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1. Phys. F: Met. Phys. 14(1984) 1205-1215. Printed in Great Britain 

Quick iterative scheme for the calculation of transfer matrices: 
application to MO( 100) 

M P Lopez Sancho, J M Lopez Sancho and J Rubio 
Instituto de Fisica de Materiales, CSIC, Serrano 144, Madrid 6, Spain 

Received 14 September 1983 

Abstract. The transfer matrix of a solid described by the stacking of principal layers is 
obtained by an iterative procedure which takes into account 2" layers after n iterations, in 
contrast to usual schemes where each iteration includes just one more layer. The Green 
function and density of states at the surface of the corresponding semi-infinite crystal are 
then given by well known formulae in terms of the transfer matrix. 

This method, especially convenient near singularities, is applied to the calculation of the 
spectral as well as the total densities of states for the (100) face of molybdenum. The 
Slater-Koster algorithm for the calculation of tight-binding parameters is used with a basis of 
nine orbitals per atom (4d, 5s, 5p). Surface states and resonances are first identified and then 
analysed into orbital components to find their dominant symmetry. Their evolution along the 
main symmetry lines of the two-dimensional Brillouin zone is given explicitly. The surface- 
state peak just below the Fermi level (Swanson hump) is not obtained. This is traced to the 
difficulty in placing an appropriate boundary condition at the surface with the tight-binding 
parametrisation scheme. 

1. Introduction 

Iterative methods for the calculation of the Green function at the surface layer of a solid 
(Haydock et a1 1972, Ainshchik et a1 1976, Foo et a1 1976, Mele and Joannopoulos 1978) 
have sometimes been criticised on the basis of convergence arguments (Dy et a1 1979, Lee 
and Joannopoulos 198 la, b). Thus the 'effective field' or transfer-matrix approach gives 
the surface (zeroth-layer) Green function by the equation 

G W ( 0 )  =(U - HW - HoI T(W))-]  (1) 

where H ,  and H,,  are matrix elements of the Hamiltonian between layer Bloch states (see 
below) and the transfer matrix T i s  given by 

T(0) = (0 - H ,  - H,, T(w))-  Hi, (2) 
which must be calculated by iterating until self-consistency is achieved. This usually 
involves many iterations (an average of -SO), especially in the neighbourhood of the 
singularities of G(o) where several hundred may be needed to get an accurate result. 

In this paper we propose a new iterative scheme for the calculation of the transfer 
matrix which converges very quickly. After n iterations 2" layers are taken into account 
instead of the n layers one would have included with the usual method based on iterating 
equation (2). Away from singularities, five or six iterations usually suffice to get a 
convergent result (2' = 32, 26 = 64 with equation (2)). Close to singularities, the number of 
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iterations increases up to 14 or 15, i.e., about twice those needed at regular points; to get 
the same accuracy with equation (2) one would need 16384 or 32768 iterations, i.e., five 
hundred times those needed at regular points. Thus, it is just close to singularities, when the 
usual scheme converges very slowly, where the new scheme becomes more convenient, 
saving a considerable amount of computing time. In fact, the closer to singularities we are, 
the greater the advantage the new scheme offers over the usual one?. 

2, followed in 3 by little more than a 
recollection of the formulae to be used. Section 4 analyses the spectral and total densities 
of states for the (100) surface of molybdenum. The calculation does not give the surface- 
state peak (Swanson hump). Some concluding remarks are offered in § 5, particularly in 
connection with the Swanson hump and surface boundary conditions. 

The iterative scheme is presented in 

2. Iterative scheme 

As is well known (Lee and Joannopoulos 198 la), any solid with a surface can be described 
by a semi-infinite stack of principal layers. A principal layer is defined as the smallest 
group of neighbouring atomic planes such that only nearest-neighbour interactions exist 
between principal layers. If the bulk periodicity parallel to the surface is preserved by all 
the atomic planes right up to the surface, then k ,  is a good quantum number. For each k,  , 
the surface problem reduces to a one-dimensional chain in the direction (2) perpendicular 
to the surface. To this end we build Bloch-state orbitals for each atomic orbital pa along 
any atomic plane, for example the Ath atomic plane of the nth principal layer. Take m 
orbitals per atom and suppose each principal layer is composed of I atomic planes. Then 
one can form column-vector Bloch states for each principal layer 

where 

NI, and RII denote numbers of atoms and lattice vectors of an atomic plane. Taking matrix 
elements of (w-H)G= 1 between the Bloch states (4), one has the usual chain of 
equations for the matrix elements of the Green function with fixed k,, 

t Note, of course, that no expansion whatever may be made to converge right at a singularity. A small 
imaginary part must always be added to the energy in order to calculate Green functions, T matrices, etc. 
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where n = 0 denotes the surface principal layer and the matrices 

and Z (the unit matrix) are of rank 1 x m. In equation ( 5 )  we have made the simplifying but 
not essential assumption of an ideal surface, i.e., Hm =HI1 =. . . and HOl =H12 =. . . . 
Now we are in a position to discuss our iterative scheme for the calculation of the transfer 
matrix. 

The general term in equation ( 5 )  can be rewritten as 

where, clearly, 

to =(w-Hm)-IH& 

to =(0-Hm)-1Ho1 .  
- 

Since equation (9) is isomorphic to equation (7), the process can be repeated iteratively. 
After i iterations 

where 

are at least of order 2' in Hol . Letting n = 2' in equation (1 l), the following chain of 
equations is obtained: 
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where 

Glo=toG, +?oG20 

=(to  +lotl)G, +:IC40 

=(to  +lot1 +?o?lt2)Gm +&GgO - - - - 
= ( t o  +tot1 + . . .+  t o . .  . t,-It,)G, +tnG2n+1o. (14) 

The process is to be repeated until t , ,  I ,  t,,+ I < E ,  as small as one wishes; then G2"+ lo N 0 
and the last of equations (1 3) gives 

- 

which states that the t, are increasingly better approximations to the 2"th powers of the 
transfer matrix. Equation (14) now gives an expansion for T, i.e., Glo = TG, with - - -  - - 

T=to +tot1 + t o t i t 2  + . . . +  t o . .  . tn-I tn (16) 
where the nth term is of order 2"' - 1 in Ho1 and should get vanishingly small quite 
rapidly; it incorporates the effects of 2" layers. Thus the first term relates Glo directly to 
G,; in the second term, lo relates Glo to Gzo while t1 relates Gzo to Goo, i.e., this term 
relates Glo to Gm through GzO; similarly, the third term incorporates the effect of Gzo and 
GdO, and so on. 

3. Diagonal matrix elements of G 

This section is a simple recollection of well known formulae to be used in the calculation of 
the spectral density of states for an atomic plane of a given layer. The spectral density of 
states for the Ith atomic plane of the nth layer is given by 

n = 0, I = 0 gives, of course, the density of states at the surface. 
In what follows we shall be interested in the first four atomic planes of MO (100). Since 

interactions will be included up to second-order neighbours only, the principal layers will 
consist of two atomic planes and, therefore, we need Goo and G I 1  , 

Once T i s  known, G, is given trivially by the first of equations (9, i.e., 

G, =(U--, -ffOl T ) - ~ ,  

which is just equation (l), a well known result given here only for the sake of reference. Gll  
comes out easily by combining the two equations 

(O - Hm - HoI T)GI 1 = I + H& Go1 

b-Hm)Go1 =Ho1G,1. 
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One obtains trivially 

1209 

(19) 

4. Surface density of states at MO (100) 

We shall take a tight-binding Hamiltonian with a basis of nine orbitals per atom (4d, 5s, 
5d) which are assumed to be orthogonal. This Hamiltonian will be parametrised through 
the Slater-Koster (1954, hereafter referred to as SK) algorithm in the two-centre 
approximation. The SK parameters have been obtained by fitting to the non-relativistic bulk 
bands of Petroff and Viswanathan (1971). Some third-order neighbour parameters were 
needed, but they turned out to be rather small and were put equal to zero in the surface 
calculation. A list of the SK parameters for MO is given in table 1. 

The principal layers are conveniently formed by two atomic planes. Therefore all the 
matrices considered in $0 2 and 3 will be 18 x 18 matrices. The densities of states at the 
surface and second atomic plane come from Goo, whereas the corresponding quantities at 
the third and fourth atomic planes come from GI . 

Figure 1 shows the spectral density of states at the special points r, X and M of the 
two-dimensional Brillouin zone (first, second and third columns, respectively) on the 
surface (row (a)),  first, second and third atomic planes (rows (b), (e) and (4, respectively). 
We find a single peak at  the point r (r,), three at the point X (XI ,  X2 and X,) and two at  
the point M (M, and M2). Table 2 gives the main orbital components of the five peaks, 
ignoring those with a weight less than 1%. The peak positions are also given in the first row 
of table 2. Four of these resonances, r l ,  X I ,  X2 and M I ,  are occupied (the Fermi level lies 
at 0.82 Ryd) and place most of their charge on the surface with a small component on the 
second atomic plane. 

Figures 2, 3 and 4 show the evolution of these resonances along the symmetry lines 
I?-% (A), r-M (E) and X-M (P), respectively, shown in the inset at the top left of each 
figure. Taking, for example, the d direction, we see (figure 2) how rl evolves into AI to 
end up as X I  ; this corresponds to the low-lying band of surface resonances (Weng et a f  
1978) which also extends somewhat (about one third of the way) into the E direction 

Table 1. SK parameters (Ryd) obtained through a fit to the bulk band structure of MO. (The 
two values for the zeroth-order parameters (dd); and (dd); correspond to the irreducible 
representations tlg and eZ8 respectively.) 

(dd)6=0.8710 
(SS)O= 1.3652 (pp)o= 1.7022 (dd)i=0.8104 

First order Second order 

sso 

Ppa 
PP" 
ddo 
ddn 
ddd 
spa 
sdo 
PdU 
Pdn 

-0.1084 
0.2004 

- 0.0506 
-0.1003 

0.05 18 

0.1460 
0.0982 
0.1992 

- 0.0052 

- 0.028 1 

- 0.0387 
0.0973 

- 0.0093 
- 0.0635 

0.0087 
0.0036 
0.0653 
0.0608 
0.0883 

-0.0101 



1210 M P Lopez Sancho et a1 

lul  I 
I 

I 
I 

I 
I 

I t 
0 1  I I I 1  1 1  I 1 I I / I  fl 

07 11 0 3  07 11 03 0 7  
zo[ 03 M- J 

E IRyd) 

Figure 1. Spectral density of states of MO (100) at special points F, R and M of the two- 
dimensional Brillouin zone: (a) for the surface; (b) for the second layer; (c) for the third layer; 
(6) for the fourth layer. The Fermi level is indicated by the vertical broken lines. 

(resonance El at the point (4, f)t in figure 3) as well as into the P direction (resonance Y1 
at the point ( f ,  A)  in figure 4). 

A second surface band, this time of symmetry A2, C2, is found crossed by the Fermi 
level. It extends all the way along both the d and directions, as well as part of the 7 
direction, but does not exist at the i'= point. As one moves away from along, say, the d 
direction (figure 2), a double resonance of symmetry A2 is found. This splits a little further 
along the way into A2, which remains occupied, and A;, which crosses the Fermi level at 
about the point (4, 0). As the point is approached, both become localised on the surface 

t A11 k vectors are given in units of 2n/a. 
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Table 2. Orbital composition of main surface resonances. 

x, 1 

I 
I 

x1 I 
I 
I 
I 

I 
I 
I 
I 
I 

Energy (Ryd) 0.63 0.65 0.8 0.98 0.7 0.9 

56.28 43.04 13.76 37.91 92.78 
19.16 18.01 5.67 25.80 2.05 

14.22 33.45 8.33 79.70 1.43 
1.02 16.5 1 2.20 13.76 9.20 
1.02 2.89 40.82 7.44 9.20 

20.84 2.7 1 1.66 
1.83 2.80 

1.78 3.34 1.54 

2o t io'oi 

I I 

A3 

I 
I 
I 
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1 :  
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Figure 2. Spectral density of states for the surface plane (100) of MO along the symmetry 
line d (l=--X direction of the two-dimensional Brillouin zone). 
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E IRydJ 

Figure 3. Spectral density of states for the surface plane (100) of MO along the symmetry 
line E (F-M direction of the two-dimensional Brillouin zone). 

plane and end up at X2 and X3. A similar description could be made along the 2 direction, 
but we shall not enter into the precise details here. What now concerns us is that this band 
corresponds to the second low-lying surface band of Weng et a/ (1978). Other surface 
resonances can be obtained covering several regions of the two-dimensional Brillouin zone, 
but dwelling on this does not seem useful or especially relevant. 

Figure 5 shows, finally, the total density of states on the first four atomic planes. 
Although we found overall agreement with other calculations (Bertoni et a/ 1977, 
Inglesfield 1978, Weng et a/ 1978, Kerker et a/ 1978), we did not perform a thorough 
integration over the two-dimensional Brillouin zone, as required, but used instead the 
Cunningham (1974) technique, i.e., we took the average of the spectral density of states 
over a small set of selected points of the two-dimensional Brillouin zone (ten points in our 
case). Even so, the density of states thus calculated at the surface and fourth atomic planes 
exhibits the main features of the surface and bulk density of states calculated by other more 
refined techniques (also more time consuming) of integration over the Brillouin zone. 
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I 10.5.0.51 

E i Rydl  

Figure 4. Spectral density of states for the surface plane (100) of MO along the symmetry 
line 7 (z-M direction of the two-dimensional Brillouin zone). 

5. Discussion and concluding remarks 

Weng et a1 (1978) carried out a rather thorough photoemission study of the surface states 
and resonances at the (100) face of two closely similar metals: MO and W. They found 
three occupied bands of surface resonances, located about 0.2, 0.6 and 3.3 eV below the 
Fermi level, of main symmetry A , ,  A2 and A , ,  respectively, along the d direction. The first 
one gives a strong surface-state peak at the point l= and falls quickly in intensity as one 
moves off l= (the Swanson hump; Swanson and Crouser 1967). The second one does not 
exist at the point and its immediate neighbourhood, and results in a shoulder below the 
surface-state peak in field emission as well as in integrated photoemission. The third band 
is made up mainly of dz2 and s orbitals. 

Our calculation gives the second and third bands but fails to reproduce the surface- 
state peak just below the Fermi level. The high convergence of the iteration scheme given in 
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Figure 5. Total densities of states for Mo(100) calculated for (a) the surface, (b) the second 
layer, (c) the third layer and ( d )  the fourth layer. 

the present paper was used here just to look for this thin peak. The imaginary part of the 
energy ( q )  was set equal to Ryd and the range from 0.75 to 0.90 Ryd was covered at 
intervals of Ryd. This can be done with the present method with a small extra cost in 
computing time as the number of iterations to obtain the T matrix rises from 6 (at = 
Ryd) to only 15 at q =  Ryd. No trace of any peak, thin or broad, was found in this 
energy range. 

This was only to be expected. The model does not incorporate the appropriate 
boundary condition at the surface and, consequently, it is unable to reproduce the surface- 
state peak. All the experience gathered so far through different calculations seems to 
suggest that the surface band just below the Fermi level is a band of intrinsic, or ‘bonafide’ 
surface states, strongly dependent on choosing an appropriate surface potential. This 
potential must jump by several eV in a distance of about an interlayer. All the calculations 
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which have put this discontinuity at the surface obtained the surface-state peak (Kerker et 
a1 1978, Inglesfield 1978; those which do not, fail to obtain it (Weng et a1 1978, Bertoni et 
a1 1978). For the closely related case of W (loO), we have two calculations rather carefully 
performed with two different models. While the pseudopotential calculation of Posternak et 
a1 (1980) obtains the Swanson hump, the tight-binding calculation of Grise et a1 (1979) 
(overlap included) does not; the same applies to the calculation of Laks and Gonqalves da  
Silva (1978). 

Once the appropriate boundary conditions are used, self-consistency of the surface 
potential is important in order to place the surface state below the Fermi level. Thus 
Inglesfield (1978), who used the matching Green function method and therefore had a 
discontinuous potential at the surface, obtained the surface state above the Fermi level; if 
the calculation were carried out to the level of self-consistency, the surface state would 
most probably come down below the Fermi level. 

In summary, the Swanson hump seems to be the kind of surface state which comes out 
naturally with the matching surface Green function method (Garcia-Moliner and Rubio 
1969, 1971, Inglesfield 1971). The tight-binding scheme has difficulty because it does not 
take into account matching to the scattering states of the surface atom, which lie above the 
vacuum level and are essential to obtain intrinsic surface states. What is really needed is 
some kind of hybrid between both methods, something which can unite the simplicity of 
the transfer-matrix technique in describing the bulk with the correct way of imposing 
surface boundary conditions provided by matching Green functions. This will be attempted 
in a forthcoming publication. 
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