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Abstract 

Autonomous laboratories1–5 were previously controlled mainly by scripting languages such 

as Python, limiting their usage among experimentalists. The recent release of OpenAI's 

ChatGPT API's function calling feature has enabled seamless integration and execution 

of Python subroutines in experimental workflows using voice commands.6 We have 

developed a system of Copilot for Real-world Experimental Scientist (CRESt) system, with 

a demonstration shown on YouTube.7 Large language models (LLMs) empower all 

research group members, regardless of coding experience, to leverage the robotic 

platform for their own projects, simply by talking with CRESt. 

 

Methods 

The CRESt  “operating system” (see YouTube7) is mainly composed of four parts: user 

interface, ChatGPT back-end, active learning and end-effectors. The user interface is 

based on chatgpt-voice,8 a platform that enables voice-to-text and text-to-voice 

interactions. The convenient web framework makes it possible for users to continue the 

conversation on their cell-phones seamlessly after leaving the physical laboratory, since 

the back-end is individually hosted and remains unaffected when the front-end is altered. 

Additionally, local adjustments were implemented to integrate ElevenLabs as the AI 

voice.9  

 

The text message that originates from the front-end is then transmitted to the ChatGPT 

back-end, which was built on the foundation of CallingGPT.10 This allows a Python function 

documented in Google style docstring to be converted into a JSON format recognizable 

by ChatGPT, which can then be invoked whenever ChatGPT finds it necessary. 

Furthermore, it closes a feedback loop between ChatGPT and the local Python function, 

as the suggested function will be immediately executed locally and its return value will be 

sent back to ChatGPT. One obstacle we faced was that some tasks required the execution 

of perhaps three functions consecutively. However, ChatGPT didn't always complete all 

the steps; it might return an incomplete or even failure message after executing one or 
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two functions. To enhance the robustness of function chain-calling, we implemented a 

simple trick in CRESt, which is basically adding more “prompt guidance” in the function 

return message. This approach turned out to be somewhat effective. Specifically, 

ChatGPT receives one of three templates after it calls a function:  

1. Call again: "function successfully called with return value: {ret_val}, please call this 

function again." 

2. Proceed: "function successfully called with return value: {ret_val}, please go to the 

next step." 

3. Function guide: "function successfully called with return value: {ret_val}, please 

call {function_name} next." 

To improve the robustness of the workflow, multiple branches are better to be preset in 

local Python functions, each ending with one of the templates listed above. For example, 

if the argument that ChatGPT provides fails to pass the assertion check, it will enter a 

branch with a “call again” template. With the failure reason included in the return value 

and “please call this function again” articulated, ChatGPT will be more likely to reattempt 

the same function, rather than immediately replying to the user with a failure message in 

text. In the future, it would be highly beneficial if OpenAI could provide more knobs over 

the function calling API (e.g. probability distribution among functions and the threshold for 

calling), thereby making the behavior more controllable. 

 

Active learning is considered a good starting point for autonomous experimental science 

since it works pretty well with small datasets.11–13 Data acquisition is the most significant 

challenge in learning projects that involve real-world experiments. Unlike in the virtual 

world, each datapoint in the real physical world could be fairly expensive and time-

consuming to obtain - often a dataset of 1000 points is considered substantial. Given these 

conditions, the strategy for sampling the design space becomes of paramount importance. 

The primary function of active learning is to interactively suggest the parameter 

combination to test in the next batch, backed by rigorous mathematical principles.14–16 

There are various nice frameworks on GitHub, and the one we implemented in CRESt is 

the Ax platform,17 developed by a team at Meta, and built upon BoTorch.18 Ax offers a 

well-implemented SQL storage option, allowing one to resume the previous active learning 

campaign even if the GPT backend is reset, by retrieving the history stored in the database. 

 

End-effectors are a set of subroutines ready to be invoked via HTTP requests. Some of 

these may involve information retrieval tasks (local or public database queries like the 

Materials Project19), while others could have tangible real-world impact, as we have shown 

in the demo (liquid handling robot, laser cutter, pump, gas valve, robotic arm), primarily 

the components in data collection. The automation of these devices is mostly handled by 

PyAutoGUI,20 a script that can simulate human mouse and keyboard actions. However, 

we expect this redundant step will eventually become obsolete, as most laboratory 

equipment should ideally provide a dedicated interface for AI access.  

 



Outlook 

What Large Language Models (LLMs) can bring to the realm of science and engineering 

is a question that we have been pondering since the advent of ChatGPT. There is no 

question that LLMs has already shown its superb potential as a literature reviewer, all 

one needs is to feed more literature with full content to it. Then, what else? Beyond the 

role of experimentalist’s assistant, which we have just developed in the form of CRESt, 

we envision it will also play a transformative role in at least the following three dimensions: 

 

Instrument coach. Presently, researchers must comprehend the theoretical basis of any 

technology they wish to utilize, along with the specific operations (sometimes empirical 

rules or “tricks”) of an individual instrument, which can vary significantly from one 

manufacturer to the other. This latter requirement involves a non-trivial effort, e.g. a series 

of training sessions for a shared facility or reading a 200-page manual for a group-owned 

instrument, but is it truly indispensable? We foresee that, in the imminent future, 

researchers will merely need to articulate their needs in plain language, and LLMs will 

translate these into the optimal parameter settings (which is what an instrument specialist 

is doing now). Upon request, the exact part in the manual book can be referred to for the 

users to further investigate into. Technically, this can be made possible by appropriately 

fine-tuning an LLM base model by the vendor, which can be done today. 

 

Pipeline diagnostician. LLMs could help identify the root causes of irreproducible results 

when paired with multi-sensors equipped robots or drones. In the future, an ideal 

experimentation paradigm is to log the lifetime recording and all the metadata of every 

sample. When an inexplicable phenomenon occurs, all related logs can be input into the 

multi-modal LLMs for analysis. Leveraging its superior hypothesis generation ability,21 the 

model can propose a list of potential causes, allowing human experts to further investigate 

the top few that they deem likely. This approach could also be applied in industrial 

processing pipelines – if a significant drop in the production yield is noticed, LLMs can be 

employed to identify the "culprit", with human engineers stepping in when complex real-

world adjustments are required. This role becomes viable when LLMs can process vast 

amounts of images (videos), and will be further enhanced when multimodal information 

(vendor-provided metadata for samples, moisture sensing, sound sensing, etc.) gets well 

aligned with the visual information. 

 

Mechanism narrator. We anticipate LLMs will excel in applying established scientific 

principles to novel experimental phenomena. A significant portion of the work in the 

scientific mechanism exploring stage are pattern matching tasks (e.g. extracting subtle 

features from a spectrum and comparing with the standard database), which fall within the 

competence of LLMs. A typical procedure could be as straightforward as asking LLMs: a 

sample with this composition and processing history exhibited superior performance, here 

are all the characterization results (Scanning Electron Microscope, X-Ray Diffraction, etc.), 

please explain why this result is so good. Human researchers may examine the most 

reasonable explanations from a range of narratives LLMs generate, and start the scientific 



discussions from there. However, this process will pose the greatest challenge, with 

requirements including (i) image input and alignment with scientific terms, (ii) information 

retrieval capabilities from online physical scientific databases, (iii) LLMs being pretrained 

on scientific journal main context and supplements, (iv) cutting-edge subfield ML models 

invokable as plug-ins. 

 

CRESt is just a starting point of how LLMs can assist experimental scientists, and we 

believe the true potential of LLMs lies in their hypothesis-generating capability.21 Humans 

possess a relatively limited knowledge base but exceptional causal inference capabilities, 

allowing us to produce pinpoint hypotheses, albeit not in large quantities. In contrast, 

relying on the extensive knowledge base and the emerging ability to discover the key 

pattern in a large datasheet via the Excel plugin,22 AI can generate numerous hypotheses 

in little time, but is usually less discerning today.21 Therefore, this is not a story of AI 

competing with humans, but rather one of AI complementing humans. In the paradigm of 

“AI suggests, humans select”, we hope the strength of both parties can be leveraged. 
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