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Phase field microelasticity theory and modeling of elastically
and structurally inhomogeneous solid
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The phase field microelasticity theory of a three-dimensional elastically anisotropic solid of
arbitrarily inhomogeneous modulus also containing arbitrary structural inhomogeneities is
proposed. The theory is based on the equation for the strain energy of the elastically and structurally
inhomogeneous system presented as a functional of the phase field, which is the effective stress-free
strain of the “equivalent” homogeneous modulus system. It is proved that the stress-free strain
minimizing this functional fully determines the exact elastic equilibrium in the elastically and
structurally inhomogeneous solid. The stress-free strain minimizer is obtained as a steady state
solution of the time-dependent Ginzburg—Landau equation. The long-range strain-induced
interaction due to the elastic and structural inhomogeneities is explicitly taken into account. Systems
with voids and cracks are the special cases covered by this theory since voids and cracks are elastic
inhomogeneities that have zero modulus. Other misfitting defects, such as dislocations and coherent
precipitates, are also integrated into this theory. Examples of elastic equilibrium of elastically
inhomogeneous solid under applied stress are considere®002 American Institute of Physics.
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I. INTRODUCTION in his classical work. The generalized plane strain problems
of inhomogeneous materials with specific distributions of
Most of the material systems of engineering importanceslastic moduli, such as layeréd,angular* and cylindricat
are structurally and/or elastically inhomogeneous. One commedia, have recently been solved. The analytical solution for
mon example of such systems is polycrystal. Even if eacla planar crack has been obtained using dislocation pileup
grain of the polycrystal is a perfect crystallite, the entiretheory® The extended stress field around a cylindrical crack
material is elastically inhomogeneous. This is because thg an infinite homogeneous isotropic elastic medium is cal-
components of elastic modulus tensor within each grain argulated in Ref. 7 by using this theory, which models the
transformed due to the grain mutual rotation and thus therack as a pileup of Somigliana ring dislocations.
elastic moduli of different grains become different. A multi- The precipitations involving inhomogeneous modulus
phase coherent mixture produced by a phase transformatidimearly coupled with the concentration field have recently
is another example of structurally and elastically inhomogebeen simulated using the conjugate gradient mefiothe
neous systems—as a rule, the domains of the product phaperturbation theory with respect to a variation of the elastic
have elastic moduli that are different from those of the parentmodulus has been usé¥;?° where the modeling is reduced
phase because they have different crystallographic structures a numerical solution of the approximated equations of the
and orientations. Systems with cracks and voids, which caelastic equilibrium. In most casé;!® these equations are
be considered as “particles” with zero elastic modulus, rep-the first order approximation with respect to the perturbation
resent an important class of elastically inhomogeneous masf the modulus. The higher-order corrections in the perturba-
terials. The advanced man-made materials, such as compagon theory have been usédi?’However, for a system with a
ites, multilayers, and graded materials, are also structurallgignificant difference in the elastic moduli, like the system
and/or elastically inhomogeneous systems. Their artificiallywith voids and/or cracks of arbitrary configuration, use of the
built-in structural and/or elastic inhomogeneities are in-perturbation theory may pose a problem: the convergence in
tended to produce the superior functional performance.  the perturbation series in this case becomes questionable.
In spite of the importance of elastically inhomogeneousgven if this series is convergent, a required increase in the
materials, the progress in their theoretical study is hinderedumber of terms of the perturbation series may make the
by serious mathematical difficulties in an analytical treat-computational procedure prohibitively expensive.
ment of a three-dimension&D) system with an arbitrarily The problem of the elastically inhomogeneous system is
inhomogeneous elastic modulus under applied stress. Thefguch more complex than that of the structurally inhomoge-
are very few problems that are really solved. The case of aeous(but elastically homogeneousystem. In fact, the ef-
single ellipsoidal elastic inhomogeneity is solved by Eshelbyfect of the structural inhomogeneities in the elastically ho-
mogeneous systems has been comparatively well
dauthor to whom correspondence should be addressed; electronic mainvestigated:" It is now reasonably well understood how the
khach@jove.rutgers.edu structural inhomogeneities affect the coherent mesoscopic
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microstructures and alter the system thermodynaitics. the original elastically inhomogeneous system but with the
This success has been achieved mostly due to the use of theterogeneous misfit-generating stress-free strain. This misfit
Khachaturyan—ShatalokS) theory”* which provides the strain is described by the tensor fielfi(r). The fieldef(r)
exact explicit solution for the system strain energy as a funcis assumed to be arbitrarily heterogeneous on the mesoscale
tional of the arbitrary misfit strain distribution. The misfit but homogeneous on the macroscale. The KS theory gives
strain tensor, which is the stress-free strdaiso called the exact elastic strain and strain energy of this system as a
eigenstrail, adequately describes the structural inhomogenefunctional of the fixed fielc*a?j (r).2* The strain energy is also
ities and their spatial distribution in the mesoscopic scale. a function of the macroscopic straﬁj fixing the macro-

The phase field microelasticitf’FM) method based on scopic shape of the body and determined by the boundary
the KS theory has been used for a realistic modeling of varieondition (clamping. For a macroscopically homogeneous
ous processes, e.g., the coherent decompositions of orderbddy, this strain coincides with the macroscopically averaged
precipitates in alloy$?~%® the solute segregations around strain
static dislocation€®?’the martensitic transformations in the 1
constrained and unconstrained single cryszl%ﬁg,and the g—ij:—J' gij(r)d3r, (1)
low-symmetry martensitic transformation in elastically iso- Viv
tropic polycrystals® The PFM simulation has also been suc- whereV is the system volume.
cessfully applied to the 3D dislocation dynamics in plastic  The strain energy presented in this form is a functional
deformatior®3* of the field % (r)%

The assumption of the elastic homogeneity is a limita- :
tion of the PFM theory hindering its wider application. If we Eelzéf Cﬁk,sﬂ(r)sﬁ|(r)d3r
remove this limitation and adequately address the problem of v
elastic inhomogeneity, the PFM theory would be universal in

) . ; _ Vv -
a sense that it could be applied to a mesoscale characteriza- _gijf cﬁklgﬁl(r)d3r+ —Cﬂk|sijsk|
tion of practically any engineering materials. The materials v 2
could be single crystals and polycrystals with dislocations, 3
voids, cracks, as well as multiphase structures. So far, there _ lf& ~0 ~0 (1\*
! ! ! i nO'](k)QJk(n)O'k|(k) n|, (2)

was only one attempt to formulate the PFM theory of elasti- 2] (2m)
cally inhomogeneous materials without the use of perturb
tion theory approximation&3® However, it was made to
characterize a particulafalthough important case of the

elastically inhomogeneous systems, viz. the systems wit e reciprocal space);;(n) is the Green function tensor in-

: 33
voids and cracks: _ verse to the tensof); *(n)=Cq;nyn;, Cfly is the elastic

In this work, we demonstrate that a further advance N, ~0 0 '~0 : ol il
. ’ N . odulus, o (k)=C k), the superscript asterisk indi-
the theoretical characterization of the elasticaliyd struc- 7 (K) = Cij 21 (K) P P

) o PR cates the complex conjugate, asgi(k) is the Fourier trans-
turally) inhomogeneous system is still possifidt is based forms of tfle fri)eIC;(SQ(rJl)JgEQ(I?)ﬂE(f )Sz)fs(r)eiik'rudrérr rrahn:
1 H ihi 1) ! 1) v™l) "
on the formulation of the PFM equations describing the exacky i energy in the form T2) is convenient when the body
elastic equilibrium and the development of a computationally;

frocti thod for thei ical soluti g fast F is under a strain-controlled boundary condition. The strain
etiective method for their numerical soiution using tas ou'energy functional for a stress-controlled boundary condition
rier transform. This advance turns out to be possible eve

thout ; licati f the th q ¢ i given by Eq.(A3) in the Appendix.
without a serious complication ot the theory and computa- = “r,o g theory determines the equilibrium straig(r)

tional procedure with respect to those employed for the PF . e L0 1
- : intr through the misfit strain field;; (r
characterizations  of the elastically homogeneou,\s/fl:lt a pointr through the misfit strain fiele;(r) as

system&l~3! In particular, the proposed approach can be _

used to extend the mesoscopic modeling of martensitic  &ij(")=¢ij+ J?[”iﬂjk(”H”jQik(”)]
transformatiorf®2° dislocation dynamicd®3!and void/crack (2m)

evolutions®*3 under applied stress to the more realistic case X (kyne'kr, 3
of polycrystals comprised of elastically anisotropic grains.

where the integral in the infinite reciprocal space is evalu-
ated as a principal value excluding a volumem)3/V
round the poink=0, n=Kk/k is a unit directional vector in

3

The energy functional2) and strain(3) are valid for a
macroscopically homogeneous system, which means that the
typical size of the macroscopic system is significantly greater
than the typical size of the mesoscopic structural heteroge-
neities characterized by the misfit straiﬁ(r).

Il. EQUILIBRIUM EQUATIONS OF ELASTICITY
FOR ARBITRARILY INHOMOGENEOUS SYSTEM
IN TERMS OF EQUIVALENT STRESS-FREE STRAIN

A. Strain energy functional for arbitrary B. Equilibrium equation of elasticity for an elastically
distribution of stress-free strain in elastically and structurally inhomogeneous system

homogeneous body Let us consider a general case of the elastically aniso-

To address the problem of an elastically inhomogeneoutopic and elastically inhomogeneous body, which also is
anisotropic system under applied stress, we consider first structurally inhomogeneous. The elastic modulus of such a
much simpler system. It is an elastically homogeneous anbody is coordinate depender@;jy(r). The structural inho-
isotropic system of the same macroscopic size and shape amgeneities are described by the fixed crystal lattice misfit
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strain (stress-free strain or eigenstrairef;(r), arbitrarily ~ This approximation is asymptotically correct with an accu-
distributed in the bodynote that there is no confusion be- racy of A/A<1. Indeed, according to Saint Venant's prin-
tween the superscriptin Si*j(r) and that in?rioj(k)* indicat- qiple, this gpproximation produces inaccuracy in the strain
ing the complex conjugateThe misfit strainsi’j(r) can be field only within t_he surface quer at tr_le external boundary of
generated by a fixed distribution of crystal lattice defects!n€ Pody. The thickness of this layer is commensurate with a
such as coherent new phase inclusions, concentration heterPica!l size of the elastic inhomogeneityCi; (r). There-
geneities, dislocations, etc. The system can be either a singf@'® the error introduced by the approximate boundary con-
crystal or polycrystal. This is the most general formulation ofdition v(r®) =0 is asymptotically small for a macroscopically
the problem. It is applicable to a majority of technologically 'a"9e and a macroscopically homogeneous system where

important materials. NA—O.

The coordinate-dependent modul@g,(r) can always Substituting Egs(8) and (9) into the left-hand side of
be presented as a sum the equilibrium equatiori?) yields
Cijia (1) =Cijia = ACija(r), @

Po(r) 9
whereACjy (r) is the modulus variation from the reference Ciiui &r-—ka(n) = E{Cﬁkﬁﬁ(r)

value C?jk,, which characterizes the elastic inhomogeneities. . .

If the body is constrained so that its macroscopic deforma- +ACjji(N[ew(r) —eg(n)]}. (10

tion is fixed and determined by the vaIFg;, this constraint ,
generates the strain field;(r), which is heterogeneous due Let us assume that the external surface of the body is cov-
to both the elastic inhomogeneitidCy;y, (r) and the struc- ered by an infinitesimally thin layer whose elastic modulus is

tural inhomogeneities:* (r). The stress is related to the Cijii- The introduction of this infinitesimally thin layer does
straine;; (r) by Hooke’sllaw not affect the elastic equilibrium in the system, however it
1]

simplifies the boundary condition givinCi(r°)=0. Let
(rij(r):Cijk,(r)[sk,(r)—s§|(r)]. (5) us also assume that the structural inhomogeneities do not

- . _ i locate on the system surface, which gives the boundary con-
The stress satisfies the following equilibrium equation at evy;tion £*(r%=0. Using the Fourier transform of EG10)
ij .

ery pointr, and the boundary conditiongr®)=0, ACjj(r®)=0, and
dorij(r) f9i’j(r5):0 transforms the equilibrium equati@f0) into the
o =0. (6) integral form
i

Using the modulus definitiofd) and the stresés), the elas- .
tic equilibrium equation6) can be rewritten as d°k 1

q quatior(6) Vi(r)zfm[ —i EQij(n){c?k,msl*m(r)
0 (98k|(r) _ d

+ACjji(N[ew(r) —eg(r)]}. (7)

The straine;;(r) can be expressed as a sum of the
mogeneous pas;; determined by the external constraint and
the heterogeneous part

{Cﬂkﬁﬁ(r) .
+ACjam(Nem(r) —&im(N T €%, (1D
howhere{Clye%(r) + ACjq (1)l ew(r) —f(r) 1}y is the Fou-

rier transform of the corresponding function in the braces.
Using Egs.(9) and(11), the strain(8) can be expressed

- as
&ij(r)=e;+e;(r), (8) i
where the heterogeneous straif(r) is determined by the gij(r)=g;+ Ef—s[ni Qi () +nj Qi (n) ]
displacement(r) (2m)
X{Chimne an(1) + ACkimn(N [ £mil(T)
1 ﬁvi(r) ﬁUJ(r) _8* (r)]} n eik-r (12)
. = — 4 —— kI .
e,J(r) > ar, + ar | (9 mn

Equation (12) is an integral equation for the equilibrium
For a macroscopically homogeneous clamped system, the tgrain ¢, (r) in the elastically and structurally inhomoge-
tal displacement at the external boundaryjg, which is  neous system characterized by the elastic inhomogeneities
determined by the homogeneous strajp and the surface ACij(r) and the structural inhomogeneitie§(r).
coordinate vector® at the external boundary. The displace-  Now let us change variables in EQ.2). We introduce a

mentv(r) associated with the heterogeneous SI(r) IS new variables (r) related to the variable;;(r) by defini-
assumed to vanish at the external boundary of the body. Thg,,

macroscopically homogeneous system, for which the above

assumption is valid, is a system whose typical sizis sig-

nificantly greater than the typical mesoscopic lengthver Clien(1)=Clyel(r)+ACiq(Nlew(r) —ef(n].
which the elastic modulu€;;,(r) considerably changes. (13
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Using Cy ep(r) to replaceClly ef(r)+ACij(r)ek(r) 1l VARIATIONAL PRINCIPLE AND ITS APPLICATION
- g’k‘l(r)] in Eq. (12) yields FOR DETERMINATION OF ELASTIC EQUILIBRIUM
OF ARBITRARILY INHOMOGENEOQOUS SYSTEM
_ d3k A. Strain energy functional for elastically
ij(r)=e;+ EJ W[niﬂjk(n)'i"njﬂik(n)] and structurally inhomogeneous body

- . The strain energy of the elastically and structurally inho-
X CRimmemn(K)mye'” (14 i -
kimn€mn I : mogeneous system can be obtained through the strain energy
of the elastically homogeneous system. Indeed, the strain

Equation (14) coincides with Eq.(3) for the equilibrium  energy of the equivalent elastically homogeneous system is
strain in an elastically homogeneous body of elastic modulugetermined by

Cil with a misfit strainef} (), i.e., the elastically and struc-
turally inhomogeneous body assumes the same strain as the _,,, 1 0 0 0 3
elastically homogenous body with the appropriate choice of E 2 VCiJk'[S”(r)_S‘i(r)][sk'(r)_gk'(r)]d .

the misfit strainsﬂ (r). Itis important that the elastically and (17)
structurally inhomogeneous body also assumes the same . ) o )

stress as the elastically homogenous body with this choice d¥hile the strain energy of the original elastically and struc-
the misfit strainef)(r). Indeed, deducting the same term turally inhomogeneous system is

Cllkzw(r) from both sides of Eq(13) gives 1 . .
. . . E" Omzzfv[cijkl_ACijkI(r)][Sij(r)_sij(r)]
Cijlen(r) = (r)]=[Cjj = ACiju(r)]

X[ew(r)—ei(r)]. (15) X[ew(r)—eg(r)1dr. (18)

Using Eq.(13) , the energy difference is
Equation(15) demonstrates that the stress in the elastically

homogeneous body;;(r) = Cfjy[2(r) —eg(r)] is equal to AE=E"Mom— g™

the stress in the original elastically and structurally inhomo- 1

geneous bOdinj(r)I[Cinkl_Acijm(r)][8k|(r)_8:|(r)]- :—f co A rco. ,—co
Therefore, the elastically homogeneous system with the mis- 2 V[ i Srnpd ) Cpq~ Cija

fit strain s?-(r) is equivalent to the original elastically and 0 0
j Ory—g* —g* 3

structurally inhomogeneous system with the elastic inhomo- XLeij(r) =& (N]lew(r) — 2w (r)]d™. (19

geneitiesA Cyjy (1) as well as the structural inhomogeneities sypstituting Eq(2) for EM™ into Eq. (19) yields the strain

eij (1) ) _ _ o energy of the elastically and structurally inhomogeneous sys-
Transforming the variableg;;(r) in the equilibrium  tem as a functional Oéﬂ(r)'

equation(12) for the elastically and structurally inhomoge-
neous system to the variabsk%(r) defined by Eq(13) for- Emhom:} [0 AS q(r)CO e
mulates the original equilibrium equation in terms of the 2 )\t iimn==mnp pakl— ijkl
virtual misfit strainefj(r): . .
X[Sij(r)_8ﬁ(r)][8k|(r)_8:|(r)]d3r
AS;ja (N CRimA eme(1) — s (N ]+ 875 (1) L
1 d3k +§J’VCijk|8ij(r)8k|(r)d3r
=?-+—{F— N Qi (nN)+nQ(n
it 9 (277_)3[ i ]k( ) j |k( )] B ; ; . Vv o
—E&jj fvcijklskl(r)d r+ < Ciweijex

X Clime meK)nie, (16 2
a1 _ o . 1 d°%k -
whereA Sy (r) =AC;(r). Equation(16) is, in fact, an in- _—{F—3ni(fioj(k)ﬂjk(n)tf%(k)*m _ (20)
tegral equation for the determinationgff(r). It is the equi- 2] (2m)

librium equation of elasticity for the elastically and structur-
ally inhomogeneous system. A similar type of equilibrium B. variational approach for determining
equation, in which a difference in the elastic modulus isthe equivalent stress-free strain
emulated by virtual stress-free strain field, has been obtained
in Ref. 2, where it was employed for solving a problem of
the multilayer of parallel misfitting lamellae with different
elastic moduli.

Finding the misfit straineioj(r) in the equivalent elasti-
cally homogeneous system fully solves the elasticity proble

The strain energy functiondR0) meets the variational
principle: its minimum is reached when the minimizing func-
tion sﬂ-(r) satisfies the equilibrium equatidh6). Indeed, the
minimum condition of the functiongR0) with respect to the
function ej(r) is

of the elastically and structurally inhomogeneous system— SEinhom
the equilibrium strain is given by Eq14) through the field 57— =0. (21
sioj(r), and the stress is determined by ES). deij(r)
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Taking the variational derivative of the function@0) with and strain energy of the elastically and structurally inhomo-
respect IOeﬂ(r) and using it in(21) gives the equilibrium geneous system by using Ed44), (5), and (20), respec-

equation(16). tively.
The foregoing consideration proves the following varia-  The cracks and voids are special cases of elastic inho-
tional principle: mogeneities with zero modulusCijy (r)=0. Assuming

The misfit strain minimizing the strain energy functional ACijk,(r)=Ci°jk, , Which results inCy;y (r) =0, reduces Eq.
(20) determines the equilibrium strain and stress of the elas23) to the TDGL equation characterizing cracks and
tically and structurally inhomogeneous body in accordancevoids>233
with Egs. (14) and(5), respectively.

The above statement indicates that finding the minimizec. Examples of PFM computation of elastic
sﬂ(r)=si°j(r) for the equivalent elastically homogeneous equilibrium of elastically inhomogeneous body
system fully solves the elasticity problem of the arbitrarily

. . To test the proposed PFM method, we consider a large
elastically and structurally inhomogeneous system. ThereéIasticall inhomoaeneous body consisting of periodicall
fore, the functionsioj(r) entering the functional20) can be Y 9 Y g P y

considered as a rélaxation parametarphase field This repeated and coherently adjacent identical regions. Each re-

) e ion, which is a motif of this periodical structure and is a
circumstance allows us to formulate the variational approac . . S
) - ) . “computational cell, contains a group of elastic inhomogene-
to the computationally efficient modeling of the arbitrarily ... . . . L
. ) . ? ities of the same configuration. The entire body consisting of
inhomogeneous modulus system with arbitrary structural in-

a large number of such blocks can be considered as a mac-

hom_ogeneltles, V\sl?ere the multiple cracks and voids are It?oscopically homogeneous system, to which the PFM theory
particular case®

00 is applicable. If the typical distance characterizing the distri-
| Ihe efntehrgypgi:'lrp'zi?ii (r) c;puldf;; foun(:].tr;‘r(_)ugt:;r? 2 pution of elastic inhomogeneities is much smaller than the
solution ot e inetic equation faf; (), which is the size of a computational cell, a solution for the elastic field

Ellrﬁeﬁlgpéel_ndent thm;bt:;g—Land;(ifDGL) type equation. generated by the group of elastic inhomogenetities in this cell
€ equation In this case 1 is asymptotically close to the corresponding solution for the

9e0(1,1) SEinhom same group of elastic inhomogeneities in the infinite body.
J(9—t: —Lijw—o——> (22 As has been shown in the previous sections, the macro-
Se(r,t) scopically homogeneous body with arbitrarily distributed

elastic and structural inhomogeneities can be described by

is given by Eq(20). A specific choice of the tensay;,, is of the PFM theory applied to the equivalent elastically homo-
h the distributed misfit straifj(r). The

no importance as long as it is positively defined: since Eqgeneous body wit o€ ¢ _
(22) is linear, it has a solution and this solution determinesSN€rgy minimizere;;(r) is a steady state solution of the
the minimum of the energE™°™ The simplest choice of TPGL equat|on(23). To find it, we W.I|| numerically solve
Lijwr iS Lijia=L &8y . Incorporating Eq(20) into Eq. (22) Eq. (23). The strain, strtgoss, and strain energy are expressed
gives the explicit form of the TDGL equation through the minimizere;i(r) by Egs.(14), (5), and (20),
respectively, withe1(r) replacingef(r). In solving Eq.(23)
0sﬂ(r,t) o |1 d3k numerically, we use the fast Fourier transform technique.
o LCij f )3 [M&im(n) The PFM theory of an elastically inhomogeneous system
proposed in this paper is formulated for an arbitrary pattern
M QM7 (K)npe of elastic and structural inhomogeneities in an elastically an-
0 0 . . isotropic body. To verify the accuracy of the proposed PFM
—ASk|mn(r)Cmnpo[qu(r)—qu(r)]—sk|(r) approach, we have to compare the PFM calculation results
with the analytical results obtained for the same system. Un-
+eg+ S(k)lmno'?nan , (23)  fortunately, analytical solutions are known only for very few
simple systems. Below we apply our computational method
to one of them, for which an analytical solution has been
obtained. This is the case of a cylindrical inhomogeneity in

tic compliance tensor inverse to the elastic moduEBf%d . . . .
=Ci0'k|71' The TDGL equatior23) is applicable to both the an elastically isotropic _solld. We also apply our PFM calcu-
! lations for more complicated systems, such as polycrystals

strain-controlled and stress-controlled boundary conditionséom rised of elastically anisotropic arains under applied
specified by the external stres§”, which is P Y pic g bp

stress. We investigate only the effects of the elastic inhomo-
o = C?jkl(s_kl_ggl) (24)  geneities on the elastic equi_librium Whilg_assumhfip(r)

. . o =0 everywhereno structural inhomogeneitiesA PFM cal-
for the strain-controlled boundary condition, while in the .jation of more complex systems practically takes the same

e ex__appl . . . .
case of stress-controlled boundary conditioff'=oi”.  computational time as that for the simple ones for given
Once the fielde;;(r,t) reaches the saturation and becomessystem size.

whereL;; is the kinetic coefficientt is “time,” and E™"°™

2

whereef} = (1V) [ye{ (r)d®r, and the tensaB] is the elas-

j
equal to the energy minimizer functiasf(r), the driving

force SENhoy 58%(r,t) vanishes and, as follows from Eq. 1. Cylindrical inhomogeneity in isotropic crystal

(22), the field sioj(r,t) stops evolving. Knowing the mini- The uniaxial tensile stress is assumed to be perpendicu-
0

mizersijo(r), we can calculate the equilibrium strain, stress,lar to the cylinder axis as shown in Figial This system has
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FIG. 1. A cylindrical hole under tension in thedirection in the elastically
isotropic body(v=0.3). (a) Schematic illustration of a cross section of the
system perpendicular to the cylinder axgsaxis); the PFM computational
solutions(thin black lines and the corresponding analytical solutiditsick
gray lineg for (o,,—o2P)/ o3 along three different cross sectiori)
A-A; (c) B-B; and(d) C C respectlvely as indicated if@).

Wang, Jin, and Khachaturyan

the exact analytical solution. In the computation, we used a
computational cell of 10241024. The cylinder diameter is
80 grid increments. Although the PFM theory is formulated
for materials of arbitrary elastic anisotropy, we consider here
an elastically isotropic system with Poisson’s ratie-0.3
since the corresponding analytical solution has a compara-
tively simple form for the isotropic case. We first consider
the cylindrical inhomogeneity that is a hol€j (r)=0].

The computational results are shown in Fig&)+1(d) as
plots of the disturbed stress fieldg(,— o50P)/ o5, along
three typical cross sections of the system as indicated in Fig.
1(a). To make a visual quantitative comparison of the stress
field distribution obtained from the proposed PFM method
and analytical solution, we used the thick gray lines to de-
scribe the analytically calculated values and thin black lines
to describe the values calculated by a numerical solution of
Eq. (23). This comparison shows an excellent agreement be-
tween analytical and numerical solutions.

For further quantitative comparison, we considered the
same system while the cylindrical inhomogeneity has differ-
ent |sotrop|c elastic moduli, namelg;;y(r)=0. ZEC”kl,

0. 5C”k|, 2C,Jk|, and ZCI «» respectively. For each case, the
disturbed stress f|eldsa(,y— o)/ o3P, calculated by solv-

ing Eqg. (23) and analytically are plotted in Fig. 2 in two
different cross sections of the system. This comparison also
shows an excellent agreement between analytical and nu-
merical solutions.

2. Polycrystal comprised of elastically anisotropic
grains

A polycrystal comprised of elastically anisotropic grains
is an elastically inhomogeneous system. To illustrate the ef-
fect of this elastic inhomogeneity on the system equilibrium
under applied stress, we consider a particular case of a poly-
crystal of the NjAl cubic phase with the axial texture along
the [001] axis. The elastic constants of this phase &@g;
=223.4 GPaC,,=148.2 GPa, an€,,=125.2 GP&° Fig-
ure 3a) shows the(001) cross section of this structure. The
grains with this texture are parallel columns along [{6@1]
cubic axis, which are perpendicular to tf@91) cross section
(perpendicular to the plane of the figurd’he cubic axes
[100] and[010] of the grains are randomly oriented and are
indicated by arrow pairs in Fig.(8. The polycrystal is as-
sumed to be formed by a periodical repetition of 12 grains
shown in Fig. 8a), which is our computational cell. In the
computation, we used a computational cell of 1829024. A
uniaxial stresi@p' along the verticaly axis is applied. The
equilibrium stressesxyy, oy, andoyy, at each point of the

polycrystal are determined by solving E@3). Their nor-
malized fields with respect to the applied str@%p' are
shown in Figs. 8)-3(d), respectively.

We also considered untextured;Ml polycrystal under
uniaxial stressr2?'. The 3D polycrystal used in this case is
formed by a periodic repetition of a cube consisting of eight
randomly oriented grains, which is our computational cell. In
the computation, we used a computational cell of 228
X 128. The equilibrium stress is determined by solving
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FIG. 2. A cylindrical inhomogeneity of different elastic moduli under giG. 3. A textured polycrystal comprised of anisotrofitibic symmetry

uniaxial tension in th direction in the elastically isotropic body=0.3.  cojumnar grains under uniaxial stres&". (a) Cross section of the grains
The PFM computational solutiorshin black lines and the corresponding and their orientations. Equilibrium stress fields) oy, () oy, and(d)

analytical solutionsthick gray lines for (o, — o)/ o iPalong two differ- 0y, Which are normalized with respect to the applied stee¥s'.
ent cross section#-A andB-B as indicated ina), are plotted in(b)—(e)

for each case, respectively, for quantitative comparison.
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FIG. 4. A 3D polycrystal comprised of anisotropfcubic symmetry grains under uniaxial stress‘;‘ﬁp'. The components of the equilibrium stress are
normalized with respect to the applied stres§”'.

Eq. (23). Its normalized components with respect to the ap- It is proved that the functiongR0) meets the variational
plied stressr22' are shown in Figs. @)—4(f), respectively.  principle: its minimum is reached Whenﬂ(r)asﬂo(r)
where the minimizer field:J(r) fully determines the exact
IV. DISCUSSION elastic equilibrium of the elgstically iqhomogeneous ony
under external load. This variational principle formulated in
The proposed 3D PFM theory formulates a form of thesec. 111B is a key element of the proposed PFM theory for
exact equation of elastic equilibrium in an elastically a”delastically and structurally inhomogeneous systems.

structurally inhomogeneous solid under external load. The  The PEM linear kinetic equatiof23) formulated in this

solid is elastically anisotropic and both types of inhomoge-,icie describes a relaxation of the elastically anisotropic

neities, elastic and structural,_ hgve arbltraw_geometrles. It _'§ystem that contains arbitrary elastic and structural inhomo-
shown that the effect of elastic inhomogeneity on the elastic o . . .

- ) . . geneities, which may also include defects such as disloca-
strain is exactly reproduced by an appropriate choice of virs

tual misfit strains?j(r) introduced into the elastically homo- tions. The relaxation occurs by “temporal” evolution of the

y g0 ” s afr H 0 - . .
geneous body of the same shape and size and under the sarxgtual misfit strain e;;(r) driven by the minimization of

external load. This misfit strain is the phase field of the prob-_the strain energy functional until the exact elastic equilibrium
lem. This result proves the equivalency of a system witifS réached. _ . o _
spatially inhomogeneous modulus and the corresponding The PFM kinetic equation based on this variational prin-
system with elastically homogenous modulus but with theciple provides an effective computational tool for solving the
spatially inhomogeneous misfit straig]i(}(r)_ Using this  elasticity problem of arbitrarily elastically and structurally
equivalency, we found the strain energy of the elasticallyinhomogeneous systems. The accuracy of the PFM compu-
inhomogeneous body. It is determined by a functid28) of  tation, in fact, is determined by an accuracy of numerical

this misfit strain. computations since the PFM kinetic equation, whose steady
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state solution describes the elastic equilibrium, is exact. TACKNOWLEDGMENTS
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gray lines, respectively, in Figs. 1 angl 2
It is important to note that the computational time for the
PFM calculations does not depend on the spatial complexityA‘PPEND'x

of elastic and structural inhomogeneities. It depends only on  The strain of energy?) is obtained by allowing the body
the number of phase field, which is equal to gixe number  to relax with respect to displacements that do not affect the
of components of the misfit strain tensoﬁ}(r)]. This im-  macroscopic shape of the body. This is a relaxation under the
plies that the computational time required to determine theonstraint that the macroscopic shape of the body character-
elastic equilibrium for the simplest elastic innomogeneitiesized by the macroscopic strain; is fixed. The strain energy
considered in Figs. 1 and 2 is practically the same as thdf the form(2) is convenient when the body is fully clamped
required for coherent composite of arbitrary spatial complex2nd thus its macroscopic deformation is determined by the
ity. Examples of the PFM calculation of the elastic equilib- Strain-controlled boundary condition. .
rium for such topologically complex elastically anisotropic .~ 1he Strain energy2) is modified if the macroscopic de-
systems are presented in Figs. 3 and 4. These systems zIPéma“‘;Qp,Of the body is controlled by the aF;F;QF_d external
axially textured and untextured polycrystals comprised o tressory - Then we haye to dedyct the teMar™e;; from

. . . . the strain energy2)—this term is the work done by the
elastically coupled anisotropic grains. loadi . .

; . oading device. The result is

The calculated stress field of mechanically loaded elas-
tically anisotropic polycrystals shown in Figs. 3 and 4 illus- Ee,zlj CO 20 0 113
trates the effect of the spatial variations of the elastic modu- ik 81} (N (1) AT
lus caused by different orientations of grains on the stress

. ) . . . _ \Y; _
concentration. The. effect is associated W.Ith the elastic cou- _Sijj Cﬂk|88|(r)d3f+ Ecﬂm«?ijsm

pling between grains. As follows from Figs. 3 and 4, the v

coupling produces stress concentrations along grain bound- 1t &k

aries. The stress concentration is especially significant — _J/—n"&pj(k)ﬂjk(n)'&kl(k)*nl

around some grain boundary junctions and its level, in gen- 2] (2m)

eral, depends on the misalignments of neighboring grains. _Vaapms—ij_ (A1)

Location of the stress concentrations determines potentially 1
“weak” areas susceptible to formation of dislocaitons and!n the situation of the stress-controlled boundary condition,
cracks. we allow the body to relax at_fixed_i"’}pp' by changing its

Another interesting point is that the proposed PFMMacroscopic _shape. The latter is achieved by minimizing the
theory of elastically and structurally inhomogeneous systemENergy(Al) with respect tce;; . The energy minimizer is
is conceptually similar to the PFM theory and models of __ o a

. . . . . _ ppl [0 _ T 0 3

martensitic transformatiort§;*® dislocation dynamicd®3! eij=ey T SHao, €] —vasij(r)d r (A2)
and crack/void evolution&:*In fact, it is formulated in the o o . _ .
same formalism and is as efficient as the latter. This circumWhich is the equilibrium strain achieved by the macroscopic

stance reduces a formulation of a unified PFM theory ana;tram relaxation. The resultant relaxed value of the strain

i ; ppl _
model describing evolution of all these defects to just anenergy(Al) at given macroscopic stres,@;] and stress-free

increase of the number of phase fields and introduction of thgtram prOfI|88in (r) is
corresponding coarse-grain Landau energies. elzl 0 .0 0 r1g?

The proposed PFM theory and model of an elastically E 2 VC'Jk'S'J(r)Sk'(r) r
and structurally inhomogeneous system is a computational
tool for modeling technologically important systems. To il- _ icq f sQ(r)der 0, (r")d3r’
lustrate a breadth of possible applications of the proposed 2v Tk T v K
approach, we just mention three examples of very different

. L . 1) d%k _
areas, vyhe_re the_theorgtlcal ch_grgcterlzatlon of a .matenal _EJ/ 3niUﬂ(k)ij(n)Ug|(k)*n|
system is impossible without utilizing the computationally (2m)
effective model of an elastically inhomogeneous system. Vv
They are the swelling of irradiated materials, the effect of the — gﬁpplf 8% (r)d®r— Esﬂkl gf}pp'gﬁlpp'_ (A3)
\%

elastic modulus misfit on morphology of coherent precipi-

tates, and sintering under applied stress. These three arepige transition from energf?) to (A1) and(A3) is similar to
are just several examples of the vast area of application ahe transition from the Helmholtz free energy to Gibbs free
the proposed PFM theory and computational approach.  energy in the classical thermodynamics.
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