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Phase field microelasticity theory and modeling of elastically
and structurally inhomogeneous solid

Yu U. Wang, Yongmei M. Jin, and Armen G. Khachaturyana)
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New Jersey 08854-8065
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The phase field microelasticity theory of a three-dimensional elastically anisotropic solid of
arbitrarily inhomogeneous modulus also containing arbitrary structural inhomogeneities is
proposed. The theory is based on the equation for the strain energy of the elastically and structurally
inhomogeneous system presented as a functional of the phase field, which is the effective stress-free
strain of the ‘‘equivalent’’ homogeneous modulus system. It is proved that the stress-free strain
minimizing this functional fully determines the exact elastic equilibrium in the elastically and
structurally inhomogeneous solid. The stress-free strain minimizer is obtained as a steady state
solution of the time-dependent Ginzburg–Landau equation. The long-range strain-induced
interaction due to the elastic and structural inhomogeneities is explicitly taken into account. Systems
with voids and cracks are the special cases covered by this theory since voids and cracks are elastic
inhomogeneities that have zero modulus. Other misfitting defects, such as dislocations and coherent
precipitates, are also integrated into this theory. Examples of elastic equilibrium of elastically
inhomogeneous solid under applied stress are considered. ©2002 American Institute of Physics.
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I. INTRODUCTION

Most of the material systems of engineering importan
are structurally and/or elastically inhomogeneous. One c
mon example of such systems is polycrystal. Even if e
grain of the polycrystal is a perfect crystallite, the ent
material is elastically inhomogeneous. This is because
components of elastic modulus tensor within each grain
transformed due to the grain mutual rotation and thus
elastic moduli of different grains become different. A mul
phase coherent mixture produced by a phase transforma
is another example of structurally and elastically inhomo
neous systems—as a rule, the domains of the product p
have elastic moduli that are different from those of the par
phase because they have different crystallographic struct
and orientations. Systems with cracks and voids, which
be considered as ‘‘particles’’ with zero elastic modulus, re
resent an important class of elastically inhomogeneous
terials. The advanced man-made materials, such as com
ites, multilayers, and graded materials, are also structur
and/or elastically inhomogeneous systems. Their artificia
built-in structural and/or elastic inhomogeneities are
tended to produce the superior functional performance.

In spite of the importance of elastically inhomogeneo
materials, the progress in their theoretical study is hinde
by serious mathematical difficulties in an analytical tre
ment of a three-dimensional~3D! system with an arbitrarily
inhomogeneous elastic modulus under applied stress. T
are very few problems that are really solved. The case
single ellipsoidal elastic inhomogeneity is solved by Eshe

a!Author to whom correspondence should be addressed; electronic
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in his classical work.1 The generalized plane strain problem
of inhomogeneous materials with specific distributions
elastic moduli, such as layered,2,3 angular,4 and cylindrical5

media, have recently been solved. The analytical solution
a planar crack has been obtained using dislocation pil
theory.6 The extended stress field around a cylindrical cra
in an infinite homogeneous isotropic elastic medium is c
culated in Ref. 7 by using this theory, which models t
crack as a pileup of Somigliana ring dislocations.

The precipitations involving inhomogeneous modul
linearly coupled with the concentration field have recen
been simulated using the conjugate gradient method.8,9 The
perturbation theory with respect to a variation of the elas
modulus has been used,10–20 where the modeling is reduce
to a numerical solution of the approximated equations of
elastic equilibrium. In most cases,10–18 these equations ar
the first order approximation with respect to the perturbat
of the modulus. The higher-order corrections in the pertur
tion theory have been used.19,20However, for a system with a
significant difference in the elastic moduli, like the syste
with voids and/or cracks of arbitrary configuration, use of t
perturbation theory may pose a problem: the convergenc
the perturbation series in this case becomes questiona
Even if this series is convergent, a required increase in
number of terms of the perturbation series may make
computational procedure prohibitively expensive.

The problem of the elastically inhomogeneous system
much more complex than that of the structurally inhomog
neous~but elastically homogeneous! system. In fact, the ef-
fect of the structural inhomogeneities in the elastically h
mogeneous systems has been comparatively w
investigated.21 It is now reasonably well understood how th
structural inhomogeneities affect the coherent mesosc
il:
1 © 2002 American Institute of Physics
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microstructures and alter the system thermodynamics.21–31

This success has been achieved mostly due to the use o
Khachaturyan–Shatalov~KS! theory,21 which provides the
exact explicit solution for the system strain energy as a fu
tional of the arbitrary misfit strain distribution. The misfi
strain tensor, which is the stress-free strain~also called
eigenstrain!, adequately describes the structural inhomoge
ities and their spatial distribution in the mesoscopic scale

The phase field microelasticity~PFM! method based on
the KS theory has been used for a realistic modeling of v
ous processes, e.g., the coherent decompositions of ord
precipitates in alloys,22–25 the solute segregations aroun
static dislocations,26,27 the martensitic transformations in th
constrained and unconstrained single crystals,28,29 and the
low-symmetry martensitic transformation in elastically is
tropic polycrystals.29 The PFM simulation has also been su
cessfully applied to the 3D dislocation dynamics in plas
deformation.30,31

The assumption of the elastic homogeneity is a limi
tion of the PFM theory hindering its wider application. If w
remove this limitation and adequately address the problem
elastic inhomogeneity, the PFM theory would be universa
a sense that it could be applied to a mesoscale characte
tion of practically any engineering materials. The materi
could be single crystals and polycrystals with dislocatio
voids, cracks, as well as multiphase structures. So far, t
was only one attempt to formulate the PFM theory of ela
cally inhomogeneous materials without the use of pertur
tion theory approximations.32,33 However, it was made to
characterize a particular~although important! case of the
elastically inhomogeneous systems, viz. the systems
voids and cracks.32,33

In this work, we demonstrate that a further advance
the theoretical characterization of the elastically~and struc-
turally! inhomogeneous system is still possible.34 It is based
on the formulation of the PFM equations describing the ex
elastic equilibrium and the development of a computationa
effective method for their numerical solution using fast Fo
rier transform. This advance turns out to be possible e
without a serious complication of the theory and compu
tional procedure with respect to those employed for the P
characterizations of the elastically homogeneo
systems.21–31 In particular, the proposed approach can
used to extend the mesoscopic modeling of martens
transformation,28,29dislocation dynamics,30,31and void/crack
evolutions32,33 under applied stress to the more realistic ca
of polycrystals comprised of elastically anisotropic grains

II. EQUILIBRIUM EQUATIONS OF ELASTICITY
FOR ARBITRARILY INHOMOGENEOUS SYSTEM
IN TERMS OF EQUIVALENT STRESS-FREE STRAIN

A. Strain energy functional for arbitrary
distribution of stress-free strain in elastically
homogeneous body

To address the problem of an elastically inhomogene
anisotropic system under applied stress, we consider fir
much simpler system. It is an elastically homogeneous
isotropic system of the same macroscopic size and shap
Downloaded 07 Jul 2003 to 164.107.79.177. Redistribution subject to A
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the original elastically inhomogeneous system but with
heterogeneous misfit-generating stress-free strain. This m
strain is described by the tensor field« i j

0 (r ). The field« i j
0 (r )

is assumed to be arbitrarily heterogeneous on the mesos
but homogeneous on the macroscale. The KS theory g
the exact elastic strain and strain energy of this system
functional of the fixed field« i j

0 (r ).21 The strain energy is also
a function of the macroscopic strain«̄ i j fixing the macro-
scopic shape of the body and determined by the bound
condition ~clamping!. For a macroscopically homogeneou
body, this strain coincides with the macroscopically averag
strain

«̄ i j 5
1

VEV
« i j ~r !d3r , ~1!

whereV is the system volume.
The strain energy presented in this form is a functio

of the field« i j
0 (r )21

Eel5
1

2EV
Ci jkl

0 « i j
0 ~r !«kl

0 ~r !d3r

2 «̄ i j E
V
Ci jkl

0 «kl
0 ~r !d3r 1

V

2
Ci jkl

0 «̄ i j «̄kl

2
1

2«
d3k

~2p!3
ni s̃ i j

0 ~k!V jk~n!s̃kl
0 ~k!* nl , ~2!

where the integral« in the infinite reciprocal space is evalu
ated as a principal value excluding a volume (2p)3/V
around the pointkÄ0, nÄk/k is a unit directional vector in
the reciprocal space,V i j (n) is the Green function tensor in
verse to the tensorV i j

21(n)5Cik jl
0 nknl , Ci jkl

0 is the elastic
modulus,s̃ i j

0 (k)5Ci jkl
0 «̃kl

0 (k), the superscript asterisk indi
cates the complex conjugate, and«̃ i j

0 (k) is the Fourier trans-
form of the field « i j

0 (r ), «̃ i j
0 (k)5*v« i j

0 (r )e2 ik"rd3r . The
strain energy in the form T~2! is convenient when the bod
is under a strain-controlled boundary condition. The str
energy functional for a stress-controlled boundary condit
is given by Eq.~A3! in the Appendix.

The KS theory determines the equilibrium strain« i j (r )
at a pointr through the misfit strain field« i j

0 (r ) as21

« i j ~r !5 «̄ i j 1
1

2«
d3k

~2p!3
@niV jk~n!1njV ik~n!#

3s̃kl
0 ~k!nle

ik"r. ~3!

The energy functional~2! and strain~3! are valid for a
macroscopically homogeneous system, which means tha
typical size of the macroscopic system is significantly grea
than the typical size of the mesoscopic structural hetero
neities characterized by the misfit strain« i j

0 (r ).

B. Equilibrium equation of elasticity for an elastically
and structurally inhomogeneous system

Let us consider a general case of the elastically an
tropic and elastically inhomogeneous body, which also
structurally inhomogeneous. The elastic modulus of suc
body is coordinate dependent,Ci jkl (r ). The structural inho-
mogeneities are described by the fixed crystal lattice m
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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strain ~stress-free strain or eigenstrain!, « i j* (r ), arbitrarily
distributed in the body~note that there is no confusion be
tween the superscript* in « i j

* (r ) and that ins̃ i j
o (k)* indicat-

ing the complex conjugate!. The misfit strain« i j* (r ) can be
generated by a fixed distribution of crystal lattice defec
such as coherent new phase inclusions, concentration he
geneities, dislocations, etc. The system can be either a s
crystal or polycrystal. This is the most general formulation
the problem. It is applicable to a majority of technologica
important materials.

The coordinate-dependent modulusCi jkl (r ) can always
be presented as a sum

Ci jkl ~r !5Ci jkl
0 2DCi jkl ~r !, ~4!

whereDCi jkl (r ) is the modulus variation from the referenc
valueCi jkl

0 , which characterizes the elastic inhomogeneiti
If the body is constrained so that its macroscopic deform
tion is fixed and determined by the value«̄ i j , this constraint
generates the strain field« i j (r ), which is heterogeneous du
to both the elastic inhomogeneitiesDCi jkl (r ) and the struc-
tural inhomogeneities« i j* (r ). The stress is related to th
strain« i j (r ) by Hooke’s law

s i j ~r !5Ci jkl ~r !@«kl~r !2«kl* ~r !#. ~5!

The stress satisfies the following equilibrium equation at
ery point r ,

]s i j ~r !

]r j
50. ~6!

Using the modulus definition~4! and the stress~5!, the elas-
tic equilibrium equation~6! can be rewritten as

Ci jkl
0 ]«kl~r !

]r j
5

]

]r j
$Ci jkl

0 «kl* ~r !

1DCi jkl ~r !@«kl~r !2«kl* ~r !#%. ~7!

The strain« i j (r ) can be expressed as a sum of the h
mogeneous part«̄ i j determined by the external constraint a
the heterogeneous part

« i j ~r !5 «̄ i j 1ei j ~r !, ~8!

where the heterogeneous strainei j (r ) is determined by the
displacementv(r )

ei j ~r !5
1

2F]v i~r !

]r j
1

]v j~r !

]r i
G . ~9!

For a macroscopically homogeneous clamped system, th
tal displacement at the external boundary is«̄ i j r j

s , which is
determined by the homogeneous strain«̄ i j and the surface
coordinate vectorr s at the external boundary. The displac
mentv(r ) associated with the heterogeneous strainei j (r ) is
assumed to vanish at the external boundary of the body.
macroscopically homogeneous system, for which the ab
assumption is valid, is a system whose typical sizeL is sig-
nificantly greater than the typical mesoscopic lengthl over
which the elastic modulusCi jkl (r ) considerably changes
Downloaded 07 Jul 2003 to 164.107.79.177. Redistribution subject to A
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This approximation is asymptotically correct with an acc
racy of l/L!1. Indeed, according to Saint Venant’s pri
ciple, this approximation produces inaccuracy in the str
field only within the surface layer at the external boundary
the body. The thickness of this layer is commensurate wit
typical size of the elastic inhomogeneityDCi jkl (r ). There-
fore, the error introduced by the approximate boundary c
dition v(r s)50 is asymptotically small for a macroscopical
large and a macroscopically homogeneous system w
l/L→0.

Substituting Eqs.~8! and ~9! into the left-hand side of
the equilibrium equation~7! yields

Ci jkl
0 ]2nk~r !

]r j]r l
5

]

]r j
$Ci jkl

0 «kl* ~r !

1DCi jkl ~r !@«kl~r !2«kl* ~r !#%. ~10!

Let us assume that the external surface of the body is c
ered by an infinitesimally thin layer whose elastic modulus
Ci jkl

0 . The introduction of this infinitesimally thin layer doe
not affect the elastic equilibrium in the system, however
simplifies the boundary condition givingDCi jkl (r

s)50. Let
us also assume that the structural inhomogeneities do
locate on the system surface, which gives the boundary c
dition « i j* (r s)50. Using the Fourier transform of Eq.~10!
and the boundary conditionsv(r s)50, DCi jkl (r

s)50, and
« i j* (r s)50 transforms the equilibrium equation~10! into the
integral form

n i~r !5«
d3k

~2p!3 H 2 i
1

k
V i j ~n!$Cjklm

0 « lm* ~r !

1DCjklm~r !@« lm~r !2« lm* ~r !#%knkJ eik"r, ~11!

where$Ci jkl
0 «kl* (r )1DCi jkl (r )@«kl(r )2«kl* (r )#%k is the Fou-

rier transform of the corresponding function in the braces
Using Eqs.~9! and~11!, the strain,~8! can be expressed

as

« i j ~r !5 «̄ i j 1
1

2«
d3k

~2p!3
@ni V jk~n!1njV ik~n!#

3$Cklmn
0 «mn* ~r !1DCklmn~r !@«mn~r !

2«mn* ~r !#%knle
ik"r. ~12!

Equation ~12! is an integral equation for the equilibrium
strain « i j (r ) in the elastically and structurally inhomoge
neous system characterized by the elastic inhomogene
DCi jkl (r ) and the structural inhomogeneities« i j* (r ).

Now let us change variables in Eq.~12!. We introduce a
new variable« i j

0 (r ) related to the variable« i j (r ) by defini-
tion

Ci jkl
0 «kl

0 ~r !5Ci jkl
0 «kl* ~r !1DCi jkl ~r !@«kl~r !2«kl* ~r !#.

~13!
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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Using Ci jkl
0 «kl

0 (r ) to replaceCi jkl
0 «kl* (r )1DCi jkl (r )@«kl(r )

2«kl* (r )# in Eq. ~12! yields

« i j ~r !5 «̄ i j 1
1

2E d3k

~2p!3
@niV jk~n!1njV ik~n!#

3Cklmn
0 «̃mn

0 ~k!nle
ik"r. ~14!

Equation ~14! coincides with Eq.~3! for the equilibrium
strain in an elastically homogeneous body of elastic modu
Ci jkl

0 with a misfit strain« i j
0 (r ), i.e., the elastically and struc

turally inhomogeneous body assumes the same strain a
elastically homogenous body with the appropriate choice
the misfit strain« i j

0 (r ). It is important that the elastically an
structurally inhomogeneous body also assumes the s
stress as the elastically homogenous body with this choic
the misfit strain« i j

0 (r ). Indeed, deducting the same ter
Ci jkl

0 «kl(r ) from both sides of Eq.~13! gives

Ci jkl
0 @«kl~r !2«kl

0 ~r !#5@Ci jkl
0 2DCi jkl ~r !#

3@«kl~r !2«kl* ~r !#. ~15!

Equation~15! demonstrates that the stress in the elastic
homogeneous bodys i j (r )5Ci jkl

0 @«kl(r )2«kl
0 (r )# is equal to

the stress in the original elastically and structurally inhom
geneous bodys i j (r )5@Ci jkl

0 2DCi jkl (r )#@«kl(r )2«kl* (r )#.
Therefore, the elastically homogeneous system with the m
fit strain « i j

0 (r ) is equivalent to the original elastically an
structurally inhomogeneous system with the elastic inhom
geneitiesDCi jkl (r ) as well as the structural inhomogeneiti
« i j* (r ).

Transforming the variable« i j (r ) in the equilibrium
equation~12! for the elastically and structurally inhomoge
neous system to the variable« i j

0 (r ) defined by Eq.~13! for-
mulates the original equilibrium equation in terms of t
virtual misfit strain« i j

0 (r ):

DSi jkl ~r !Cklmn
0 @«mn

0 ~r !2«mn* ~r !#1« i j* ~r !

5 «̄ i j 1
1

2«
d3k

~2p!3
@niV jk~n!1njV ik~n!#

3Cklmn
0 «̃mn

0 ~k!nle
ik"r, ~16!

whereDSi jkl (r )5DCi jkl
21 (r ). Equation~16! is, in fact, an in-

tegral equation for the determination of« i j
0 (r ). It is the equi-

librium equation of elasticity for the elastically and structu
ally inhomogeneous system. A similar type of equilibriu
equation, in which a difference in the elastic modulus
emulated by virtual stress-free strain field, has been obta
in Ref. 2, where it was employed for solving a problem
the multilayer of parallel misfitting lamellae with differen
elastic moduli.

Finding the misfit strain« i j
0 (r ) in the equivalent elasti-

cally homogeneous system fully solves the elasticity prob
of the elastically and structurally inhomogeneous system
the equilibrium strain is given by Eq.~14! through the field
« i j

0 (r ), and the stress is determined by Eq.~5!.
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III. VARIATIONAL PRINCIPLE AND ITS APPLICATION
FOR DETERMINATION OF ELASTIC EQUILIBRIUM
OF ARBITRARILY INHOMOGENEOUS SYSTEM

A. Strain energy functional for elastically
and structurally inhomogeneous body

The strain energy of the elastically and structurally inh
mogeneous system can be obtained through the strain en
of the elastically homogeneous system. Indeed, the st
energy of the equivalent elastically homogeneous system
determined by

Ehom5
1

2EV
Ci jkl

0 @« i j ~r !2« i j
0 ~r !#@«kl~r !2«kl

0 ~r !#d3r ,

~17!

while the strain energy of the original elastically and stru
turally inhomogeneous system is

Einhom5
1

2EV
@Ci jkl

0 2DCi jkl ~r !#@« i j ~r !2« i j* ~r !#

3@«kl~r !2«kl* ~r !#d3r . ~18!

Using Eq.~13! , the energy difference is

DE5Einhom2Ehom

5
1

2EV
@Ci jmn

0 DSmnpq~r !Cpqkl
0 2Ci jkl

0 #

3@« i j
0 ~r !2« i j* ~r !#@«kl

0 ~r !2«kl* ~r !#d3r . ~19!

Substituting Eq.~2! for Ehom into Eq. ~19! yields the strain
energy of the elastically and structurally inhomogeneous s
tem as a functional of« i j

0 (r ),

Einhom5
1

2EV
@Ci jmn

0 DSmnpq~r !Cpqkl
0 2Ci jkl

0 #

3@« i j
0 ~r !2« i j* ~r !#@«kl

0 ~r !2«kl* ~r !#d3r

1
1

2EV
Ci jkl

0 « i j
0 ~r !«kl

0 ~r !d3r

2 «̄ i j E
V
Ci jkl

0 «kl
0 ~r !d3r 1

V

2
Ci jkl

0 «̄ i j «̄kl

2
1

2«
d3k

~2p!3
ni s̃ i j

0 ~k!V jk~n!s̃kl
0 ~k!* nl . ~20!

B. Variational approach for determining
the equivalent stress-free strain

The strain energy functional~20! meets the variationa
principle: its minimum is reached when the minimizing fun
tion « i j

0 (r ) satisfies the equilibrium equation~16!. Indeed, the
minimum condition of the functional~20! with respect to the
function « i j

0 (r ) is

dEinhom

d« i j
0 ~r !

50. ~21!
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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Taking the variational derivative of the functional~20! with
respect to« i j

0 (r ) and using it in~21! gives the equilibrium
equation~16!.

The foregoing consideration proves the following var
tional principle:

The misfit strain minimizing the strain energy function
~20! determines the equilibrium strain and stress of the e
tically and structurally inhomogeneous body in accorda
with Eqs.~14! and ~5!, respectively.

The above statement indicates that finding the minimi
« i j

0 (r )5« i j
0 (r ) for the equivalent elastically homogeneo

system fully solves the elasticity problem of the arbitrar
elastically and structurally inhomogeneous system. The
fore, the function« i j

0 (r ) entering the functional~20! can be
considered as a relaxation parameter~a phase field!. This
circumstance allows us to formulate the variational appro
to the computationally efficient modeling of the arbitrari
inhomogeneous modulus system with arbitrary structural
homogeneities, where the multiple cracks and voids are
particular cases.32,33

The energy minimizer« i j
00(r ) could be found through a

solution of the PFM kinetic equation for« i j
0 (r ), which is the

time-dependent Ginzburg–Landau~TDGL! type equation.
The TDGL equation in this case is

]« i j
0 ~r ,t !

]t
52Li jkl

dEinhom

d«kl
0 ~r ,t !

, ~22!

whereLi jkl is the kinetic coefficient,t is ‘‘time,’’ and Einhom

is given by Eq.~20!. A specific choice of the tensorLi jkl is of
no importance as long as it is positively defined: since
~22! is linear, it has a solution and this solution determin
the minimum of the energyEinhom. The simplest choice o
Li jkl is Li jkl 5Ld ikd j l . Incorporating Eq.~20! into Eq. ~22!
gives the explicit form of the TDGL equation

]« i j
0 ~r ,t !

]t
5LCi jkl

0 H 1

2 «
d3k

~2p!3
[nkV lm~n!

1nlVkm~n!] s̃mn
0 ~k!nneik"r

2DSklmn~r !Cmnpq
0 @«pq

0 ~r !2«pq* ~r !#2«kl* ~r !

1 «̄kl
0 1Sklmn

0 smn
ex J , ~23!

where«̄ i j
0 5(1/V)*V« i j

0 (r )d3r , and the tensorSi jkl
0 is the elas-

tic compliance tensor inverse to the elastic modulus,Si jkl
0

5Ci jkl
0 21. The TDGL equation~23! is applicable to both the

strain-controlled and stress-controlled boundary conditi
specified by the external stresss i j

ex , which is

s i j
ex5Ci jkl

0 ~ «̄kl2 «̄kl
0 ! ~24!

for the strain-controlled boundary condition, while in th
case of stress-controlled boundary conditions i j

ex5s i j
appl.

Once the field« i j
0 (r ,t) reaches the saturation and becom

equal to the energy minimizer function« i j
00(r ), the driving

force dEinhom/d« i j
0 (r ,t) vanishes and, as follows from Eq

~22!, the field « i j
0 (r ,t) stops evolving. Knowing the mini-

mizer « i j
00(r ), we can calculate the equilibrium strain, stre
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and strain energy of the elastically and structurally inhom
geneous system by using Eqs.~14!, ~5!, and ~20!, respec-
tively.

The cracks and voids are special cases of elastic in
mogeneities with zero modulus,Ci jkl (r )50. Assuming
DCi jkl (r )5Ci jkl

0 , which results inCi jkl (r )50, reduces Eq.
~23! to the TDGL equation characterizing cracks a
voids.32,33

C. Examples of PFM computation of elastic
equilibrium of elastically inhomogeneous body

To test the proposed PFM method, we consider a la
elastically inhomogeneous body consisting of periodica
repeated and coherently adjacent identical regions. Each
gion, which is a motif of this periodical structure and is
computational cell, contains a group of elastic inhomoge
ities of the same configuration. The entire body consisting
a large number of such blocks can be considered as a m
roscopically homogeneous system, to which the PFM the
is applicable. If the typical distance characterizing the dis
bution of elastic inhomogeneities is much smaller than
size of a computational cell, a solution for the elastic fie
generated by the group of elastic inhomogeneities in this
is asymptotically close to the corresponding solution for
same group of elastic inhomogeneities in the infinite bod

As has been shown in the previous sections, the ma
scopically homogeneous body with arbitrarily distribut
elastic and structural inhomogeneities can be described
the PFM theory applied to the equivalent elastically hom
geneous body with the distributed misfit strain« i j

0 (r ). The
energy minimizer« i j

00(r ) is a steady state solution of th
TDGL equation~23!. To find it, we will numerically solve
Eq. ~23!. The strain, stress, and strain energy are expres
through the minimizer« i j

00(r ) by Eqs. ~14!, ~5!, and ~20!,
respectively, with« i j

00(r ) replacing« i j
0 (r ). In solving Eq.~23!

numerically, we use the fast Fourier transform technique
The PFM theory of an elastically inhomogeneous syst

proposed in this paper is formulated for an arbitrary patt
of elastic and structural inhomogeneities in an elastically
isotropic body. To verify the accuracy of the proposed PF
approach, we have to compare the PFM calculation res
with the analytical results obtained for the same system.
fortunately, analytical solutions are known only for very fe
simple systems. Below we apply our computational meth
to one of them, for which an analytical solution has be
obtained. This is the case of a cylindrical inhomogeneity
an elastically isotropic solid. We also apply our PFM calc
lations for more complicated systems, such as polycrys
comprised of elastically anisotropic grains under appl
stress. We investigate only the effects of the elastic inhom
geneities on the elastic equilibrium while assuming« i j* (r )
50 everywhere~no structural inhomogeneities!. A PFM cal-
culation of more complex systems practically takes the sa
computational time as that for the simple ones for giv
system size.

1. Cylindrical inhomogeneity in isotropic crystal

The uniaxial tensile stress is assumed to be perpend
lar to the cylinder axis as shown in Fig. 1~a!. This system has
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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FIG. 1. A cylindrical hole under tension in they direction in the elastically
isotropic body~n50.3!. ~a! Schematic illustration of a cross section of th
system perpendicular to the cylinder axis~z axis!; the PFM computational
solutions~thin black lines! and the corresponding analytical solutions~thick
gray lines! for (syy2syy

appl)/syy
applalong three different cross sections:~b!

A-A; ~c! B-B; and ~d! C-C, respectively, as indicated in~a!.
Downloaded 07 Jul 2003 to 164.107.79.177. Redistribution subject to A
the exact analytical solution. In the computation, we use
computational cell of 102431024. The cylinder diameter is
80 grid increments. Although the PFM theory is formulat
for materials of arbitrary elastic anisotropy, we consider h
an elastically isotropic system with Poisson’s ration50.3
since the corresponding analytical solution has a comp
tively simple form for the isotropic case. We first consid
the cylindrical inhomogeneity that is a hole@Ci jkl (r )50#.
The computational results are shown in Figs. 1~b!–1~d! as
plots of the disturbed stress field, (syy2syy

appl)/syy
appl, along

three typical cross sections of the system as indicated in
1~a!. To make a visual quantitative comparison of the str
field distribution obtained from the proposed PFM meth
and analytical solution, we used the thick gray lines to d
scribe the analytically calculated values and thin black lin
to describe the values calculated by a numerical solution
Eq. ~23!. This comparison shows an excellent agreement
tween analytical and numerical solutions.

For further quantitative comparison, we considered
same system while the cylindrical inhomogeneity has diff
ent isotropic elastic moduli, namelyCi jkl (r )50.25Ci jkl

0 ,
0.5Ci jkl

0 , 2Ci jkl
0 , and 4Ci jkl

0 , respectively. For each case, th
disturbed stress fields, (syy2syy

appl)/syy
appl, calculated by solv-

ing Eq. ~23! and analytically are plotted in Fig. 2 in two
different cross sections of the system. This comparison a
shows an excellent agreement between analytical and
merical solutions.

2. Polycrystal comprised of elastically anisotropic
grains

A polycrystal comprised of elastically anisotropic grai
is an elastically inhomogeneous system. To illustrate the
fect of this elastic inhomogeneity on the system equilibriu
under applied stress, we consider a particular case of a p
crystal of the Ni3Al cubic phase with the axial texture alon
the @001# axis. The elastic constants of this phase are:C11

5223.4 GPa,C125148.2 GPa, andC445125.2 GPa.35 Fig-
ure 3~a! shows the~001! cross section of this structure. Th
grains with this texture are parallel columns along the@001#
cubic axis, which are perpendicular to the~001! cross section
~perpendicular to the plane of the figure!. The cubic axes
@100# and @010# of the grains are randomly oriented and a
indicated by arrow pairs in Fig. 3~a!. The polycrystal is as-
sumed to be formed by a periodical repetition of 12 gra
shown in Fig. 3~a!, which is our computational cell. In the
computation, we used a computational cell of 102431024. A
uniaxial stressyy

appl along the verticaly axis is applied. The
equilibrium stresses,s

yy
, sxx , andsxy , at each point of the

polycrystal are determined by solving Eq.~23!. Their nor-
malized fields with respect to the applied stresssyy

appl are
shown in Figs. 3~b!–3~d!, respectively.

We also considered untextured Ni3Al polycrystal under
uniaxial stressszz

appl. The 3D polycrystal used in this case
formed by a periodic repetition of a cube consisting of eig
randomly oriented grains, which is our computational cell.
the computation, we used a computational cell of 1283128
3128. The equilibrium stress is determined by solvi
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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FIG. 2. A cylindrical inhomogeneity of different elastic moduli und
uniaxial tension in they direction in the elastically isotropic body~n50.3!.
The PFM computational solutions~thin black lines! and the corresponding
analytical solutions~thick gray lines! for (syy2syy

appl)/syy
applalong two differ-

ent cross sections,A-A andB-B as indicated in~a!, are plotted in~b!–~e!
for each case, respectively, for quantitative comparison.
Downloaded 07 Jul 2003 to 164.107.79.177. Redistribution subject to A
FIG. 3. A textured polycrystal comprised of anisotropic~cubic symmetry!
columnar grains under uniaxial stresssyy

appl. ~a! Cross section of the grains
and their orientations. Equilibrium stress fields:~b! syy , ~c! sxx , and ~d!
sxy , which are normalized with respect to the applied stresssyy

appl.
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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FIG. 4. A 3D polycrystal comprised of anisotropic~cubic symmetry! grains under uniaxial stressszz
appl. The components of the equilibrium stress a

normalized with respect to the applied stressszz
appl.
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Eq. ~23!. Its normalized components with respect to the a
plied stressszz

appl are shown in Figs. 4~a!–4~f!, respectively.

IV. DISCUSSION

The proposed 3D PFM theory formulates a form of t
exact equation of elastic equilibrium in an elastically a
structurally inhomogeneous solid under external load. T
solid is elastically anisotropic and both types of inhomog
neities, elastic and structural, have arbitrary geometries.
shown that the effect of elastic inhomogeneity on the ela
strain is exactly reproduced by an appropriate choice of
tual misfit strain« i j

0 (r ) introduced into the elastically homo
geneous body of the same shape and size and under the
external load. This misfit strain is the phase field of the pr
lem. This result proves the equivalency of a system w
spatially inhomogeneous modulus and the correspond
system with elastically homogenous modulus but with
spatially inhomogeneous misfit strain« i j

0 (r ). Using this
equivalency, we found the strain energy of the elastica
inhomogeneous body. It is determined by a functional~20! of
this misfit strain.
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It is proved that the functional~20! meets the variationa
principle: its minimum is reached when« i j

0 (r )→« i j
00(r )

where the minimizer field« i j
00(r ) fully determines the exac

elastic equilibrium of the elastically inhomogeneous bo
under external load. This variational principle formulated
Sec. III B is a key element of the proposed PFM theory
elastically and structurally inhomogeneous systems.

The PFM linear kinetic equation~23! formulated in this
article describes a relaxation of the elastically anisotro
system that contains arbitrary elastic and structural inhom
geneities, which may also include defects such as dislo
tions. The relaxation occurs by ‘‘temporal’’ evolution of th
‘‘virtual’’ misfit strain « i j

0 (r ) driven by the minimization of
the strain energy functional until the exact elastic equilibriu
is reached.

The PFM kinetic equation based on this variational pr
ciple provides an effective computational tool for solving t
elasticity problem of arbitrarily elastically and structural
inhomogeneous systems. The accuracy of the PFM com
tation, in fact, is determined by an accuracy of numeri
computations since the PFM kinetic equation, whose ste
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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state solution describes the elastic equilibrium, is exact.
illustrate an efficiency and accuracy of the PFM method,
compared the PFM calculations of elastic inhomogenei
with the corresponding analytical solutions that exist. T
results practically coincide excellently~thin black and thick
gray lines, respectively, in Figs. 1 and 2!.

It is important to note that the computational time for t
PFM calculations does not depend on the spatial comple
of elastic and structural inhomogeneities. It depends only
the number of phase field, which is equal to six@the number
of components of the misfit strain tensor« i j

0 (r )]. This im-
plies that the computational time required to determine
elastic equilibrium for the simplest elastic inhomogeneit
considered in Figs. 1 and 2 is practically the same as
required for coherent composite of arbitrary spatial compl
ity. Examples of the PFM calculation of the elastic equili
rium for such topologically complex elastically anisotrop
systems are presented in Figs. 3 and 4. These system
axially textured and untextured polycrystals comprised
elastically coupled anisotropic grains.

The calculated stress field of mechanically loaded e
tically anisotropic polycrystals shown in Figs. 3 and 4 illu
trates the effect of the spatial variations of the elastic mo
lus caused by different orientations of grains on the str
concentration. The effect is associated with the elastic c
pling between grains. As follows from Figs. 3 and 4, t
coupling produces stress concentrations along grain bo
aries. The stress concentration is especially signific
around some grain boundary junctions and its level, in g
eral, depends on the misalignments of neighboring gra
Location of the stress concentrations determines potent
‘‘weak’’ areas susceptible to formation of dislocaitons a
cracks.

Another interesting point is that the proposed PF
theory of elastically and structurally inhomogeneous syste
is conceptually similar to the PFM theory and models
martensitic transformations,28,29 dislocation dynamics,30,31

and crack/void evolutions.32,33 In fact, it is formulated in the
same formalism and is as efficient as the latter. This circu
stance reduces a formulation of a unified PFM theory a
model describing evolution of all these defects to just
increase of the number of phase fields and introduction of
corresponding coarse-grain Landau energies.

The proposed PFM theory and model of an elastica
and structurally inhomogeneous system is a computatio
tool for modeling technologically important systems. To
lustrate a breadth of possible applications of the propo
approach, we just mention three examples of very differ
areas, where the theoretical characterization of a mate
system is impossible without utilizing the computationa
effective model of an elastically inhomogeneous syste
They are the swelling of irradiated materials, the effect of
elastic modulus misfit on morphology of coherent preci
tates, and sintering under applied stress. These three
are just several examples of the vast area of applicatio
the proposed PFM theory and computational approach.
Downloaded 07 Jul 2003 to 164.107.79.177. Redistribution subject to A
o
e
s

e

ty
n

e
s
at
-

are
f

s-

-
s

u-

d-
nt
-

s.
lly

s
f

-
d
n
e

y
al

d
t

ial

.
e
-
eas
of

ACKNOWLEDGMENTS

The authors gratefully acknowledge support from t
National Science Foundation under Grant No. DM
9817235. The results were obtained using parallel code
ning on NPACI supercomputers.

APPENDIX

The strain of energy~2! is obtained by allowing the body
to relax with respect to displacements that do not affect
macroscopic shape of the body. This is a relaxation under
constraint that the macroscopic shape of the body chara
ized by the macroscopic strain«̄ i j is fixed. The strain energy
in the form~2! is convenient when the body is fully clampe
and thus its macroscopic deformation is determined by
strain-controlled boundary condition.

The strain energy~2! is modified if the macroscopic de
formation of the body is controlled by the applied extern
stresss i j

appl. Then we have to deduct the termVs i j
appl«̄ i j from

the strain energy~2!—this term is the work done by the
loading device. The result is

Eel5
1

2EV
Ci jkl

0 « i j
0 ~r !«kl

0 ~r !d3r

2 «̄ i j E
V
Ci jkl

0 «kl
0 ~r !d3r 1

V

2
Ci jkl

0 «̄ i j «̄kl

2
1

2«
d3k

~2p!3
ni s̃ i j

0 ~k!V jk~n!s̃kl
0 ~k!* nl

2Vs i j
appl«̄ i j . ~A1!

In the situation of the stress-controlled boundary conditi
we allow the body to relax at fixeds i j

appl by changing its
macroscopic shape. The latter is achieved by minimizing
energy~A1! with respect to«̄ i j . The energy minimizer is

«̄ i j 5 «̄ i j
0 1Si jkl

0 skl
appl, «̄ i j

0 5
1

VEV
« i j

0 ~r !d3r , ~A2!

which is the equilibrium strain achieved by the macrosco
strain relaxation. The resultant relaxed value of the str
energy~A1! at given macroscopic stresss i j

appl and stress-free
strain profile« i j

0 (r ) is

Eel5
1

2EV
Ci jkl

0 « i j
0 ~r !«kl

0 ~r !d3r

2
1

2V
Ci jkl

0 E
V
« i j

0 ~r !d3r E
V
«kl

0 ~r 8!d3r 8

2
1

2«
d3k

~2p!3
ni s̃ i j

0 ~k!V jk~n!s̃kl
0 ~k!* nl

2s i j
applE

V
« i j

0 ~r !d3r 2
V

2
Si jkl

0 s i j
applskl

appl . ~A3!

The transition from energy~2! to ~A1! and~A3! is similar to
the transition from the Helmholtz free energy to Gibbs fr
energy in the classical thermodynamics.
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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An important particular case is the case of a body un
the mixed boundary condition. This is a situation where
part of the body boundary is fixed by clamping—resulting
fixing some components of the macroscopic strain«̄ i j while
the remaining components of«̄ i j are allowed to relax at the
fixed value of the applied stresss i j

appl. The corresponding
energy can be easily obtained from Eq.~A1! by a procedure
similar to that used to obtain the energy~A3!, viz. by mini-
mizing the energy~A1! with respect to the components of«̄ i j

that are not fixed by the boundary condition.
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