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Abstract. The surface and bulk densities of states of a solid described by the stacking of 
principal layers are obtained by means of an iterative procedure which allows (i) the inclusion 
of 2” layers after n iterations, (ii) the simultaneous calculation of the Green functions for both 
the ‘right’ and ‘left’ surfaces as well as for the bulk (or central) principal layer, and (iii) the use 
of imaginary parts q as small as one wishes in the energy without any large increase in 
computing time, so that the limit q-0  can really be obtained. As a by-product we obtain 
(i) the ‘right’ and ‘left’ transfer matrices of the ‘effective field’ or continuous fraction approach 
and (ii) a factorisation theorem which relates the Green functions of both surfaces to the 
Green functions of the bulk and the free metal atom. 

1. Introduction 

Recently a large number of papers have appeared where different kinds of Green functions 
are calculated by one of the several iterative methods available (Cyrot Lackmann 1970, 
Haydock et a1 1972, Anishchik et a1 1976, Mele and Joannopoulos 1978). One of the most 
popular is the ‘effective field’ or transfer matrix approach (Falicov and Yndurain 1975, Lee 
and Joannopoulos 198 1 a, b). Most of them have in common a relatively slow convergence, 
particularly near singularities (Dy et a1 1979, Lee and Joannopoulos 1981a, b). This 
problem has been touched upon in two recent publications (Guinea et af 1983, Lopez 
Sancho et a1 1984) which propose iterative schemes quicker than the usual one in the 
transfer matrix approach. One of them (Guinea et a1 1983) aims at obtaining effective 
interactions for two-dimensional Hamiltonians at surfaces by means of decimation 
techniques, while the other (Lopez Sancho et a1 1984) presents a quick iterative method for 
the calculation of the transfer matrix so as to save computation time in the calculation of 
densities of states. Although the two approaches seem different at first sight, they really 
correspond to different versions of a general scheme for quick convergence of iterative 
processes, ultimately related to the renormalisation-group method (Gongalves da  Silva and 
Keiller 198 1). 

In this paper, decimation techniques are reformulated with the help of the effective- 
layer concept. We take as an illustrative example the problem of solving the conventional 
linear chain of equations for the matrix elements of the Green operator G(w) =(a - H ) -  
in a basis of localised functions. The method involves replacing the original chain by an 
effective one of twice the lattice constant, where each layer plus its two nearest neighbours 
in the original chain are replaced by an effective layer in the new chain; these effective 
layers interact through energy-dependent residual interactions which are weaker than those 

0305-4608/85/04085 1 + 08S02.25 0 1985 The Institute of Physics 85 1 



852 M P Lopez Sancho et a1 

of the original chain. This replacement can be repeated iteratively until the residual 
interactions between effective layers are as small as one wishes. After n iterations, say, one 
has a chain of lattice constant 2" times the original one, each effective layer replacing 2" 
original layers. The effective interlayer interactions become vanishingly small after a few 
iterations (usually five or six for q =  Ryd). Note that each new iteration doubles the 
number of original layers included in the new effective layer. This is where the big 
advantage of the method lies, making it extremely powerful just in those situations where 
conventional iteration methods converge so slowly as to become almost hopeless. For 
instance, small q values (e.g. Ryd) require 12-14 iterations, i.e. about 2.5 times the 
iterations needed for q =  Ryd. To get the same accuracy, 212-2'4 (4096-16384) 
iterations would be required in the conventional T-matrix approach! 

The format of this paper is as follows. The effective chain is introduced in 0 2, followed 
by the iterative procedure which allows us to obtain effective chains with successively 
weaker residual interactions. This leads to expressions for the Green functions for the 
'right' and 'left' surfaces as well as for the bulk, which can be computed rather efficiently. 
Section 3 establishes a connection with usual T-matrix approaches and ends with 
recurrence formulae for matrix elements involving inner layers. Section 4 starts with the 
tight-binding version of the factorisation theorem which serves to link with other 
approaches like the matching Green function method (Garcia-Moliner and Rubio 1969, 
197 1, Inglesfield 197 1) and discusses some unclear points about surface boundary 
conditions. Finally, some concluding remarks are made in 0 5 .  

2. Effective layers 

As is well known (Lee and Joannopoulos 1981a), any solid with a surface can be described 
by a semi-infinite stack of principal layers with nearest-neighbour interactions. If the bulk 
periodicity on the surface plane is preserved by all the atomic planes right up to the 
surface, then k is a good quantum number and we can build Bloch-state orbitals for each 
atomic orbital along any atomic plane, for example the Ath atomic plane of the nth 
principal layer. Take m orbitals per atom and suppose each principal layer is composed of 1 
atomic planes. Then one can form column-vector Bloch states for each principal layer: 

where 

and NI, and R,, denote the numbers of atoms and lattice vectors in an atomic plane. 

usual chain for each k,, : 
Taking matrix elements of (w - H)G(w) = between the Bloch states (2), one has the 
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where n = 0 denotes the surface principal layer and the matrices 

and I (the unit matrix) are of rank I x m. In equation (3) we have made the simplifying but 
not essential assumption of an ideal surface, i.e., H ,  = H I  = . . . and Hol = H I 2  = . , . . 
Now we are in a position to discuss the method of effective layers. 

From the general term in (3), one has 

G,(a )  = (0 - H,)- '  (H& Gn- 1,o + Hal Gn + 1,o) ( n  > 1). ( 5 )  

Put n= 1 into this equation and put the result into the first equation of the chain (3). This 
yields 

[ w - H ,  - HOl ( o - H,)- I H& ] G ,  = I + Ho I ( o - H,)- ' Ho I G20, (6) 

which relates G, to G20. Likewise, consider the general equation of the chain, equation (9, 
and replace Gn- and Gn + I ,  after equations (3). One gets 

[ o - H ,  - Ho1 (W - Hm)- IH& - H& (W - H,)- HoI 3 G ,  

= Hi (0 - H,)- ' H& G n  - 2,o + Hal (w - H0OI-l Hal Gn + 2,o ( n 2 2 ) .  (7) 

Nearest neighbours have disappeared in equations (6) and (7). These equations can be 
rewritten more compactly as 

(U - E ~ , ) G ,  = I  + al  Gzo 

(w - & I  )G ,  = P I  Gn- 2, o + a1 Gn + 2, o 

(w-El)Gnn =I+PlGn-2,n + a 1 G n + 2 , n  

( n  > 2) (8) 

with 

(9) 

a = Ho, (w - H,) - HOl 

PI =H&(w-H,)-'H& 

E l s = H ,  +Ho,(O-H,)-'H,', 

E1 = H ,  +Hol (o -H, ) - 'H& +H,f,(U-H,)-'Ho,. 

Now, consider the subset formed by taking only even values for n in (8), i.e., 

(w - cIs)G, = I  + a1 G20 

(U - E I ) G ~ ~ , o  = P I  G2,n- I ) , O  + Gz(n+ I) ,O (10) 

(u--l)G2n,2n =I+PIG2(n-I),2n + a,G2(n+ i ) , ~ n *  

These equations define a chain which couples the Green-function matrix elements with 
even indices only, G2n, o, through effective nearest-neighbour interactions given by the first 
two equations of (9) and with effective zeroth-order matrix elements already different for 
the surface (cl,) and the inner layers (cl) .  Equations (9) define an effective Hamiltonian 
describing a chain of effective layers of lattice constant 2a, twice the original one. Each 
effective layer contains implicitly the effect of its nearest neighbours in the original chain 
(through the use of equation ( 5 ) ) .  
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Except for the different zeroth-order matrix elements, c l l  # c1, equations (10) are 
isomorphic to equations (3). Therefore, the argument going from (3) to (10) can be 
repeated if we start from (10). Repeating the argument i times, we have the iterative 
sequence 

aI=a,- l (W-&,-I)- laI- l  

starting with c0=H,, ao=Hol and po=H,,+,. Equations (11) define an effective 
Hamiltonian (Guinea et a1 1983) for a chain of lattice constant 2'a with nearest-neighbour 
interactions aI and /I, and zeroth-order Hamiltonian matrix elements el and E ; .  After i 
iterations 

Each layer of the ith chain contains implicitly the effect of the nearest neighbours of the 
previous chain (i- 1). After v iterations, the zeroth layer is equivalent to the orginal zeroth 
layer coupled to 2" layers, while any inner layer contains 2"' ' - 1 layers of the orginal 
chain. The iteration is to be repeated until a, and /3" are as small as one wishes. Then 
clearly E,  21 E,- E: 1 E:- I and 

Therefore, we have obtained as good an approximation as we wished for G,, 

G, (w)I: (U-E:) - l  (14) 

and for G,,(n -+ m) E G b ,  the Green function for the bulk layer. Since the second equation 
in (1 3) does not depend on n, we obviously have 

The Green function for the dual surface, i.e. for the zeroth layer of the complementary 
chain, can be clearly obtained by exchanging a, and pi: 

c, = (0- & ) - I  (16) 

where E: is obtained by iterating 

starting with E,, = E ;  = H,, cq, =Hot and Po = HO; , as before, until E: z E:- I .  

It should be noticed that the iterative procedure presented here is exact in the sense that 
no interactions are omitted in a nearest-neighbour chain. This does not imply any special 
restriction because any chain of atoms with any (one-body) interactions can be reduced to 
a chain with nearest-neighbour interactions by the use of the principal-layer concept. 
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3. Recurrence relations for matrix elements involving inner layers: T and matrices 

Equations (14) and (16) thus give the Green functions for the two complementary surfaces, 
sometimes called the ‘right’ and ‘left’ surfaces, whereas equation (1 5 )  gives the Green 
function for the ‘bulk’ or ‘central’ layer of an infinite crystal. Once Gw and &, are known, 
all the matrix elements of G can be obtained trivially. 

3.1, T matrices 

Take the general term in equation (3). Applying the effective-layer argument to G,.I,o 
only, we have after U iterations 

(U - E:)Gn90 = H& Gn- I , O  + a,G, + P , O  = H& Gn- L, 0 

Gn, 0 = ( w - 8 ; ) -  HO; G, - I ,o Gm HO; G, = t,o (18) 

T -  G,H,;, (19) 

since a, z 0, Le,, 

( n >  1) 
or 

which is just the well known expression (Haydock et ai 1972, Anishchik et ai 1976, Mele 
and Joannopoulos 1978) for the transfer matrix of the crystal in the forward direction 
(n+n  + 1). Similarly, exchanging a, and /I,, we get the transfer matrix for the 
complementary chain (negative n )  

G,,o = (0 - E t ) -  I HOl G, + l , o  

7= (w - E ; ) -  I Ho, = G:ooHo,. 

( f i  < - I), (20) 

i.e., 

(21) 

If the two complementary chains are joined together to reconstruct the bulk crystal, T 
and 7 serve to run through the crystal along the forward (increasing n) or backward 
(decreasing n )  direction. Hence, if n is large enough to reach the bulk in the forward 
direction, 

Gn,o = TGn + 1,o n-, 00. (22) 

It should be stressed that, whereas equation (18) may be used for any n >, 1 in a semi- 
infinite crystal, equation (22) may be used only fo r  large values of n. Similarly, in the case 
of the complementary chain, 

G,,o = TG,-l,O n+-oo. (23) 

Finally, a relationship can be obtained which allows decreasing n for any n 2 1. Simply 
notice that G(w) satisfies G(o)(w - H) = 4 equally well. Hence we can write, instead of 
( 18), 

(24) 
which defines another transfer matrix, S. 

Formulae (19) and (2 1) provide an iterative sequence for the calculation of T and 7, in 
contrast to the procedure given by Lopez Sancho et al (1984) where a similar iterative 
scheme was developed to obtain T in the form of a series expansion. There, each new 

GO, n = Go, n -  I HOI GOO E GO, n- I S ( n  2 I), 
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iteration was added to the previous one, thus generating the expressions 

3.2. Recurrence relations 

From the last equation in (3) we have, after (18) and (24), 

while, on the other hand, from the first equation in (3), 

which allows any diagonal matrix element of G to be obtained iteratively. 

and making use of (23), we obtain 
The Green function for the bulk layer can now be found trivially. Letting n + CO in (24) 

(W - H W  - HOl T -  H& T)G,, = I  

E ,  = HW + Hol T + H& T, 

E: = HW + HOl T 

E: = H~ + H& T. 

n+ CO. (29) 

Therefore, from ( 1  5 ) ,  

(30) 

whereas from (27) and (14), 

(3 1) 

and, similarly, v 'lave for the dual surface 

(3 2) 

4. The factorisation theorem 

Equations (30)-(32) allow us to find a relationship between the three G and 
(o- HW)- '  =Go,  the Green function of an isolated layer (the surface layer in fact). 
We can write 

Gk'+G&l=GLI + G ~ ' = G L ~ ( G ~ + G ~ ) G & ~ .  (33) 
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- 
In particular, if the two surfaces are identical (the symmetric case), G ,  = Gm = G , ,  and 
then 

Equations (33) and (34) are indeed reminiscent of similar relationships which hold in 
the surface Green function method (Garcia-Moliner and Rubio 1969, 197 1, Inglesfield 
197 1) between the surface Green function and the bulk and vacuum Green functions. The 
novelty of equations (33)-(34) is that, instead of the vacuum Green function, one has the 
Green function for an isolated atom (layer). Matching with vacuum does not enter 
anywhere. This is simply traced to the way in which surfaces are usually introduced in the 
tight-binding approach, namely chopping off the interactions of the surface layer with the 
outside region because, one says, there are no atoms left. However, this is equivalent to 
placing an infinite barrier, thereby eliminating surface states from the picture due to 
matching. In other words, although there are no atoms left outside the crystal, one still has 
the kinetic energy, so that, instead of Go =(U - H w ) - ' ,  the bound part, one should have 
the complete atom (layer) Green function with its scattering states included. Recent 
attempts have been made to improve the tight-binding approach (Pollmann and Pantelides 
1978, Krieger and Laufer 1981, Williams et a1 1982, Schmeits et a f  1983) but no complete 
answer has yet been given to the question of matching surface states within this approach. 
Work along this line is now going on and will be the subject of a forthcoming publication. 

5. Conclusions 

In summary, the iterative approach discussed above provides a powerful and quick way of 
evaluating different kinds of Green functions (right surface, left surface, bulk, etc). With the 
help of some recurrence relations, discussed in 8 3, one can find all the matrix elements of 
the Green operator. A factorisation theorem, reminiscent of a similar relationship in the 
surface Green-function matching formalism, is evidence of a fundamental weakness in 
current treatments of surfaces by the tight-binding approach: surface states due to 
matching with a vacuum are not dealt with adequately, and thus we are restricted to an 
infinite-barrier situation. 
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