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Electrons moving through a spatially periodic lattice potential
develop a quantized energy spectrum consisting of discrete Bloch
bands. In two dimensions, electrons moving through a magnetic
field also develop a quantized energy spectrum, consisting of highly
degenerate Landau energy levels. When subject to both a magnetic
field and a periodic electrostatic potential, two-dimensional systems
of electrons exhibit a self-similar recursive energy spectrum1. Known
as Hofstadter’s butterfly, this complex spectrum results from an
interplay between the characteristic lengths associated with the two
quantizing fields1–10, and is one of the first quantum fractals discov-
ered in physics. In the decades since its prediction, experimental
attempts to study this effect have been limited by difficulties in recon-
ciling the two length scales. Typical atomic lattices (with periodicities
of less than one nanometre) require unfeasibly large magnetic fields
to reach the commensurability condition, and in artificially engi-
neered structures (with periodicities greater than about 100 nano-
metres) the corresponding fields are too small to overcome disorder
completely11–17. Here we demonstrate that moiré superlattices arising
in bilayer graphene coupled to hexagonal boron nitride provide a
periodic modulation with ideal length scales of the order of ten nano-
metres, enabling unprecedented experimental access to the fractal
spectrum. We confirm that quantum Hall features associated with
the fractal gaps are described by two integer topological quantum
numbers, and report evidence of their recursive structure. Observa-
tion of a Hofstadter spectrum in bilayer graphene means that it is
possible to investigate emergent behaviour within a fractal energy
landscape in a system with tunable internal degrees of freedom.

The total number of electron states per area of a completely filled
Bloch band is n0 5 1/A, where A is the area of the unit cell of the periodic
potential. In a magnetic field, B, the number of states per area of each
filled Landau level is given by B/w0, where w0 5 h/e is the magnetic flux
quantum (h, Planck’s constant; e, magnitude of the electron charge).
The quantum description of electrons subjected simultaneously to both
a periodic electric field and a magnetic field can be simply parameter-
ized by the dimensionless ratio w/w0, where w 5 BA is the magnetic flux
per unit cell. The general solution, however, exhibits a rich complexity
due to the incommensurate periodicities of the Bloch and Landau
states18. For commensurate fields, corresponding to rational values of
w/w0 5 p/q, where p and q are co-prime integers, the single-particle
Bloch band splits into q subbands1 (beginning with the Landau level
description, it can be shown that, equivalently, the energy diagram is
parameterized by wo/w 5 q/p such that at these same rational values
each Landau level splits into p subbands2). This results in a quasi-
continuous distribution of incommensurate quantum states with a
self-similar recursive structure, yielding a butterfly-like fractal energy
diagram called the Hofstadter buttefly1 (Supplementary Information).

Important insight into this system came from consideration of the
density of charge carriers, n, required to fill each fractal subband2.

Replotting the Hofstadter energy spectrum as integrated density versus
field shows that all spectral gaps are constrained to linear trajectories in
the density–field diagram (Wannier diagram). This can be described
by a simple Diophantine relation

n=noð Þ~t w=woð Þzs ð1Þ
where n/no and w/wo are the normalized carrier density and magnetic flux,
respectively, and s and t are both integer valued. Here n/no represents the
Bloch band filling fraction, which is distinct from the usual Landau level
filling fraction, n 5 nw0/B (the two are related by the normalized flux, that
is, n/no 5 nw/wo). The physical significance of the quantum numbers s
and t became fully apparent with the discovery of the integer quantum
Hall effect19 (QHE), after which it was shown that the Hall conductivity
associated with each minigap in the fractal spectrum is quantized accord-
ing to the relation sxy 5 te2/h (refs 3, 4). The second quantum number, s,
physically corresponds to the Bloch band filling index in the fractal
spectrum5. This formalism suggests several unique and unambiguous
experimental signatures associated with the Hofstadter energy spectrum
that are distinct from the conventional QHE. First, the Hall conductance
can vary non-monotonically and can even fluctuate in sign. Second, the
Hall conductance plateaux, together with vanishing longitudinal resist-
ance, can appear at non-integer Landau level filling fractions. Third, the
Hall conductance plateaux remain quantized in integral multiples of e2/h.
However, the quantization integer is not directly associated with the usual
Landau level filling fraction. Instead, quantization is equal to the slope of
the gap trajectory in the n/no–w/wo Wannier diagram, in accordance with
the Diophantine equation (equation (1)).

Minigaps within the fractal energy spectrum become significant only
once the magnetic length (lB~

ffiffiffiffiffiffiffiffiffiffi
B=eB

p
; B, Planck’s constant divided by

2p), which characterizes the cyclotron motion, is of the same order as
the wavelength of the periodic potential, which characterizes the Bloch
waves. For usual crystal lattices, where the interatomic spacing is a few
ångströms, the necessary magnetic field is unfeasibly large, in excess of
10,000 T. The main experimental effort therefore has been to litho-
graphically define artificial superlattices11–17 with unit-cell dimensions
of order tens of nanometres, so that the critical magnetic field remains
small enough to be achievable in the lab yet still large enough that
the QHE is fully resolved without being smeared out by disorder.
Fabricating the optimally sized periodic lattice while maintaining
coherent registry over the full device and without introducing substan-
tial disorder has proven to be a formidable technical challenge. Pat-
terned GaAs/AlGaAs heterostructures with ,100-nm-period gates
provided the first experimental support for the predictions of a
Hofstadter spectrum14–16. However, limited ability to tune the carrier
density or reach the fully developed QHE regime in these samples has
made it difficult to map out the complete spectrum. Although similar
concepts have been pursued in non-solid-state model systems20,21, the
rich physics of the Hofstadter spectrum remains largely unexplored.
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Heterostructures consisting of atomically thin materials in a multi-
layer stack provide a new means of realizing a two-dimensional system
with a laterally modulated periodic structure. In particular, coupling
between graphene and hexagonal boron nitride (hBN), whose crystal
lattices are isomorphic, results in a periodic moiré pattern. The moiré
wavelength is directly related to the angular rotation between the two
lattices22–24, and can be tuned through the desired length scales without
the need for lithographic techniques8,9. Moreover, hBN provides an
ideal substrate for achieving high-mobility graphene devices, which is
crucial for high-resolution quantum Hall measurements25,26, and field-
effect gating in graphene allows the Fermi energy to be continuously
varied through the entire moiré Bloch band.

In this study, we used Bernal-stacked bilayer graphene (BLG) Hall
bars fabricated on hBN substrates (Fig. 1a, b) using mechanical exfo-
liation followed by co-lamination (Methods Summary). Figure 1b
shows a non-contact atomic force microscopy (AFM) image acquired
from an example device. In the magnified region, a triangular moiré
pattern is visible with wavelength 15.5 6 0.9 nm. This is comparable to
the maximal moiré wavelength of ,14 nm expected for graphene on
hBN22–24, suggesting that in this device the BLG lattice is oriented
relative to the underlying hBN lattice with near-zero angle mismatch.

Figure 1c shows transport data measured from the same device. In
addition to the usual resistance peak at the charge neutrality point (CNP),
occurring at gate voltage Vg < 2 V, two additional satellite resistance
peaks appear, symmetrically located at Vsatl < 630 V relative to the
CNP. These satellite features are consistent with a depression in the
density of states at the superlattice Brillouin zone band edge, analogous
to previous spectroscopic measurements of single-layer graphene
coupled to a moiré superlattice24,27. Assuming non-overlapping bands,
jVsatlj gives an estimate of the moiré wavelength of ,14.6 nm
(Supplementary Information), in good agreement with the AFM mea-
surements. The nature of these satellite peaks can be further probed in the
semiclassical, low-B transport regime. In Fig. 1d, longitudinal resistance,
Rxx, and transverse Hall resistance, Rxy, are plotted versus gate voltage at

B 5 1 T. Near the central CNP, the Hall resistance changes sign as the
Fermi energy passes from the electron to the hole band. The same trend
also appears near Vsatl, consistent with the Fermi energy passing through
a second band edge. This provides further confirmation that the moiré
pattern, acting as a periodic potential superlattice, gives rise to a mini-
Brillouin zone band28. We observed the satellite peak to be more
developed in the hole branch than in the electron branch in all samples,
in agreement with previous experimental and theoretical studies of hBN-
supported monolayer graphene24,27,28. The satellite peaks vanish at tem-
peratures above 100 K (Fig. 1c, inset), indicating that the coupling
between the BLG and hBN atomic lattices is of order ,10 meV.
Perfect crystallographic alignment between graphene and hBN is
expected to open a ,50-meV bandgap29,30, leading to a low-temperature
divergence in the resistance at the CNP. The weak temperature depend-
ence observed in our device suggests the absence of a gap, possibly owing
to the lattice mismatch between the BLG and hBN.

In the remainder of this Letter, we focus on magnetotransport mea-
sured at high field. Figure 2a shows the evolution of Rxx and Rxy for
magnetic fields up to 31 T. In the left panel (a Landau fan diagram), Rxx

is plotted against the experimentally tunable gate voltage and magnetic
field. In the right panel, the magnitude of the corresponding Rxy is
plotted against the dimensionless parameters appearing in the
Diophantine equation, n/no and w/wo. This Wannier diagram is simply
the Landau fan diagram with both axes relabelled by dimensionless
units defined by normalizing to the moiré unit-cell area.

In a conventional quantum Hall system, the Landau fan diagram exhi-
bits straight lines, tracking minima in Rxx and plateaux in Rxy. Plotted
against n/no and w/wo, the slope of each line is precisely the Landau level
filling fraction, n, and all lines converge to the origin. White lines in Fig. 2a
identify QHE states matching this description, tracking Landau level
filling fractions n 5 4, 8 and 12. This is consistent with the usual QHE
hierarchy associated with a conventional degenerate BLG spectrum.

At large magnetic fields, several additional QHE states, exhibiting
minima in Rxx together with plateaux in Rxy, develop outside the usual
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Figure 1 | Moiré superlattice. a, Sketch of graphene on hBN showing the
emergence of a moiré pattern. The moiré wavelength varies with the mismatch
angle, h. b, Left: an AFM image of a multiterminal Hall bar. Right: a high-
resolution image of a magnified region. The moiré pattern is evident as a
triangular lattice (upper inset shows a further magnified region). A fast Fourier
transform of the scan area (lower inset) confirms a triangular lattice symmetry

with periodicity 15.5 6 0.9 nm. c, Measured resistance versus gate voltage at
zero magnetic field. Inset: the corresponding conductivity versus temperature,
indicating that the satellite features disappear at temperatures greater than
,100 K. d, Longitudinal resistance (left axis) and Hall resistance (right axis)
versus gate voltage at B 5 1 T. The Hall resistance changes sign and passes
through zero at the same gate voltage as the satellite peaks.
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BLG sequence and also follow straight lines in the Landau fan diagram,
but converge to non-zero values of n/no. Yellow and red lines in Fig. 2a
trace examples of these anomalous QHE states appearing within the
lowest Landau level. Unlike the conventional QHE states, each of the
anomalous QHE states is characterized by both an integer-valued
intercept, s (yellow and red lines converge to n/no 5 1 and 2, respec-
tively) and an integer-valued slope, t (labelled along the top axis in the
figure). In Fig. 2b, longitudinal and Hall conductivities measured at
constant magnetic field (corresponding to horizontal line cuts through
the fan diagram in Fig. 2a) are plotted against Landau level filling
fraction, n. At large magnetic fields, the anomalous QHE states are
remarkably well developed, exhibiting wide plateaux in sxy concom-
itant with sxx 5 0. Moreover, these states appear in general at non-
integer filling fractions. Comparison between Fig. 2a and Fig. 2b further
reveals that Hall conductivity plateaux are quantized in integer multi-
ples of e2/h, where the quantization integer t equals the slope in the
Wannier diagram. Similar internal structure is observed within higher-
order Landau levels (Fig. 3 and Supplementary Information). The ano-
malous QHE states observed here are consistent with fully developed

spectral gaps resulting from a Hofstadter-type energy spectrum.
Moreover, our ability to map fully the density-field space provides a
remarkable confirmation of the Diophantine equation: we observe
direct evidence that QHE features associated with the Hofstadter spec-
tral gaps are characterized by the two quantum numbers, s and t, cor-
responding to the n/no intercept and the slope, respectively, in the
Wannier diagram.

Figure 3 shows similar data to Fig. 2, but measured from a separate
device in which the moiré wavelength is only 11.6 nm. Again, QHE
states appear outside the conventional Bernal-stacked BLG sequence
and follow straight lines whose origin and slope are both integer
valued, with the slope exactly matching the Hall quantization, in pre-
cise agreement with the Diophantine equation. Similar to the previous
device, the n 5 0 insulating state undergoes a drastic change near
w/wo 5 1/2, when anomalous QHE states associated with the fractal
gaps begin to develop fully.

In Fig. 3b, the lower panel shows sxx measured at B 5 25 T, corres-
ponding to a horizontal line cut through Fig. 3a (dashed white line), for
a variety of sample temperatures. The magnitudes of the fractal gaps
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Figure 2 | Emergence of anomalous quantum Hall states. a, Landau fan
diagram showing longitudinal resistance, Rxx (left), and Hall resistance, Rxy

(right). Rxx is plotted versus magnetic field on the vertical axis and versus gate
bias on the horizontal axis. In the diagram showing Rxy, the axes are scaled by
the size of the moiré unit cell to give w/wo on the vertical axis and n/no on the
horizontal axis. QHE states corresponding to the conventional BLG spectrum
are indicated by white lines. Solid yellow and red lines track the QHE outside
this conventional spectrum, with dashed lines indicating the projected n/no

intercept. The slope of each line is shown on the top axis. b, Longitudinal and

transverse Hall conductivities corresponding to line cuts at constant magnetic
field (constant w/wo) from the Landau fan diagram in a. At B 5 7 T, the QHE
ladder is consistent with previous reports for bilayer graphene. At B 5 18 and
26 T, additional QHE states emerge, showing Hall conductivity plateaux
quantized in integer multiples of e2/h, but appearing at non-integer Landau
level filling fractions. Yellow and red bars indicate correspondence to the
similarly coloured anomalous features marked by solid lines in a. Blue bars
indicate the conventional QHE features. Numbers label the quantization
integer for each plateau.
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Figure 3 | Fractal gaps. a, Landau fan diagrams similar to those in Fig. 2 but
measured from a separate device. Here the zero-field satellite peak position
indicates a moiré period of 11.6 nm, indicating that the superlattice unit cell was
approximately 1.5 times smaller in this device than in the one used in Fig. 2.
Significantly more structure is observed here than in Fig. 2. b, Bottom: the
evolution of sxx with temperature varying between 2 and 20 K, acquired at
constant B 5 25 T, which corresponds to the line cut shown in a. Top: the
corresponding sxy at T 5 2 K. The bracketed numbers label the (s, t) values of

the corresponding fractal gaps according to the Diophantine equation.
c, Bubble plot of energy gaps determined from the temperature dependence
calculated at two magnetic fields (B 5 25 and 28.5 T). The gaps are plotted as
circles with radius scaled relative to the largest gap value measured. Dashed
lines trace select fractal gap positions allowed by the Diophantine equation.
Solid lines trace regions where the corresponding fractal gaps appear as minima
in sxx together with quantized plateaux in sxy. The colours indicate gaps with
the same quantum number s.
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were estimated from the temperature dependence of the sxx minima in
the thermally activated regime (Supplementary Information), at two
separate magnetic field values, 25 and 28.5 T. Figure 3c summarizes
our findings. Each fractal gap is marked by a circle centred at the
corresponding (n/no, w/wo) coordinates, and with radius scaled relative
to the largest gap value (Supplementary Information). As the magnetic
field increases, the spectral energies develop in a complicated way:
some gaps grow with field (for example those with (s, t) 5 (1, 1) and
(2, 22)), whereas others shrink (for example (1, 24)). For a fixed
magnetic field, it seems generally true that for constant s values, fractal
gap states exhibit increasing gap size as t increases. For example, at
B 5 25 T, D(1,24) < 48 K whereas D(1,23) < 30 K. This contradicts the
prediction that fractal gaps corresponding to lower quantum numbers
have larger gap values1. We note that such a trend was subsequently
found to be specific to square lattice symmetries2,5. Furthermore, a
non-trivial case also arises when two fractal gap states overlap2,
such as occurs between the (1, 22) and (2, 23) states in our data as
w/wo R 1. Further theoretical analysis specific to moiré-patterned BLG
is necessary to understand fully the trends highlighted here.

Figure 4a shows a normalized Landau fan diagram of Rxy values
corresponding to the Rxx data in Fig. 3a. Dashed horizontal lines in the
figure label special values of the normalized magnetic flux, w/wo 5 1/m,
where m is integer valued. Referred to as the ‘pure cases’1, these lines of
high symmetry provide the framework for the recursive structure of
the butterfly spectrum, marking the boundaries of the repeating sub-
cells that appear within the main cell5. In Fig. 4a, at the pure cases in the
fan diagram, Rxy seems to tend to zero and change sign. This is also
seen from the single line trace in Fig. 4b. In the quantum Hall regime,
the longitudinal conductivity has a local peak as the magnetic field
passes through the pure cases, with the corresponding Hall conductivity
exhibiting a sharp transition. For large magnetic fields, both of these

features span the full Landau level along lines of constant w/wo, as seen
in Figs 3a and 4a, respectively. Near the field corresponding to w/wo 5

1/2, labelled in Fig. 4c as B1/2, plateaux appear in Rxy together with
minima in Rxx, resembling a mini QHE series centred on B1/2. If we
redefine the local effective magnetic field as B9 5 B 2 B1/2, then, accord-
ing to the usual QHE formalism, we expect to find that n9 5 (1/B9)n9h/e,
where n9 is an effective filling fraction given by the Hall quantization, B9

is the value of the effective magnetic field at the Rxx minima and n9 is an
effective carrier density. The inset in Fig. 4c shows a plot of n9 versus
1/B9 and the data indeed follows a linear trend. In spite of the large
magnetic field (B1/2 < 17.3 T), this indicates that locally the electrons
behave as if the magnetic field is reduced to zero. We regard this as
compelling evidence of the long-predicted recursive nature of the
Hofstadter spectrum, where repeated mini fan diagrams emerge within
the main one. We note that the linear trend shown inset in Fig. 4c does
not pass through the origin, but is vertically offset by 4.1 6 0.1. The
origin of this offset is unclear but may be related to disorder effects
because in this regime the spectrum is not fully gapped6.

Finally, we note that precise modelling of the fractal spectrum (Sup-
plementary Information) requires a quantitative understanding of the
atomic-scale couplings between BLG and hBN and between the BLG
layers, which are not well known. Additionally the odd-integer quantum
numbers observed in our experiment, which may not be accounted for in
a purely single-particle picture, invite further investigation of correlated
electron behaviour within the Hofstadter spectrum.

In conclusion, we report experimental confirmation that the general-
ized behaviour of electrons subjected simultaneously to both a magnetic
field and a spatially varying periodic electrostatic field is described by a
Diophantine equation involving two topological quantum numbers.
The ability to tune the competing length scales governing these
Landau–Bloch–Dirac states in graphene coupled to a substrate-induced
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are shown on the top axis. c, Details of both sxx and sxy in the vicinity of
w/wo 5 1/2 (b). Plateaux in sxy concomitant with minima in sxx resemble a mini
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moiré superlattice makes it possible to study experimentally the com-
plexity of the Hofstadter energy spectrum and, in particular, to invest-
igate the role of electron interactions within it.

METHODS SUMMARY
Using a co-lamination mechanical transfer technique similar to that described
previously25,26, graphene–hBN stacks were fabricated on doped Si substrates with a
,300-nm oxide layer. Each stack was then etched into a Hall bar with evaporated
Cr/Pd/Au leads using standard electron-beam lithography processes. The bottom
boron nitride layer was chosen to be between 10 and 20 nm thick. More than 20
devices were made in this way, with six devices showing similar behaviour to that
reported here. We focus only on two high-quality devices in the text, listing other
examples in Supplementary Information. The device shown in Fig. 1b represents a
typical Hall bar geometry with a channel width of 1mm and spacing between
voltage probes varying from 1 to ,4mm. Identical transport features were mea-
sured across all voltage probes, indicating that the moiré pattern exhibits good
uniformity over the entire length of the device. Mobility in our devices ranged
from approximately 10,000 to 100,000 cm2 V21 s21, as estimated by fitting a
Boltzmann model to the linear response. Four-terminal transport measurements
were performed using a lock-in amplifier at 17 Hz with a 10–100-nA source
current, using the doped silicon substrate to gate the channel. Samples were mea-
sured in a 31-T resistive magnet and a 3He cryostat (sample in vapour).
Longitudinal and Hall conductivities were calculated from the measured resistances

according to sxx~rxx

.
r2

xxzR2
xy

� �
and sxy~Rxy

.
r2

xxzR2
xy

� �
, respectively.

AFM images of the device were acquired at room temperature, using an
Omicron low-temperature AFM system. Imaging was performed using a bias
voltage of Vbias 5 0.2 V and frequency shift of df 5 20 Hz. Images were filtered
to remove noise.
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