Intrinsic Piezoelectricity in Two-Dimensional Materials
Karel-Alexander N. Duerloo,† Mitchell T. Ong,‡ and Evan J. Reed*

Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States

ABSTRACT: We discovered that many of the commonly studied two-dimensional monolayer transition metal dichalcogenide (TMDC) nanoscale materials are piezoelectric, unlike their bulk parent crystals. On the macroscopic scale, piezoelectricity is widely used to achieve robust electromechanical coupling in a rich variety of sensors and actuators. Remarkably, our density-functional theory calculations of the piezoelectric coefficients of monolayer BN, MoS2, MoSe2, MoTe2, WS2, WSe2, and WTe2 reveal that some of these materials exhibit stronger piezoelectric coupling than traditionally employed bulk wurtzite structures. We find that the piezoelectric coefficients span more than 1 order of magnitude, and exhibit monotonic periodic trends. The discovery of this property in many two-dimensional materials enables active sensing, actuating, and new electronic components for nanoscale devices based on the familiar piezoelectric effect.

SECTION: Physical Processes in Nanomaterials and Nanostructures

Nano electromechanical systems (NEMS) and nanoscale electronics are the final frontier in the push for miniaturization that has been among the dominant themes of technological progress for over 50 years. Enabled by increasingly mature fabrication techniques, low-dimensional materials including nanoparticles, nanotubes, and (near-)atomically thin sheets have emerged as the key components for the next generation of “active nanostructure” NEMS devices including radios,1 switches,2−4 tweezers,5 as well as mass,6 gas,7 pressure,8,9 and displacement sensors.10 The traditional field effect transistor paradigm has also been extended to nanotubes,11 graphene,12 and monolayer MoS2.13

All of the NEMS devices mentioned require some type of static or dynamic mechanical displacement that is electrically sensed, dynamically controlled, or both. Piezoelectric materials have historically been used in many applications requiring electromechanical coupling, and nanoscale devices also stand to gain additional capabilities, simplicity, and autonomous operation through integration of piezoelectric materials. For instance, recent experimental work utilizes piezoelectric micro- or nanowires as piezo-phototronic facilitators for light emission14 or as the active component of efficient nanogenerators that convert mechanical energy into electricity.15,16 Piezoelectricity may also be used to generate charge carriers or construct relays18 in an electronics context. In a rapidly emerging field termed (nano)piezotronics, the controllable charges and electric fields generated by piezoelectric materials have been used in several prototype devices such as field effect transistors, piezoelectric-gated diodes, and sensors.19

Given these bright prospects for piezoelectricity as an enabler of nanoscale technology along with the explosive advances in fabrication methods, it becomes natural to inquire whether atomically thin sheet materials such as graphene can also be used as piezoelectric building blocks. Recently, we and other researchers have predicted using computational models that graphene can be rendered piezoelectric through adatom adsorption20 or introduction of specific in-plane defects,21 paving the way to a strong miniaturization and site-specific engineering of familiar piezoelectric technology using graphene. We now report that a family of widely studied atomically thin sheet materials are in fact intrinsically piezoelectric, elucidating an entirely new arsenal of “out of the box” active components for NEMS and piezotronics.

Despite the fact that fullerenes and graphene have made carbon allotropes the most studied of all nanomaterials, graphite is by no means the only layered parent crystal that is amenable to isolation of monolayer sheets. Currently, the most prominent of these other parent crystals are hexagonal boron nitride (h-BN or 2H-BN)22 and a family of trigonal-prismatically coordinated transition metal dichalcogenide (TMDC) crystals. In keeping with prior literature, we refer to these crystals as 2H-TMDCs, where the 2H prefix is Ramsdell notation for the bulk stacking sequence (two-layer periodic) and the unit cell’s basal plane shape (hexagonal).23 These crystals include, but are not limited to, MoS2 (monolayers first isolated in 1986),22,24 WS2,25,26 and NbSe2.22,26 When viewed from the top, the 2H structure of the above materials is a honeycomb structure where adjacent sites are occupied by two alternating species (Figure 1a,b). The difference between h-BN and the 2H-TMD monolayer structure is that h-BN is atomically thin (Figure 1c), whereas one 2H-TMD monolayer sublattice contains two chalcogenide atoms at z = h and z = −h, and the other sublattice contains a transition metal at z = 0 (Figure 1d).

For a material to be piezoelectric, it must not be centrosymmetric (i.e., possess a point through which a spatial inversion leaves the structure invariant).27 Due to their experimentally observed antiparallel stacking sequence, the

Received: August 22, 2012
Accepted: September 17, 2012
Published: September 17, 2012

© 2012 American Chemical Society
bulk stacked-layer h-BN and 2H-TMDC crystals are centrosymmetric. At first glance, the presence of centrosymmetry makes these crystals a seemingly fruitless place to look for piezoelectricity. However, it can be seen from Figure 1 that a single h-BN or 2H-TMDC monolayer does not have an inversion center. Lack of centrosymmetry has the mathematical consequence that all odd-rank tensor properties, including the third-rank piezoelectric tensor, may be nonzero. Hence, a noncentrosymmetric crystal that is found to be electrically insulating is a candidate piezoelectric, regardless of whether it is a one-, two- or three-dimensional structure. This is also the case, for example, in BN nanotubes. The exciting prospect of intrinsically piezoelectric monolayer materials and their potential ramifications for technology in the nanoscale regime has prompted us to quantitatively map the piezoelectric and elastic properties of a collection of candidate materials.

We use density functional theory (DFT) at the generalized gradient approximation (GGA) level of theory to calculate the piezoelectric and elastic stiffness coefficients. Piezoelectric properties are associated with ground electronic state changes in polarization, for which DFT generally provides a reasonable description. For example, prior work on the piezoelectric properties of GaN shows agreement with experimental measurements to within approximately 20%. We use the nonprimitive orthorhombic unit cells shown in Figure 1 as the computational unit cell for all calculations. The hexagonal lattice constant \(a_0\) and atomic positions were allowed to relax subject to zero pressure following the convergence criteria listed in the Computational Methods section.

The optimized geometries and calculated band gap energies of h-BN and several 2H-TMDCs are summarized in Table 1. Note that BN, MoS\(_2\), MoSe\(_2\), MoTe\(_2\), W\(_2\)S\(_2\), NbSe\(_2\), and TaSe\(_2\) have been experimentally isolated in monolayer form. \(^26,33\) We find NbSe\(_2\) and TaSe\(_2\) to be metallic and hence not piezoelectric. The monolayer 2H-TMDCs containing Mo or W are found to be insulating. The semilocal DFT-calculated monolayer MoS\(_2\) band gap of 1.67 eV is in reasonable agreement with the experimental value of 1.9 eV. \(^34\) We find the lattice parameters \(a_0\) and \(h\) to be correlated primarily to the chalcogenide present in the 2H-TMDC monolayers and largely independent of the transition metal atom type.

It should be stressed that 2H is just one of the possible TMDC structures that are experimentally stable or metastable. For example, monolayers of MoS\(_2\), WS\(_2\), and MoSe\(_2\) obtained through water-based lithium intercalation are reported to exhibit a distorted octahedral structure. \(^35,36\) Other authors
report using a different solution-based process26 and mechanical exfoliation57 to isolate MoS\textsubscript{2} monolayers exhibiting Raman spectra consistent with the 2H structure. Bulk MoS\textsubscript{2}, MoSe\textsubscript{2}, MoTe\textsubscript{2}, WS\textsubscript{2}, and WSe\textsubscript{2} have all been observed in trigonal prismatic (2H) form,29 but bulk MoTe\textsubscript{2} has also been observed as a distorted octahedral structure.38 Piezoelectric properties of the metastable 2H form of WTe\textsubscript{2} are still studied in this letter for the purpose of direct comparison with the other structures.

Motivated by the overall scarcity of experimental structural information on monolayers, Table 2 lists our DFT calculations on a 7 × 7 grid with strain components ranging from −0.006 to 0.006 in steps of 0.002. Atomic positions are relaxed at each strain state to generate the so-called relaxed-ion coefficients. In the case of D\textsubscript{3h} (6\textit{mm}) point group. This symmetry places restrictions on the magnitude and uniqueness of the piezoelectric tensor coefficients. In the case of D\textsubscript{3h}, only one \(d\)-and one \(e\)-coefficient need to be calculated. Employing Voigt notation to limit the number of indices, the only allowed nonzero piezoelectric \(d\)-coefficients are27

Table 3. Calculated Clamped-Ion and Relaxed-Ion Components, \(C_{11}\) and \(C_{12}\), of the Elastic Tensor for Each Piezoelectric Monolayer at the DFT/GGA Level of Theorya

<table>
<thead>
<tr>
<th>material</th>
<th>(C_{11}) (N/m)</th>
<th>(C_{12}) (N/m)</th>
<th>(C_{11}) (N/m)</th>
<th>(C_{12}) (N/m)</th>
<th>(\nu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>h-BN</td>
<td>153</td>
<td>48</td>
<td>130</td>
<td>32</td>
<td>0.32</td>
</tr>
<tr>
<td>2H-MoS\textsubscript{2}</td>
<td>131</td>
<td>39</td>
<td>108</td>
<td>25</td>
<td>0.35</td>
</tr>
<tr>
<td>2H-MoSe\textsubscript{2}</td>
<td>101</td>
<td>32</td>
<td>80</td>
<td>21</td>
<td>0.37</td>
</tr>
<tr>
<td>2H-MoTe\textsubscript{2}</td>
<td>170</td>
<td>56</td>
<td>144</td>
<td>31</td>
<td>0.36</td>
</tr>
<tr>
<td>2H-WSe\textsubscript{2}</td>
<td>147</td>
<td>40</td>
<td>119</td>
<td>22</td>
<td>0.36</td>
</tr>
<tr>
<td>2H-WTe\textsubscript{2}</td>
<td>116</td>
<td>31</td>
<td>89</td>
<td>15</td>
<td>0.39</td>
</tr>
</tbody>
</table>

aThe Poisson ratio \(\nu\) that governs elastic relaxations in \(h\) is also calculated where relevant.

The linear piezoelectric effect in a flat and 2D material can be viewed as a first-order coupling between surface polarization (\(P\)) or the macroscopic electric field (\(E\)), and stress (\(\sigma\)) or the strain (\(\varepsilon\)) tensors, where \(i, j, k \in \{1,2,3\}\), with 1, 2, and 3 corresponding to \(x, y, z\), respectively. The effect can be described using the third-rank piezoelectric tensors \(d_{ijk}\), \(e_{ijk}\) and their respective Maxwell relations:27

\[
\begin{align*}
\frac{\partial P_i}{\partial \sigma_{jk}} &= \frac{\partial E_i}{\partial \varepsilon_{jk}} \\
\frac{\partial P_i}{\partial E_i} &= -\frac{\partial \varepsilon_{jk}}{\partial \sigma_{jk}}
\end{align*}
\]

It can be shown that \(d_{ijk}\) and \(e_{ijk}\) are related via the elastic stiffness tensor, \(C_{ijkl}\). Both monolayers of h-BN and of 2H-TMDC belong to the D\textsubscript{3h} (6\textit{mm}) point group. This symmetry places restrictions on the magnitude and uniqueness of the piezoelectric tensor coefficients. In the case of D\textsubscript{3h}, only one \(d\)-and one \(e\)-coefficient need to be calculated. Employing Voigt notation to limit the number of indices, the only allowed nonzero piezoelectric \(d\)-coefficients are27

\[
\begin{align*}
\frac{\partial P_i}{\partial \sigma_{jk}} &= \frac{\partial E_i}{\partial \varepsilon_{jk}} \\
\frac{\partial P_i}{\partial E_i} &= -\frac{\partial \varepsilon_{jk}}{\partial \sigma_{jk}}
\end{align*}
\]

It can be shown that \(d_{ijk}\) and \(e_{ijk}\) are related via the elastic stiffness tensor, \(C_{ijkl}\). Both monolayers of h-BN and of 2H-TMDC belong to the D\textsubscript{3h} (6\textit{mm}) point group. This symmetry places restrictions on the magnitude and uniqueness of the piezoelectric tensor coefficients. In the case of D\textsubscript{3h}, only one \(d\)-and one \(e\)-coefficient need to be calculated. Employing Voigt notation to limit the number of indices, the only allowed nonzero piezoelectric \(d\)-coefficients are27:

\[
\begin{align*}
d_{11} &= 1 \\
d_{22} &= 1 \\
d_{21} &= 1 \\
d_{221} &= 1
\end{align*}
\]

Similar, but slightly different relations hold for the nonzero \(e\)-coefficients:

\[
\begin{align*}
e_{11} &= e_{11} \\
e_{12} &= e_{12} \\
e_{21} &= e_{21} \\
e_{26} &= e_{26}
\end{align*}
\]

All in-plane elastic and piezoelectric properties of D\textsubscript{3h} monolayers are fully determined by only three coefficients because \(d_{11}\) and \(e_{11}\) are related as follows:

\[
\begin{align*}
e_{11} &= d_{11}(C_{11} - C_{12})
\end{align*}
\]

In order to complete the picture, we calculate the change in polarization along \(x\) per unit cell using the geometric phase approach of King-Smith and Vanderbilt42,43 implemented in Quantum Espresso.44 The clamped- and relaxed-ion piezoelectric \(e_{11}\)-coefficients are subsequently obtained by least-squares fitting of the polarization change per unit area to eq 7:
\(R(\epsilon_{11}, \epsilon_{22} = 0) - R(\epsilon_{11} = 0, \epsilon_{22} = 0) = \epsilon_{11} \epsilon_{11} \) (7)

Using eq 7, we calculate the relaxed-ion (clamped-ion) \(d_{11} \) by knowledge of the relaxed (clamped) results for \(\epsilon_{11}, \epsilon_{11} \) and \(C_{11} \).

Figure 2 illustrates the direct calculations of the piezoelectric \(\epsilon_{11} \)-coefficients and Table 4 gives the calculated \(d_{11} \) values. The calculated relaxed-ion \(d_{11} \)-coefficients, especially those for the 2H-TMDC monolayers, compare favorably with coefficients of frequently used bulk piezoelectrics such as \(\alpha \)-quartz \((d_{11} = 2.3 \text{ pm/V}) \), \(\text{wurtzite GaN} \ (d_{11} = 3.1 \text{ pm/V}) \), and \(\text{wurtzite AlN} \ (d_{11} = 5.1 \text{ pm/V}) \). The clamped-ion \(\epsilon_{11} \) coefficient for h-BN is in good agreement with the value of 3.57 \(\times 10^{-10} \text{ C/m} \), calculated earlier by Naumov et al. \(^{47} \) The entire range of calculated relaxed-ion \(d_{11} \)-coefficients spans more than 1 order of magnitude. Nevertheless, all the obtained relaxed-ion \(d_{11} \)- and \(\epsilon_{11} \)-coefficients exceed those predicted for \(\epsilon_{11}/d_{33} \)-type engineered piezoelectricity in adatom-doped monolayer graphene, \(^{20} \) and are generally 1 order of magnitude greater.

We find that the relaxed-ion \(\epsilon_{11} \) and \(d_{11} \) coefficients in the 2H-TMDC monolayers obey a periodic trend. WS\(_2\) possesses the smallest piezoelectric effect, and moving upward in group 6 (transition metal) or downward group 16 (chalcogenide) enhances the magnitude of the effect until MoTe\(_2\), having the largest coefficient, is reached. The trend is more dramatic in \(d_{11} \) because there also are trends in \(C_{11} \) and \(C_{12} \) that serve to amplify the trend in \(\epsilon_{11} \). Figure 3 summarizes all the periodic trends strictly obeyed by our data.

Here we have shown, for the first time, that many of the 2D materials at the center of considerable research focus are in fact piezoelectric. Because of its surprising magnitude, the piezoelectric effect in these 2D materials is much more than a theoretical curiosity. We are optimistic that this piezoelectric effect can be quantified in a relatively straightforward experiment on TMDC flakes. For example, because of transition metals’ strong interaction with X-ray radiation, monolayer flakes may be utilized for precise measurement of field-induced strain. Conversely, experiments can be envisioned where an applied strain is directly correlated to a measurable voltage across a finite-size flake, turning the monolayer sheet into a highly sensitive strain gauge. We expect the piezoelectric properties of these materials to provide new platforms for electronic and piezotronic devices, and enable previously inaccessible avenues for sensing and control at the nanoscale.

Computational Methods

We used DFT implemented within the Quantum-ESPRESSO 5.0 ab initio software package. \(^{34} \) Depending on the material simulated, ion cores were treated using ultrasoft Vanderbilt, \(^{48} \) norm-conserving, \(^{49} \) and projector augmented-wave \(^{50} \) pseudopotentials, as listed in Table 1. Electron exchange and correlation effects were described using the generalized-gradient-corrected Perdew-Burke-Ernzerhof (PBE) approximation. \(^{53} \) Periodic boundary conditions were employed in all three
dimensions using an orthorhombic unit cell containing either two boron atoms and two nitrogen atoms for BN, or four chalcogenide atoms and two transition metal atoms for the TMDC systems. Note the hexagonal primitive cell was not used in order to align the direction of polarization along one of the lattice vectors (i.e., the x-axis). A 30 Å cell height was used in the z-direction to prevent periodic images from interacting with each other. The electronic wave function was expanded in a plane wave basis set with an energy cutoff of 60 Ry. The charge density was expanded in a basis set with a 500 Ry plane wave cutoff. Brillouin zone sampling was done using a Monkhorst-Pack mesh of $14 \times 14 \times 1$ k-points. All ionic relaxations and cell optimizations were performed using a threshold of 10^{-4} Ry/Bohr for the force and 10^{-6} Ry for the unit cell energy.

AUTHOR INFORMATION

Corresponding Author

E-mail: evanreed@stanford.edu; Tel: [+1] (650) 723 2971; Fax: [+1] (650) 725 4034.

Author Contributions†These authors contributed equally to this work.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Our work was supported in part by the U.S. Army Research Laboratory, through the Army High Performance Computing Research Center, Cooperative Agreement W911NF-07-0027. This work was also partially supported by DARPA YFA Grant N66001-12-1-4236, and used resources of the National Energy Research Scientific Computing Center (NERSC), which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Some calculations were performed in part using the Stanford NNN Computing Facility (SNCF), a member of the National Nanotechnology Infrastructure Network (NNIN), supported by the National Science Foundation (NSF). The authors would like to thank Yao Li for helpful discussions and Dr. Tingting Qi for useful comments and for providing us with norm-conserving W and Mo pseudopotentials. We also acknowledge and recommend the online NNIN/C Pseudopotential Virtual Vault located at http://nninc.cnf.cornell.edu/.

REFERENCES

(20) Ong, M. T.; Reed, E. J. Engineered Piezoelectricity in Graphene. ACS Nano 2012, 6, 1387–1394.
(23) This notation is lacking in the case of monolayers because the 2H prefix provides insufficient information about in-plane structure to differentiate from octahedrally coordinated TMDCs. The 2 is, of course, irrelevant in the monolayer case. In this article, however, we take 2H to denote monolayers with trigonal prismatic coordination for the sake of consistency.