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Abstract

This work explores the accelerated discovery of High-Entropy Alloys electrocatalysts using a
novel carbothermal shock fabrication method, underpinned by an active learning approach.
A high-throughput robotic platform, integrating a BoTorch-based active learning module
with an Opentrons liquid handling robot and a 7-axis robotic arm, expedites the iterative
experimental cycles. The recent integration of large language models leverages ChatGPT’s
API, facilitating voice-driven interactions between researchers and the automation setup,
further enhancing the autonomous workflow under experimental materials science scenarios.
Initial optimization efforts for green hydrogen production catalyst yield promising results,
showcasing the efficacy of the active learning framework in navigating the complex materials
design space of HEAs. This study also emphasizes the crucial need for consistency and
reproducibility in real-world experiments to fully harness the potential of active learning
in materials science explorations.

Keywords: Active Learning, Robotic Platform, High-throughput Experiment, Electro-
catalysis

1. Introduction

Conventional electrocatalysts are somewhat restricted regarding compositional diversity,
which may result in insufficient active sites for multi-step reactions, limited tunability for
bonding with different intermediates, and a common dependency on noble metals (Peng
et al., 2021). In contrast, High-Entropy Alloys (HEAs), which comprise more than five
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Figure 1: CTS-enabled creation of HEA nano-particles on carbon substrate. (A) Micro-
scopic images of micro-scaled precursor salt grains on the carbon nanofiber pre-
thermal shock, and the resultant, well-distributed (PtNi) nanoparticles post-CTS.
(B) Sample formulation and the time-wise temperature transition during the 55-
ms thermal shock. (C) Elemental mappings of an HEA nano-particle consisting
of eight varied elements (Pt, Pd, Ni, Co, Fe, Au, Cu, and Sn). Scale bar, 10 nm.
Reprinted with permission from AAAS.

metallic elements, have demonstrated notable improvements in both activity and durability
across various electrocatalytic reactions (Yao et al., 2022). The vast domain of chemical
design holds immense promise for HEAs, yet also poses a significant challenge for researchers
who may struggle to intuitively navigate these high-dimensional spaces.

A recent advancement in the fabrication of HEAs catalysts has enabled a rapid iteration
of recipe exploration (Yao et al., 2018). In this process, researchers merely mix the metal
precursor solution according to a specified composition on a carbon substrate, followed by
an application of a direct current, as shown in Figure 1. The resulting joule heat swiftly
elevates the temperature to 2000K within mere tens of milliseconds, before quickly cooling
down to room temperature. This intense thermal procedure is termed carbothermal shock
(CTS), and the resultant product emerges well mixed at the atomic level, embodying HEAs.

Employing a typical workflow of Gaussian Process and Bayesian Optimization can guide
researchers to effectively explore and rapidly converge on the global optimum within the ma-
terials design space (MDS) (MacLeod et al., 2020; Burger et al., 2020; Sun et al., 2019). The
inclusion of a robot-assisted workflow further bolsters the consistency and reproducibility
of experiments, establishing a solid base for the active-learning approach to function ef-
fectively. When tailored properly, this advanced research paradigm can conserve time and
resources, redirecting researchers’ attention from monotonous lab tasks to more intellectual
analysis and design (Stach et al., 2021; Stein and Gregoire, 2019).
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2. Approach

A high-throughput robotic platform consisting of four main modules, shown in Figure 2, has
been developed. First, the BoTorch-based (Balandat et al., 2019) active learning module
will propose the recipes for the next batch of experiments, based on the data we collected so
far. These recommended recipes are then forwarded to Opentrons, a liquid handling robot,
which mixes pre-prepared metal precursors, dispensing a specific volume of the mixture
onto a carbon substrate. Subsequently, the CTS is carried out on the carbon substrate,
which is then laser-cut into standard-sized pieces. Once the standard-sized catalyst samples
are placed on the electrode sample holder, a 7-axis robotic arm manages the loading and
unloading of samples into the three-electrode testing cell, while a Python script emulates
human mouse and keyboard input to operate the testing software. Post-testing, the raw
data is automatically analyzed to derive a metric value, which is then uploaded to a cloud
SQL server for integration in the subsequent active learning cycle, thus completing the loop.
This entire process is showcased in our YouTube demo (Ren, 2022).

Very recently, we implemented a huge upgrade to our high-throughput robotic plat-
form by developing an AI research copilot on it (Ren, 2023a). Previously, autonomous
labs relied heavily on scripting languages like Python, restricting their use among materi-
als experimentalists without coding background. The advent of OpenAI’s ChatGPT API’s
function calling feature now facilitates the integration and execution of Python subroutines
in experimental workflows via voice commands. Our novel Copilot for Real-world Exper-
imental Scientist (CRESt) system, demonstrated on YouTube, harnesses large language
models (LLMs), enabling all research group members to utilize the robotic platform for
their projects through simple voice interactions with CRESt.

The CRESt “operating system” comprises four main components: a user interface,
ChatGPT back-end, active learning, and end-effectors. The user interface, built on chatgpt-
voice (thanhsonng, 2023), facilitates voice recognition and text-to-AI-generated-voice inter-
actions. The convenient web-based framework also allows users to continue their conver-
sations on mobile devices even after leaving the physical lab. The ChatGPT back-end,
grounded on CallingGPT (RockChinQ, 2023), translates Python functions documented in
Google style docstring into a JSON format recognizable by ChatGPT, enabling their in-
vocation whenever necessary and creating a feedback loop for immediate local execution
of the suggested function with the return value sent back to ChatGPT. A wrapper layer
was also customized to integrate the Ax active learning module into the CRESt work-
flow. The end-effectors vary widely, ranging from local or online database (e.g. Materials
Project (Jain et al., 2013)) retrieval module to a set of automation subroutines ready to be
invoked via HTTP requests, such as liquid handling robots, laser cutters, gas valves and
pumps. While subroutine automation currently heavily relies on PyAutoGUI (asweigart)
to simulate human mouse and keyboard input, we foresee this step becoming redundant as
more lab equipment is expected to offer dedicated AI interfaces in the future.
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Figure 2: Pipeline of our high-throughput robotic platform with four main modules. Ini-
tially, a BoTorch module proposes next experiment batch recipes, which are sent
to Opentrons for liquid handling. Following a Carbothermal Shock process and
laser-cutting, standard-sized catalyst samples are managed by a 7-axis robotic
arm for testing. Post-test metric values are uploaded to a cloud SQL server for
future active learning cycles.

3. Results

Figure 3 shows the results from our early efforts to optimize a high-entropy alloy catalyst for
the alkaline oxygen evolution reaction, a longstanding bottleneck issue in industrial green
hydrogen production. The key metric for optimization is the overpotential value, with a
lower value being preferable. The design space is a 5-dimensional materials domain, encom-
passing the composition of Fe, Co, Ni, Cr, and V, with the constraint that all compositions
sum to 1. We initiated the search process with a round of SOBOL search (Sobol, 2001)
and were fortunate to identify a formulation that surpassed our prior best sample (FeCoNi)
discovered through manual exploration. The subsequent active learning batch employing a
Gaussian Process + Expected Improvement setup further improved the record by 10mV,
marking a respectable performance in this domain.

Our developed robotic platform aptly meets the requirements of electrocatalyst research.
Besides the alkaline OER scenario discussed here, we also employed Gaussian Process + Up-
per Confidence Bound framework to hasten the investigation of catalysts for acidic oxygen
evolution reaction (green hydrogen production & carbon neutrality), acidic methanol oxida-
tion reaction (methanol fuel cell), and alkaline formate oxidation reaction (formate fuel cell).
The results so far have been very promising - a particular formulation identified through
active learning exhibited a performance three times better than our benchmark formulation.

4. Discussions

Upon implementing active learning in real-world materials investigation, we observed a dis-
tinct difference compared to its application in simulated or virtual environments. Typically,
the outcomes of simulation are reproducible; even in scenarios with stochastic elements,
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Figure 3: The initial result in green hydrogen catalyst optimization project, where lower
overpotential value is preferred. The search was initiated with a SOBOL round,
leading to the identification of a formulation outperforming our previous best
sample (FeCoNi, red-dashed line) found through manual exploration. The follow-
ing active learning batch, utilizing a Gaussian Process + Expected Improvement
setup, enhanced the record by 10mV, showcasing a commendable performance in
this domain.

setting a fixed random seed can mitigate result variance. This, however, isn’t the case in
real-world experiments. Fields like biology and materials science are infamous for their re-
producibility challenges (Baker, 2016), whether temporally (inability to replicate the results
from last month with the exact same input parameters) or spatially (inability to replicate
the results from a different lab with the exact same input parameters).

The crux of the irreproducibility issue lies in our researchers’ inability to identify all the
variables involved in the experimental workflow. For instance, if an experiment workflow’s
outcome can be rigorously determined by 50 variables (from an omniscient perspective),
but we only recognize 40 of them (either have them logged in a spreadsheet or well fixed at
a constant value), while the remaining 10 variables elude our notice. In such a case, those
10 variables will be the culprit for the irreproducibility, as they may change over time or
across different locations. Unfortunately, the variance induced by these hidden variables is
not Gaussian, rendering them poorly handled by the noise kernel in the gaussian process.

Without meticulously inspecting the experimental workflow prior to embarking on an
active learning campaign, significant resources may be wasted on an irreproducible dataset.
The algorithm could mistakenly take non-gaussian noise as signal, and eventually leading
to a scenario of ’garbage in, garbage out.’ Hence, every experimentalist must critically
consider, “Is our workflow robust enough for launching active learning?”

The term “robust” in traditional sense involves precision and accuracy, but in active
learning, precision holds more weight. While accuracy pertains to the closeness of a mea-
sured value to the true value, the primary aim in active learning is to pinpoint the best
candidate within the design space, rendering the relative order more crucial than the abso-
lute value. Consequently, consistent deviation from the true value is tolerable as it doesn’t
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alter the relative performance ranking of candidates. Unlike accuracy, no compromise on
precision would be acceptable other than random gaussian noise with fixed magnitude. In
other terms, the results from the experiments have to be reproducible.

To tackle reproducibility issues, robotic arms are frequently utilized. While this aids
in enhancing consistency to a degree, it’s not a complete solution. Commonly, there’s
an expectation for automated experimental platforms to effortlessly yield consistent and
reproducible outcomes, but this expectation is often met with disappointment in the early
stages. To elucidate this point, we’ve prepared a simple website during the initial phase of
constructing an automated platform in our lab (Ren, 2023c), showcasing the drop-casting
process integral to the electrocatalyst optimization project. The goal here is to ensure
uniform catalyst footprint across different samples. However, despite it’s an automated
process, noticeable variations in droplet position, diffusion distance, and wetting time are
observed on each spot. Attaining the sought-after consistency took around three months,
demanding careful control over numerous factors, including: (i) the wet-proofing layer of
the carbon paper, (ii) the curvature and twist of the freshly-cut carbon paper strip, (iii)
the anisotropy of the carbon fiber constituting the carbon paper, (iv) the gap between the
pipette tip and the carbon paper, (v) the droplet dispensing rate. Neglecting any of these
factors led to a lack of consistency, thereby hindering effective active learning optimization.

In brief conclusion, the underlying cause of irreproducibility is the presence of hidden
variables, and these hidden variables originate from researchers’ biases or ignorance towards
the nature. For further insight, please refer to a summary of our observations during the
application of active learning in real-world electrocatalysis experiments, encapsulated in
a bulletin titled ’Criminals in the AI City’ (Ren, 2023b). Currently, human researchers
must identify these issues to enhance AI effectiveness in optimization tasks. However, we
anticipate that in time, with the aid of multi-modal LLMs, AI will be sufficiently adept at
uncovering these issues autonomously. Specifically, AI could compare all experimental logs,
formulate scientific hypotheses to elucidate the causes of irreproducibility in data (Park
et al., 2023), design and execute control experiments to validate these hypotheses, and
manage the newly discovered hidden variables. In the long term, we envisage AI signif-
icantly advancing scientific research by generating hypotheses and steering the materials
optimization process (Ren et al., 2023).

5. Conclusion

In summary, this study marks a significant advancement in materials science, particularly in
the accelerated discovery of High-Entropy Alloys for electrocatalysis, through a novel inte-
gration of high-throughput robotics, active learning via BoTorch, and carbothermal shock
fabrication. The addition of LLMs for voice-driven interactions further streamlines the
experimental process. While these technologies show promise in optimizing green energy
catalysts, the research emphasizes the critical need for addressing reproducibility challenges
in real-world experiments. Success in this domain requires meticulous management of ex-
perimental variables to fully leverage the potential of AI.
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