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Abstract
We apply a range of density-functional-theory-based methods capable of describing van der
Waals interactions with weakly bonded layered solids in order to investigate their accuracy for
extended systems. The methods under investigation are the local-density approximation,
semi-empirical force fields, non-local van der Waals density functionals and the random-phase
approximation. We investigate the equilibrium geometries, elastic constants and binding
energies of a large and diverse set of compounds and arrive at conclusions about the reliability
of the different methods. The study also points to some directions of further development for
the non-local van der Waals density functionals.

(Some figures may appear in colour only in the online journal)

1. Introduction

While graphene has attracted a lot of attention during the
past years, the materials science community is starting
to move the focus to other two-dimensional materials
with interesting and potentially useful properties [1–4].
Unfortunately, computational investigation of such systems
within the density functional theory (DFT) is not always
straightforward. A particular difficulty is the description of
the van der Waals (vdW) interaction, which typically plays a
crucial role in binding of two-dimensional sheets to a substrate
and in surface functionalization with organic molecules. The
source of the problems is the local approximations that are
conventionally applied in DFT, while the vdW interaction is
an intrinsically non-local correlation effect [5–7]. In order
to overcome this issue, a number of methods [8–15] of
different complexity have been developed during the past
decade. These methods rely on different approximations,
which have been proposed with either solid-state or
molecular applications in mind. Currently, the accuracy of the
approaches has been assessed almost exclusively in test cases
for small molecules, largely because high-accuracy reference
data can be obtained only for these systems. Based on this
limited experience, it is common to anticipate qualities of a
particular method in applications to extended systems. But are
the existing methods equally good for solids, molecules and
molecules adsorbed on surfaces of solids?

In this paper, we consider four popular computational
approaches for treating the vdW interaction, the local-density
approximation (LDA) [16, 17], Grimme’s semi-empirical
force-field corrections (DFT-D) [11], non-local van der Waals
density functionals (vdW-DF) [8–10] and the random-phase
approximation (RPA) [18, 19], by applying them to 74 layered
solids. As the primary objectives of the study, we select
the equilibrium interlayer separations and layer thicknesses,
the interlayer binding energies and the C33 elastic constants.
As in any solid, the equilibrium geometry is a critical
quantity in layered solids, since features of the electronic
structure, such as the bandgap, may critically depend on
the interlayer separation [20, 21]. The interlayer binding
energy is a key quantity for the study of exfoliation of
two-dimensional compounds [3]. The calculated equilibrium
geometries are assessed by comparison with experimental
data, but since experimental interlayer binding energies are
not available for any material except for graphite [22–24], we
perform random-phase approximation (RPA) calculations for
a subset of 26 solids. While RPA is an approximate method
and its performance also has to be comprehensively tested,
recent successes [25–28] encourage us to believe that, for
non-covalent interactions, RPA is the most systematic and
accurate one among the methods considered here. Our RPA
calculations are the first application of this method to a wide
range of solids covering a significant part of the periodic table.

The rest of the paper begins with section 2, where we
describe the selection of the investigated compounds, details

10953-8984/12/424218+11$33.00 c© 2012 IOP Publishing Ltd Printed in the UK & the USA

http://dx.doi.org/10.1088/0953-8984/24/42/424218
mailto:torbjorn.bjorkman@aalto.fi
http://stacks.iop.org/JPhysCM/24/424218


J. Phys.: Condens. Matter 24 (2012) 424218 T Björkman et al

of the computational procedure and a brief introduction to the
most important technicalities of the methods. For a thorough
review of RPA and vdW-DF we refer the reader to a recent
paper by Dobson and Gould [7]. section 3 presents figures
and tables of the evaluation data, organized by the investigated
property. Finally, section 4 evaluates the performance of
the different methods, in particular discussing the problems
associated with LDA in vdW systems, the parametrization
of DFT-D for solids and the problems associated with
selecting an appropriate parent functional of the non-local
vdW functionals to account for the exchange.

2. Methods

2.1. Test systems

We compare results for 74 different compounds identified
in the inorganic crystal structure database (ICSD) [29] by
data filtering of layered three-dimensional structures with
interlayer bond lengths that indicate that they are likely to
be dominated by non-covalent interactions. The acquired
systems are very diverse in character, containing anything
from magnetic metals to wide-gap insulators, single atomic
layers, such as graphite or BN, as well as thicker layers,
In2Zn2S5 being the thickest with a layer thickness of 12.4 Å.
For computational reasons, we selected only high symmetry
structures corresponding to systems consisting of either
hexagonal or quadratic planes, and a small number of the
systems found had to be discarded on computational grounds
as the time required for the calculations were too long. This
automated selection procedure ensures against our own biases
when selecting the compounds to be used in testing different
methods, and enables us to make general statements about
the properties of the different methods. The complete list of
compounds is given in table A.1 and tabulated values for all
calculated quantities are listed in the supplemental material
of [30] where also a more detailed description of the selection
procedure can be found.

2.2. Brief description of the methods

It has been known for a long time that, despite lack of formal
justification, the local-density approximation (LDA) provides
a reasonable description of the bond lengths and binding
energies for many vdW bonded layered systems, such as
graphite [31, 32]. At the same time, it has been recognized
that this is just a fortuitous coincidence [33], since the binding
in the LDA picture stems from the exchange, while the
vdW interaction is a correlation effect [33–35]. Despite this
knowledge, numerous studies have applied LDA to emulate
the vdW interactions in layered structures. In light of this,
we include this method in our benchmark calculations and
evaluate how good or bad LDA is for layered materials less
well known than graphite to obtain further knowledge about
how common such fortuitous coincidences are.

The semi-empirical approach by Grimme known as
DFT-D [11] is a straightforward force-field correction based
on the assumption that the total dispersion interaction between

larger molecules or solids can be described as a sum of
contributions from all pairs of atoms. Each pair contributes a
term proportional to the inverse sixth power of its interatomic
distance, R,

EvdW = −s6

∑
pairs

C6

R6 fdmp(R). (1)

The formula also contains an empirical overall scale factor, s6,
which is different for each exchange–correlation functional,
the atomic C6 coefficients and a damping function, fdmp, that
prevents (1) from diverging at small R.

A different strategy is pursued in the construction of
the vdW density functionals (vdW-DF [8], vdW-DF2 [9]
and VV10 [10]). These methods obtain the vdW interaction
from the electron density ρ(r) via the genuinely non-local
correlation functional

Ec
nl =

∫ ∫
dr dr′ρ(r)8c(r, r′)ρ(r′), (2)

where8c(r, r′) is a kernel function derived from a local polar-
izability model [36] using a number of approximations [8–10,
7]. By construction, Ec

nl vanishes for a uniform electron
density, hence, the correlation energy is complemented by
the LDA contribution. Since Ec

nl contains the necessary
ingredients for vdW forces, an additional attraction stemming
from the exchange functional as in LDA is undesirable. For
this reason, the original choice for the exchange to be used
with EvdW was the revPBE functional [37], which is almost
free from any spurious binding. Soon it was realized that
revPBE is typically too repulsive in the vdW regime [38,
35], and a large number of other options for the exchange
part of the functional have been proposed, including a
revised version of the PW86 functional, PW86R [35, 9, 10],
PBE [38], optimized versions of PBE [39] and long-range
corrected hybrid functionals [40, 10]. In this paper, we explore
the performance of vdW-DF combined with RPBE3 and
PBE, vdW-DF2 with PW86R and VV10 with PW86R, thus
allowing for direct comparisons of the different components
of some of the functionals (see the discussion in section 4.4).

The adiabatic-connection fluctuation-dissipation theorem
(ACFDT) [19] is a powerful technique that, in principle,
allows us to obtain the exact exchange–correlation energy
within the DFT framework. The method uses the standard
integration over the coupling constant λ [18] to construct the
interacting system from the non-interacting one, here taken to
be the Kohn–Sham system. After inserting the exact exchange
in ACFDT, the exact correlation energy then can be expressed
as

Ec = −Tr
∫
∞

0

dω
2π

∫ 1

0

dλ
λ
(χλ(iω)− χKS(iω))Vλ, (3)

where Vλ is λ times the Coulomb potential and χλ and χKS
are the frequency-dependent density-response functions for
the interacting and Kohn–Sham systems, respectively. If the

3 RPBE by Hammer et al [41] is a functional constructed to mimic features
of revPBE while obeying the Lieb–Oxford criterion [42].
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so-called exchange–correlation kernel [43], f λxc, is known, we
can obtain χλ from Dyson’s equation

χλ = χKS + χKS(Vλ + f λxc)χλ, (4)

but in practice (3) is untractable for real systems, unless f λxc is
approximated. Here, we consider RPA (also sometimes called
direct-RPA), where the exchange–correlation kernel in (4) is
neglected altogether. This approximation makes it possible
to integrate the coupling constant analytically and simplifies
numerical efforts. Nevertheless, RPA calculations present a
formidable task, which is currently a massive obstacle for
applying RPA for a wider circle of applications.

2.3. Computational procedure

Calculations were performed using the projector augmented
wave method as implemented in the electronic structure
package VASP [44, 45], with an in-house implementation
of the vdW-DF method [38]. Crystal geometries were
automatically generated from database searches using the
program CIF2Cell [46]. The projector augmented wave
(PAW) potentials from the library distributed with the
VASP code [45] were used and plane-wave cut-offs
were initially selected as 1.5 times the default cut-off,
subsequently increased in individual cases if there were
apparent convergence problems. The convergence was more
carefully tested for a small subset of compounds. Compounds
containing elements in the 3d series from Cr to Ni
were calculated in the ferromagnetic mode. Brillouin zone
integrations were performed using Gaussian smearing with
a smearing width of 0.1 eV, using a uniform mesh with the
number of points selected to give a distance of 0.2 Å

−1

between the mesh points for non-magnetic calculations and
0.15 Å

−1
for magnetic calculations.

Due to the overwhelming computational expenses,
the RPA calculations were carried out using different
computational settings. The settings were 420 eV and
0.2–0.3 Å

−1
for the plane-wave energy cut-off and the k-point

spacing, respectively. The corresponding exact-exchange
calculations were performed using the same plane-wave
cut-off, but the k-point spacing was further refined for
semiconductors or left the same for metals, as described
in [47]. The reference Kohn–Sham states were obtained
using the PBE exchange–correlation functional. In the VASP
code, the density-response functions are constructed using
the relation by Adler and Wiser [48, 49] and they take
form χk

KS(G,G′, iω), where G and G′ are multiples of the
reciprocal lattice vectors and k is a point within the Brillouin
zone. This representation, in principle, requires an infinite
number of plane waves, but, in practice, their number is
restricted by the energy cut-off Ecut so that all vectors G2

2 >

Ecut are discarded. Equivalently, one can use the maximum
wavenumber q, then, the condition above translates into |G| >
q. It was shown that these basis truncation parameters have a
strong influence on the correlation energy. In particular, Harl
and Kresse [25] have suggested that the correlation energy

converges as

ERPA
c (q) = ERPA

c (q = ∞)+ A/q3, (5)

where A is a constant and q is the cut-off wavenumber that
can be related to the cut-off energy through the relation Ecut =

q2/2. However, it can be shown [47] that (5) can be extended
to

ERPA
c (q) = ERPA

c (q = ∞)+ A/q3
+ B/q5

+ C/q6
+ · · · ,

(6)

where A, B and C are constants. Typically, energy differences
have better convergence properties than the total energies
themselves, and when equation (6) is investigated for the
energy differences of the interlayer binding energies, we find
numerically that the terms containing q−3 and q−6 vanish.
This empirical observation allows us to write the following
relation for the energy differences,

1ERPA
c (q) ≈ 1ERPA

c (q = ∞)+ α/q5
+ β/q7

+ · · · , (7)

where α and β are constants. In practical calculations, we have
calculated RPA correlation energies using different cut-off
energies and have used them for fitting of (7). This procedure
allowed us to obtain accurate estimates of the complete-basis
limit with cut-off energies as low as 100–150 eV, which are
significantly lower than those previously used in [25, 47].
Translated into computational effort, this procedure allows
us to obtain the binding energies cheaper by an order of
magnitude without sacrificing the accuracy.

The interlayer binding is investigated by varying the c
axis length and calculating the corresponding total energies.
The intralayer coordinates were allowed to relax at each c
axis length, but the in-plane lattice constant was kept fixed
at its experimental value. The in-plane lattice constant is
dominated by covalent bonding, for which the errors are very
much smaller than the errors from the treatment of the vdW
interactions, and tests for the transition metal dichalcogenides
showed that allowing for full relaxation has very small impact
on the results presented here. However, this simplification will
induce additional uncertainty in the calculated thicknesses of
the layers, since errors in the bond lengths that would result
in a different in-plane lattice constant can be compensated
for by relaxation in the c-direction. Thus we expect that the
variations in intralayer thicknesses between the functionals
are somewhat exaggerated in the present study.

Figure 1 shows a typical result of the procedure, for
HfTe2. On the compression side there is Pauli repulsion as the
densities overlap, making an exponentially rising ‘exchange
wall’, and on the expansion side there is a low decaying tail,
an attractive ‘van der Waals slope’. Two features need to be
resolved and extracted from the data, the energy minimum and
the asymptotic behaviour at large separations. The seven data
points closest to the minimum were fitted to a fourth-order
polynomial, which was used to obtain the equilibrium lattice
constant and the C33 elastic constant. As the structure is
stretched along the c axis, the energy per atom approaches
the value in an isolated layer. We determine this value by
simply increasing the lattice constant until the change in

3
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Figure 1. Calculated energy per surface unit area of HfTe2 as a
function of the deviation from the experimental c lattice constant.
For readability, only interpolated curves are shown for all
functionals except VV10, where the calculated points are also
shown.

energy is sufficiently small, typically at interlayer separations
10–15 Å larger than the experimental equilibrium distance.
The popular method of fitting the large-separation tail to some
known function and extracting the asymptote was tried and
discarded, since it was found to induce large uncertainties. In
fact, even extracting the correct power law of the asymptote is
a non-trivial task [26].

In the RPA calculations, only a few energy points near
the minimum and one point for a single layer were calculated.
The intralayer geometry was kept fixed at the thickness as
determined from a PBE calculation for a single layer. The
binding energies are quite insensitive to this approximation,
since the intralayer forces induced by the vdW interaction
are zero at the minimum of the binding energy curve, and
the intralayer equilibrium geometry will therefore be the
same as for a single layer. However, elastic constants will be
overestimated due to the stiffness of the layers. For MoS2,
we found the C33 elastic constant to be overestimated by
approximately 10%, and we believe this to be the typical error.

3. Results

The results of the calculations are divided into the
relaxed equilibrium geometries, interlayer binding energies
and C33 elastic constants. The equilibrium geometries are
straightforward to compare with the experimental data from
the ICSD, while for the binding energies the RPA calculations
are used as a benchmark. The benchmarking of the C33 elastic
constants is somewhat troublesome since, as explained above,
the RPA calculations do not yield a good benchmark due to
the neglect of intralayer relaxations. Experimental data for
the elastic constants are unfortunately scarce and come with
large uncertainties, but some general conclusions may still be
drawn.

3.1. Geometries

The relaxed geometries are analysed in terms of the
crystallographic c axis length and its two components, the
interlayer distance and the intralayer thickness. Figure 2

Figure 2. Comparison of c axis lengths with experimental values for the investigated functionals.
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Figure 3. Comparison of the deviation of intralayer thickness from
experimentally reported values for the investigated functionals. The
interlayer thickness was not relaxed in the RPA calculations, but
taken from PBE calculations.

shows the results of a comparison of the experimental
c axis lengths to the calculated values for all different
functionals in terms of the deviations from the experimentally
reported value. Figures 3–5 summarize the relative deviations
from experiments showing boxes centred at the average
deviation with a total height of two standard deviations of
the distribution, and with the maximal deviations indicated by
extension lines. It should be noted that the deviations of the
c axis lengths have a total span of more than 3 Å, or 40%,
enormous errors by the current standards of high-accuracy
testing of density functionals of solids [50, 51]. In these
circumstances, the neglect of relaxation of the in-plane lattice
constant and zero-point motion as well as the arbitrary choice
of comparison with the most recently published experimental
value are of little consequence. If figure 2 is done making
the comparison with the best or the worst fitting experimental
number for each compound, or complete relaxation is done
(this was tested for all the transition metal dichalcogenides),
the effect is too small to be discernible.

Turning first to the intralayer thicknesses, determined
primarily by covalent bonding, shown in figure 3, we note that
the intralayer thicknesses reflect the usual LDA overbinding
of the covalent bonds as well as the PBE underbinding [50],
albeit somewhat larger than usual for the reasons discussed in
section 2.3. LDA predicts intralayer thicknesses that are on
average 2–3% too small and PBE is too large by a similar
amount. The average deviation of PBE-D is similar to PBE,
but with a larger spread of the values. The original vdW-DF1
and the later vdW-DF2 perform significantly worse for the
intralayer geometry, and while vdW-DF1 (PBE) and VV10
show improvement they still fall short of the performance of
the plain PBE functional. For the RPA, relaxation of the layer
thickness was not done and instead the equilibrium geometry

Figure 4. Comparison of the deviation of interlayer distances from
experimentally reported values for the different functionals. The
RPA statistics is based on only 26 compounds.

Figure 5. Comparison of the deviation of c axis lengths from
experimentally reported values for different functionals. The RPA
statistics is based on only 26 compounds.

of a single layer from a PBE calculation was used. These
results are similar to the findings of Klimeš et al [52] and
Wellendorff and Bligaard [53] for bulk solids, although the
trends are more pronounced in the present inhomogeneous
geometry.

For the vdW-dominated interlayer separations, shown
in figure 4, the first important thing to note is that the
scale of the deviations has increased drastically. LDA is
even more overbinding than at covalent bond distances, and
PBE is very much underbinding, on average overestimating

5
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Figure 6. The binding energies of the 26 compounds calculated with RPA, showing the comparison with the different functionals. The
value for PbO for the PBE-D method that is outside the diagram is 125.5 meV Å

−2
.

the interlayer distance by more than 20%. PBE-D gives on
average very good interlayer spacings, but is significantly
overbinding for some compounds, as shown by the large
maximal deviation. For the vdW-DFs, we can see a gradual
improvement in the sequence vdW-DF1, vdW-DF2, vdW-DF1
(PBE) and VV10. The vdW-DF1 functional is in fact only
a very small improvement over PBE for the interlayer
separations, and vdW-DF2 improves on this only a little
further (excepting the compound PbBi4Te7, where vdW-DF2
overestimates the interlayer separation by as much as 118%).
Using PBE exchange, we then see a significant improvement
of the bond lengths for the vdW-DF1 (PBE) functional.
The VV10 functional is very much superior to all the other
single-particle based theories, with a narrow distribution
around the experimentally reported values and only moderate
maximal deviations. However, the RPA distribution is very
sharp, with an average just below the experimentally reported
values, as is to be expected since the experiments are generally
conducted at higher temperatures.

In figure 5 we show the results for the c-axis lengths.
Summarizing the findings for the equilibrium geometries,
the PBE functional will give much too large vdW bond
lengths, while LDA is overbinding, with bond lengths that in
some cases are very much too small. The PBE-D functional
on average produces good equilibrium geometries, although
with a tendency to sometimes produce bad results for no
apparent reason. Among the vdW-DF type functionals, the
original vdW-DF1 is the least accurate for all geometrical
properties (disregarding outliers in the vdW-DF2 distribution
of interlayer distances in figure 4), and the more recent
VV10 gives drastically better results. For the vdW component,
as measured by the intralayer gap, the accuracy of VV10
even approaches the RPA results. The vdW-DF2 shows
improvement over vdW-DF1, but the vdW bond lengths are
still too large. The bond lengths for vdW-DF1 can be radically
improved by using PBE exchange rather than RPBE.

3.2. Binding energies

As mentioned in section 1, we aim to study the binding
energies of the different methods using RPA as a benchmark.
Figure 6 shows the outcome for 26 compounds. The RPA
binding energies are quite consistently found in a range about
15–20 meV Å

−2
, with an outstanding exception in PdTe2. As

PdTe2 has a significant binding energy even with the PBE
functional, which otherwise gives near zero binding energies,
we conclude that this is due to some weak covalent bonding
occurring in this material. LDA gives binding energies in
roughly the correct interval, but does not follow the trends
of RPA particularly well and there appears to be no way
of telling whether binding energies will be higher or lower.
PBE-D deviates rather strongly from RPA and fails both in
reproducing trends and in one case, PbO, even fails to give
the right order of magnitude. vdW-DF1 and vdW-DF2 are
somewhat too low, vdW-DF1 (PBE) is somewhat too high
and VV10 overshoots considerably, being quite consistently
50% too high. The vdW-DFs follow the RPA trends very
closely with a few exceptions, which on closer inspection are
found to correlate with particularly bad overestimations of the
interlayer distances.

When comparing the distributions of the interlayer
binding energies in figure 7 we see that RPA and vdW-DF1,
vdW-DF2 and vdW-DF1 (PBE) show dense peaks, VV10
has a main peak, but with a tail at lower binding energies.
LDA has two peaks, the lower being somewhat lower than
the RPA peak. PBE-D shows the most scattered distribution,
with many isolated points at very high binding energies.
For the vdW-DFs, we note the same trends as for the bond
lengths, with vdW-DF1 having the lowest binding energies
and vdW-DF2, vdW-DF1 (PBE) and VV10 following in order
of binding strength, with vdW-DF2 having a distribution
closest to that of RPA.

6
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Figure 7. Comparison of the distributions of binding energies for
the different functionals.

3.3. C33 elastic constants

We attempt to compare C33 constants with experimentally
reportedvalues, but it is obvious that the experimental situa-
tion is not all that clear, and the reported experimental values
often scatter significantly. This unfortunate circumstance
obviously hampers any benchmarking effort, but some limited
conclusions can still be drawn about the performance of the
various functionals.

The distributions of C33 elastic constants are shown in
figure 8. The LDA, PBE-D and RPA data span a rather
large range, up to 100 GPa, while the vdW-DFs have less
dispersed distributions. Just as for the binding energies, the
failure of PBE to include the vdW interaction is clearly seen
in the distribution of the elastic constants, which are almost
exclusively in the range <10 GPa. For the vdW density
functionals, the elastic constants again show similar trends
to the geometries and binding energies, with the functionals
being progressively stiffer elastic constants in the order:
vdW-DF1, vdW-DF2, vdW-DF1 (PBE), VV10.

The C33 elastic constants for 16 of the investigated
compounds for all computational methods as well as
experimental data are given in table 1. Overall, all methods
except for PBE (not shown) produce values in the correct
range, but while LDA, RPA and the vdW-DFs to a reasonable
degree follow the trends of the experimental data, PBE-D is

Figure 8. Comparison of the distributions of C33 elastic constants
for the different functionals.

doing less well. As previously mentioned, the comparison
with experiment is somewhat uncertain, but it appears safe
to conclude that vdW-DF1 systematically gives a too soft and
VV10 a likewise too hard C33 constant.

4. Discussion

4.1. RPA

The present study treats RPA as a benchmark method for
binding energies while at the same time evaluating the
accuracy of the approximation in terms of the equilibrium
geometries. It deserves to be pointed out again that RPA
has been shown to give covalent binding energies at least as
accurate as GGA for solids [47, 27] as well as being highly
accurate for weak binding [47, 72] and is known to reproduce
the appropriate long-range behaviour of the vdW interaction,
both from fundamental theoretical considerations [7, 6] and
in its present practical implementation [26]. As was shown,
the equilibrium geometries from RPA are far superior to any
other method investigated here, strengthening our confidence
in the method. Unfortunately, the comparison of the C33
constants has to be seen as inconclusive, both due to
the somewhat uncertain experimental data and because of
the lack of intralayer relaxations in the RPA calculations.
However, we may safely conclude that the C33 constants

7
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Table 1. C33 elastic constants in GPa for a set of layered compounds.

Compound LDA PBE-D DF1 DF2 DF1(PBE) VV10 RPA Experiment

MoS2 53 51 24 39 39 61 59 52 [54]
NbSe2 74 51 22 37 35 55 71 43–60 [54], 42 [55], 67 [56], 50.9,

52 [57]
TiS2 64 41 23 36 36 51 51 54.6± 5.3 [58]
TiSe2 69 43 19 32 30 44 41 39.0± 3.0 [58], 39 [59], 45.6 [60]
HfS2 40 22 22 33 34 46 40 39.4 [57]
TaS2 51 34 25 40 40 51 59 50.5± 3 [61]
TaSe2 53 76 22 35 37 31 80 54 [55]
WS2 51 34 24 39 40 62 56 60± 5 [62]
Graphite 30 44 23 33 36 46 36 40.7 [63], 36.5 [63, 64], 38.7 [65],

37 [66, 59]
BN 29 69 20 30 32 41 25 32.4± 3 [67], 35.6 [68],18.7 [69]
GaS 37 31 24 34 35 46 — 36 [59], 38.5 [70]
GaSe 37 52 20 27 29 40 — 34 [59], 35.7 [70], 31.9 [71]
CdI2 24 33 15 21 22 28 — 22.5 [57]
HgI2 21 26 11 15 17 23 — 15.3, 16.3 [57]
SnS2 30 30 19 27 28 37 — 27.2 [57]
Bi2Te3 55 48 15 23 24 40 — 47.7 [57]

are consistently of the correct magnitude for the materials
studied. While we believe that the present method offers
benchmark-quality data for vdW bonded systems, it seems
to us that further studies using higher order corrections [73,
74] or approximate kernels in equation (4) [43] are important
to put any lingering doubts about the RPA for vdW bonded
systems at rest.

4.2. LDA

During the course of the present study, it has become clear
that calculations using LDA are a very popular choice of
method for describing vdW interactions in layered solids.
Since the binding properties of the LDA for vdW systems
are known to be present by freak occurrence rather than
by conscious design, it is of great importance to carefully
study the behaviour of the LDA for weakly bonded systems
in order to properly characterize the capabilities of this
approximation. A first drawback of the LDA can be seen
when studying the geometries, where the LDA, while often
giving a lattice constant that is close to the experimental
number, sometimes gives a very drastic underestimation
of the interlayer separation. A large underestimation of
the distance is potentially harmful in many applications,
such as bandgap estimates, since it will exaggerate the
influence of the other layers on the electronic structure of
a single layer. For the binding energies, the LDA binding
energies show a distribution that has its main weight close
to the RPA distribution, but with a split main peak. The
compound-by-compound comparison in figure 6 shows,
however, that LDA only on average produces binding energies
close to the RPA results, and that important features such
as the trends in the transition metal dichalcogenides are not
reproduced. This shows that the capability of the LDA to
produce correct results for the binding energy of layered
materials is limited, and that results based on the LDA should
be treated with caution. However, we note that LDA is in

fact the functional that to the greatest extent reproduces
the experimental trends for the C33 constants, although the
scattering of the experimental data makes it hard to say how
much this should be taken into consideration. It suggests that
the behaviour near the equilibrium point is to a large extent
determined by the exchange interactions, which are expected
to be rather well represented by LDA. On balance, in view of
the consistent performance of LDA over the whole range of
layered solids considered here, we must conclude that LDA
can be an acceptable approximation, even though we cannot
recommend it generally. The fact that it is known that the
binding comes about for spurious reasons strongly suggests
that the LDA should be used only when no other options
are available, and restricted to purely descriptive purposes,
since the theoretical flaws of the LDA for vdW interaction
are so serious that reliable predictions must be considered
impossible.

4.3. DFT-D

The results for the semi-empirical DFT-D method in
comparison with experimental or calculated benchmarks are
very scattered. It also shares with LDA the tendency to
sometimes produce much too small interlayer separations,
but no correlation between the PBE-D and LDA can be seen
for the anomalous deviations. This is not overly surprising,
as the method is based on a parametrization in terms of
entirely atomic quantities, renormalized by fitting to a set
of molecules, and we should not expect such a procedure
to produce systematically good results for solids. While the
extended states of a solid are rather unlike the finite states
of a molecule, we still hold it to be plausible that a suitable
set of parameters for the DFT-D method can be found on a
compound-by-compound basis by fitting of some properties
to suitable benchmarks, such as the equilibrium geometry,
elastic constants and cohesive energy. This way, the DFT-D
procedure, while not suitable for predictive purposes, may
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still serve as a computationally less demanding option for
describing vdW interaction, which is useful in large scale
molecular dynamics simulations and similar applications.

4.4. vdW density functionals

The trends among the different vdW density functionals in our
comparison are quite clear, with increasing binding energy
strength in the sequence vdW-DF1, vdW-DF2, vdW-DF1
(PBE), VV10. Considering the equilibrium geometries as
presented in figures 5–3, we can see the overall positive
trend that the vdW-DFs produce increasingly accurate
results as a function of the time at which they were
published. The original vdW-DF1 gives a too weak vdW
binding, which can to some extent be cured by applying
the correction on top of the PBE, rather than the RPBE
functional. From a principle point of view, this is not an
entirely satisfactory solution since it amounts to including
a small amount of the spurious LDA exchange binding
to correct a too weak dispersion force component in the
vdW-DF. It should be noted that the functional that best
describes the covalent bonding within the layers is not
one of the vdW-DFs, but the PBE functional, of standard
GGA type. This underlines the important fact that the
non-local description of correlation must not be viewed as
just an addition which sorts out the long-range part of the
correlation and that is inert with respect to the covalent
interactions.

Our selections of functionals allow us to make a
comparison of the influence of the different ingredients
in the functionals. The vdW-DF1 functional (based on
RPBE) and vdW-DF1 (PBE) differ only in which GGA
approximation that is used for the exchange, yet the results
are quite drastically different. This shows that the RPBE
functional is overly repulsive, and not the best option
for constructing a vdW-DF type functional, and this was
one of the original reasons for developing the vdW-DF2
functional [9], and to base it on the refitted functional
PW86R [35]. Both vdW-DF2 and VV10 are based on the
PW86R functional, thus the difference between them is
entirely due to the construction of the non-local part of
the correlation. We see that the difference is in fact large:
the VV10 functional is binding much more strongly than
vdW-DF2, as shown both in a good performance for the
vdW bond lengths and in a large, but very consistent,
overestimate of about 50% of the binding energy. The C33
elastic constants for the VV10 functional appear to be
somewhat too large in comparison with the experimental
data. We believe it safe to conclude that the VV10
functional, while producing excellent geometries, is too stiff
and seriously overestimates the binding energy for layered
compounds.

The fact that the present functionals appear to be unable
to simultaneously reproduce both good lattice geometries and
acceptable binding energies leads to the suspicion that the
source of the errors might not be in the non-local correlation.
If we revisit our picture of the vdW bonded equilibrium from
section 2.3, with a strongly repulsive exchange ‘wall’ and a

softer vdW ‘slope’, it appears likely that the source of the error
should be on the repulsion side of the curve. It is plain to see
that the only way to obtain correct interlayer separations with
a functional that is overly repulsive in the weakly overlapping
regime is to also apply an overly attractive correlation part at
large separations. But in doing so one has to pay the price of
getting a too large binding energy, since we are overestimating
the interaction between the layers. A preliminary investigation
for BN showed that a pure Hartree–Fock calculation does
indeed give an exchange ‘wall’ significantly shifted towards
smaller separations compared with all GGA functionals
investigated in the present publication, which suggests that
this might be the correct conclusion. This oversimplified
comparison is not entirely appropriate since the correlation
is included in the GGA calculations. Nevertheless, it is clear
that the exchange part of the interaction, as supplied by the
underlying GGA functional, is highly important even when
determining vdW-dominated properties of systems.
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Appendix. Investigated compounds

Table A.1. The compounds investigated in the present study.

1 AgBiP2Se6 26 MgI2 51 1T-TaS2
2 BBr3 27 2H-MoS2 52 2H-TaS2
3 BI3 28 3T-MoS2 53 1T-TaSe2
4 BN 29 MoSe2 54 2H-TaSe2
5 BaFI 30 MoTe2 55 4H-TaSe2
6 Bi2Se3 31 NbS2 56 Ti2PTe2
7 Bi2Te3 32 2H-NbSe2 57 TiS2
8 BiIO 33 4H-NbSe2 58 TiSe2
9 C 34 NbTe2 59 TiTe2

10 CdI2 35 Ni2SbTe2 60 TlCrTe2
11 CoTe2 36 NiSbSi 61 VBr2
12 CrSe2 37 NiTe2 62 VCl2
13 CrSiTe3 38 PbBi4Te7 63 VI2
14 Cu2S 39 PbFI 64 VS2
15 Fe(PSe3) 40 PbO 65 VSe2
16 GaS 41 PbSb2Te4 66 2H-WS2
17 GaSe 42 PdTe2 67 3T-WS2
18 Ge2Sb2Te5 43 PtS2 68 WSe2
19 HfS2 44 PtSe2 69 Y2I2Ga2
20 HfSe2 45 PtTe2 70 YI3
21 HfTe2 46 Re(AgCl3)2 71 ZrNCl
22 HgI2 47 RhTe2 72 ZrS2
23 In2Zn2S5 48 SnS2 73 ZrSe2
24 Mg2(P2Se6) 49 SnSe2 74 ZrTe2
25 MgBr2 50 SrFI
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Lundqvist B I 2004 Van der Waals density functional for
general geometries Phys. Rev. Lett. 92 246401
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[34] Gerber I C and Ángyán J G 2007 London dispersion forces by
range-separated hybrid density functional with second order
perturbational corrections: the case of rare gas complexes
J. Chem. Phys. 126 044103
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