High-Performance Chemical Sensing Using Schottky-Contacted Chemical Vapor Deposition Grown Monolayer MoS\textsubscript{2} Transistors

Bilu Liu, Liang Chen, Gang Liu, Ahmad N. Abbas, Mohammad Fathi, and Chongwu Zhou*

Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089, United States. *These authors contributed equally to this work.

ABSTRACT Trace chemical detection is important for a wide range of practical applications. Recently emerged two-dimensional (2D) crystals offer unique advantages as potential sensing materials with high sensitivity, owing to their very high surface-to-bulk atom ratios and semiconducting properties. Here, we report the first use of Schottky-contacted chemical vapor deposition grown monolayer MoS\textsubscript{2} as high-performance room temperature chemical sensors. The Schottky-contacted MoS\textsubscript{2} transistors show current changes by 2–3 orders of magnitude upon exposure to very low concentrations of NO\textsubscript{2} and NH\textsubscript{3}. Specifically, the MoS\textsubscript{2} sensors show clear detection of NO\textsubscript{2} and NH\textsubscript{3} down to 20 ppb and 1 ppm, respectively. We attribute the observed high sensitivity to both well-known charger transfer mechanism and, more importantly, the Schottky barrier modulation upon analyte molecule adsorption, the latter of which is made possible by the Schottky contacts in the transistors and is not reported previously for MoS\textsubscript{2} sensors. This study shows the potential of 2D semiconductors as high-performance sensors and also benefits the fundamental studies of interfacial phenomena and interactions between chemical species and monolayer 2D semiconductors.

KEYWORDS: MoS\textsubscript{2} · 2D materials · chemical vapor deposition · chemical sensing · charge transfer · Schottky barrier

Environmental pollutant monitoring and trace chemical detection are important issues for both military and civilian purposes. Among air pollutants, toxic gaseous species such as nitrogen oxide (NO\textsubscript{2}) and ammonia (NH\textsubscript{3}) are two of the most common ones which can be generated from emissions of vehicles, power plants, and off-road equipment. NO\textsubscript{2} in ambient conditions contributes to the formation of ground-level ozone and acid rain and leads to fine particle pollution. Exposure to NO\textsubscript{2} may cause chronic bronchitis, emphysema, and respiratory irritation. On the other hand, exposure to NH\textsubscript{3} may lead to temporary blindness, pulmonary edema, and respiratory irritation. Due to these environmental and health concerns, taking NO\textsubscript{2} as an example, the U.S. Department of Environmental Protection Agency (EPA) has set a primary standard of 53 ppb (parts per billion) for NO\textsubscript{2}, above which may cause possible health problems especially for those sensitive populations including children, elderly, and people with asthma. Therefore, it is crucially important to develop high-performance sensors that are capable of detecting such toxic gases quickly and reliably even at very low concentrations, for example, ppb level.

Nanomaterials hold promising potential toward these requirements due to their large surface-to-volume ratio and intrinsic small dimension, which enable the fabrication of ultrasensitive chemical and biological sensors with minimized dimensions and consequently high packing densities. In this connection, various nanomaterials including carbon nanotubes, silicon nanowires, and metal oxide nanowires and nanobelts have been demonstrated to show high sensitivity to a large variety of gas molecules and chemical and biological species.

Two-dimensional materials (2D materials) such as graphene, in the monolayer state, offer the highest surface-to-volume ratio and can provide ultimate sensitivity down to the single-molecule level. Abundant effort has been made in the fabrication of graphene-based chemical and biosensors. Previous studies have also shown that proper gating of the sensors may offer them with

* Address correspondence to chongwuz@usc.edu.

Received for review March 18, 2014 and accepted April 16, 2014.

Published online April 21, 2014 10.1021/nn5015215

© 2014 American Chemical Society
optimal sensitivity. Noticeably, layered transition metal dichalcogenides (TMDCs), such as MoS2, share similar 2D structures with graphene, which render them very high surface areas. Moreover, recent theoretical and experimental studies have confirmed that monolayer MoS2 is a direct band gap semiconductor with impressive device performance. This offers gate-tunable conductance for MoS2 field-effect transistors (FETs). In addition, the contact property between MoS2 and metal electrodes depends on not only the types and work functions of contact materials but also the annealing recipes and contact area of metal/MoS2, offering a way to tune the nature of contacts in MoS2 devices. These features render MoS2 a potential chemical sensing material. Mechanically exfoliated monolayer to few-layer MoS2 have been demonstrated as promising sensing materials for chemical and biological species including NO, NO2, NH3, nerve gases, proteins, etc. For example, Li et al. presented a detection limit of ~800 ppb of NO,32 and Late et al. showed a detection limit of a few hundred parts per million (ppm) for both NH3 and NO2 using mechanically exfoliated few-layer MoS2 FETs. Interestingly, in those studies, the authors found that monolayer MoS2 devices were not stable for sensing applications. Very recently, Perkins et al. have reported highly sensitive detection of nerves gases using mechanically exfoliated monolayer MoS2-based FETs. It is therefore interesting to study whether monolayer MoS2 can be a good sensing material or not since the monolayer is the ultimate form of these 2D materials. On the other hand, taking NO2 as an example, the reported detection limit of the current MoS2 sensors (e.g., a few ppm to a few hundred ppm) is still moderate and higher than the primary standard set by the EPA (i.e., 53 ppb). Clearly, more effort should be devoted to MoS2-based sensing devices to understand their working principle as well as to develop devices with higher sensitivity to fulfill the application needs. Another consideration is that mechanical exfoliation, which is used to prepare MoS2 materials for sensing in most of the recent studies, is not suitable for large-scale fabrication of sensors, and more scalable methods should be developed. Since MoS2 is a layered material with most of its atoms being directly exposed to ambient conditions, it is also of fundamental importance to study the interaction and chemical reactions between gaseous species and the surface of the monolayer 2D semiconducting materials, about which little is currently known.

In this article, we report chemical vapor deposition (CVD) growth of monolayer MoS2 in a three-zone tube furnace. We demonstrate the first use of CVD-grown monolayer MoS2 transistors with Schottky contacts for the ultrasensitive detection of NO2 down to a few ppb level and NH3 down to 1 ppm and potentially even lower concentration. Considering their atomic thickness and good mechanical robustness, this work shows that the 2D MoS2 monolayer stands as a competitive candidate for high-performance room temperature gas sensors.

RESULTS AND DISCUSSION

We followed recent work for the CVD growth of monolayer MoS2 with some modifications, and details of monolayer MoS2 growth can be found in the Experimental Section. Here, a three-zone CVD furnace (Figure 1a) was used to grow MoS2 monolayers, and the temperature of each zone can be controlled separately. Sulfur powder was used as solid sulfur source and was placed at the first zone. MoO3 powder was used as the Mo source which was placed at the second or the third zone. The growth substrates, SiO2/Si, were placed facing downward on top of the quartz boat hosting the MoO3 powders (Figure 1a). The furnace was ramped up to the growth temperature of 625 °C rapidly in 7 min, and MoS2 growth lasted for 5–15 min, which resulted in either isolated triangular monolayers or quasi-continuous films (Supporting Information Figure S1). More details regarding MoS2 growth are given in the Experimental Section. Figure 1b shows a typical optical microscopic image of the as-grown triangle-shaped materials, which are light blue under the optical microscope. The lateral dimensions of these triangles are found to be 5–30 μm. In addition to the large triangles, detailed atomic force microscopy (AFM) characterization also shows the existence of some small triangles, with lateral size of ~1 μm or smaller, located around the large sheets and can be barely seen under an optical microscope. Interestingly, bright dots or triangles are frequently found at the center of the large triangles (Figure 1c and Figure S1), which we speculate acted as "seeds" for initial nucleation of MoS2 monolayers. The effectiveness of seeds in promoting the CVD growth of monolayer MoS2 has also been reported recently by Ling et al. Our Raman characterization shows that these dots are multilayer MoS2 in our samples (Figure S1e,f). The degree of surface coverage can be tuned by the growth time, ranging from isolated individual domains (Figures 1b and S1a,b) to quasi-continuous films (Figure S1c,d). The crystalline nature of the MoS2 was also confirmed by high-resolution transmission electron microscopy (TEM) characterization with a spacing of ~0.27 nm for the (100) crystal planes (Figure 1d).

Raman spectroscopic and photoluminescence (PL) spectroscopic studies were conducted to evaluate the number of layers and the optical quality of the grown materials. Shown in Figure 1e are representative Raman spectra of the large triangles, where the distance between the in-plane E2g\(1\) mode and out-of-plane A1g mode is 18–21 cm\(^{-1}\), indicating the formation of predominately monolayer MoS2, consistent with early reports. One interesting property of...
monolayer MoS$_2$ is that it is a direct band gap semiconductor with strong PL, showing sharp contrast with its bulk counterpart, which is an indirect band gap semiconductor with negligible quantum yield.51,52 Our PL studies show that the samples show a dominated single PL peak at \sim1.85 to 1.86 eV (Figure 1f), which has an exceptionally high intensity (for example, >70 times higher than the Raman peaks from the SiO$_2$/Si substrate located at \sim2.266 eV; see the blue spectrum in Figure 1f). We have measured tens of different samples and found that they possess very similar Raman and PL characteristics, indicating the high uniformity of the products.

Layered materials like graphene and MoS$_2$ possess the highest possible surface-to-volume ratio when they are in monolayer states, and it is expected that these materials may offer ultrahigh sensitive detection of various chemical species. The semiconducting nature of MoS$_2$ may render efficient gate modulation of the conductance in FETs, which adds another freedom to manipulate the properties of devices.6,15 Such studies may also benefit the fundamental understanding of the gas–solid interactions and interfacial phenomena. We have fabricated bottom-gated FETs directly on the SiO$_2$/Si substrates where MoS$_2$ were grown. The devices were fabricated using e-beam lithography, and 5 nm Ti/50 nm Au was deposited as source and drain electrodes (see Experimental Section). Figure 2a shows a schematic diagram of the device configuration in this study. An optical image of two fabricated devices is shown in Figure 2b with channel length of \sim1 μm and channel width being determined by the size of the MoS$_2$ sheets and the positions of the electrodes (dotted white lines indicate the position of MoS$_2$ in one device). Typical output (I_{DS}–V_{DS}) and transfer characteristics (I_{DS}–V_{BG}) of a MoS$_2$ FET are shown in Figure 2c,d. Figure 2d shows n-type transistor behavior for MoS$_2$ FETs, consistent with an n-type semiconducting nature of MoS$_2$ and recent electrical transport measurements on mechanically exfoliated or CVD-grown MoS$_2$.21,22,41,42 The effective mobility and on/off current ratios of our CVD-grown MoS$_2$ in a bottom-gate FET configuration range from 0.2 to 3 cm2/Vs and 10^4 to 10^6, respectively, which are comparable with the mechanically exfoliated or CVD-grown monolayer MoS$_2$ under similar device configuration.21,37,38,41,42,53

We notice that there is considerable level of Schottky barrier (SB) existing in our devices with Ti/Au electrodes, as evidenced by the output characteristics (I_{DS}–V_{DS}) of MoS$_2$ devices from negative to positive V_{DS} range, which show the rectifying characteristic of as-fabricated MoS$_2$ devices (Figure 2c and Figure 3a,b). The shape of I_{DS}–V_{DS} originates from MoS$_2$ devices with Schottky contacts at both source and drain sides, consistent with a very recent study using Co contact.54 All of the as-fabricated MoS$_2$ devices (without annealing) show similar Schottky contact behavior. Such devices were used for sensing studies reported later.

We have performed systematical low-temperature measurements to quantitatively determine the height of SB (Figure 3). We used the 2D thermionic emission equation to describe the electrical transport behavior of Schottky-contacted MoS$_2$ devices following Kawakami’s
recent report:54

\[I_{DS} = A A_{2D} T^{3/2} \exp \left(\frac{-q}{k_B T} \left(\Phi_B - \frac{V_{DS}}{n} \right) \right) \]

(1)

Here, \(A \) is the contact area of the MoS\(_2\)-electrode junction, \(A_{2D} \) is the two-dimensional equivalent Richardson constant, \(T \) is the absolute temperature, \(q \) is the magnitude of the electron charge, \(k_B \) is the Boltzmann constant, \(\Phi_B \) is the height of the Schottky barrier, and \(n \) is the ideality factor. In addition, a reduced power law of \(T^{3/2} \) instead of \(T^2 \) is used for the two-dimensional transport system.

Figure 3 plots the linear fit of the Arrhenius plot, \(\ln(I_{DS}/T^{3/2}) \) versus \(1000/T \) (at temperatures of 160, 200, 250, and 300 K), and a slope can be obtained at each \(V_{DS} \). Figure 3d plots the slopes extracted from Figure 3c as a function of \(V_{DS} \). Linear fitting of the slope versus \(V_{DS} \) gives a \(y \)-intercept of \(-0.839\). Based on eq 1, the height
The intercept of the SB can be deduced as follows:

\[y_{\text{intercept}} = -\frac{q}{1000k_B}\Phi_B \]

(2)

Therefore, the height of the SB was determined to be 72.4 meV for this device, with a standard error of 6.5 meV. We have measured a few devices, and the SB heights are in the range of 52.6 to 82.0 meV. We note this shows reasonably good agreement with a recent study where a SB height of 50 meV was obtained for Ti-contacted MoS2 devices.27

The high surface area of monolayer MoS2 renders it very susceptible to variation in ambient conditions. For example, the devices exhibit different on-state current and hysteresis in air and in argon, indicating the effect of environment on the transport properties of the MoS2 (Figure S2).55 To study the gas–solid interaction and to get a qualitative picture on the conductance modulation of MoS2 monolayers by gas exposure, we chose NO2 and NH3, the two representative toxic gases with rather different electron affinity, for illustration.

Figure 4a plots the \(I_{DS} - V_{DS} \) of a MoS2 FET upon exposure to 400 ppb of NO2. The device was initially turned on at \(V_{BG} = 30 \) V and turned off at \(V_{BG} = 0 \) V in (b). A conductance decrease by a factor of 174 was achieved in (a) and increase by a factor of 1218 was achieved in (b). (c,d) Real time conductance change of MoS2 FETs with time after exposure to NO2 (c) and NH3 (d) under different concentrations. The arrows in (c) and (d) indicate the time when the corresponding concentrations of gas were introduced. Inset in (d) is a zoom-in plot of the sensor response to low concentrations of NH3 of 1, 5, and 10 ppm. (e,f) Conductance change versus NO2 concentration (e) and NH3 concentration (f) based on MoS2 FET sensors.

Later, we performed systematic chemical sensing studies of MoS2 FETs toward NO2 and NH3 molecules under different concentrations, as shown in Figure 4c,d. Figure 4c shows the real time conductance changes of a representative MoS2 FET toward exposure to NO2 at concentrations of 20, 40, 100, 200, and 400 ppb. Clear response (conductance decrease) was observed for all of these concentrations among multiple devices we tested. The sensor response (S) is defined as follows:

\[S = \frac{G_S - G_0}{G_0} \times 100\% = \frac{\Delta G}{G_0} \times 100\% \]

(3)

Here, \(G_S \) and \(G_0 \) are the conductance of the MoS2 FETs under certain gas exposure and at an initial state, respectively. Significantly, it can be seen from Figure 4c that even for 20 ppb of NO2, a sufficiently large response of >20% was achieved, which is superior to previous reports. The inset in Figure 4d shows the sensor response to NH3 of 1, 5, and 10 ppm. Figure 4f shows the conductance changes versus NO2 concentration (e) and NH3 concentration (f) based on MoS2 FET sensors.
to recent reports using exfoliated few-layer MoS2 for sensing NO2 under a few ppm to even hundreds of ppm concentrations.31,33 We point out that this is the record detection limit (20 ppb) for NO2 using 2D TMDCs so far, and it shows several orders of magnitude improvement compared to recent studies. In addition, the clear detection of a few ppb level of NO2 shares comparable performance with the best nanowire and nanotube-based NO2 sensing devices.5,11 Since the response at 20 ppb of NO2 is sufficiently large, we think that the detection limit can be further pushed to an even lower value by optimizing the device performance. Figure 4d shows the conductance change (increase) of a MoS2 FET upon exposure to NH3 with different concentrations of 1, 5, 10, 50, and 500 ppm. Similar to NO2, clear conductance modulations were observed for each NH3 concentration. Once again, we noticed that a sufficiently large sensitivity of >40\% was achieved with low concentration (1 ppm) of NH3 exposure, indicating that detection below ppm level of NH3 is highly possible. The response time of the sensors, which was defined as the time required to achieve a 90\% change of the conductance of the overall range at a specific gas concentration, was found to be between 5 and 9 min. This is a direct reflection of the adsorption rate of the sensors, and a response time of several minutes is comparable to sensors based on metal oxides, conducting polymers, and other nanomaterials like carbon nanotubes3,11 as well as recent reports on MoS2 sensors.32,33 Figure 4e,f shows the sensor response versus the concentrations of NO2 and NH3, respectively. The sensors show initially rapid conductance change upon exposure to low concentrations of NO2 and NH3, and then quasi-saturation behavior was observed for high gas concentrations.

For both NO2 and NH3 sensing, we have fabricated multiple devices and conducted sensing experiments with different MoS2 sensors and repeated measurements on the same MoS2 sensor after its recovery. Here we found that the MoS2 sensors can be fully recovered by putting the devices in air for \(\sim 12\) h at room temperature. Alternatively, ultraviolet irradiation is found to be very efficient to fully recover the devices within a few seconds (data not shown). Among these series of sensing experiments (more than 15 sensing experiments in total), we found that the detection limits of different devices are close to each other (e.g., \(\sim 10\)–\(20\) ppb for NO2 and 1 ppm for NH3). The sensor response under certain gas concentration varies by a factor of 2 among different devices. Under repeated measurements of the same device, the sensitivity remains largely unchanged.

It is important to understand the gas–MoS2 interaction and sensing mechanism in the process. One important question is whether there are chemical reactions that take place and new compounds formed between analyte and MoS2 sensors. To probe this, we first collected Raman spectra of MoS2 on five different sheets. Then, the MoS2 sensor was put in 400 ppb of NO2 (or 500 ppm of NH3) for 10 min (the highest gas concentrations and the same amount of time exposure in the sensing experiments). Lastly, we collected Raman spectra at exactly the same positions as collected before, under assistance of markers and electrodes on the substrates. Figure S3 shows representative Raman spectra of pristine and gas exposed MoS2 for NO2 (Figure S3a) and NH3 (Figure S3b). We do not observe the formation of MoO3 after NO2 exposure, which is expected to show several strong Raman peaks at 821, 666, and 284 cm\(^{-1}\), etc., as reported by Kalantar-zadeh et al.26–28 Similarly, we do not see any noticeable changes for MoS2 after exposure to NH3 either. These results reveal that there are negligible irreversible chemical reactions taking place between NO2 (or NH3) and MoS2 sensors, which is in agreement with our observation that the sensors are fully recovered after long time air storage.

Later, we studied how the device characteristics change upon exposure of gases and tried to shed some light on the understanding of sensing mechanism of MoS2 sensors (Figure 5). Figure 5a shows the \(I\text{DS}–V\text{BG}\) curves of a MoS2 FET in different concentrations of NO2. For this set of experiments, the devices were exposed to corresponding gas concentrations for 10 min and then the \(I\text{DS}–V\text{BG}\) curves were measured. The \(I\text{DS}–V\text{BG}\) curve taken at the initial state (before 20 ppb NO2 exposure) was also plotted as a reference. A clear monotonic shift of the curves toward positive gate voltage direction is observed, indicating a continuous increase of the threshold gate voltage \((V\text{th})\), as shown quantitatively in Figure 5c. In contrast, a monotonic shift of the \(I\text{DS}–V\text{BG}\) curves, but in the negative gate voltage direction, was observed for NH3 sensing, as shown in Figure 5b and quantitatively plotted in Figure 5d.

The MoS2 FET sensor relies on the conductance (resistance) change of the devices upon gas exposure. The resistance of a MoS2 FET can be expressed as follows:

\[
R = R_{\text{channel}} + R_{\text{contact}}
\]

Here, \(R\), \(R_{\text{channel}}\), and \(R_{\text{contact}}\) are the total device resistance, the channel resistance from MoS2, and the contact resistance at metal electrode/MoS2 junctions, respectively. The channel resistance \(R_{\text{channel}}\) is inversely proportional to the carrier concentration in MoS2, while the contact resistance, \(R_{\text{contact}}\), relates to both electron concentration and the height of the SB and can be expressed as follows:29

\[
R_{\text{channel}} \propto \frac{1}{n}
\]

\[
R_{\text{contact}} \propto \frac{1}{n} e^{(\phi_{\text{SB}}/kT)}
\]

where \(n\) is the electron concentration in MoS2, \(\phi_{\text{SB}}\) is the height of SB formed at the MoS2–electrode junctions, \(k\) is
the Boltzmann constant, and T is the absolute temperature. Obviously, a change of either electron concentration or SB height can lead to a change in the total resistance (conductance) of the MoS$_2$ FET and consequently can be reflected in the sensing experiments in Figure 4.

Charge transfer between gaseous species and nanomaterials serves as an important work principle for sensing devices based on nanomaterials. NO$_2$ is a well-known strong oxidizer due to an unpaired electron from nitrogen atom, which tends to withdraw electrons from sensing materials like MoS$_2$ studied here. This leads to a decreased electron concentration in the conduction band of the MoS$_2$, and thus more positive gate voltage is required to turn on the transistor, indicating a positive shift of the V_{th} upon exposure to NO$_2$ (Figure 5c). NH$_3$, on the other hand, having a lone electron pair tends to donate electrons to the conduction band of MoS$_2$, and this would lead to an increased electron concentration in MoS$_2$, and thus a low gate voltage is required to operate the transistor (Figure 5d). Such a charge transfer mechanism was also used recently to understand the sensing behavior of MoS$_2$ toward NH$_3$, NO, and nerve gas by other researchers and showed good agreement with our experimental results. 31,33,34,60 In our experiments, we observed that the detection limit for NO$_2$ is around 2 orders of magnitude lower than that of NH$_3$ (e.g., 20 ppb versus 1 ppm), which is a common phenomenon observed in many other nanomaterial-based sensors including carbon nanotubes and nanowires. 61 Density functional theory calculations show that NO$_2$ has much stronger interaction with carbon nanotubes than NH$_3$ does, which may be responsible for the detection of much lower concentration of NO$_2$ than NH$_3$. A very recent calculation on the gas—MoS$_2$ interaction also shows that NO$_2$ has a much larger charge transfer ability (10 times larger) than NH$_3$ with bilayer MoS$_2$. 33 This, consequently, will lead to a very sensitive detection of NO$_2$ because a small amount of NO$_2$ adsorption can cause a substantial change of carrier concentration, which can be reflected through electrical transport measurements.

The charge transfer mechanism suggests that carrier concentration change is the work principle for sensing. A reasonable approximation is that the conductance change of the device should be related to the surface occupancy (θ) of the gas molecules on sensing materials based on a site-binding hypothesis, 61 which assumes that atoms on the surface of the sensing materials can act as binding sites for molecule adsorption. That is

$$\Delta G / G_0 \propto \theta$$

(7)

The surface coverage of the adsorbed molecules follows a Langmuir isotherm, and this leads to a linear relationship between inverse sensitivity ($1/S$) and the inverse gas concentration ($1/C$), as shown previously for ohmic-contacted In$_2$O$_3$ nanowire 11 and graphene nanoribbon 62 chemical sensors. However, the Schottky-contacted MoS$_2$ sensors do not follow such a linear relationship between $1/S$ and $1/C$ (Figure S4). This suggests that there should be other reasons in addition

Figure 5. MoS$_2$ sensing mechanism study. (a,b) Transfer characteristics (I_{DS} vs V_{BG}) of MoS$_2$ FETs upon exposure to NO$_2$ (a) and NH$_3$ (b) with different concentrations. (c,d) Threshold voltage (V_{th}) versus gas concentrations for NO$_2$ (c) and NH$_3$ (d).
to charge transfer that also contribute to the observed sensing behavior.

As there is clear SB in our devices (Figure 3) and according to eq 6, the property of the SB can significantly influence the resistance of the Schottky-contacted devices due to their exponential relationship.59 Figure 6 shows the schematic of an energy diagram of a Ti/Au electrode and MoS2 monolayer, where the work functions of Ti (φ_{Ti}) and Au (φ_{Au}) are 4.3 and 5.1 eV, respectively,59 and the electron affinity (χ) of MoS2 is \sim4.2 eV.63,64 As we deposited 5 nm Ti/50 nm Au onto MoS2 to form source/drain electrodes, we may have Ti contacting MoS2 for most area of the source/drain contacts and Au contacting MoS2 at the edges of source/drain contacts because the metal evaporation cannot be completely vertical. Therefore, the actual metal contact may be an average effect of both Ti and Au. In addition, we further note that whether there are surface states between metals and 2D materials like MoS2 has not been well understood, and the presence or absence of surface states may affect the band diagram. Nevertheless, it is still reasonable to assume that, before contact, the Fermi level of Ti/Au lies between the conduction band and valence band of MoS2 (Figure 6a). After contact, the energy bands bend for MoS2 and a SB forms with a “nominal” height of

$$\varphi_{SB} = \varphi_{metal} - \chi \quad (8)$$

When MoS2 devices are exposed to different gases, the conductance change can usually result from a coplay of two factors: charge transfer and SB modulation.61 The absorption of gas will modify the built-in potential (V_{bi}) and the width of the SB. Specifically, NO2 absorption can move the Fermi level of MoS2 toward the valence band. This will increase the width of the SB and decrease the V_{bi} and device current. The opposite is true for NH3 absorption (Figure 6b). On the other hand, it has been reported that absorbed gas species can change the work function of both metal electrodes and semiconducting materials due to surface dipole layer formation.$^{61,65–67}$ In the case of NO2, it can withdraw electrons and form negatively charged NO2$^-$ species, which may increase the SB height. For example, oxidative species such as oxygen was reported to increase the SB height of a ZnO nanowire transistor.12 Collectively, both charge transfer and SB modulation are believed to have the same trend to decrease the conductance of MoS2 devices in the case of NO2 exposure. On the other hand, NH3 may hold the opposite trend compared with NO2. Figure 6b shows the band realignment and energy diagram of the metal—MoS2 junction after exposure to NO2 and NH3, depicting the effects of change of SB height and width (V_{bi}) upon gas absorption. In addition, we found that some MoS2 devices show more Ohmic contact after vacuum annealing (see Experimental Section and Figure S5), and the sensing results show that the ohmic-contacted device exhibits little conductance change (~5%) upon exposure to NO2 at concentrations up to 400 ppb (Figure S6). This suggests that SB modulation may play a key role in our sensors. Further study is needed to obtain quantitative information about the relative contribution from each mechanism.

Interestingly, we also observed that the effective mobility of MoS2 FETs changed upon NO2 and NH3 exposure, and NH3 exposure increased the effective mobility of MoS2. (Supporting Information Figures S7 and S8). This finding may serve as an effective strategy to engineer the effective mobility of MoS2-based electronic devices.

CONCLUSIONS

In conclusion, we have demonstrated room temperature highly sensitive detection of NO2 and NH3 using CVD-grown monolayer MoS2 with Schottky contacts. In particular, 20 ppb of NO2 and 1 ppm of NH3 were clearly detected with a conductance change larger than 20 and 40%, respectively, which are much superior to recently reported MoS2 sensors. Both charge transfer between gaseous species and MoS2 monolayers and SB modulation at the MoS2—metal electrode junctions are suggested to be responsible for the observed sensing behavior, while Schottky barrier modulation is believed to be the key factor for the significantly improved sensitivity. The detection

Figure 6. Proposed band alignment diagrams at the MoS2—metal junctions. (a) Energy diagram of the Ti/Au and MoS2 before contact. (b) Band realignment and energy diagram of the Ti/Au and MoS2 after contact and the formation of Schottky barrier. Blue, green, and red lines indicate the energy band of the pristine MoS2 (solid blue), after exposure to NO2 (dashed green), and after exposure to NH3 (dashed red), respectively. NO2 adsorption increases the SB by ΔSB1 while NH3 adsorption decreases the SB by ΔSB2. In addition, the built-in voltage (V_{bi}) will decrease (increase) upon NO2 (NH3) exposure, resulting in a widening (thinning) of the SB width and a decrease (increase) of the device current.
limit can be further pushed to sub-ppb level by optimizing the device performance like the features of the Schottky barrier. Our work demonstrates the potential of these 2D layered semiconductors as strong candidates for gas and chemical sensing applications.

EXPERIMENTAL SECTION

CVD Growth of Monolayer MoS2. We used a three-zone CVD furnace to grow monolayer MoS2. In a typical experiment, sulfur (99.95%, 300 mg, Sigma-Aldrich) was introduced to the first zone with a temperature of ∼300 °C during growth. MoO3 (99.99%, 10 mg, Sigma-Aldrich) was put in the second zone or the third zone with a temperature of 625 °C. The three-zone furnace has a much longer constant temperature zone than the one-zone furnace. Therefore, the use of the three-zone furnace makes it possible to tune the MoO3 and sulfur distance, while keeping the temperature of MoO3 unchanged. The growth substrates were SiO2/Si, which were put on top of the MoO3 and facing down. The distance between sulfur and MoO3 was 17–19 cm. The furnace was first pumped down to 0.5 Torr, refilled with high purity Ar until 600 Torr, and repeated once. Then, 50 sccm of Ar was introduced to the system, and the furnace temperature increased to 625 °C rapidly in 7 min. The growth took 2–15 min and was naturally cooled under 50 sccm of Ar after growth.

Characterization. The as-grown MoS2 was extensively characterized by using optical microscopy, Raman and PL spectroscopy (532 nm laser, Renishaw Raman), and TEM (JEOL 2100F, 200 kV).

Device Fabrication and Measurements. The devices were fabricated using standard e-beam lithography. A poly(methyl methacrylate) (PMMA) layer was first spin-coated onto the SiO2/Si surface with a thickness of 150 nm using standard e-beam lithography. A poly(methyl methacrylate) (PMMA) layer was first spin-coated onto the SiO2/Si surface with a thickness of 150 nm. The electrode materials are made of 5 nm Ti and then 15 nm MoS2. The annealing was conducted at 200 °C for 2 h in a mixture of Ar and H2 with a flow rate of 200 and 20 sccm and a pressure of 1 Torr.

Sensing Experiments. The fabricated devices were first wire-bonded to a chip carrier, which was then monitored onto a sealed sensing chamber. Electrical feedthrough and gas inlet and outlet ports were connected to the sealed chamber. The gases which were controlled by mass flow controllers. Both as-fabricated and annealed devices were tested under the same conditions. The gases were controlled by mass flow controllers. The concentrations of each gas were adjusted by the flow rates of gases which were controlled by mass flow controllers. Both as-fabricated and annealed devices were tested under the same sensing setup and gas flow conditions.

Conflict of Interest: The authors declare no competing financial interest.

Acknowledgment. This work was supported by the Office of Naval Research and the Defence Threat Reduction Agency (DTRA). We acknowledge Professor Stephen Cronin of University of Southern California for access to the Raman facility.

Supporting Information Available: Additional optical microscopic images, Raman characterization, and device characteristics. This material is available free of charge via the Internet at http://pubs.acs.org.

REFERENCES AND NOTES

