].
With normalized “spherically isotropic” vector generator, “spherically isotropic” random
rotation matrix can be easily generated by:

1. Draw two independent “spherically isotropic” vectors vy, vo,

2. Obtain ug = vg — (Vg - vi)vy

3. Obtain normalized Gy = uy/|uy

4. Obtain cross product v = v; X Uy

D. R = [Vl, ﬁg, Vg].
Matlab code of the above generator is at http://li.mit.edu/S/e/Matlab/RandomStrain3D/.

One can verify, via histograms, that any component of  and 17 = RTnR indeed have the

same distribution. For example, 15 would have the same histogram as 7.
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Appendix B

Review of Bulk Thermodynamics

Equilibrium: given the constraints, the condition of the system that will eventually be

approached if one waits long enough.

Example: gas-in-box. Box is the constraint (volume, heat: isothermal/adiabatic, permeable/non-
permeable). One initialize the atoms any way one likes, for example all to the left half side,
and suddenly remove the partition: BANG! one gets a non-equilibrium state. But after a

while, everything settles down.

Atoms in solids, liquids or gases at equilibrium satisfy Maxwellian velocity distribution:

— U, )? kgT
dP o exp (_m(vm%)> dv,, (02) = 2= (B.1)
m
kg = 1.38 x 10723 J/K is the Boltzmann constant, it is the gas constant divided by 6.022 x
1023, If T give you a material at equilibrium without telling you the temperature, you could

use the above relation to measure the temperature.

But in high-energy Tokamak plasma, or dilute interstellar gas, the velocity distribution could
be non-Gaussian, bimodal for example. Then T is ill-defined. Since entropy is conjugate

variable to T', entropy is also ill-defined for such far-from-equilibrium states.

Equilibrium is however yet a bit more subtle: it is possible to reach equilibrium among a
subset of the degrees of freedom (all atoms in a shot) or subsystem, while this subsystem is

not in equilibrium with the rest of the system.
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This is why engineering and material thermodynamics is useful for cars and airplanes. Imag-
ine a car going 80 mph on highway: the car is not in equilibrium with the road, the axel
is not in equilibrium with the body, the piston is not in equilibrium with the engine block.
Yet, most often, we can define temperature (local temperature) for rubber in the tire, steel
in the piston, hydrogen in the fuel tank, and apply equilibrium materials thermodynamics

to analyze these components individually.

This is because of separation of timescales. The atoms in condensed phases collide
much more frequently (10'?/second) than car components collide with each other. Thus,
it is possible for atoms to reach equilibrium with adjacent atoms, before components reach

equilibrium with each other.

Define “Type A non-equilibrium”; or “local equilibrium”: atoms reach equilibrium with
each other within each representative volume element (RVE); the RVE may not be in
equilibrium with other RVEs.

For “Type A non-equilibrium”, we can define local temperature: 7'(x), and local entropy.

In this course, we will be mainly investigating “Type A non-equilibrium”, and study how the
RVEs reach equilibrium with each other across large distances compared to RVE size. Type
B non-equilibrium, such as in Tokamak plasma, or radiation knockout in radiation damage,

can be of interest, but is not the main focus of this course.

Consider a binary solid solution composed of two types of atoms, Ny, Ny in absolute numbers
(we prefer to use absolute number of atoms instead of moles in this class). Helmholtz free
energy F = FE —TS = F(T,V,N1,Ny): dF = dE — TdS — SdT is a complete differential.
For closed system dN; = dN; = 0, the first law says dE = 6Q) — PdV, where PdV is work

(coherent energy transfer) and 4@ is heat (incoherent energy transfer via random noise).

For open system, dE = §@Q) — PdV needs to be modified as

11, fo are the chemical potentials of type-1 and type-2 atoms, respectively. To motivate
the additional terms y1yd Ny + pod Ny for open systems, consider a process of atom attachment
at P =0, T = 0. And for simplicity assume for a moment Ny = 0 (just type-1 atoms).
In this case, before and after attaching an additional atom, kinetic energies K are zero.

E=U+K =U(x1,X2, ..., X3n;, ). U(X1,Xa,...,X3n,) is called the interatomic potential
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function, a function of 3/V; arguments. For some materials, such as rare-gas solids, it is
a good approximation to expand U(xi,Xs,...,Xsn,) = 2, ui;(|x; — X;]), where ¢, j label
the atoms and run from 1..Ny, and wu;;(r) is called the pair potential (energy=0 reference
state is an isolated atom infinitely far away). Clearly then, E will change, since there is
one more atom in the sum, within interaction range from the previous set of atoms. Since
P =0, PAdV = 0. In order to maintain 7" = 0, () = 0. To do this there must be an
“intelligent magic hand” to drag on the atom to have a “soft landing”. The energy input by
the “intelligent magic hand” is coherent energy transfer, 6Q) = 0 (if not convinced, consider
a layer of atoms adding on top of solid by a “forklift” - the added layer will move like a
piston - no heat is needed). Also, the “intelligent magic hand” or “forklift” accomplishes
so-called “mass action” (addition or removal of atoms), and is different from traditional PdV'
work, which describes a process of changing volume without changing the number of atoms.
And thus p; is motivated. In fact, from this microscopic idea experiment we have derived

(T =0,P =0) =>;u;(|x; —x;|)/2 when x; runs over lattice sites.

A well-known pair potential is the Lennard-Jones potential:

w(r) = e [(“7})12 _ (‘Z}ﬂ , (B.3)

which achieves minimum potential energy —e;; when r = 2t/ GUU = 1.1220;;. For an atom
inside a perfect crystal lattice, its number of nearest neighbors (aka coordination number) is
denoted by Z. For instance, in BCC lattice Z = 8, in FCC lattice Z = 12. To further simplify
the discussion, we can assume the pair interaction occurs only between nearest-neighbor
atoms, and the Lennard-Jones potential is approximated by expansion u;;(r) = —e; +
kij(r — 2Y%0,;)2/2 (perform a Taylor expansion on Lennard-Jones potential and truncate at
u=0).

The simplest model for a crystal is a simple cubic crystal with nearest neighbor springs
uij (1) = —€;;+ kij(r — ag)?/2 (Kossel crystal), where aq is the lattice constant of this simple
cubic crystal. With Z nearest neighbors (Z = 4 in 2D and 6 in 3D), u(7' = 0,P = 0) =
—Ze/2.

From dimensional argument, we see p is some kind of energy per atom, thus on the order of
minus a few eV (eV=1.602 x 107'%J), in reference to isolated atom. To compare, at room
temperature, thermal fluctuation on average gives kgTioom = 4.14 x 10721] ~ 0.0259 eV =

eV /40 per degree of freedom.

185



Second law says T'dS = 6@) when comparing two adjacent equilibrium states (integral form
is 52 - Sl = fany quasi—static path connecting 1—-2 5Q/T) Thus

dF(T, V, Nl, Ng) = —PdV — S5dT + [leNl -+ ,uszg (B4)
We thus have:
oFr oF oF oF
p=-2 s 20 =28 =2 By
oV T,N1,N3 or V,N1,No ON T,V,No ON3 T,V,N1

(T, V, N1, N3) describes the outer characteristics of (or outer constraints on) the system, and
(B.4) describes how F would change when these outer constraints are changed, and could
go up or down. But there are also inner degrees of freedom inside the system (for example,
precipitate/matrix microstructure, which you cannot see or fix from the outside, and can
only observe when you open up the material and take to a TEM). When the inner degrees
of freedom change under fixed (7', V, N1, Ny), the 2nd law states that F' must decrease with

time.

From theory of statistical mechanics it is convenient to start from F', since there is a direct
microscopic expression for F, F' = —kgT'In Z, where Z is so-called partition function [80,
81]. Plugging into (B.5), one then obtains direct microscopic expressions for P, the so-called
internal pressure (or its generalization in 6-dimensional strain space, the stress tensor o, in
so-called Virial formula), as well as S, p1, p2. This then allows atomistic simulation people to
calculate so-called equation-of-state P(T,V, Ny, Ny) and thermochemistry p; (T, V, Ny, Ny), if
only the correct interatomic potential U (x3>™1+2)) is provided. The so-called first-principles
CALPHAD (CALculation of PHAse Diagrams) [82] is based on this approach, and is now a
major source of phase diagram and thermochemistry information for alloy designers (metal
hydrides for hydrogen storage, battery electrodes where you need to put in and pull out
lithium ions, and catalysts). Since atomistic simulation can access metastable states and
even saddle-points, there is also first-principles calculations of mobilities, such as diffusivities,
interfacial mobilities, chemical reaction activation energies, etc. So F' is important quantity

computationally.

For experimentalist, however, most experiments are done under constant external pressure
instead of constant volume (imagine melting of ice cube on the table, there is a natu-
ral tendency for volume change, illustrating the concept of transformation volume). For

discussing phase change under constant external pressure, we define Gibbs free energy
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G=F+PV =FE-TS+ PV. The full differential of GG is

SO
oG oG oG oG
Vo= o LS = -2 Cm= el = e . (BT)
op T,N1,Ns or P,N1,N, ON T,P,N> ON, T,P,Ny

The above describes how a homogeneous material’s G would change when its T, P, Ny, Ny
are changed, which could go up or down. If the system has internal inhomogeneities that
are evolving under constant 1", P, N1, Ny, however, then GG must decrease with time. Internal

microstructural changes under constant T, P, N1, N, that increase G are forbidden.

Also,

so if a closed system is under constant pressure, the heat it absorbs is the change in the
enthalpy H = E+ PV = G+ TS. H is also related to G through the so-called Gibbs-
Helmholtz relation:

_ 9G/T)
- o(/T)

Putting A before both sides of (B.9), the heat of transformation AH is related to the free-

energy driving force of transformation as

(B.9)

N17N27P

A(AG/T)

A= o)

(B.10)

N17N27P

Now we formally introduce the concept of thermodynamic driving force for phase transfor-
mation. Consider two possible phases ¢ = «, 8 that the system could be in. Both phases
have the same numbers of atoms Ny, Ny, the same T and P. Consider pressure-driven phase
transformation, dG® = V*dP, dG® = VPdP. Suppose V* > VB when we plot G* and G”
graphically on the same plot, we see that at low pressure, the high-volume phase o may win;
but at high pressure, the low-volume (denser phase) 5 will win. As a general rule, when P
is increased keeping T fixed, the denser phase will win. So liquid phase will win over gas,
and typically solid phase will win over liquid. Consider for example Fig. B.1(a). Density

ranking: € > v > a. For fixed T, Ny, N», there exists an equilibrium pressure P, where the
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Phase Diagram of H,0
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Figure B.1: (a) Figure 1.5 of Porter & Easterling [71]. (b) Phase diagram of pure H,O:
the solid-liquid boundary has negative dP/dT, which is an anomaly, because ice has larger
volume than liquid water.

Gibbs free energy curves cross, at which
G®(Pay, T, N1, No) = G?(Puy, T, Ny, Ny). (B.11)

At P > P, the driving force for a« — fis AG ~ (V* — VF)(P — P,,). Vice versa, at
P < Py, the driving force for 3 — a is AG =~ (V= VF)(P,q — P) (by convention, we make
the driving force positive). P — Py, (P.q— P) may be called the overpressure (underpressure),

respectively.

We could also have temperature-driven transformation, keeping pressure fixed: dG® =
—S%dT, dGP = —SPdT. So G vs T is a downward curve. The question is which phase
is going down faster, G* or G”. The answer is that the state that is more disordered (larger
S) will go down faster with 7" 1. So at some high enough 7" there will be a crossing. Liquid
is going down faster than solid, gas is going down faster than liquid, with 7" 1 holding P
constant. For a fixed pressure, there exists an equilibrium temperature 7,, where the Gibbs

free energy curves cross, at which
G(P, Toq, N1, Ny) = GP(P, Ty, N1, Ny). (B.12)

Consider for example solid«+liquid transformation. In this case, T.q = Tm(P), the equilib-
rium bulk melting point. a=liquid, f=solid, S* > S®. At T > T,,, the more disordered
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phase is favored, and the driving force for § — « transformation, which is melting, is
AG = (S — SP)(T — Tyr). Vice versa at T' < T, the more ordered phase is favored, which
is solidification, and the driving force for a — 3 is AG = (S* — SP)(Ty — T). Because we
are doing first-order expansion, it is OK to take S* — S” to be the value at Ty;. However, at
Ty we have E® + PV — Ty S® = H* — T\ S® = H? — TuS? = EP + PV® — T\1S?, we have
S* — 8P = (H*— HP)/Ty. H* — H” is in fact the heat released during phase change under

constant pressure, and is called the latent heat L. So we have
L
AG =~ —|Tu —T]. (B.13)
Tm

|y — T'| is called undercooling / superheating for solidification / melting. We see that the
thermodynamic driving force for phase change is proportional to the amount of undercooling
/ superheating (in Kelvin), with proportionality factor ﬁ = AS. Later we will see later
why a finite thermodynamic driving force is needed, in order to observe phase change within
a finite amount of time. (If you are extremely leisurely and have infinite amount of time,

you can observe phase change right at 7,).

solid/liquid: melting, freezing or solidification. liquid/vapor: vaporization, condensation.
solid/vapor: sublimation, deposition. At low enough pressure, the gas phase is going to
come down in free energy significantly, that the solid goes directly to gas, without going

through the liquid phase.

Thus, typically, high pressure / low temperature stabilizes solid phase, low pressure / high
temperature stabilizes gas phase. The tradeoff relation can be described by the Clausius-
Clapeyron relation for polymorphic phase transformation (single-component) in 7' — P
plane. The question we ask is that suppose you are already sitting on a particular (7', P)

point that reaches perfect equilibrium between «, (3,
G*(Ny, Ny, T, P) = G°(Ny, Ny, T, P) (B.14)

in which direction on the (7', P) plane should one go, (T, P) — (T +dT, P+dP), to maintain

that equilibrium, i.e.:
G*(Ny, Ny, T +dT,P + dP) = G°(Ny,N,, T + dT, P + dP) (B.15)

G*(Ny, Ny, T, P) — S*dT + V*dP = GP(Ny,N,, T, P) — S°dT + V"dP. (B.16)
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So:
—S%dT +V*dP = —SPdT + VPdP. (B.17)

and the direction is given by

P §e— 5" L
@ _ _ . B.18
AT~ Ve—VB — T(Ve—Vh) (B-18)

The above equation keeps one “on track” on the 7" — P phase diagram. It’s like in pitch
darkness, if you happen to stumble upon a rail, you can follow the rail to map out the whole
US railroad system. The Clausius-Clapeyron relation tells you how to follow that rail. L is
called “latent heat”. V® — V4 is the volume of melting/vaporization /sublimation, you may

call it the “latent volume”.

In above we have only considered the scenario of so-called congruent transformation a <+ (3,
where o and ( are single phases with the same composition. We have not considered the
possibility of for example o <+ [ + 7, where v has different composition or even structure
from . To understand the driving force for such transformations which are indeed possible

in binary solutions, we need to further develop the language of chemical potential.

The total number of particles is N = N; + No. Define mole fractions X; = N;/N, Xy =
Ny /N. Since there is always X; + X, = 1, we cannot regard X; and X, as independent
variables. Usually by convention one takes X, to be the independent variable, so-called
composition. Composition is dimensionless, but it could be a multi-dimensional vector if
the number of species C' > 2. For instance, in a ternary solution, C' = 3, and composition
is a 2-dimensional vector X = [X,, X3]. Composition can spatially vary in inhomogeneous
systems, for instance in an inhomogeneous binary solution, X, = Xs(x,¢). In order for
a <> [+ to happen kinetically, for instance changing from X,(x) = 0.3 uniformly (initially
a phase) to some region with X,(x) = 0.5 (in 8 phase, “solute sink”) and some region with
X3(x) = 0.1 (in vy phase, ‘solute source”). This requires would require long-range diffusion
of type-2 solutes over distances on the order of the sizescale of the inhomogeneities, which

is called solute partitioning.

We can define the particle average Gibbs free energy to be g = G/N = G(T, P, N1, N2) /(N1 +
Ns). Like the chemical potentials, g will be minus a few eV in reference to isolated atoms
ensemble. It can be rigorously proven, but is indeed quite intuitively obvious, that g =
g(Xo, T, P), which is to say the particle average Gibbs free energy depends on chemistry
but not quantity (think of (N7, Ny) <> (N, X5) as a variable transform that decomposes
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dependent variables into quantity and chemistry). It is customary to plot g versus X, at
constant T, P. It can be mathematically proven that uy, ps are the tangent extrapolations

of g(X3) to Xy = 0 and X, = 1, respectively. Algebraically this means

B
m(Xo,T,P) = (X0, T.P)+ —2|  (0-X)
90X, TP
9
1(Xo, T, P) = g(Xo, T, P)+ 2| (1-X,). (B.19)
9X5 TP

It is also clear from the above that g(Xs, T, P) = Xju1 + Xapa, S0

oG
G(T,P,Ni,Ny) = Nipig + Nipg = Ny
ON;

A (B.20)

T,P,Ny T,P,Ny

On first look, the above seems to imply that particle 1 and particle 2 do not interact. But
this is very far from true! In fact, u; = pi(Xo, T, P), o = puo(Xs, T, P).

For pure systems: X, = 0, g(Xo = 0,7, P) = 11(Xe = 0,7, P) = iy (T, P); or Xo = 1,
9(Xo = 1,T,P) = po(Xo = 1,T,P) = (T, P). (T, P), fio(T, P) are called Raoultian
reference-state chemical potentials (they are not the isolated-atoms-in-vaccuum reference
states, but already as interacting-atoms). In this class we take the fi1, fis reference states to
the same structure as the solution, but in pure compositions (so-called Raoultian reference
states).

When plotted graphically, it is seen that g(X3) is typically convex up with p(Xs, T, P) <
f1(T, P) and po(Xs, T, P) < fio(T, P) (if not, what would happen?) This negative difference

is defined as the mizing chemical potential
p™ = pi(Xo, T, P) — i(T, P), i=1,2 (B.21)
and maxing free energy
U = X Xl = g — X (T, P) - XofiaT, P),  G™ = Ng™*  (B.22)
respectively. Clearly, by definition, G™* = 0 at pure competitions. ¢™*(X,, T, P) can be
interpreted as the driving force to react pure 1 and pure 2 of the same structure as the

solution to obtain a solution of non-pure composition, per particle in the mixed solution.

AG = —Ng™*(X,, T, P) is in fact the chemical driving force to make a solution by mixing
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pure constituents.

It turns out there exists “partial” version of the full differential (B.6):

0
dg(Xo, T, P) = vdP — sdT + ~9-|  dX, (B.23)
0Xy TP
Opi
9Xy TP
where
oV oV oS oS
V1 = S , Vg = =55 y 81 = S , S22 = S )
ON T,P,N> ON3 T,P,Ny ON T,P,N> ON; T,P,Ny
or or o0H o0H
er = —— , €3 = —— , h = — , hy = —— , ... (B.25)
ON T,P,N ON, T,P,Ny ONy T,P,N ON, T,P,N,

Generally speaking, for arbitrary extensive quantity A (volume, energy, entropy, enthalpy,
Helmholtz free energy, Gibbs free energy), “particle partial A” is defined as:

0A
ON;

a; =

(B.26)

Njzi,T,P
The meaning of a; is the increase in energy, enthalpy, volume, entropy, etc. when an ad-
ditional type-i atom is added into the system, keeping the temperature and pressure fixed.
The particle-average a is simply

a =

C
i=1

S

For instance, the particle average volume and particle average entropy
U—K—Xv—l—Xv S—E—Xs—i—Xs (B.28)
=N M 202, =y - s 252, .

is simply the composition-weighted sum of particle partial volumes and partial entropies
of different-species atoms, respectively. While (B.27) relates all a;(Xs,..., X, T, P)s to
a(Xa, ..., X¢, T, P), it is also possible to obtain individual a;( X5, ..., X¢, T, P) from a(Xo, ..., X¢, T, P)
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by the tangent extrapolation formula:

C
oa(Xq, ... Xc, T, P
ai(XQ,---,X07Tg P) - a(X27"'7XC7T’ P)+Z(6Zk_Xk) ( : anC )’

k=2

(B.29)

where 0 is the Kronecker delta: §;; = 1 if i = k, and & = 0 if ¢ # k. Note in (B.29),
although the k-sum runs from 2 to C, i can take values 1 to C. (B.19) is a special case of
(B.29): for historical reason the particle partial Gibbs free energy is denoted by p; instead
of g;.

The so-called Gibbs-Duhem relation imposes constraint on the partial quantities when com-

position is varied while holding T, P fixed:

c
O = ZXidai|T7p, <B30)
i=1
For binary solution, this means
0= de,u1|T,P + X2d,u2|T,P = deU1|T,P + X2dUQ|T,P = X1d81|T,P + X2d82|T,P = ... (B-31)

The above can be proven, but we will not do it here.

The above is the general solution thermodynamics framework. To proceed further, we need

some detailed models of how ¢ depends on X5. In so-called ideal solution:
pideal=mix(x, T P) = kpTn X, ps=%(X, T, P) = kgTln X,. (B.32)

And so
gide;al—rtli)(()(27 T, P) = k’BT(Xl In X; + X51n XQ), (B33)

which is a symmetric function that is always negative (that is to say it always prefer mixing),
with —oo slope on both sides. Ideal solution is realized nearly exactly in isotopic solutions
such as 2°U - 28U. In such case, there is no chemical difference between the two species
(ean = € = €ap), so the enthalpy of mixing is zero. The driving force for mixing is
entirely entropic in origin, because there would be many ways to arrange 23U and #%U
atoms on a lattice, whereas there is just one in pure 23U or pure 28U crystal (***U atoms
are indistinguishable among themselves, and so are **¥U atoms). This can be verified from

the formula s™* = —9g™* /9T, h™* = 9(¢g™>*/T)/0(1/T).
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We define excess as difference between the actual mix and the ideal-mix functions:
gexcess = gmiX(X27T, P) . gideal—mix(X2’ T, 1:))7 M(;xcess = M;nix . k?BTIIl Xz (B34)

Clearly, excess quantities for ideal solution is zero.

In so-called regular solution model,
g (X, T, P) = wX Xy, (B.35)
where w is X5, T, P independent constant. Using (B.19), we get
PSS = X3, uSes = wXi. (B.36)
And so

1 (X2) = fu +kpThn Xy +wX3, pp(Xo) = fig + kT ln Xy + wX;. (B.37)

It is also customary to define activity coefficient ~;, so that
1i( X2, T) = [i(T) + kT Inv; X (B.38)

Contrasting with (B.37), we see that in the regular solution model, the activity coefficients
are 1o(Xp,T) = e Xi/keT oy (X,, T) = ewXa/knT’

When w < 0, the driving force for mixing is greater than in ideal solution. When one uses
the formula s = —0g/0T, h = d(g/T)/0(1/T), we can see that the ideal-mixing contribution
is entirely entropic, whereas the excess contribution is entirely enthalpic if w is independent

of temperature. In fact, it can be shown from statistical mechanics that

w = Z ((EAA + 6]3]3)/2 — EAB) , (B.39)

where eap is the Kossel spring binding energy between A-B (“heteropolar bond”), and exa

and egp are the Kossel spring binding energy between A-A and B-B (homopolar bonds).

Derivation of the regular solution model (this has been shown in MSE530 Thermody-

namics of Materials): arrange Xa N A atoms and XgN B atoms on a lattice. The number

194



of choices:

N!
Q = B.40
(XN (Xa ) (40
Assume all these choices (microstates) have the same enthalpy:
H = —Z(XAN(XBEAB+XA€AA) +XBN(XB€BB+XA€AB))/2
= —NZ(QXAXBGAB +X/2§€AA —FX]%EBB)/Z <B41)
in contrast to reference state of pure A and pure B
H™ = —NZ(Xpean + Xpepp)/2 (B.42)
so the excess is:
HTSs = —NZ(QXAXBGAB + XIQAGAA — XAGAA + X]23€BB — XBGBB)/Q
= —NZ(2XAXB€AB —XAXBEAA —XBXAEBB)/Q
= NZXAXB ((EAA+€BB)/2_€AB) = NWXAXB. <B43)
According to the Boltzmann formula S = kg1n €2, the entropy is
S kgl ok kg(NIn N — XANIn XAN — XgNIn XgN
= gy W N - XN XV = XpVin XpN)
= —Nkg(Xaln Xy + Xpln Xp), (B.44)

using the Stirling formula: In N! ~ NIn N — N for large N. S is the same as that in ideal
solution, because the regular solution model takes the “mean-field” view that all possible
configurations are iso-energetic. The regular solution model in the form of (B.35) is a well-

posed model with algebraic simplicity, but it may not reflect reality very well.

For positive w, spinodal decomposition will happen below a critical temperature T: a
random 50%-50% A-B solution « would separate into A-rich solution a; and B-rich solution
ay - see plots of g(Xy, T') at different 7. We have studied this model in detail in MSE530.

For negative w, although nothing will happen as seen from the regular solution model, in
reality order-disorder transition will happen below a critical temperature T, where the
A-B solution starts to posses chemical long-range order (CLRO). A good example is (-
brass, a Cu-Zn alloy in BCC structure (Z = 8). See Chap. 17 of [68]. Cu and Zn atoms like
each other energetically, more than Cu-Cu, and Zn-Zn. Suppose Xz, = 0.5, at T'= 0, what
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would be the optimal microscopic configuration? Since F' = E —T'S, at T' = 0 minimization
of F'is the same as minimization of E' = U, the system will try to maximize the number of Cu-
Zn bonds. Indeed, so-called long-range chemical order, that is, Cu occupying one sub-lattice
(’) and Zn occupying another sub-lattice (), or Cu occupying sub-lattice ” and Zn occupying
sub-lattice * would give the maximum number of Cu-Zn bonds. The regular solution model
did not distinguish between the two sub-lattices, statistically speaking. In order to be able
to distinguish, let us define sub-lattice compositions X} + Xi; = 1, X§ + X = 1. Clearly

the overall composition

1 1
Xa = 5(Xg+XX), Xp = §(X1,3+X1/3/)~ (B.45)

By defining sub-lattice compositions, we have effectively added one more “coarse” degree of

freedom to describe our alloy, the so-called 1 order parameter:

1

S (X5 — X). (B.46)

n

CusgZnsg taking the CsCl structure at T' = 0 would have n = 0.5 or n = —0.5. Previously, the
regular solution model constrains 7 = 0 (because it does not entertain an n order parameter).

Now, with 7, we would have

Xp=Xg+n Xg=Xg-—1n Xi=1-Xg—7n Xy=1-—Xpg+1n. (B.47)
Still under the mean-field approximation (so called Bragg-Williams approach [83, 84] in
alloy thermochemistry), as the regular solution model, we can estimate the proportion of

A(")-A(”) bonds:
pan = XxX) =(1—-Xg—n)(1—Xg+1n), (B.48)

the proportion of B(’)-B(”) bonds:
pes = XpXp = (Xp +n)(Xp —n), (B.49)
the proportion of A(’)-B(”) bonds:

pap = XpXgp=(1—-Xg+n)(Xs+n), (B.50)
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the proportion of A(”)-B(’) bonds:
pea = XpX{ = (X —n)(1—Xp—n) (B.51)

among all the nearest-neighbor bonds in the alloy. Clearly, the above Bragg-Williams esti-

mation satisfies the sum rule constraint:

paa +peB +pag +pea = 1. (B.52)

The particle-average energy is thus just

Z

h = _E(pAAEAA + peeeps + (PaB + PBA)EAB) (B.53)

From derivations of the regular solution model and discussions in the last semester, we
see that if we chose our reference state appropriately, then we can say exp = 0, egg = 0,

eap = —w/Z, to simplify the algebra:
h(Xs,n) = w(XaXs +7n?). (B.54)

which we see is the same as the regular solution model if 7 = 0. The physics of the above
expression is that, if with CLRO and solute partitioning onto the two sub-lattices, one can
increase the number of A-B bonds from X Xp to XA Xgp + n?.

The entropy is just the sum of the entropies of the two sub-lattices (in other words, the total
number of possible microstates is the product of the numbers of microstates on ’ sublattice
and that on ” sublattice). Therefore:

k
s(Xg,n) = _?B(Xj* In X\ + XpIn Xpp + X% In X% 4+ Xp51n Xp). (B.55)

The free energy (of mixing) per particle is thus
2 kgT / / / / " " " "
9(XB,n) = w(XaXp+n°)+ T(XA InX) + Xgn X;; + X3 In Xy + XgIn X3) (B.56)

with %, kT X] X}
99 _ 2wn+B<—lnB+lnB>, (B.57)

197



629 k’BT 1 1
29— . B.58
o~ Y \xpxn XX (B:58)

In a real material, both Xp and 7 are fields: g(Xg(x,t),n(x,t)). However, we note there is

a fundamental difference between Xp and 7. Xg(x,t) is conserved:
/dXXB(X, t) = const (B.59)

if integration is carried out in the entire space. Thus, when optimizing

G = o [ dxg(Xo(x), ) (B.60)

we can not do an unconstrained optimization on g(Xg): there has to be a Lagrange mul-
tiplier (the chemical potential) on the total free energy minimization. On the other hand,
there is no such constraint on 7: we can do an unconstrained optimization with respect to n
(and indeed that is what Nature does). More involved discussions [68] show that Xp is so-
called conserved order parameter, and evolve according to the so-called Cahn-Hilliard
evolution equation [69] (basically diffusion equation), whereas non-conserved order pa-
rameter like the CLRO evolve according to the so-called Allen-Cahn equation [85], in the

linear response regime.

For a given T, Xy, we thus have

9(Xp) = ming(Xp,n) (B.61)
at thermodynamic equilibrium. So:

(Xg—n)(1—Xp—n) _ 4wy

In =
(XB+77)(1—XB+77) kgT

(B.62)

We note that n = 0 is always a solution to above, i.e. it is always a stationary point in the
variational problem. But is n = 0 a minimum or a maximum? From (B.58) we note that at

high enough 7', n = 0 would always be a free energy minimum. But as T" cools down, at

—QWXB(l - XB)
ks

Te(Xp) = (B.63)

9(Xg,n) would lose stability with respect to  at n = 0, in a manner of 2nd order phase trans-

formation (for example, magnetization at Curie temperature). This is called order-disorder
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transformation, where chemical long-range order emerges at a low enough temperature. In
particular, the highest temperature where chemical order may emerge is at Xg = 0.5, where

the enthalpic driving force for two sub-lattice partition is especially strong:

w
T, = ——. B.64

5= o (B.64)

We also note that T¢ exists only for w < 0. If w > 0, g—fg > 0 always and n = 0 stays stable
global minimum. Thus the Bragg-Williams model is the same as the regular solution model
for w > 0. The Bragg-Williams model gives only different results from the regular solution

model for w < 0, and in that case for
T < Tc(XB) = 4T(*JXB(1 — XB) (B65)

only. At T' < Tc(Xg), we have the CLRO at equilibrium:

(Xg+n)(1—-Xg+n)  8T¢
" (= Xa-w) T (00

from which we can solve for 7.

The above is called the Bragg-Williams approach, which is at the same level of theory (mean-
field approximation) as the regular solution model, and only gives different results ( # 0)
if w<0and T < Tg. There are certain solid-state chemistries where w is very negative,
in which case CLRO is close to the maximum possible value for a large temperature range.
These are so-called line compounds (because off-stoichiometry solubility range is so low,
these phases appear as lines in T' — X, phase diagrams) or ordered phases, with formulas
like A,,B,, where m and n are integers. Many crystalline ceramics (oxides, nitrides, carbides
etc.) are line compounds, as the solubility range is typically very narrow besides the ideal
stoichiometry. In metallic alloys, these would be called intermetallics compound phases.
These phases are typically very strong mechanically (stability due to very negative w), and
are used as strengthening phases (precipitates) to impede dislocation motion. There are
special symbols to denote these phases with long-range chemical order, such as L2y (bcc
based), L1y (fec based), L1y (fee based), D03, D0yg, Laves phases, etc.

There is still a higher-level of theory called the quasi-chemical approximation [62, 86],
originating from a series of approximations by Edward A. Guggenheim [80]. It proposes the
concept of chemical short-range order (CSRO): even in so-called random solid solution

(w>0,orw<0but T > Tc) which has no long-range chemical order, n = 0, the atomic
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arrangements may not be random as in the mean-field sense, and manifest “correlations”. For
example, a pair “correlation” means the probability of finding a particular kind of A-B bond
is larger than the product of average probabilities of finding A in a particular sublattice and
B in another sublattice. Beyond pair correlations, there are also triplet correlations, quartet
correlations, ..., in a so-called cluster expansion approach [82], each addressing an excess
probability beyond the last level of theory. Specifically, in the quasi-chemical approximation
one uses the pair probabilities paa, peB, PaB, PBA as coarse degrees of freedom. These are
valid order parameters, because at least in principle one could count the fraction of A(’)-
A("), B()-B(”), A()-B(”), A(”)-B(’) bonds in a given RVE. These coarse-grained statistical
descriptors will take certain values, and one can formulate a variational problem based on
them.

PAA, PBB, PAB, PBa must satisfy sum rule (B.52). Therefore, in addition to Xg, 1, the quasi-
chemical approximation introduces three more degrees of freedom. In systems where CLRO
vanish, there is no statistical distinction between the two sub-lattices, so paop = pga, in
which case only two additional degrees of freedom from the quasi-chemical approach. The

quasi-chemical free energy reads:

w(pas + pBa)

9(XB,7,PAB,PBA, PBB) = ST — +

kg T
B2 (X4 In X 4+ X4 In X4, +ng In X% 4+ X§i1n Xp) +

ZkgT
2

PBB PBA
In —— + In —— + |
(pBB In X4 X0 PaB XAX” pBa I XL XY
1 — pBB — PAB — PBA
X\ XN )

+

(1 —pee — paB — pBa)In (B.67)

with sub-lattice compositions X}, XX, Xi, Xfi taken from (B.47) The actual chemical free

energy at local equilibrium is

Q(XB) = min Q(XB, 77>pABapBAapBB) (B-68)

7,PAB;PBA;PBB

As a general remark, a compound phase would tend to manifest as sharp “needle” in g(Xg),
which means small deviation from the ideal stoichiometry A,,B,, would cause large “pain”
or increase in g(Xp), since A-A and B-B bonds must be formed (due to the host lattice

structure) which are much more energetically costly than A-B bonds.

Both spinodal decomposition and order-disorder transformation are 2nd-order phase trans-
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formations, defined by a vanishingly small jump in the order parameter, as one crosses the
transition temperature T¢. In contrast, 1st-order phase transition are characterized by a
finite jump in order parameter. For instance, in melting, we can use the local density as
order parameter to distinguish between liquid and solid, or some feature of the selected area
electron diffraction (SAED) pattern. In either case, before and after melting, there is a finite
jump in this order parameter field (p(x, Th.,) = p° but p(x, Tif.,) = p' for some x). Thus,
melting is a lst-order phase transitions. Also, consider an eutectic decomposition reaction:
| = a+4, defined by (T, X, XoE XJF). If one uses the local composition as the order pa-
rameter: then there is also a finite change (Xa(x, T®) = XIE but X,(x, T57) = XoF or XJ¥,
for some x). In contrast, in the case of w > 0 and spinodal decomposition & — «; + s which
is 2nd-order phase transformations, X5? — X5 oc /Tc — T. Whereas X,(x, T ) = X§ uni-
formly T, one sees only infinitesimal compositional modulations at T5: Xo(x,Tg) = X5¢
or X52. The amplitude of the concentration wave (concentration is our order parameter

here) is infinitesimal.

Common tangent construction: pg(X$,T) = us(X2,T), pe(X$,T) = u? (X2, T) manifest
as common tangent between g%(X,) and ¢g°(X;) curves. This equation has two unknowns,
X§ and XQB , and we need to solve two joint equations which are generally nonlinear (thus nu-
merical solution by computer may be needed). Show graphically how this may be established

for two phases a, £, rich in A and B, respectively, by diffusion. Since

C
dG = VdP — SdT +Y_ ju;dN;, (B.69)
i=1
atoms/molecules will always migrate from high chemical potential phase/condition to low

chemical potential phase/condition.

Let us now investigate situations where a large-solubility phase (a) is in contact with a
line compound phase (). The common tangent construction can be simplified in these
situations. Let us consider two limiting cases (a) and (b), where the ¢°(X,,T) needle is
“around” (a) X, ~ 0 and (b) X, ~ 1, respectively. (a) corresponds to an example of adding
antifreeze to water, where the liquid solution delays freezing due to addition of solutes. (b)
corresponds to an unknown solubility problem, which is to say how much can be dissolved
in « for a given temperature when it is interfaced with a precipitate g phase that is nearly

pure 2.

(a): people add antifreeze to say liquid water, to suppress the freezing temperature. How
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does that work?

In this case, g°(X5,T) is a needle “around” X, ~ 0 (the ice phase), whereas « is the liquid
phase. The first thing to realize is the solubility of B is typically lower in solids than in
liquids. Energetic interaction between atoms is more important in solids than liquids, since
atoms in solids are bit closer in distance, and also put a premium on periodic packing.
“Misfit” molecules B would feel much more comfortable living in a chaotic environment
like liquid, than in a crystal (think about societal analogies). To first approximation, we
can assume the ice crystals that first precipitates out as temperature is cooled is pure ice:
o (XEe T, P) = filfeo (T, P).

The second thing to realize is that
S BT, P) 4 kT In X (570

If the ~ in above is =, then it is an ideal solution. Raoult’s law says that no matter what
kind of solution (solid,liquid,gas), as long as the solutes become dilute enough, the solvent
molecule’s chemical potential approaches that in an ideal solution. This is in fact also true
for the ice crystals, but XX° is so small that it’s not going to have any effect on HyO in ice.

For the liquid, we have
In Xpied = In(l — Xp™9) ~ —Xxp. (B.71)

So the chemical potential of water in liquid solution is lowered by Xp™9ksT due to the

presence of B in liquid. How much does that lower the melting point? (compared to what?)
finiso’ (T, P) = keTXp™ = fiigio (T, P) (B.72)

Remember that T, is defined by

o (Therr - P) = ifiso(Thers » P)- (B.73)
Perform Taylor expansion with respect to 7"
AT~ T = T XA (B.14)
we get re
T -1 Ml g (B.75)

melt
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The pure liquid with larger entropy of melting will have less relative melting point suppression
(essentially steeper p;(T") will be less sensitive). What is interesting about (B.75) is that the
potency of an antifreeze is independent of the chemical type of the antifreeze, at least when
only a tiny amount of antifreeze is added. When the solution is very dilute, the stabilization

of the solvent is entirely entropic.

Richard’s rule: simple metals have AsP "¢ ~ 1 — 2kg. Water has AsP'F ~ 2.65kp.

Trouton’s rule: AsPUS ~ 10.5kg, for various kinds of liquids. Water has AsLis ~ 13.1kg.

Now consider the opposite limit (b): in this case, g°(X5,, T is a needle around X5 ~ 1. Then
for a given T, ¢°(X5,T) ~ 5 (X2, T) ~ ji5(T), and we just need to solve

s (X5, T) = fiy(T) (B.76)

It can be shown mathematically, but is quite obvious visually, that the second equation
p(Xe,T) = pf (X5, T) for the solvent atoms becomes “unimportant” (still rigorously true,
just that whether we solve it or not has little bearing on what we care about - one can draw
a bunch of tangent extrapolations on ng(XQB ) with slight differences in Xg , we can see huge
changes in pf but little changes in ,ug , due to the vast difference in extrapolation distances -
such equations are called “stiff” - stiff equations can make analytical approaches easier, but
general numerical approaches more difficult). So we have effectively reduced to 1 unknown
and 1 equation (or rather, we have decoupled a previously 2-unknowns-and-2-equations into

two nearly indepedent 1-unknown-and-1-equations).

Suppose a=simple cubic, F=BCC. Suppose a phase can be described by regular solution
with w > 0 (see Fig. 1.36 of [71], there is an eutectic phase diagram and g®(X%) bulges out
in the middle):

AS(T) + keTn X§ + w(l — X$)* = ji5(T) (B.77)

Rearranging the terms we get

() — E(T) +w(l - Xé“>2> (B.78)

X5 = exp< T

The above can be solved iteratively. We first plug in X$ = 0 on RHS, get a finite X§' on the
LHS, then plug this new X§ to RHS and iterate. From the very first iteration, however, we
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get

_ﬂg(T> — ﬁg(T) + w) (B79)

X5 = exp( kT

and if Q(T) = 43(T) — i5(T) + w > kT, X% would be small and then the first iteration
would be close enough to convergence. fi¢(T') — fiy (T) is how much more uncomfortable it is
for a type-2 atom to be living in pure-2 « structure compared to pure-2 3 structure. w is still
how much more uncomfortable it is for type-2 atom to be living among a vast sea of type-1
atoms rather than among its own kind (at 0K, i§ = —Z%2/2, w = Z%(—€12+ (€11 +€22)/2),
so i +w = Z%(—€12) — (—Z%11/2), which corresponds to the process of squeezing out
a type-1 atom and placing it on a ridge, then inserting a type-2 atom into this sea of 1).
Thus Q(T) is an energy that can be interpreted as how much more uncomfortable it is to
transfer a B atom from pure  phase to dilute o phase, excluding the configurational entropy
of B in o phase. Exponential forms of the kind e~?/*8T are called Boltzmann distribution
in thermodynamics, and Arrhenius expression when one talks about rates in kinetics. It
says that even though some places are (very) uncomfortable to be at or somethings are
(very) difficult to do, there will always be some fraction of the population who will do those,
because thermal fluctuations reward disorder and risk-taking. A prominent feature of these
Boltzmann/Arrhenius forms, especially at low temperatures, is that kg7" in the denominator
is a very violent term. A change in T" by 100°C can conceivably cause many orders of

magnitude change in the solubility.

The above train of thought can be extended to vacancies. A monatomic crystal made of
type-A atoms, but with the possibility of “porosity” inside (non-occupancy of lattice sites),
can be regarded as a fully dense A-B crystal with B identified as “Vacadium”. In this case,
egp = €ap = 0, 80 w = Zeap/2, i.e. it is enthalpically costly to mix Vacadium with A, and
they would prefer to segregate if based entirely from enthalpy standpoint or at T = 0 K.
However, entropically A and Vacadium would prefer to mix. When you mix a block of pure
Vacadium (in § phase) with pure A in « (fully dense), the solubility of Vacadium in a would
be Xy = e~ 9/#8T Also, when you are 100% Vacadium it does not matter what structure the
Vacadium atoms are arranged, so i$(T) — s (T) = 0 thus Q = w = Zeaa /2. Q is called the
vacancy formation energy in this context. Physically, () is identified as the energy cost to
extract an atom from lattice (break Z bonds) and attach it to an ledge on surface (form Z/2
bonds), in a Kossel crystal. In this class the above process is called the canonical vacancy
creation process. The canonical vacancy creation process creates porosity inside the solid,
making the solid appear larger than the fully dense state (social analogy would be “hype”).

Note that the canonical vacancy creation process is not an atomization process, where one
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extracts an atom and put it away to infinity.

An abstract view of phase transformation. Define order parameter 7, which could be density,
structure factor, magnetic moment, electric polarization, etc. 7 is a scalar of your choice
that best reflects the nature of the problem (phase transition). The Gibbs free energy is
defined as G(Ny, Na, ..., No, T, P;n). There are global minimum, metastable minima, and
saddle point. For example, at low temperature, for pure iron, both G(nrcc) and G(npcc) are
local minima of G(n), but G(nrcc) > G(ncc). To go from 1 = nrec to M2 = Nec, G(N)
must first go even higher than G(#n;). This energy penalty is called the activation energy,
and n € (ny,1m2) is called the reaction coordinate. Define n* to be the position of saddle

point, we have

Qi = G(U*)—G(Th), Qa1 = G(U*) —G(Uz)- (B.SO)

According to statistical mechanics, all possible states of n can exist, just with different

probability. The rate of transition, if one is at 7, to 1, is given by:

Q1—>2
kgT

Rio = vyexp(— ), (B.81)
where 14 is some attempt frequency (unit 1/s), corresponding to the oscillation frequency
around 7; (imagine a harmonic oscillator coupled to heat bath). The rate of transition, if

one is already at 72, to 1y, is given by:

Q2—>1> .

B.82
T (B.82)

Ry y1 = 1pexp (—
If G(m) > G(n2), then Q142 < @21, and Ry_,5 > Ry .1 since @’s are in the exponential,
and Qa1 — Q12 = G(m) — G(n2) is proportional to the sample size.

One can also express 7 as function of position, 7(x), to represent an interface. Consider
the condition when FCC is in equilibrium with BCC: G(nrcc) = G(nscc), and there is an
interface that separates them. n(z) is then a sigmoid-like curve, with characteristic width
defined as interfacial width. The interfacial energy arises because atoms in the interface are
neither FCC or BCC, and have energy density higher than either of them. This would lead
to a positive interfacial energy (Chap. 3)

The common tangent construction gives unique solution in composition when T, P is fixed.
If T, P come into play, however, then the game is richer. The single-component Clausius-

Clapeyron relation (B.18) can be generalized to C-component solutions. If we consider i in
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a of composition X = [Xg, ..., X&], or in 8 of composition X? = [Xg, s Xg], there needs
to be
(X T, P) = pl(X°,T, P) (B.83)

to maintain mass action equilibrium (chemical equilibrium), to make sure atom i is “equally
happy” in « as in . Let us investigate what dP/dT needs to be in order to maintain that
way, if X* and X” are fixed (for instance two “compound” phases, or one compound phase

in contact with a large constant-composition reservoir): because we have
dp® = v2dP — s%dT, dp} = v’dP — sdT. (B.84)
To maintain (B.83), we need

AP st —s] by = I
bl plrr— (B.85)

the latter equality is because if «, 8 are already at chemical equilibrium for ¢ at a certain
(T, P), there is:
pd =hd —Ts® = u? =h? —Ts. (B.86)

Consider for example, the equilibria between pure liquid water (§) and air («): air is a

solution. Then one has:

AP h¢ —h!
— : B.87
ar T(v$) ( )
since v is larger than v/ by a factor of 10%. For the air solution N = (Ny, Ny, N3, ...N,), we
have Nk ov k
T o7
Ve /25 5 g= == (B.88)
P ON; Ny T,P P
Thus 5
apP h$ — hj dln P Ah;
PO L S SRk (B.89)
dar T(kgT/P)" d(1/T?) kg
S P Ah 11
In — =~ : - = B.
"PT T kg (Tref T> ’ (B.90)

ref

when temperature is raised, the equilibrium vapor pressure goes up.

Notice that the gas phase always beats all condensed phases at low enough (but still positive)

pressure. One can thus draw a In P-T" diagram, and down under it is always the gas phase.
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This is because chemical potential in the gas phase goes as
pst (XS T P) ~ kgTln X; P + ji$*(T, latm), (B.91)

which goes to —oo as P — 0, whereas chemical potentials in condensed phases are bounded.
(The physical reason for going to —oo as P — 0 is that the entropy of gas blows up as
kg Inwv). Thus, all condensed phases (liquid,solid) become metastable at low enough pressure
(see water phase diagram, Fig. B.1 (b)). Another way of saying it is that there always exists
an equilibrium vapor pressure for any temperature and composition, which may be small but
always positive, below which components in the liquid or solid solution would rather prefer

to come out into the gas phase (volatility).

However, they are two manners by which vapor can come out. When you heat up a pot
of water, at say 80°C, you can already feel vapor coming out if you stand over the pot,
and maybe see some steam, but it’s very peaceful evaporation process. However, when the
temperature reaches 100°C, there is a very sharp transition. Suddenly there is a lot of

commotion, and there is boiling. What defines the boiling transition?

The commotion is caused by the presence of gas bubbles, not present before T' reaches Ti, ;.
The boiling transition is defined by P°? = 1 atm, the atmospheric pressure. Before T" < T,
there may be P4 > Pﬁ‘;‘é’iem, so the water molecules would like to come out. But they can
only come out from the gas-liquid interface, not inside the liquid, so the evaporation action is
limited only to the water molecules in the narrow interfacial region < Inm. This is because
any pure HoO gas bubbles formed inside would be crushed by the hydrostatic pressure AND
surface tension. But when P°? > 1 atm, pure HoO gas bubbles can now nucleate inside the
liquid. These bubbles nucleate, grow, and eventually rise up and break. At T > Ti.; the
whole body of liquid can join the action of phase transformation, not just the lucky few near
the gas-liquid interface. Thermodynamically, there is nothing very special about the boiling
transition, but if you look at the rate of water vapor coming out, there is a drastic upturn at
T = Thon. So the boiling transition is a transition in kinetics. The availability of nucleation
sites is important for such kinetic transitions. In the case of boiling, the nucleation sites
are likely to be the container wall (watch a bottle of coke). Without the heterogeneous
nucleation sites, it is possible to significantly superheat the liquid past its boiling point,
without seeing the bubbles.

One can have superheating/supercooling because of the barriers to transformation. The
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amount of thermodynamic driving force in a temperature-driven phase transformation is:

e B eq AR
AG = pf —pp = Apy = AsPAT = Teq AT (B.92)

if the reaction coordinate is identified as mass transfer from one phase to another (7, state:
N +1in «, Nf in B; ne state: NP in a, Nf + 1 in /). To drive kinetics at a finite speed,

the driving force (thermodynamic potential loss or dissipation) must be finite.
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