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ABSTRACT

In discrete-ordinates (Sy) simulations of large problems involving linear interactions
between radiation and matter, the underlying linear Boltzmann problem is discretized and
the resulting system of algebraic equations is solved iteratively. If the physical system
contains subregions that are optically thick with small absorption, the simplest iterative
process, Source Iteration, is inefficient and costly. During the past 40 vears, significant
progress has been achieved in the development of acceleration methods that speed up the
iterative convergence of these problems. This progress consists of (i) a theory to derive
the acceleration strategies, (ii) a theory to predict the convergence properties of the new
strategies, and (iif) the implementation of these concepts in production computer codes. In
this Review we discuss the theoretical foundations of this work, the important results that
have been accomplished, and remaining open questions. @ 2002 Published by Elsevier
Science Ltd.
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I. INTRODUCTION

LA. Overview

One of the most challenging tasks in computational physics is to simulate, accurately
and efficiently, the interaction of radiation with matter {particle transport or radiation
transport processes). In this Review we discuss computational aspects of transport pro-
cesses in which the “rarefied” particles (neutrons, photons, electrons, etc.) interact directly
with the “dense” atoms of the background material, but not with each other. Such transport
processes are usually described by a linear Boltzmann equation [1, 3, 4, 5, 9, 10, 14], but
certain nonlinearities can occur — for example, through the temperature-dependence of the
material cross sections or opacities {97].

Most numerical algorithms for the linear Boltzmann equation are stochastic (Monte
Carlo) or deterministic in nature. Deterministic algorithms have the following features:

1. The linear Boltzmann equation is discretized into a (typically) large systeni of linear
algebraic equations. (This discretization process should be as accurate and alge-
braically simple as possible.)

2. The resulting discrete system of equations is solved. (Because of the system’s typ-
ically large size, direct solution methods are impractical; iterative metheds must be
used. The best iterative methods are unconditionally and rapidly convergent.)

Each of these two steps is fraught with difficulties. This Review is concerned with step 2:
the development of efficient iterative methods for solving deterministic transport problems
in which the angular (direction-of-flight) variable is discretized using the discrete-ordinates
(Sn) approximation. We do not discuss iterative methods for other angular discretizations,
such as the spherical harmonics or Py approximation, which possess different mathematical
properties and difficulties. |

The development of efficient iteration schemes for Sy problems has been carried out by
many researchers since the early 1960’s and has led to dramatic theoretical and practical
successes. In the present day, it is almost unthinkable to write a large-scale Sy particle
transport code that does not employ a reasonably efficient iterative method. Nevertheless,
the development of such methods is not easy, and significant difficulties remain. For exam-
ple, some iterative methods require the solution of differential equations whose discretiza-
tions must be carefully matched to that of the transport scheme, and the spatial grid. Also,
recent research has led to more sophisticated (sometimes nonlinear) Sy spatial discretiza-
tions on more complicated (sometimes unstructured) grids. These new discretizations have
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driven the search for new strategies to provide efficient and robust iterative convergence. In
this Review we discuss the basic iterative concepts, the mathematical techniques to analyze
iteration schemes, and the current overall state of affairs.

First, we describe why the development of accurate and robust transport discretization
methods (step 1 above) remains an active area of research:

1. The solution of a general-geometry radiation transport problem is a function of seven
independent variables: three spatial variables (x, ¥, and z), two angular or direction-
of-flight variables (u = cosine of the polar angle, v = azimuthal angle); one energy
variable (EF), and one time variable {f). To illustrate why this can be problematic,
suppose that each variable is discretized on a grid consisting of 10N points; one ob-
tains a discrete problem with 107N unknowns! Clearly, the sheer number of algebraic
unknowns can be immense, even in problems having a modest grid for each indepen-
dent variable. This imposes severe demands on computer processors and memory.

2. The solution of the linear Boltzmann equation is typically not a smooth function
of its spatial and angular variables. Shadow singularities often exist, across which
the solution or its derivatives are discontinuous [45]. These singularities degrade
the accuracy of deterministic methods, which often require smoothness of the exact
solution to provide accurate approximations.

3. In void-like regions of a physical system, the linear Boltzmann equation behaves like
a hyperbolic wave equation; in optically thick, highly scattering regions it behaves
like an elliptic (steady-state)} or parabolic (time-dependent) diffusion equation [172];
and in regions with highly forward-peaked scattering, it can behave like a parabolic
equation [17, 16, 219]. It is extremely difficult to find discretization methods that are
accurate over this wide range of behavior.

For these reasons, and because of the practical challenge of modeling increasingly complex
problems with increasing accuracy, the development of advanced discretization methods for
the transport equation has long been an important area of research.

Equally important is the problem of developing efficient iterative strategies to solve
the algebraic system of discretized equations — the subject of this Review. To introduce the
basic concepts, we consider a steady-state, one-group, isotropically-scattering, fixed-source
particle transport problem in planar geometry:

d o 1 ,
u—a-if(x,uHZz(X)W(x,y)2%/_1w(x,p)d;/+%x—) ,0<x<X , —1<u<t,
(1.1)
y(O,u =y , O<u<gl, (1.2)

YX,uy=w(X,—p) , —1Z5u<0 . (1.3)
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This notation is standard: x = position, 4 = cos 8 is the cosine of the angle of flight 0 relative
to the positive x-axis, Z;{x) is the total cross section, X;(x) is the scattering cross section,
Q(x) is the interior isotropic source, () is the prescribed incident angular flux on the
left edge of the system, specular reflection occurs on the right edge, and y{x,u) is the
to-be-determined angular flux.

The discretization of Egs. (1.1)-(1.3) introduces significant complications in the devel-
opment of iterative methods. Therefore, we shall introduce some basic concepts in the
simpler setting of the continuum equations. To simplify notation, we write Eq. (1.1} in
abstract form by defining:

]
L= Mo + %, (x) = “leakage plus collision” operator (1.4)
¥ 1
§= S(x)/ (-)du' = scattering operator , (L.5)
-1
Qx
ol =22 (L6)

Then Eq. (1.1) may be written
Ly=S8y+q . (L.7)
[Also, for simplicity, we temporarily disregard the boundary conditions (1.2), (1.3).]

I.B. Source Iteration

The most basic transport iteration scheme is Source Iteration (SI). This is defined math-
ematically by
by =gyl ig 120, (1.8)

where y{? is chosen by the user. Operationally, the ST scheme works in the following way.
At the beginning of each iteration, one introduces an “old” estimate of the scalar flux

1
0 = [ sl e (19)

in the right side of Eq. (1.1). Using this estimate, Eqgs. (1.1)-(1.3) are solved to obtain an
estimate for W, which is introduced into Eq. (1.9) to obtain the *“new” estimate for ¢. This
iterative process is repeated until the difference between successive scalar flux estimates is
less than a preassigned convergence criterion. ‘

If the initial ST guess for the scalar flux $© = 0 and the #-th estimate of the angular
flux is denoted as y{é, then for £ > 1, it is easy to show that

\y(f) (x, ) = the angular flux due to particles
that have scattered at most £ — 1 times. (1.10)
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Thus, for problems in which particles typically undergo few collisions, the ST scheme con-
verges rapidly. Such problems are posed in small, “leaky” systems (in which particles are
likely to exit through the outer boundary after a few collisions), or in systems of arbitrary
size containing significant amounts of absorption throughout (in which particles are likely
to be captured after a few collisions).

However, for systems containing *“diffusive” spatial regions that are optically thick (the
probability of leakage is small) and scattering-dominated (the probability of capture is
small), significant numbers of particles underge many collisions before being captured
or leaking out. For such systems, the SI scheme converges slowly, i.e. is inefficient and
expensive. These problems are of great practical importance.

I.C. False Convergence

A more subtle difficulty associated with slowly converging iterative schemes is the
phenomenon of false convergence. To describe this, we define B=L"!'Sand £ = L~'g and
write Eq. (1.8) in the form

YO =pyl-DE > . (1.11)

In particle transport (and many other) problems,  is a modified source and B is a bounded

operator, whose eigenvalues are discrete and less than unity in magnitude. The exact solu-
tion  satisfies

y=By+§& . (1.12)
Subtracting Eq. (1.11) from Eq. (1.12), we obtain:
vy =By -yt ) . (1.13)
Applying this equation recursively, we get
vy =By -y = By -y Dy = = By —y) . (1.14)
This yields the estimate:
[ =l < 1B llw— vl = o lly— @ (1.15)

where © is the spectral radius of B: the magnitude of the largest eigenvalue of B (by as-
sumption, ¢ < 1).
Eq. (1.13) also implies

Y= =By -y ) =Bly—y") +BYO -y e
SO
v— vy = (71— B)T' By —ylt-1y (1.17)
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This yields a second estimate:
_ ~ o] _
Iy =11 <11 B) Bl I = D~ @ -y g

If the largest eigenvalue of B is distinct, then
a _
||W—W(E)||:1—_-EHWZ)—III(E D) as fooee .

Because ¢ < 1, Eq. (1.15) implies that the iteration converges as ¢ — o, However,
convergence is very slow if o = 1. If the preassigned convergence criterion is €, then in
most codes the iteration stops when |9 —y€1|| < e. For this value of ¢, Eq. (1.18)
implies

) < S5
=l <= - (1.19)

Thus, if ¢ = 1 (slow convergence) and the convergence test is | |\|J(£) —yl=1)|| < ¢, the error
in the final iterate can be much greater than the preassigned convergence criterion €. This
is the phenomenon of false convergence. For example, if ¢ = 0.999, Eq. (1.15) indicates

that roughly
/= In(0.1)
1In(0.999)

iterations are required to reduce the iterative error by one order of magnitude, and Eq. (1.19)

~ 2303 (1.20)

indicates that when the iteration stops, the iteration error may be three orders of magnitude
greater than the convergence criterion.

This discussion shows that slowly converging iteration schemes have two undesirable
features: they are inefficient (expensive), and it can be difficult to determine when their
iterations are suitably converged. The latter difficulty can be overcome, given a suitably
good estimate of G, by using the convergence criterion ||yt — W= < g(1-0). If the
largest eigenvalue of B is real and simple, which is usually true in transport problems, it is
not difficult to estimate G; for example, one can use

o [yl -y |y -y

In summary, the SI scheme is the most basic iterative scheme for solving particle frans-
port problems. It has a simple physical interpretation, and it is efficient for problems in
which particle histories are typically short. However, it becomes inefficient and susceptible
to false convergence for problems in which sufficiently many particle histories are long.
Since many important problems are of this latter type, it has long been desired to speed up,
or accelerate, the iterative convergence of SL
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LD. Early Acceleration Methods (Chebyshev and Rebalance)

The first practical iterative acceleration schemes implemented in production neutron
transport codes were (/) Chebychev acceleration [8], (ii) Fine- and Coarse-Mesh Rebalance
[15, 46, 53, 150], and (iii) Asymptotic Source Extrapolation, also known as Lyusternik’s
method [19]. (These schemes are described in detail later in this Review.) Chebyshev ac-
celeration utilizes standard matrix iteration techniques. Although this does speed up the
convergence rate, the performance often remains unacceptably slow in difficult problems
with scattering ratios ¢ = Z;/Z, close to unity, which have small probabilities of absorp-
tion. Rebalance methods normalize the discrete transport solution so that at the conclusion
of each iteration, the normalized solution satisfies the angularly-integrated neutron balance
equation over individual cells (fine mesh rebalance) or larger clusters of cells (coarse mesh
rebalance). Rebalance methods can accelerate effectively if the size of the coarse meshes
is chosen properly. However, if this is not done, rebalance can diverge. Also, for difficult
problems with high scattering ratios, rebalance often cannot provide acceptable accelera-
tion even when it does converge. Finally, Asymptotic Source Extrapolation can also speed
the convergence of problems that are not very difficult, but care must be taken to avoid
divergence in problems with high scattering ratios. However, even when care is taken, the
method loses effectiveness for such problems.

LE. Preconditioning (“KP” and “Synthetic”) Methods

In an effort to develop more efficient iteration strategies, transport researchers in the
1960’s explored two basic paths. One path is often described as synthetic acceleration. The
other is a class of rapidly convergent methods that are not (necessarily) true acceleration
methods, because they do not (necessarily) produce the same discrete solution as does
source iteration. We discuss both types of solution strategies in this review.

The concept of a “synthetic” acceleration scheme was introduced by Kopp [26]. (We
show below that synthetic acceleration is equivalent to preconditioning, which is well-
known in the mathematical community.) Independently, and essentially simultaneously,
Lebedev [27, 36, 37, 39, 40, 10] developed and tested a family of “KP” acceleration
schemes, which can be viewed as synthetic acceleration schemes (or, to use more con-
ventional terminology, as clever prescriptions for good preconditioners). In these schemes,
one regards a single source iteration, Eq. (1.8), as the first stage of (at least) a two-stage
iteration process. Thus, we define ww“/ 2) as the result of a single source iteration, or
transport sweep:

Ly =gyl g 60 (1.21)

and it is necessary to formulate an equation for W1, The goal is for Yy to be a
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significantly more accurate approximation to W than is \|I(£+1/ 2),
To accomplish this by the synthetic method, we subtract Eq. (1.21) from Eq. (1.7):

Ly — /D) = 5(y - yl) = S(y -y D) 1 sy ) L (122)
This yields the following exact equation for the additive correction Wy — w(‘”'/ 2);
(L=8)(y—y /D) = sy —yl0) (1.23)

Hence,
v =yl 4 (- 5y Ls(yleH1/2) _ylly (1.24)

which defines the exact solution Y in terms of y(+1/2) and y{#+1/2) _ (@ = Ay. Unfor-
tunately, Eq. (1.24) requires one to invert the full transport operator L — §; but if this could
be done efficiently, one could more directly solve Eq. (1.7) for .
The idea of synthetic acceleration [26] is to replace (L — §)~! in Eq. (1.24) by a “low-
order” approximation
M~(L-5)"1, (1.25)

for which MSAy is easier to evaluate than (L — §) ™! SAw. Eq{. (1.24) becomes:

The synthetic scheme is now defined by Eqs. (1.21) and (1.26). Eq. (1.21) is the high-
order equation; Eq. (1.26) uses a low-order approximation to the exact additive correction
to ylt+1/2) If the synthetic scheme converges, the converged solution must satisfy the
original transport equation, no matter how M is defined. [To see this, subtract w® from
both sides of Eq. (1.26) and rearrange.] Different choices of M yield different synthetic
acceleration schemes. If Eq. (1.25) holds, then Egs. (1.26) and (1.24) are nearly the same,
so Yl = y, and convergence should be rapid. However, a constraint that conflicts with
Eq. (1.25) is that MSAy should be much less costly to evaluate than (L — §)~'SAy. Thus,
the low-order approximation M should be “close” to the high-order operator (L — )~ L, but
not foo close.

To clarify the mathematical structure of the SI and synthetic acceleration schemes, we
now show that they can be written as Richardson and Preconditioned Richardson matrix it-
eration schemes [8]. That is, the concept of synthetic acceleration is mathematically equiv-
alent to the better-known concept of preconditioning. (This was recognized early on by
many researchers in the former Soviet Union, but it received little attention in the West un-
til after the publications by Derstine and Gelbard [100] and Faber and Manteuffel [139].)

We operate on Egs. (1.7) and (1.8) by L~! and define

AsI-L7's |, §=L""q , (127
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to obtain
AY =g (1.28)
and
YD = - Ay g (1.29)

Eq. (1.29) is a Richardson Iteration scheme for Eq. (1.28). This is a special case of a family
of iterative methods proposed by Schmidt in 1907 [20].
Next, we write Eq. (1.21) as

w(z+1/2) — (I—A)W(E) +4 . (1.30)
Using this result, we eliminate w(*+1/2) from Eq. (1.26) to obtain
w(l,brl) =\|I(€)+(I+MS)(—A1|I(€)+§) . (1.31)

Defining
P=1+MS | (1.32)

we may rewrite Eq. (1.31) as
y D = (71— PAWY D +P§ . (1.33)

Eq. (1.33) is the Preconditioned Richardson scheme for Eq. (1.28), with preconditioner P.
(This is also a special case of Schmidt’s family of methods [20].) We have already assumed
that M ~ (L—S)‘l. Then, by Eqgs. (1.32) and (1.27),

PrI+(L-87"1s=(L-8L-85)+5]= (I—L;IS)‘I =A"1 | (1.34)

This implies PA ~ I, so the convergence of Eq. (1.33) should be rapid.

Hence, the SI scheme can be interpreted as a Richardson iteration; and the general
synthetic scheme can be viewed as a Preconditioned Richardson iteration, in which the
preconditioner P [Eq. (1.32)] is a good approximation to A~! if M is a good approximation
to (L—8)~!. This demonstrates the close connection between the SI and synthetic accel-
eration schemes for the transport equation, and the regular and preconditioned Richardson
iteration schemes that are familiar in numerical analysis [8].

At least part of the preceding information was recognized in the late 1950°s by Vorobyov
[21]. Vorobyov examined a two-step iteration process whose second step uses an approx-
imate operator — the equivalent of what we have called a “low-order” operator — to obtain
an additive correction. He recognized that the resulting iterative method was a particu-
lar instance of Schmidt’s method; in fact, it is algebraically equivalent to preconditioned
Richardson iteration, which is a special case of Schmidt’s family of methods [20].
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LF. “KP” Acceleration Methods - Historical Review

Next, we summarize the general history of the development of rapidly convergent meth-
ods for Sy iterations, discussing both of the main paths that researchers have taken. We
begin with a discussion of the “preconditioning”™ path, which was first explored indepen-
dently by Lebedev and Kopp. First we discuss Lebedev’s “KP” approach, which spawned
an active line of research throughout the 1960’s in Russia. We then turn to Kopp’s “syn-
thetic” approach, which led to a different but related line of research in the west. Then, we
discuss the second distinct path of work, which was initiated by Gol’din’s “Quasidiffusion”
method. ‘

In the early 1960’s, V.I. Lebedev proposed and developed the “KP” family of transport
iterative methods. For the next decade, he and co-workers analyzed and tested a variety of
methods in this family. KP methods, which are not limited to transport problems, embodied
two main new concepts. First, the preconditioning step — which is equivalent to solving for
the additive correction to Ww**1/2) in Eq. (1.26) — should occur in a subspace of the solu-
tion’s function space, thereby reducing the computational cost of obtaining the correction.
The use of a subspace allows one to rewrite the preconditioning step shown in Egs. (1.26).
We recall that this step is intended to find an approximation to the exact additive correction
(call it fmc}/ 2)) which by Eq. (1.23) satisfies

(L—S)fiaa’™ = sutt1/D) 0y (1.35)

We suppose that (i} the operator K projects the scattering-source residual,
S(ylé+1/2) _ i)}, onto a subspace of the full position-and-angle space, and (ii) the op-
erator I in that subspace is an approximation to (L — S). (This is often called the low-order
operator.) Then, if we solve the problem

DF(f—i—l) — Ks(w(e'H-/z) _w(f)) , (136)

the solution F+1) (which lives in the subspace) is an approximation to f, (fat}/ 2 If the
operator E extends or prolongs functions from the subspace to the full space, then E f (E+1)
is the correction applied to y(‘*1/2) The equations that describe one full KP iteration are

now:
Lyt syl 4 g (1.37)
DFUEHD — gs(yt+1/2) —yl®y | (1.38)
W(£+1) - w(€+1/2) +EF(£+1) i (1.39)

A comparison with Egs. (1.21) and (1.26) shows that the operator M, which approximates
(L—8)"1,is given by
M=ED 'K . (1.40)
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This operator is not constructed in practice; it is more efficient to solve Egs. (1.37)~(1.39)
step-by-step than to build M. We note that solving the low-order problem, Eq. (1.38),
involves essentially all of the computational effort required for the preconditioning step. In
KP methods, this solution takes place in a subspace and therefore involves fewer unknowns
than Eq. (1.37); thus, there is hope that the preconditioning step will add only a minimal
amount of computational effort to each iteration.

The second main new concept introduced by Lebedev is that the preconditioning step
can itself be a sequence of steps, each performed in a different subspace. Also, the sub-
spaces are typically nested. (This conceptualizes a very early multi-level iterative method,
well-known examples of which are multigrid methods.) An example of a scheme with two
low-order operators in two different subspaces is Eq. (1.37) and

DoFs ™! = KoS(y1/2) —y9) | (1.41)
wlEH3/4) — et/ g gl (1.42)
DpFy Y = KpS(y M 0y | (1.43)

WE+1) =y (E43/9) +EBFée+1) _ (1.44)

In this case the operator M of Eq. (1.26) is
M = EoDy' Ko+ EpDy ' Kpll + EaDg ' Ko

Lebedev explored many specific methods in the KP family during the 1960’s. In his
notation, the “K” part of a KP iteration gives y(é+1/2) from w¥), as in Eq. (1.37). The
“P™ part of the iteration is the preconditioning, or low-order part. Lebedev’s notation
KPj (n1)P2(nz), for example, indicates a method with two low-order lévels; in the first
level the low-order differential operator is of order 2rj, and in the second the low-order
differential operator is of order 2n;.

A simple but powerful method is KP¢(1); in this method the low-order subspace con-
tains functions that are linear in the angle variable, and the low-order operator is the dif-
fusion operator. Given isotropic scattering, Lebedev analyzed a model problem (periodic
boundary conditions, uniform material properties) and showed that in the absence of dis-
cretization, the KP;(1) method yields a spectral radius ¢ < 0.225¢ (see Section XI.11 of
[10]). He also determined an optimal factor by which to multiply the diffusion coeffi-
cient in the low-order operator; this yielded a spectral radius ¢ < 0.185¢ (Section XI.10 of
[10]). He analyzed many other KP methods; for example, he showed that the KP;{1)P,(0)
method has spectral radius ¢ < 0.127¢. (This method, discussed later in Section II.D, uses
a transport sweep, a diffusion calculation, and a simple algebraic calculation in each full
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iteration.) Lebedev also studied generalizations such as two transport sweeps per low-
order calculation; these schemes he termed K*P methods (Section X1.12 of [10]). Further
generalizations included the “cyclic” KP schemes, in which a cycle is N consecutive KP
iterations, each with different parameters; Lebedev theoretically derived the values of these
parameters that provide the fastest overall convergence (Section X1.14 of [10]). He also
analyzed the cost of various KP schemes and proved that certain schemes minimized cost,
given certain constraints and assumptions (Section XI1.20 of [10]). Some original refer-
ences are [27, 36, 37, 39, 40]; others are found in the book by Marchuk and Lebedev [10],
the first edition of which was published in Russian in 1971.

I.G. “Synthetic” Acceleration Methods — Historical Review

Related activity in the west began in 1963 with a paper by Kopp [26], which intro-
duced the synthetic method for accelerating the iterative convergence of transport prob-
lems. (As we have shown, synthetic acceleration is equivalent to preconditioning.) In his
paper, Kopp used the diffusion equation as the low-order operator to accelerate transport
iterations. The scheme he tested is algebraically equivalent to Lebedev’s KP;(1) scheme,
at least with a certain initial guess, although Kopp cast the equations in a different form.
Western researchers followed up on Kopp’s work but were generally unaware of (or did not
understand) Lebedev’s work. Also, whereas Lebedev focused much of his attention on the
even-parity form of the transport equation (described below), western researchers focused
on the first-order form shown i Eq. (1.1).

Crawford et al. applied Kopp’s synthetic method to speed up Monte Carlo transport
calculations, with limited success [22, 23], In 1969, Gelbard and Hageman {32} explored
two options for the low-order operator: diffusion and 5, (discrete-ordinates with order-2
quadrature set), using these to accelerate Sy iterations in 2-D Cartesian geometry. For
the analytic equations with a diffusion preconditioner, they derived a spectral radius <
0.2247¢, but for discretized equations they observed convergence rates this fast only for fine
spatial meshes. Reed [51] then showed by testing and analysis that while the “diffusion”
synthetic method employed by Gelbard and Hageman is rapidly convergent for sufficiently
fine spatial grids, it diverges for coarser grids. (Lebedev never observed divergence of his
KP methods [280], for reasons discussed later.)

In 1976, Alcouffe [57, 63] proposed a remedy for the divergence described by Reed.
Alcouffe considered the diamond-differenced Sy operator L — §, with the discrete transport
problem for the correction (1.23) replaced by a discrete diffusion approximation. Most im-
portantly, Alcouffe showed that if the discrete diffusion operator in the low-order problem
is derived consistently with the high-order diamond-differenced Sy transport operator, then
the resulting synthetic algorithm, which he called Diffusion Synthetic Acceleration (DSA),
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is rapidly convergent for all spatial mesh thicknesses. This seminal result showed that it is
possible to accelerate a discretized SI scheme using DSA in an efficient and robust man-
ner. Discrete transport problems that with SI would require hundreds, thousands, or even
millions of iterations to converge, could now be solved with DSA in less than ten iterations.

Alcouffe’s work had an immense impact on western work concerning synthetic acceler-
ation methods (i.e., preconditioning) for the first-derivative form of the transport equation.
Prior to this work, it was not known whether an unconditionally fast acceleration method
even existed for the discrete first-order transport equation. After Alcouffe’s work, theoreti-
cal efforts were made to understand its underlying principles, and to extend these principles
to non-diamond differencing schemes.

For example, Miller [64] showed that DSA could be understood as a generalized form
of rebalance. Morel [86] showed that DSA applied to problems with highly anisotropic
scattering will have a degraded performance, which can be partly remedied by accelerating
both the flux and current using the solution of the low-order diffusion calculation, at least in
1-D planar geometry. Larsen and McCoy [83, 85] successfully extended Alcouffe’s ideas to
a four-step procedure, which they applied to several non-diamond differencing schemes in
planar geometry. (An equivalent procedure is described later in this Review. This procedure
is very similar in principle to Lebedev’s “multilevel” approach described above, but applied
to the discrete rather than the continuous transport equation.) Azmy and Dorning [98] and
Khalil [101] successfully applied DSA to the acceleration of multidimensional nodal trans-
port equations; Zmijarevic et al. later extended that methodology to other nodal methods
and to multidimensional characteristic methods [301]. Morel, Larsen, and Matzen [103]
developed an effective DSA scheme for radiative diffusion calculations; in this scheme a
one-group operator is used as the preconditioner for a multigroup problem. Adams and
Martin [169] developed a simpler, slightly inconsistent version of four-step DSA that pro-
vides rapid convergence for discontinuous finite element (DFE) spatial discretizations, but
they did not develop an efficient way to solve the low-order equations. Wareing, Larsen,
and Adams [167] proposed an even simpler DSA scheme for bilinear discontinuous (BLD)
discretizations on rectangles in XY geometry, although the performance of this scheme
degrades for spatial cells with high aspect ratios. Morel, Dendy, and Wareing [189, 190]
developed an efficient multigrid technique for solving the Adams-Martin BLD equations,
thus creating the first unconditionally efficient DSA method for a 2-D spatial discretiza-
tion, other than diamond differencing, of the first-order transport equation. Wareing et al.
[200] later showed that this procedure also works for the bilinear nodal differencing, and
Adams et al. showed the same for the bilinear characteristic differencing [247].Very re-
cently, Warsa et al. have shown that the Adams-Martin method can diverge given the linear
discontinuous (LD) method on a distorted tetrahedral grid [300].
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In 1986, Lorence, Morel, and Larsen [113] used the low-order S; operator rather than
the diffusion operator to effectively accelerate the one-dimensional Sy equations with lin-
ear discontinuous spatial differencing. Adams and Martin [116] developed a family of
boundary projection acceleration (BPA) methods, in which the D of Eq. (1.38) is also
not the diffusion operator, but is obtained by projecting onto a different angular subspace.
Lawrence [141] independently and simultaneously developed and tested one method in this
BPA family. In 1986, Larsen and Miller [110] showed that it is possible to accelerate trans-
port iterations using a low-order transport operator containing no scattering, at least in 1-D
planar geometry. Unknown to them, Morozov [28] had proposed the same method in 1962,
which Lebedev had analyzed in 1968 [38]. Much later, Ramoné, Adams, and Nowak [243]
generalized this idea in the Transport Synthetic Acceleration (TSA) scheme.

Other transport acceleration schemes have been proposed in recent years. For example,
in 1991 Manteuffel and Morel [164] presented an angular multigrid method for problems
with highly anisotropic scattering. Lebedev’s multilevel KP family appears to contain the
Manteuffel-Morel method as a special case [40], but Lebedev apparently did not study such
a method tailored for problems with highly forward-peaked scattering. Pautz et al. [270]
later extended the Morel-Manteuffel method to multiple dimensions. (These angular muiti-
grid methods do not replace DSA or its alternatives; in fact, they depend on them for solving
the problem on the coarsest angular grid.) Khattab and Larsen [161, 241] developed an ap-
proximate low-order Py method for similar problems. Faber and Manteuffel recognized
that DSA is equivalent to preconditioned Richardson iteration and explored the benefits
of using the Conjugate Gradient (CG) methed in combination with DSA. Ashby, Brown,
Dorr, and Hindmarsh [158, 204] extended this work to problems with anisotropic scatter-
ing. B. Adams and Morel [180] devised an efficient scheme for converging the upscattering
iteration in multigroup Sy equations. Azmy [194, 259] devised new alternative precondi-
tioners using cell-centered low-order operators. In 1993, Adams and Wareing [181] showed
that DSA can become divergent in multidimensional geometries with sufficiently forward-
peaked scattering or asymmetric quadrature sets. (Unknown to them, Marchuk and Lebe-
dev had previously shown some of these results in their book [10].) Wareing, Walters, and
Morel [231] devised an acceleration method for a new Nonlinear Characteristic spatial dif-
ferencing scheme. Anistratov, Adams, and Larsen [234] applied the same basic idea to a
Noniinear Corner-Balance spatial differencing scheme. Voloschenko [229] proposed a new
acceleration scheme for charged-particle transport problems. This is not an exhaustive list
of preconditioner-based methods that have been explored for transport iterations, but we
believe that it is representative.
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LH. Quasidiffusion and Related Methods - Historical Review

We turn now to the “second path” taken by researchers in the development of rapidly
convergent iterative methods for transport problems. These methods are not preconditioned
Richardson schemes, and in fact are not usually true acceleration schemes, for they do not
usually obtain the solution (L — §)~!q given by the discrete transport operator. They do
obtain a discrete transport solution, but this solution is generally influenced by the dis-
cretization of a low-order operator that contains transport corrections. In other words, the
truncation errors in these solutions generally differ from the fruncation errors in the dis-
crete transport solution obtained by SI.

Gol’din initiated this line of research in 1964, with his development of the nonlinear
Quasidiffusion (QD) method for solving the linear Boltzmann equation [25]. (We de-
scribe this and related methods in detail in Chapters 11 and III.) Later, Troshchiev et al.
[42] reported the first QD results using consistent discretizations, which makes the QD
method a true acceleration scheme, obtaining the same solution as the unaccelerated trans-
port equations. In the early 1970’s, Gol'din and Chetverushkin [43] generalized the QD
boundary conditions. In the late 1970’s, Aksenov and Gol’din [71] reported 2-D QD cal-
culations. Later, Gol’din [82] formulated the QD method abstractly, in terms of nonlinear
projection and prolongation operators, and he applied this theory to multigroup neutron
transport problems with anisotropic scattering. Later still, Anistratov and Gol’din [105]
studied the effects of varying the spatial discretization of the transport equation while us-
ing a particular spatial discretization for the low-order equation. Also, Gol’din and Kol-
pakov [170] reported methods for solving the nonsymmetric QI equations. At about the
same time, Miften and Larsen proposed alternative boundary conditions [188] and a way
to symmetrize the nonsymmetric 2-D QD diffusion equation [187]. Aristova and Kol-
pakov [183] presented a method for spatially discretizing the QD equations in two dimen-
stons. Gol’din and his colleagues also reported using the QD method to solve the coupled
material-temperature and radiative transfer equations [108, 216]. Gol’din described the
application of the method to problems with anisotropic scattering in an early paper [25];
Aristova and Gol’din [235, 239, 278] later implemented and improved it for problems with
strongly anisotropic scattering.

Shortly after QD was created, Nikolaishvilli devised a variant that he described as an
“Yvon-Mertens™ approximation [41]. A distinct nonlinear method was later created, ap-
parently independently, by Germogenova [33, 34] and Gol’din et al. [35]. Germogenova
called it the “method of averaged fluxes,” and Gol’din referred to it as a “flux version of
quasidiffusion.” Gol’din et al. extended these methods to electron transport problems in
1976 [60]; in this work the low-order angular domain was divided into more than two
subdomains. (Germogenova had suggested this idea but did not implement it [34].) Anis-
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tratov and Gol’din studied and compared two members of this family, which they calied
the First-Flux and Second-Flux methods [182]. The Second Flux method had been pro-
posed by Surzhikov [131]. Recently, Anistratov and Larsen [217, 288] have developed a
one-parameter family of methods that includes the First- and Second-Flux methods; they
term this family the nonlinear Weighted Alpha (WA) methods. (This method is described
in detail in Chapters II and II1.)

Adams [178] combined the ideas of nonlinear WA methods and linear boundary pro-
jection acceleration (BPA) methods in a 1-D rnonlinear BPA method (when linearized, this
scheme produces a linear BPA method). Later, Hong and Cho [223, 240, 252, 266, 267]
developed a related family of 1-D and 2-D nonlinear rebalance methods that also yield
BPA methods when linearized. (Adams’ nonlinear BPA method is a special 1-D member
of this family.) Hong and Cho also implemented modern matrix techniques to solve their
low-order 2-D problems.

Lewis and Miller [61] created a scheme that, like DSA, is linear and involves the solu-
tion of a diffusion equation each iteration. Like QD, it is not a true acceleration scheme,
for it does not generally yield the unaccelerated solution. Larsen [109] studied this and
related schemes, clarifying many of their properties and their close relation to synthetic
acceleration and QD schemes.

Significant practical differences exist between the preconditioning (synthetic and KP)
schemes and the other schemes (such as QD) discussed in the previous paragraphs. Pre-
conditioning schemes are conceptually linear; as we have shown, the “low-order” equation
in each iteration yields an additive correction to the previously-calculated transport iterate.
In practice, preconditioning schemes can be divergent unless the low-order equations are
discretized consistently with the high-order Sy equations. (We discuss this thoroughly later
in this Review.) If a preconditioned iteration converges, it must converge to the discretized
solution of the unaccelerated Sy equations. Thus, preconditioning (synthetic) schemes, if
they are convergent, do not change the unaccelerated Sy solution — but they usually yield
this solution more efficiently. The principal disadvantage of these methods is the “tyranny
of consistent low-order discretization™: for the most difficult iterative problems (such as
those encountered in thermal radiative transfer, discussed in Section VII.C), it is neces-
sary, but often very difficult, to derive discretizations of the low-order equations that are
consistent enough with the transport discretization that they render the overall synthetic
scheme rapidly convergent, yet are efficient to solve even for optically thick, highly scat-
tering problems. In the language of the numerical analysis literature, it is difficult to find
a preconditioner that works effectively for these difficult problems and is not prohibitively
expensive to implement.

To illustrate this, let us define the integral operator K such that 6 = Ko\ and the scat-
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tering operator § such that for isotropic scattering, Sy = SKyy = $¢. Then, a transport
sweep can be written as
w(£+1/2) :L_1§¢(e) +L—lq )

Thus,
oD = X0 + oL g

where Xs; = KoL~ 18 is the iteration matrix for source iteration (given isotropic scattering).
Writing this last equation in the form of Richardson Iteration [see Eq. (1.29)}],

oD = 1 (1~ X5 + KoL 'q

we find that the Preconditioned Richardson Tteration [see Eq. (1.33)] with preconditioner
P=I+MSis:

o) = [1—PI— X0 + PKL g
= [Xg—MSI— X))o + (T +MS)KL g (1.45)

As noted above, if the iteration converges, the converged solution satisfies the original equa-
tion ¢ = (I ~ Xsy) KoL 1gq, at least if I+ MS is invertible. Also, we note that
I — Xy has small eigenvalues when Xs; has eigenvalues close to unity. Thus, for such error
modes, M S must have large eigenvalues to keep the iteration matrix Xg; — MS (I —Xg;7) from
approaching the unaccelerated matrix Xs;. However, if the eigenvalues of M$ are too large,
then the scheme diverges. Thus, the operator M must be chosen very carefully if the syn-
thetic scheme’s iteration matrix is to have eigenvalues whose magnitudes are bounded well
below unity. This is equivalent to saying that it can be very difficult to find a preconditioner
that causes preconditioned Richardson iteration to be rapidly convergent.

Iteration schemes that do not involve preconditioning, such as QD and Lewis-Miller
(LM) {61], also consist of a transport sweep followed by a low-order calculation. However,
the low-order solution is not an additive correction to the recent transport iterate, but rather
is a direct estimate of the scalar flux. The equation for this scalar flux estimate contains
either (i) nonlinear (multiplicative) functionals that are determined by the transport solution
and depend weakly on it, or (if} an additive transport correction term that vanishes when the
transport iterate has a certain angular dependence. A key advantage of these methods is that
the high-order Sy and low-order diffusion problems can be discretized independently with-
out affecting the rapid convergence. However, this freedom from consistent discretization
comes with a price: such schemes yield two converged scalar flux solutions — one from the
Sn sweep, the other from the low-order calculation. These two solutions differ from each
other and from the unaccelerated Sy solution by a truncation error. Thus, the accuracy of
the Sy solution can be compromised if the low-order equation is not discretized at least as
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accurately as the Sy equations. (On the other hand, a poor Sy solution could be improved
if the low-order equation is discretized with high accuracy.)

Hence, non-preconditioning iterative schemes can be rapidly convergent, but they are
not simply acceleration schemes — they do not necessarily produce the solution of the unac-
celerated Sy discretization, Nevertheless, they do yield legitimate solutions of the transport
equation, and as one refines the spatial grid, the high- and low-order scalar fluxes converge
to each other and to the (fine-mesh) unaccelerated numerical solution of the Sy equations.

To illustrate this we consider the LM scheme [61], which is developed in Chapter I1. In
operator form, this scheme can be written:

olé+D) :2[(WD+EQ)"1DK2L“§]¢“)+q ’ (1.46)
where ; 1 ;
D = discretization of o 33, (x) ol

and K3 is defined such that ¢3 = Koy [see Eq. (2.78)]. Because the iteration operator does
not contain differences of operators, in contrast to the preconditioned method’s operator
in Eq. (1.45), essentially any discretization for D will produce a rapidly convergent iter-
ation — consistent discretization is not required. (Note that if £, = 0, D disappears from
the iteration operator.} However, upon convergence, nothing forces the discrete solution
0l to equal the discrete solution ¢¢+1/2), or for either of these solutions to equal the un-
accelerated discrete solution, (I — Xs;) "' KoL 'q. In practice, the discrete solution dp(e) is
taken to be “the” solution of the method, for it satisfies the conservation equation whereas
o+1/2) does not. This discrete solution can be less accurate than the unaccelerated solution
of the discretized Sy equations, (I — Xg;) ™' KoL~ !g, but it also can be be more accurate.
Whichever happens depends on the details of the discretizations of the Sy and low-order
equations. See [178] for a discussion with examples.

II. Multigrid Methods

Many of the preconditioning methods discussed above share the property that their low-
order operators are obtained by approximating the angular variation of the solution. Thus,
these methods can be viewed as “angular multigrid” methods, although most have only
two grid levels [153]. Some researchers, attracted by the tremendous success that such
methods have achieved for elliptic problems, have also explored spatial multigrid methods
for acceleration of transport iterations. Nowak et al. were among the first to report results,
which were encouraging both in 1-D [120] and 2-D [130]. Barnett et al. later achieved
success in 1-D with a different approach [137]. Manteuffel and co-authors explored still
other approaches to spatial multigrid, developing algorithms that converge exceptionally
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fast for the one-dimensional problems that they considered [154, 173, 186, 196, 210, 225].
In Chapter V we discuss some of these spatial multigrid methods in more detail.

1.J. Review Qutline

Because of the volume of the literature, it is not possible to discuss in depth all previ-
ously developed transport Sy acceleration methods in this Review. Our more limited aim is
to describe and illustrate the main concepts that have led to important practical results. We
hope that this Review will enable readers to approach the literature on Sy particle transport
acceleration methods with greater technical understanding and historical perspective.

The remainder of this Review is organized as follows. Chapter II describes several
transport iteration schemes and their theoretical convergence properties for analytic planar-
geometry transport problems. Chapter IIT discusses the same iteration schemes, but applied
to discretized Sy equations. (Chapters I and III are tutorial in nature, intended for readers
with little background in the subject of transport iterations. The remaining chapters of this
Review are less tutorial but cover more material.) Chapter IV briefly describes transport
acceleration schemes for more general geometries and spatial differencing schemes. Chap-
ter V discusses rebalance and other iterative methods. Chapter VI describes the role of
algebraic iterative methods in transport problems, such as Chebyshev and Conjugate Gra-
dient acceleration. Chapter VII deals with special acceleration methods not included in the
previous chapters. Chapter VIII treats the iterative acceleration of k-eigenvalue problems.
Chapter IX concludes the Review with a summary and discussion of open problems,

II. ITERATION SCHEMES FOR CONTINUOUS TRANSPORT
PROBLEMS IN PLANAR GEOMETRY

In this chapter we describe the SI, synthetic (or preconditioning), quasidiffusion, and re-
lated iterative methods for solving the continuous transport problem defined by Egs. (1.1)-
(1.3). We also introduce the principal mathematical tool for analyzing the convergence
properties of these methods: the infinite-medium Fourier analysis. In the final section of
this chapter we introduce forms of the transport equation containing second-order spatial
derivatives. These forms present different iterative challenges than do the more commonly
used first-order form.

IL.A. Source Iteration (SI)

We have already described the Source Iteration (SI} method. For the problem consisting
of Egs. (1.1)-(1.3), this method is defined by:
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W2 e+ 2 e = 2 [ 0ty + 2D
D<x<X , —1<u<l @2.1)
v, =) , O<p<t (2.2)
VDX ) =D (X, —p) , —1<p<0 . (2.3)

For a given W' (x,z), w1V (x, 1) is determined by first solving Eqgs. (2.1) and (2.2) for
4 > 0, and then solving Eqgs. (2.1) and (2.3) for g < 0. We call this solution process one
source iteration, or equivalently, one transport sweep. The mechanics of this process are
described in Chapter III.

We have already noted that if y(©) (x, 1) = 0, then w9 (x, 1) is the angular flux of all par-
ticles that have undergone at most £ — 1 collisions. Thus, if the system described by Eqs.
(2.1)-(2.3) is nonmultiplying [Z(x) < Z;(x)], then each neutron will undergo a finite num-
ber of collisions before it is absorbed or leaks out of the system. In this case, the SI scheme
is guaranteed to converge. However, the rate of convergence is directly linked to the mean
number of collisions in a neutron lifetime. If this mean number is small (an optically thin,
“leaky” system, or one with significant absorption), the SI scheme will converge rapidly.
If this number is large (an optically thick system with little absorption), the SI scheme will
converge slowly. The larger the mean number of collisions per neutron lifetime, the slower
the convergence.

To quantitatively describe the performance of the SI scheme, we consider a model in-
finite homogeneous medium problem in which the solution and all iterates are assumed to
be bounded for —ee < x < e=. The exact transport equation is

d
b2 e +zwton) = 5 [ westyad + &9 .4
and the SI scheme is defined by
Jyte+n)
H W (xop) + Zy D () = f v, )dpl + == Q(x) (2.5)
We define the error in the {-th iterate to be:
O 1) = () — W (x,) (2.6)

Subtracting Eq. (2.5) from (2.4), we obtain

a (£+]

(5,) + B f D () = = f FOCe)and 2.7)
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Eq. (2.7) allows us to determine ) (x, u) recursively. Expanding () (x, ) as a Fourier
integral

FOum) = [ A0, e 8

and introducing Eq. (2.8) into Eq. (2.7), we obtain
o 1 .
f [z, (i + DAV ) — ‘% / A, ,/)d;f] e IL =0 . (2.9)
—ee -1

The linear independence of the Fourier modes ¢ implies for each A

A ) = AR Ndy , —e<h<oo, =1<u<1, (2.10)

21+?w

where ¢ = E;/Z, is the scattering ratio; we assume ¢ < 1 so that the infinite medium problem
has a solution. Integrating Eq. (2.10) over u, we find

fA‘“ (M) fA (Au)dy (2.11)
where Loy ,
= __ii_=£ -1 '
w(\) =c fo s 2.12)

Eq. (2.11) implies for £ > 0

1 1
/1A(g)(l,y’)dy’ :(06(70_[ lA(o)(;\,pr)dp/ , (2.13)

and we obtain from Eq. (2.10)

A () = g ([ Al (hy)dy) . .14)

Thus, Eq. (2.8) yields for £ > 0,

e
S () = ;f”HM ( ] AL (Ap)du’) M) (2.15)

This explicitly defines £¢+1)(x,y) in terms of the Fourier expansion coefficients A©)
of the initial error f(9). For reasonable initial errors, Eq. (2.15) implies

| < 2 [ e

< |
< |3/

- Bd, , 2.16)

/_ llA(O) (?»,u’)dp’}d?u

1
© sty a1 o
-1
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where B is a constant, and

Os;= max (k)= max (Etan*]?t) =w(0)=c (2.17)
—se A0 —eoA<on VA

is the spectral radius [the magnitude of the largest iteration eigenvalue = largest value of

jo(A)|] of the iteration scheme. Eq. (2.16) becomes

‘f(Hl)(x,y)‘ < Bct . (2.18)

Thus, the error in the f-th iterate decreases as cf. If ¢ is small, the convergence is rapid,
but as ¢ approaches unity, the convergence becomes arbitrarily slow. This is consistent with
the physical interpretation of the SI scheme.

The above Fourier analysis demonstrates several things. First, Eq. (2.7) for (9 is
identical to Eq. (2.5) for \y(e) if we set Q = 0. Second, if the error in the starting guess
consists of a single Fourier mode:

FO,p) = a(uye™™ | (2.19)

then for all £ > 0, only this single mode persists and

1 L ! i i
FED (x,p) = 0 (1) E T+ it (/-1 alpl )y H - =20

Hence, the Fourier modes for different A are independent, and to determine (), it is
only necessary to consider the single Fourier mode defined by Eq. (2.19). Third, the rate
of convergence for a general initial guess is the maximum value of |w{A)|, the spectral
radins of the iteration operator. Fourth, the maximum value of w occurs for A = 0. The
A = 0 modes correspond to long wavelengths; these are error modes that span large optical
distances and have weak spatial gradients. By Eq. (2.20), the angular dependence of these

modes 18 also weak: .

1 +iAu

=1-iu+0RY . 2.21)

Thus, in the SI scheme, the most slowly converging component of the iterative solution
has weak spatial and angular dependence. Source Iteration efficiently suppresses the error
modes with strong spatial and angular variation ({A| >>> 0), but not the error modes with
weak spatial and angular variation (A = 0). The acceleration methods discussed below more
efficiently suppress the error modes with weak spatial and angular variation. This comes
at a price, because each accelerated iteration is more costly than an SI iteration. However,
this extra work per iteration usually more than pays for itself by greatly reducing the total
number of iterations.
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ILB. Diffusion Synthetic Acceleration (DSA)

Next we consider preconditioning schemes, commonly referred to in the transport liter-
ature as “synthetic acceleration” schemes. As discussed in Chapter I, each preconditioned
iteration begins with one source iteration (i.e., one transport sweep):

(€+1/2)
b ) B D ey = E g0 2D )
vV =y , 0<u<t (2.23)
WD ) =y (X ), —1<u<0 . (2.24)

We subtract these equations from the original transport equations (1.1)-(1.3) and rearrange
to obtain exact equations for the linear correction:

Flm = wixm) -y D () (2.25)
Defining
$lEN/D f WD (x| (2.26)

we obtain:
25 : ’ ! Zs
ﬂ%%(xa#HEz(X)f(xm)——éx—) ﬁ Slxu)d =—§Q ¢(”‘/2)(x)—¢“)(x)} , (227

fOp) =0, O<p<l , (2.28)
fXop)=f(X,—p) , ~1Zu<0 . (2.29)

As noted earlier, this transport problem for f is just as difficult to solve as the original
problem for . Thus, one is motivated to replace this problem by an approximate problem
that can be solved more efficiently. We have shown that the first step in this algorithm,
Eqgs. (2.22)-(2.24), effectively suppresses error modes with strong angular and spatial de-
pendence, but not error modes with weak angular and spatial dependence. To obtain an
efficient scheme, the approximation chosen for Eqs. (2.27)-(2.29) should be most accurate
when f has weak angular and spatial dependence.

One approximation to Eqs. (2.27)-(2.29) that satisfies this condition is the well-known
P;, or diffusion approximation [4, 1]. This leads to the Diffusion Synthetic Acceleration
(DSA) scheme [26, 27, 51, 63, 93], which we sometimes call Diffusion Preconditioning:

d 1 dFt)

e W PR =5 (660 -6 0w) @30

2 dF<f+'>
F(EH)(O) _ 32__(0) (0) = (2.31)
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dF(E+1)
. (X)=0 . (2.32)

Here, F{€t1)(x) is an approximation to the scalar flux component of f(x, )

1
FE () f flxp)dn (2.33)
Thus, using this approximation, integrating Eq. (2.25) over p, and rearranging, we obtain
o+ (x) = ¢! V2 () 4 FEH D (x) (2.34)

The full DSA scheme is defined as follows. At the beginning of an iteration, one has
an estimate of ¢(©) (x), known either from the previous iteration or from the initial guess if
¢ = 0. In the first stage of an iteration, Eqs. (2.22)-(2.24) are solved for y(¢+1/2)(x, ;1) and
Eq. (2.26) determines ¢(“*1/2)(x). This is a source iteration, or a transport sweep. In the
second stage of an iteration, the low-order diffusion problem (2.30}-(2.32) is solved for the
correction £ (x), and ¢t+Y (x) is defined by Eq. (2.34). If the low-order stage of the
DSA scheme is suppressed and F(+1) (x) is set to zero, one obtains the basic SI scheme.

The difference between the SI and DSA schemes is the extra low-order diffusion calcu-
lation for the additive correction F(*+1) (x). Because of this extra step, one DSA iteration is
more costly than one source iteration. This extra cost is justified if the number of DSA iter-
ations required for convergence is sufficiently smaller than the required number of source
iterations. We will now show that this is the case for the great majority of problems of
interest.

To analyze the convergence properties of the DSA scheme, we consider the model
infinite-medium problem discussed above. The DSA equations reduce to:

(e+1/2)
W e e = 200+ Z sy
1
S () = /_ 1W(£+1/2)(x,u)dy , (2.36)
2 7 (£+1)
g5 g W RFE =5 (P —40w) . e
(bf-i-l)(x)=¢(5+1/2)(x)+};'(e+1)(x) . (2.38)

By taking Q(x) = 0, Eqgs. (2.35)-(2.38) become the equations for the iteration error. If we
consider a single Fourier error mode with arbitrary —ee < A < e and set

01 (x) = ot (R | (2.39)

D (x ) = of W o(h, m)e™H (2.40)
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o2 () = ' (MB(AY™N (2.41)
FEN ) = o' (V)y(h)e™™ (2.42)
then Egs. (2.35)-(2.38) reduce to the following equations for a(A,u), B(L), ¥(A) and w(A):
(e + Do, ) = % , (2.43)
1
B = | b (244
-1
KZ
(? +1-— c) Y(A) =c[B(A)—1] , (2.45)
o(A) =BA) +v(A) . (2.46)
These equations readily yield:
1
oA, 1) = % g (2.47)
oY dy e
B(K) = C].S m = Ktan A ) (2.48)
— 2 (S ta-
W= g (xtan Y 1) , (2.49)

and

m(k)zc[ A2 Uou_suld

A2 13(1-0)] Jo 14222

3c A2 tan~1 2
ST (0 L O

[In Eq. (2.50), ® depends on both A and c. In the ensuing discussion, if it is necesary
to indicate the c-dependence of w, we write ©.(A); otherwise, we simply write w(A) as
shown.]

The functions B(A) (the Fourier eigenvalue for SI) and w(A) (the Fourier eigenvalue for
DSA) are even functions of A and are plotted in Figure 1 for A> 0 and ¢ = 1. For ¢ = 1,
the spectral radius of the SI scheme Gg1 = 1, while the spectral radius of the DSA scheme
Opsa = 0.2247. For all A, 0 < o(A) < B(A), and ® — 0 as A — 0 or A — e, Thus, the
DSA scheme efficiently suppresses the error modes that have strong spatial and angular
dependence and those that have weak spatial and angular dependence.

A comparison of the effectiveness of SI and DSA may be obtained from Eq. (2.50) by
noting that for any ¢,

0:(A) <o (A)e <0.2247¢ . (2.51)
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Figure 1: 3 and o versus A for the ST and DSA Schemes (¢ = 1)

The number of iterations £psa necessary to reduce the DSA iteration error by m orders
of magnitude satisfies, approximately,

107" = (0.2247¢)osA (2.52)
Hence, for all 0 < ¢ < 1 we have the approximate upper bound

In10
fpsa =~ (-——Tn———-—l—) m<1.54m . (2.53)
In 5755 +1n;,

This shows that the DSA scheme converges very rapidly forall 0 < ¢ < 1. (Since Eq. (2.51)
is an upper bound to ®.(A)}, sharp only for ¢ & 1, then Eq. (2.53) is an upper bound on £psa,
which is sharp only for ¢ = 1.) The number of iterations és; required for the SI iteration
error to reduce by the same amount is

In1
by~ (-‘ﬁ) m (2.54)
ll’l-L:

and this number tends to e« as ¢ — 1. For example, if ¢ = 0.999, Eq. (2.54) yields
KS] =2301m.
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In 1-D problems, each diffusion calculation is extremely fast and requires only a small
fraction of the cost of a transport sweep (one source iteration). In multidimensional prob-
lems, each diffusion calculation in the TWODANT code is approximately as costly as one
complete S4 transport sweep (using all S4 coordinate directions). Assuming that this is the
case in general, then one DSA iteration costs roughly twice as much as one SI iteration,
and DSA is more computationally efficient than SIif DSA requires less than half as many
iterations as SI. Further, assuming that the spectral radius of DSA is less than 0.2247¢ in
general problems and using Eqgs. (2.53) and (2.54), we may express the condition that DSA
be more efficient than SI in general problems as:

In10 1 {1Inl0
Ingozs +1ng In;

This is satisfied for 0.2247 < ¢ < 1. A more careful analysis, using Eq. (2.50) rather than
Eq. (2.51) to make the comparisons, shows that DSA is more efficient than SI for roughly
0.1 < ¢ < 1. Therefore, DSA is much more efficient than SI for ¢ = 1 and remains more
efficient for ¢ as small as 0.1. For ¢ < 0.1, Sl is at best twice as efficient as DSA, but here
both schemes converge extremely rapidly. This comparison becomes even more favorable
to DSA if the quadrature set is finer than S4.

I1.C. S; Synthetic Acceleration (S;SA)

The S; preconditioning (S2SA) scheme differs from DSA in that the problem for the
exact transport correction is approximated by an S; rather than a diffusion problem [113,
142]. The first (high-order) stage of the S2SA scheme is given by Egs. (2.22)-(2.24) and
(2.26). The second (low-order) stage is given by the S, problem:

(£+1)
L1 df 15 @A )_Es_@( 1, )+f_+1)(x)>

7 2
Is(x) (. (e41/2) )
= (¢ (x)—¢ (x)) ; (2.56)
1 0) = @2.57)
f““)(X) hal (X) , (2.58)
and the update equation
0D (x) = oA () + £F V) + Vi) (2.59)

[In these equations, f.(x) is the flux of particles traveling in the + direction.]
The infinite medium Fourier analysis for the S2SA scheme yields the same result as
DSA, because in planar geometry, the S; and Py equations are algebraically equivalent.
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Thus, the infinite medium Fourier analysis predicts that the S;SA and DSA schemes have
the same rapid convergence properties in planar geometry. (However, the SoSA and DSA
methods are not equivalent in 2-D and 3-D geometries.)

The main practical advantage of the S;SA scheme over the DSA scheme is that one
can use the same spatial discretization scheme for the low-order S; equations and the high-
order Sy equations. This eliminates the issue of consistent diffusion differencing present
in the DSA scheme. The disadvantage of the $;SA scheme is that it is generally more
costly to solve the discrete Sy equations (2.56)-(2.58) than the discrete diffusion equations
(2.30)-(2.32). Thus, the S2SA scheme has been used mostly in 1-D geometries, where it
is practical to directly solve the discretized equations (2.56)-(2.58). In multidimensional
geometries (i} it may not be practical to solve these equations directly, and (i) the 5;SA
scheme does not have the same small spectral radius as DSA.

ILD. KP Methods

Lebedev’s “KP Method” is actually a family of methods. A particular member of this
family is denoted KPj(ni)Ps(n2)...Pa(ng). As discussed earlier, “K" denotes a transport
sweep, Pi(n;) denotes a low-order operation involving a differential operator of order 2n;,
and ¢ 1s the number of different low-order operations in one full iteration. A rich variety of
methods is obtained by different choices of o and r;, and there are also variations possible
within the low-order operation associated with a given n;.

Let us consider first a KP method with one low-order level, i.e., a method denoted by
KP;(m). If n; = 1, then the low-order operator is a second-order differential operator. The
obvious choice is the diffusion operator, which gives the DSA scheme described above.
That is, one variant of KP;(1) is exactly the DSA method as we have presented it. Lebedev
also studied variants in which the diffusion coefficient in Eq. (2.30), 1/(3%,), is general-
ized to g/Z;, with g a user-defined parameter. For ¢ = 1/3 Lebedev obtained the result

= spectral radius < 0.225¢ (Section XI1.10 of [10]), but he also found the optimal value
g = 0.281 that yields ¢ < 0.186¢. (Much later, Azmy performed an optimization that was
similar in spirit, with very similar results [160].) Lebedev studied other variants of KP; (1)
as well (see Section X1.10 of [10]).
The KP;(1)P(0) method, for {-D planar geometry with isotropic scattering, is:

(€41/3)
“?‘W_af_(x’“)”’(")‘"(”” D) = 2 )W (x)+2+ Q( N e

(+2/3)
_5}321(x) dF diz 3 (x) +E (X)F(£+2/3) (x) b (X) (¢(£+1/3 (x)) ’ (261)

¢(e+2/3) (x) = ¢(£+1/3)(x) + F(e+2/3)(x) , (2.62)
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FE) () = IECBC (¢(£+2/3)(x)-¢(£)(x)) , (2.63)
¢(e+1)(x) _ ¢(e+2/3) (x) + F(EH)(X) , (2.64)

where B is a user-defined parameter. Along with Egs. (2.60) and (2.61), of course, are
suitable boundary conditions such as those shown previously for the DSA method. The
second low-order equation, Eq. (2.63), is algebraic and needs no boundary condition. If
B = 0 in this equation, then F*1) = ( and the method reduces to DSA. For B # 0, an
opportunity exists to improve on the performance of DSA by choosing B wisely.

Performing a Fourier Analysis of this KP, (1)P(0}) method and leaving B as a parame-
ter, we obtain the following expression for the iteration eigenvalue for the error mode with
wave number A:

1 _1 Be [@psa (M) — Be]

-l () e

Using a slightly different approach, Lebedev determined that for this scheme the spectral
radius, G, is minimized by the choice B ~ 1/8.88 (Section XI.11 of [10]). For this value of
B he obtained the bound

o) =

6 <0.127¢ .

In Figure 2 we plot ®(A) for KP (1)P»(0) using several different values for B; we also show
the DSA (P = 0) result for comparison. Our results agree with Lebedev’s, both in the value
of B that minimizes ¢ and in the resulting value for the spectral radius o.

w
0-3 T T T ] T _r__r_]' 4 T T '7 T T #jﬁ T T

0.2

0.1

(iYIlT]II]\

Q 2 4 6 B 10
Figure 2: @ versus A for the KP;(1)P2(0) Method (¢ = 1)
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Thus, the two extra steps in the PK;(1)P,(0) method, Eqs. (2.63) and (2.64), can yield
a method with a smaller spectral radius than DSA.

ILE. Transport Synthetic Acceleration (TSA)

The Transport Synthetic Acceleration (TSA) method, developed by Ramoné, Adams,
and Nowak [243], is similar to the SpSA scheme in that a low-order Sy problem 1s solved
for the transport correction. If the low-order quadrature set is chosen to be S9 (sometimes
S4 is a better choice), then the low-order TSA problem contains Eq. (2.66) as the S, ap-
proximation to Eq. (2.56):

(¢+1) _ x
£ 4 - BV - LEREE) (0 4 )
:Eséx) (¢(e+1/2)(x)w¢(f)(x)) _ (2.66)

Here, the free parameter P satisfies 0 < < 1. If B =0, the TSA scheme becomes identical
to the S2SA scheme. For 0 < B < 1, Eq. (2.66) agrees with Eq. (2.56) if fE+D(x,u) is
isotropic, which corresponds to the A = 0 error mode. Therefore, for 0 < B < 1, the TSA
scheme should suppress the most slowly converging {A = 0) error modes of the unacceler-
ated S1 scheme.

Unlike the S»SA scheme, the TSA scheme is envisioned for multidimensional probiems
in which it is impractical to solve the low-order problems directly. Thus, in practice, one
solves the low-order TSA equations using Source Iteration and possibly other algebraic
acceleration schemes. In the following discussion, we describe these transpowrt sweeps (to
converge ffﬂ)) as inner iterations. Also, we describe the DSA iterations (to converge ¥
as outer iterations. (This terminology is intended to be reminiscent of the inner and outer
iterations used to converge multigroup transport problems.)

The parameter P plays a crucial role in the TSA scheme. As B increases from 0 to 1,
the TSA scheme is affected in the following ways:

. . . . : 14
1. Assuming only Source Iterations for the inner iterations (1o converge fiH)) the
inner-iteration spectral radius is

i=

(- Bz _ (1-P)e
L-BL,  1-fc 2on

where ¢ = Z;/E, is the scattering ratio. Thus, for ¢ < 1, as B increases, ¢ decreases.
In fact, for B = 1, the inner iteration spectral radius becomes zero. (In this case, the
TSA scheme reduces to the “Two-Step” acceleration scheme proposed independently
by Morozov [28] and Larsen and Miller [110].)
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2. Unfortunately, as (3 increases, the spectral radius of the outer iterations (to converge
V) increases. For planar geometry problems with isotropic scattering, the spectral
radius of the outer iterations remains less than ¢, so the acceleration method is some-
what effective even for B = 1. For more complicated problems in multidimensional
geometries or with anisotropic scattering, the spectral radius can exceed unity for
B close to unity. In such problems, B must be kept sufficiently small to maintain
convergence of the outer iterations.

3. In practice, one does not fully converge the low-order TSA problem in each iteration;
instead, it is iterated only a fixed number of times (M). The overall efficiency of
the TSA scheme then depends on the parameters of the original problem, and on the
choice of B and M. For optimal choices of B and M, the TSA scheme can dramatically
reduce the SI computational cost [243]. However, these optimal values of [} and M
are problem-dependent, and for optically thick problems with very small absorption,
the spectral radius of the TSA scheme (with fixed M) still approaches unity.

If the low-order TSA quadrature set is S; and M transport sweeps are employed in
this low-order problem per outer iteration, then the TSA scheme for the model infinite
homogeneous medium problem is defined by:

aw(;wz (o) + By ) = g0+ LD (2.68)

o1 = [ LD il (2.69)

FEHO Gy = (2.70)

i%iff(;;ﬁ() (%~ BE) A ):(_1;2_%( ) 4 gt )
20 (geng 0w | 1<men @)

N (x) = o) 4 £ ()4 gD @.72)

The Fourier analysis for this problem yields the following expression for @()):
_E “1q 3C(1—ﬁC) _E -1
=gtan A (x2+3(1—c)(1—;3c) (1-7n7'2)

3c(1 —Pe)(1 — M
* [IP( x§+3?1)—( Bc)E)) ] ' @73
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Figure 3: o versus A for the SI, TSA and DSA Schemes (c =1, = 1/3)

i TSA (M=) 1

Figure 4: @ versus A for the SI, TSA and DSA Schemes (¢ = 0.98,8 = 1/3)
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As expected, Eq. (2.73) limits to the DSA result as p — 0 and M — . Using Eq. (2.73),
we have plotted  versus A in Figure 3 for c = 1.0, = 1/3, and M = 5, 10,20, and = (fully
converged inner iterations). In Figure 4, we plot similar results for ¢ = 0.98. It is clear that
the (outer iteration) spectral radius of the TSA method is less than that of the ST scheme
and larger than that of the DSA (and S;SA) schemes for all values of M, including M = eo.
Also, the TSA spectral radius decreases as one converges more completely the low-order
problem (increases M). To achieve maximum overall efficiency in the TSA scheme, an
optimal balance must be found between the relative expenses of the high-order and the
low-order calculations.

While the development shown here assumes isotropic scattering, TSA can be applied to
problems with anisotropic scattering as well. Ramoné et al. did not analyze or test this; they
proposed to simply use isotropic scattering in the low-order problem, even when the high-
order problem has anisotropic scattering. The logic behind this idea is that the low-order
problem already ignores a portion of the scattering; given this, it seems that one might as
well choose the simplest possible distribution (isotropic) of the scattered particles.

ILF. The Lewis-Miller (LM) Methods

Next, we discuss the Second-Moment scheme proposed by Lewis and Miller [61]. Al-
though this is not a preconditioning (synthetic} method, we show that it is very closely
related to both the linear DSA and nonlinear Quasidiffusion schemes.

For the problem described by Egs. (1.1)-(1.3), one iteration of this scheme begins with
a source iteration [Eqgs. (2.22)-(2.24)]. Lewis and Miller’s concept is to derive a low-order
diffusion problem directly for the scalar flux ¢((f+l), containing linear (additive) transport
correction terms that vanish if the angular flux is a linear function of angle. (We show
below that the QD strategy is similar, but there the transport correction terms in the low-
order equation are nonlinear.) To derive the LM equations, we first calculate the zero-th
and first angular moments of Eq. (2.22). Defining

1
0u9) = [ Puliwlvaddu , 0<n<2 (2.74)
where P,(u) is the n-th Legendre polynomial, we obtain
d¢(£+1/ 2 (€+1/2) ()
B )+ 2000 = 2000 () + 00 | @75
( o6 )+3¢§“””(x)) +Z ()0} P () =0 . (2.76)
Eq. (2.76) may be solved for ¢\ "'/2):
ey, y 1 d ey (€+1/2)
o W0 = g (6P 126 ) @)
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Introducing this result into Eq. (2.75), we obtain:

d 1
T dx3%,(x) dx

(q) E+l/2)( )+2¢ E+l/2)(x))+z( )¢(()€+1/2)(x)

= Z(x)08 (1) + 0(x) . (2.78)

As desired, this equation involves ¢p(x) and contains a transport correction term ¢, (x) that
vanishes if y(x,u) is a linear function of u. ‘

Lewis and Miller did not propose boundary conditions for their method. Here we derive
boundary conditions containing additive transport correction terms that — like the additive
correction term in the diffusion equation — vanish if \y(“l) is a linear function of 4.

Multiplying Eq. (2.23) by g, integrating over the incident directions 0 < u < 1, and
using Eq. (2.74), we obtain

1 ) 1
fo py'(pdp = / 20, p)du

3
_ / { o190 )+Ep¢$€+1/2)(0)} du

1 3
+/ [ (E+172)( p)—§¢ff“/z)(0)——2#4)%“1/2)(0) d
l
_ (e+1/2 (0)+ = ¢(e+1/2 0)+ / 12 (0, ) dp

4f w20, 1)d u——/ w20, p)dy

_ q)(f+1/2 (0)+ ¢£+1/2 ( )

- (|y|—§)w‘+‘/z)(o,mdy . 2.79)

The final integral on the right side of this equation vanishes if y+1/2)(0,) is a linear
)

function of u. Using Eq. (2.77), we eliminate ¢( +1/2) 4 obtain:

.
) mitian = 20l 0) - g (o 0) + 208 0)

+ 5 f_ 1 (Iul—i) w200, (2.80)

To derive an equation at the right boundary, we multiply Eq. (2.24) by u and integrate over
—1 < 1 < 0. Using Eq. (2.77), we obtain

(€+1/2) oy L d g (e11)2) (£+1/2)
0= = x4 (o Py +20 P )) . s
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As desired, Egs. (2.80) and (2.81) involve ¢( +1) on the boundaries and contain transport
correction terms that vanish if W(”l) is a linear function of 4.

One iteration of the “Second Moment” Lewis-Miller method consists of two stages.
The first stage is a transport sweep, Eqs. (2.22)-(2.24), which determines y(+1/2)(x, u);
then q;(”” 2) is determined using Eq. (2.74). The second stage consists of Egs. (2.78),
(2.80), and (2.81), with all scalar flux terms replaced by ¢“+”

d 1 (e+1) @),y d (e+1/2)

Tdr35 () dx ¢ (x) +Za(x)by (%) = Q(x) + deZ,(x) dx¢ x) , (2.82)
(e+1) g 2 de{tY B Lo 6 (€+1/2)
WO @ = e s O)

1
f_ (=20 DO pmdn 283
d¢(5+1) d¢(e+1/2
i X) =2 —(X) (2.84)

This low-order problem has the form of a conventional diffusion problem for ¢(e+1)
If we now define the “correction”

A =06 ) -0 ) 2.85)

and subtract Eqgs. (2.82)-(2.84) from Eqgs. (2.78), (2.80), and (2.81), we obtain equations
for FO(HI)(x). These equations are identical to the DSA equations (2.30)-(2.32), and of
course Eq. (2.85) is identical to Eq. (2.34). Thus, in the absence of spatial and angular
discretizations, the DSA and Lewis-Miller methods are algebraically equivalent, so they
have exactly the same convergence properties.

Lewis and Miller [61] also proposed a First-Moment scheme, which we will briefly
mention here. As with the Second-Moment scheme, the first stage consists of a transport
sweep, Eqgs. (2.22)-(2.24). Now, using a slightly different approximation, the diffusion
equation in Eq. (2.82) is replaced by:

i et 0+ Eel ) = 0 - 7 (o) + 3 Zef )

(2.86)

Lewis and Miller also did not propose boundary conditions to go with this acceleration

equation, but it would be consistent to use Egs. (2.83) and (2.84). Smith and Rhodes [283]

have recently proposed a nonlinear method that is closely-related to the Lewis-Miller First
Moment scheme.
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I1.G. The Quasidiffusion (QD) Method

This early method was formulated by Gol’din [25]. The main concept is similar to that
of Lewis and Miller, except that the transport correction terms in Gol’din’s low-order prob-
lem are formulated nonlinearly (as multiplicative terms), rather than linearly (as additive
correction terms). :

The Quasiditfusion (QD) method, just like the other acceleration methods discussed
here, begins with a transport sweep, Eqs. (2.22)-(2.24). To derive the acceleration equa-
tions, we calculate the zero-th and first angular moments of Eq. (1.1):

‘-’;;i(x) + T (D00(x) = 00 | (2.87)
d 1
= [ Pl mdut B0 () =0 (2.88)

Next, we define the Eddington factor:

S Py p)dp
Elx)= (2.89)
f—l 1 W(xv nu)dﬂ
and we rewrite Eq. (2.88) as
1 d
d1(x) = —maE(x)%(x) : (2.90)
Using this result to eliminate ¢; from Eq. (2.87), we obtain
d 1 d

If W(x,u) is a linear function of g, then E(x) = 1/3 and Eq. (2.91) reduces to the conven-
tional diffusion equation.
Gol'din’s original [25], [42] boundary condition at x = 0 is obtained from the identity

o 21190, u)dy o
¢'1(0)—[0 H‘I"(#)dﬂ+(m) (4’0(0)‘/0 ‘Vl(#)d.u) : (2.92)

Defining the positive nonlinear functional

21 k(0 1)du

A= (2.93)
2w (0,p)du
and using Eq. (2.90), we may rewrite Eq. (2.92) as
1 dEdo, . ! .
A0(0) - 55 e 0 = [ A+ e (2.94)
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An alternative equation for ¢o{0), proposed by Miften and Larsen [188], is also obtained
from Eq. (2.92):

(I 1 1
2 [ = [ (Gl +)wO@udi= [ w0 mduron(0) . (295
Defining the boundary Eddington Factor

J21 (0, p)du

B=—; (2.96)
f— 1 W(O,.U)dﬂ
and using Eq. (2.90), we rewrite Eq. (2.95) as
1 dE¢y . [l
B0(0) - 5757 e 0) = | e @.97)

If (0, ) is any linear function of g, then E(0) = 1/3 and B = 1/2 and Eq. {2.97) reduces
to the familiar Marshak boundary condition.

The QD boundary condition at the reflecting boundary x = X is obtained by multiplying
Eq. (1.3) by u, integrating over the incoming directions, and using Eq. (2.90). This yields

1 dE¢o

0=¢1(X)=—m =

(x) . (2.98)

One full QD iteration now begins with a transport sweep, Eqgs. (2.22)-(2.24). The angu-
lar flux yt¢+1/2)(x, 1) from this calculation is used to compute updated interior and bound-
ary Eddington factors:

E(£+1/2)( )= f_ ﬂzlll(“]/z)(xn“)d# <X (2.99)
o2 ndy T T

(£+1 2)

A(£+1/2) f—ll-u’ / ( )-u)d# (2100)
12, w20, p)dp
[or | ’
172

pesn) _ Lo by 20 .0du 2.101)

J2 w20, 1) dp
These quantities are introduced into Eqgs. (2.91), (2.94) [or (2.97)], and (2.98) to obtain the
following low-order equations for q)( ),

d 1 d

de,(x) dx (£+1/2)( )¢(£+1)( )+ Za(x)0 (£+1)(x) o) | 2.102)

1 dE+1/2) (e+1) 1 .
A(e+1/2)¢(gf+1)(o)_zt(0) dx“’ (0) = /0 (A€ 1) il (2103)
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[or

1 dE(£+1/2)¢(()€+1)

B2 () 50 — (0) = /D 1 2uy'(wdp |, (2.104)

dE(£’+l/2)¢(()E“‘1)

0= e (X) . (2.105)

These 1-D equations can be formulated as a standard diffusion problem for the quantity
E+1/2) (x)¢ég+1)(x). [However, in multidimensional problems, the Eddington factor be-
comes a symmetric positive-definite tensor, and the quasidiffusion equation becomes an
asymmetric diffusion problem. Thus, it is more difficult to solve efficiently the discretized
2-D problem than the discretized 1-D problem.]

To establish a connection between the nonlinear QD and other linear methods, we shall
linearize the QD scheme about the converged solution. We assume that y'é+1/2) ig cloge to
the converged angular flux y and that o is close to the converged scalar flux ¢:

WD e ) = y(x,p) +ef D (x| (2.106)
o (x) = do(x) +eFO(x) | (2.107)

with £ << 1. We define the converged interior and boundary Eddington factors E(x), A, and
B by Eqgs. (2.89), (2.93), and (2.96). Introducing Eqgs. (2.106) and (2.107) into the QD equa-
tions and expanding in powers of €, we find that the O(e®) terms are automatically satisfied,
while the O(e!) terms yield the following linear high-order problem for f(E+1/2)(x, ):

(€+1/2)
u%—(x,u)+z,(x)f““/2>(x,m = E’T()‘)F“)(x) , 0<x<X ,  (2108)
FEDOM =0, 0<u<t (2.109)
FEVDX = FEYD (X ), —1<u<0 (2.110)

and the linear low-order problem for #{¢+1)(x):

T SO @)+ R P
;;czztx)dxf (2 -E@) D p)dy , 0<x<X , (2111
P00 - 15 00 = [ - ) £+ 0,100
tore [ 6= EO) 0w @.112)
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[or |
ey 1 dEFEH) g0 ~ 12
B0 s a0 f_ (B lul) £ 0,y
—_1 4 ’ 2 (&+1/2)
0 dx f_l (* = E@) fEH0,)du ] (2.113)
dEF(€+1)
0=—7—X) . (2.114)

For any problem in which the exact angular flux is independent of u [for example, a
problem having the infinite medium solution w(x,u) = Q/2%,], one has exactly
E(x)=1/3, A=1/2, and B = 1/2. In this situation, Eqs. (2.108)-(2.114) exactly re-
duce to the correction equations for the Lewis-Miller method. Thus, for such a problem,
the convergence rate of the QD solution [using either x = 0 boundary condition (2.103) or
(2.104)] is equal to the convergence rate of the Lewis-Miller scheme, which is equal to the
convergence rate of the DSA scheme.

For any slightly more general problem in which the exact angular flux is a linear func-
tion of u, one also has E(x) = 1/3 and B = 1/2, but in general A # 1/2. In this situation,
the QD scheme using Eq. (2.104) atx =0 again has the same convergence rate as the
Lewis-Miller and DSA schemes.

This close theoretical connection between the QD, Lewis-Miller (LM), and DSA
schemes does not generally hold if the exact solution y(x,u) is not a linear function of
4. Nevertheless, in practice, the QD and DSA schemes are observed (o converge in nearly
the same (small) number of iterations, using either of the x = 0 boundary conditions [Egq.
(2.103) or (2.104)]. Moreover, the properties of the converged QD solution are well-
described by those of the LM solution (see the final two paragraphs of Sec. ILF).

ILH. The Weighted Alpha (WA) Methods

We have shown that the QD scheme, when linearized, is closely related to the Lewis-
Miller and DSA schemes. Now, we consider a different nonlinear class of weighted alpha
(WA) acceleration methods, whose linearization is closely related to the S2SA scheme.
The ideas underlying the WA schemes were originally formulated independently by Niko-
laishvilli [41], Germogenova [33], and Gol’din et al. {35], and were later generalized by
Anistratoy and Larsen [217, 288].

These methods begin, like the other methods in this chapter, with a source iteration
[Eqgs. (2.22)-(2.24)]. To derive the low-order acceleration equations, one chooses a param-
eter o > 0, multiplies Eq. (2.22) by |u|%, and separately integrates over —1 < u < 0 and
0 < ¢ < 1. Defining the nonlinear functionals

ol YD) (5, pdp
S W D e dy

AP = o+ 1) (2.115)
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£1) 10 (612 (5 g
Bgl:f+1/2)(x)z(a+l)f0 lﬁlll \;’12 (x, 1) du
Joo w2 (x, u)du

) (2.116)

and the partial scalar fluxes

v f y D e, T ) ] v oy, 2117)

we obtain two equations for w;“/ 2 (x):

£ ALV gD () 45, (0BE D D 3) =

Boundary conditions are derived from Egs. (2.23) and (2.24) in a similar manner. Atx =0

% (")q) ( ) . (2.118)

one obtains either

1 .
(@+1) [ w = 4L 0y 0) (2.119)
or )
(+1) [ v au=BE A 0 0) 2.120)
andatx=1X,
v P =™ P (2.121)

The WA method is defined from the above equations as follows. An iteration begins
with a transport sweep, Egs. (2.22)-(2.24), which determines y'¢*1/2) (x, ;1). Next, the non-
E+1/D) and BT/ are defined by Egs. (2.115) and (2.116). Then the
following S;-like problem is solved for \y( +1/2) (x) and \u(_”]/ 2 (x):

linear functionals A}

A(*?H/2 W @) +Z ()BT (Y

d
= BB (e ) L 20 (2.122)
1 ,

(@+1) [ p““w'(u)du=A5?+"2>(o)w5f+”(0) , (2.123)

or
(a+1) / wdp =BT D00 | (2.124)

and
v o =y x) (2.125)

Finally, the update equation

o) =y D) D (x) (2.126)
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determines the next scalar fiux iterate.

A linear version of this method, in which the transport correction terms are additive
rather than multiplicative, has also been proposed [217]. The WA methods with o = ( or
o = 1 were termed the first flux (FF) and the second flux (SF) methods in {182].

For transport problems in which the angular flux is independent of u on the intervals
0<pu<1and -1 <u <0, the functionals A+ and By are independent of x:

140
AL =—— B;y=1. 2.127
+ 2+o ) + ( )

For this case, the WA equations limit to S;-like equations with constant quadrature values

l+a
=+— . 2.128
He = E5-— ( )
[This quadrature value agrees with the standard S, value of 1/+/3 if
2-+3
a= ~=0.366 . 2.129
Vv3-1 (2.129)

For this value of o, the convergence of the WA scheme should be similar to that of the S;SA
scheme, even though the boundary conditions of the two schemes are slightly different.]
For general ¢, a Fourier analysis for the infinite homogeneous medium linearized WA
scheme can now be performed, because the coefficients in the WA equations are constant.
The spectral radius of this method has been determined for the following values of o

1. 0. =0 (the FF method) : 6 = 0.3333,
2. oo =1 (the SF method) : ¢ =0.3105,
3. o~ 0.366 (S;-like) : 6 =10.2247,
4. o =~=0.128 (optimal) : ¢ =0.1865 .

Thus, the WA scheme converges rapidly for these values of o.. As expected, the WA scheme
for 0. = 0.366 has the same theoretical spectral radius as the S;SA and DSA schemes.

ILI Second-Order Forms of the Transport Equation

We turn next to different forms of the transport equation, namely those with second-
order spatial derivatives, which we now derive. We write Eq. (1.1) for u and for —u:

p2E e+ B = Z 000+ 2 @130)

—#%\f (o, =) + Z (x)y(x, —) = ZST(JC)MX) + Q_éx) : (2.131)
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and we define the even-parity and odd-parity angular fluxes, y* and y~:

W () = 5 ) Fx )] |

v (x,y) = ';-[W(X,,u) - \V(x,—p)] :

The angular flux is the sum of the even- and odd-parity angular fluxes: W = w* +y~. The
sum and difference of Eqs. (2.130)-(2.131) yield:

Yy~ R
u;’—x(x,u)+2:(x)w+(x,p) = éx) ¢(x)+9% : (2.132)
+
yaaix(x,y)-}-zr(x)w_(x,y) =0 . (2.133)

Using the second equation to eliminate Y~ from the first, we obtain the even-parity trans-
port equation:
0 o oyt

LG x,4) + Ze ()t (x,p0) = E%x_)q)(x) +

This is a second-order integro-differential equation for the even-parity angular flux y (x, u).
It was derived by Kuznetsov in 1940 [18] and rederived in the early 196(0’s independently
by Vladimirov [30], Pomraning and Clark [29], and Feautrier {24]. It has been used widely
in the astrophysical community {52, 68, 12].

Q(x)
2

(2.134)

The scalar flux is obtained by integrating the angular flux over all directions:

1 1
d(x) = flw(x,y)dp=2f() W (x,u)dy (2.135)

This follows from the fact that the angular flux, v, is the sum of the even- and odd-parity
angular fluxes (and the odd-parity flux integrates to zero).

If instead of eliminating Wy~ we eliminate y* from Eq. (2.133) using Eq. (2.132), we
obtain:

) ,
éa; ,u()asu (x,10) + X (x)y (x,[.l):—#% [Esz(x)¢(x)+9%l] ) (2.136)

This odd-parity transport equation is a second-order integro-differential equation for the
odd-parity angular flux v (x,u).

Adding the even- and odd-parity equations, we obtain a second-order differential equa-
tion for the full-range angular flux:

3 dy Zs(x) Q(x) s(x)

axz()a = (%, p0) + Z (x) @ (x, p) = 5 ¢(x)+T_uai[ 5 ¢()+Q(x)

(2.137)
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This has recently been termed the “self-adjoint equation for the angular flux,” or the SAAF
equation. [268]

Of the three second-order forms shown above, the even-parity form has received the
most attention. We shall now define and analyze the SI and KP; (1)P>(0) schemes for the
even-parity equation. The SI equations are:

d 2 9 +(£+1/3) )
g s )+ ) = g0+ £ a3y
! .
(113 (x) = 2 / wHEA) () dy (2.139)
0
o (x) = 91 () (2.140)
Fourier-analyzing this iteration for the infinite-medium model problem, we obtain:
_ft_a e
@(k)—CA m——xtan A (2.141)

This is the same result [see Eq. (2.12}] that we obtained for the SI method with the first-
order form of the transport equation. However, this is to be expected, for the first-order and
second-order forms are just different expressions of the same “transport sweep” physics.
We would obtain the same result if we analyzed SI with the odd-parity or SAAF equations
as well.

The KP,(1)P2(0) method applied to the even-parity equations is given by Eqs. (2.138-
2.140) and Egs. (2.61-2.64), which we repeat here for convenience.

d 1 dF(f+2/3)
T dx3%,(x)  dx

() +E P (x) = £(0) (61 (x) -0 (0)) , @2142)

¢(e+2/3) (x) = ¢(z+1/3) () + F(e’+2/3)(x) , (2.143)
F(””(x) =1 ECBC (¢(£+2/3) (x) _¢(€) (x)) ’ (2.144)
q)(Hl)(x) — ¢(3+2/3) (x) +F(€+l)(x) . (2.145)

A Fourier analysis of this method produces the following expression for the iteration eigen-
value, (A):

() = 1_65c (x2+31(1 ) KZ;E“) tan:l - 1} ‘B) ' (2.145)

Not surprisingly, this is identical to Eq. (2.65), the result for KP(1)P»(0) applied to the
first-order form of the equation.
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In the next chapter, we shall see that for the first-order transport equation, spatial dis-
cretization introduces significant complications in the low-order equations (precondition-
ers). In the terminology of the literature, it is difficult to obtain a diffusion discretization
that is consistent with a given discretization of the first-order transport equation; further,
when such a discretization is obtained, it is often non-standard and algebraically comph-
cated. Second-order forms of the transport equation do not have this difficulty. Because the
second-order transport equations are already in diffusion-like form, it is straightforward to
discretize the diffusion equation consistently with them. For example, it is a simple matter
to discretize Eqgs. (2.138) and (2.142) with the same technique. Thus, the use of a second-
order transport equation avoids one of the difficulties associated with rapidly convergent
iterative methods for transport problems. Unfortunately, the second-order form has disad-
vantages of its own. Because of the structure of the second-order equations, they cannot
be solved by simple transport sweeps. Hence, the high-order equations in the second-order
form are more costly to solve than in the first-order form. Also, the second-order form is
problematic in problems with void regions, where X, = 0 and the diffusion coefficient in
Eq. (2.134) is infinite.

III. THE EFFECT OF SPATIAL AND ANGULAR
DISCRETIZATIONS IN PLANAR GEOMETRY

In Chapter II, we introduced basic iterative acceleration schemes for the continuous
transport equation, with no spatial or angular discretization. Now we discuss the same it-
erative schemes, but applied to the diamond-differenced discrete-ordinates (Sy) equations
[9]. We show that the angular discretization generally has a benign effect on the conver-
gence properties. However, unless special care is taken, the spatial discretizations have
a significant effect on either (i) the rate of iterative convergence, or (ii) the nature of the
converged discrete solution.

ITILA. Source Iteration (SI)

The Diamond-Differenced (DD) Sy equations corresponding to Eqgs. (1.1)-(1.3) are:

s [ % Q; _
%E, (W j+1/2 = Wn j=1/2) +Zr jWn,j = —;—J (2 \u,,,_jw,,f) +-2—J L 1<n<N,1<j</J,
J =1

(3.1)

1 »
Vi =35 (Wnjra+¥nj1a) » 1<a<N , 1<j<T (3.2)
Wn,l/ZZW:; s ﬂn>(_) ) (3.3)

Vrt4+1/2 = Wmi+1/2 2 Hn= —Hm <0 . (3.4)
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Our notation is standard: x;4/, are the edges of the j-th spatial cell (1 < j < J),
hj = Xj4172 ~ %12 = width of the j-th spatial cell, and {(u,w)|1 <7 < N} is an even-
order Gauss-Legendre quadrature set. Also,

%, ; = total cross section for the /" cell , (3.5)
- Lg j = scattering cross section for the jth cell , (3.6)
Q; = cell — average interior source for the ™ eell | 3.7
Ya, j+1/2 ~ Y{xji1/2,4n) = cell — edge angular flux (3.8)
Xivr1/2
Yn j & / W (x, 4, )dx = cell — average angular flux . 3.9
Xi-1/2

Eq. (3.1) above is the balance equation, which is obtained by integrating the Sy equa-
tion over the j-th spatial cell. Eq. (3.2) is the diamond-difference auxiliary equation. (Most
spatial discretization schemes for the Sy equations include the balance equation as one of
the relations that the cell-edge and cell-average fluxes must satisfy; the various schemes
differ in their choice of auxiliary equations.)

The SI method applied to Egs. (3.1)-(3.4) is defined by:

e (V) R B0 G ne 1550,
J

(e+172y _ 1 (e+1/2) | (£+1/2) .
W =S (WRHEER) L t<esN  1gi<s @I
VoA =, w0, (3.12)
er1/2 t+1/2
Wr(lj+{/% wr(11-;+/l/)2 y Hp=—um <0, {3.13)

(€+1/2) Z (€+1/2)wn , 1<j<T (3.14)

with the update equation

(£+1) ¢(f+1/2) , 1<ji<T . (3.15)

(e+1/2) (£+1/2) .

. j£1/2 in the following
(£+1/2)

These equations can be solved non-iteratively for y,, and y,

way. First, one introduces Eq. (3.11) into the left side of Eq. (3.10) to eliminate W, i
Then, one solves the resulting equation for the exiting flux from cell j:

sy (Zn— Z:,jhf)\l’,(ffl{% + h;(Es, j¢3‘€) +0;)

ni+1/2 = 2t + X1k

y M >0, (3.16)
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(2+1/2)

e/ _ Clinl = Zhil¥, i i+ iz 58 +0)) . .
=12 Lunj +%, ;h J ) Hn ’ ’
Eg. (3.16) with j = 1 yields \u( ;/2/  because the fluxes incident on the j=1celi, w(gf/lz/ 2

are specified by the boundary condition (3:12). One then uses Eq. (3.16) with j =2 to
determine 1|1( ;"/2/ 2, and then j =3, and so on to j = J. Eq. (3.13) then determines the
fluxes incident on the right side of the J-th cell, for y, < 0. Eq. (3.17) then recursively
yields \u( T 1//2, first for j = J, then j =J —1; and so on.

This process of “marching” through the cells, from left to right for ¢, > 0 and then from
right to left for u, < 0, is a transport sweep At the conclusion of .a transport sweep, new
cell-average scalar flux estimates ¢( *172) ate defined by Eq. (3.14), and using the update
equation (3.15), one can begin a new transport sweep. In practice, this iteration process is
terminated when MJ(”]) (& | is sufficiently small for 1 < j < J.

This discrete SI schcme can be Fourier-analyzed in the same basic manner as the con-
tinuous SI scheme. We assume a model infinite (~o < j < =) homogeneous-medium
(Zr; = &, L; j = ), uniform mesh (h j = h) problem in which the source Q ,; and the so-
lution Wy, ; and Yy, j4 > are bounded as j — eo. As in Chapter II, we consider a single

Fourier mode defined by:

0,=0 , (3.18)
o) = el | (3.19)
wfffm — ofa ™ (3.20)
VR oo, a2
$EFD _ oto T (3.22)

7

Introducing Egs. (3.18)-(3.22) into Eqs. (3.10), (3.11), (3.14), and (3.15) for the model
problem, we obtain the following equations, which are independent of j:

n [ . ZhA p)
2,‘; ( ’2 ) bt Bty = 5 (3.23)
an = b, (cos E—I‘;&) , (3.24)
N
o= z aAnWy (325)
n=1
0=0 . (3.26)

Eqs. (3.23) and (3.24) yield:

(3.27)
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where 5 =
A= ﬂtan (——2— ) . (3.28)
Then Egs. (3.25) - (3.28) give:
C N W
wsi{A) = 0(A) = 5’; 1—_‘—_—“':217\5 : (3.29)
It is evident from Eq. (3.29} that
Osp = SIIJ\p lws1(A)] = wg7(0) =c¢ . (3.30)

This result holds for any even quadrature set order (N) and any spatial cell-size (k).
Also, this result agrees with Eq. (2.17), the spectral radius for the SI scheme applied to the
continuous transport equation.

In practice, when the SI scheme is applied to finite-medium problems with homoge-
neous cross sections and a uniform spatial mesh, the observed spectral radius is somewhat
less than ¢. This is because of neutron leakage: neutron lifetimes can end not only by
capture, but also by leakage from the system. The inclusion of leakage shortens neutron
lifetimes and hastens the convergence of the SI scheme. However, this effect diminishes as
the physical system becomes increasingly optically thick, because it becomes increasingly
improbable that any single neutron will leak out.

When the problems in the above paragraph are solved on a nonuniform spatial grid, one
observes almost no change in the observed SI spectral radius, and in all cases the spectral
radius is bounded from above by c.

Generalizing these homogeneous-medium problems to spatialty-periodic medium prob-
lems [257], the observed spectral radius is bounded from above by the largest value of ¢(x)
for 0 < x < X, where c(x) = c(x+X). Also, if the system is optically thick, so that the
effect of leakage is negligible, the observed spectral radius is bounded from below by the
smallest value of c(x). Thus, in this (optically thick) case, one observes:

i <og < . 3.31
02}1& clx) < ag < Orsrlxaé(Xc(x) (3.31)

These results are observed experimentally for more general finite heterogeneous media
without a spatially periodic structure. They are also observed for other commonly-used Sy
spatial differencing schemes.

Thus, in general, the SI scheme applied to the spatially-discretized Sy equations con-
verges rapidly for optically-thin, leaky systems, or optically-thick systems that are not
dominated by scattering. However, the SI scheme converges slowly for systems that are
optically-thick and scattering-dominated.
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I1L.B. Diffusion Synthetic Acceleration (DSA)

The DSA scheme for the continuous transport equation is defined by the high-order
transport equations (2.22)-(2.24) and (2.26), the low-order diffusion equations (2.30)-(2.32),
and the update equation (2.34). We discretize these equations using the Diamond-Dif-
ferenced SN approximation for the high-order equations (2.22)-(2.24) and a conventional
cell-edge discretization for the low-order diffusion equations (2.30)-(2.32). (Henceforth,
we refer to this diffusion discretization as inconsistent, for reasons that will soon be ex-
plained.) The high-order equations are defined by Eqgs. (3.10)-(3.14); the low-order equa-
tions are defined by:

1 (e+1) L (¢+1) 1 pUr) _ pern) FED
_324,1-_}_1}1]',{_1 ( j+3/2 E]+1/2) + 32[’]']1] ( ]+1/2 1/2) + Y]4_1/2]1],*_1/2) J+1/2

2 2

1 _(e+1) 1 (+1)  e+D\ , 1 (e+1) _ Zs1h ( (e+1/2) . (0)
EFI/Z -3Zt,1hl (F3/2 _FI/Z )+2(Ealh1)F1/2 ~ T (¢ -4 ) )
(3.33)

1 (e+1) e+, 1 (e+1) _ Zsghy [ (e+172)
35 (Fp=Fp) +5 @am) Ly = =5 (o o) @3a

_ Zsj+1hjn <¢§$l/2)—¢§?1) +E,; j (¢(e+1/2 ¢e> 1<j<] . (332)
z

and the update equation is defined by:

=L (R RR) 639

In Eq. (3.32) we have introduced

g j+1hjr1 +Zg jhj .
X, = — : , 1<j<J-1, 3.36
a,j+1/2 hj+1+hj <Jj<J ( )
1 :
hj+1/2*=—§(hj+1+hj) , 1<j<u-1. (3.37)

(Other discretizations of the low-order diffusion equation are certainly possible but will not
be considered here.)

The resulting discrete DSA equations can be Fourier-analyzed in the same way as the
discrete SI equations. We again assume a model infinite (—eo < j < o), homogeneous-
medium (%; ; = Z;, X, j = X), uniform mesh (hj = h) problem in which the source Q; and
the solution Yy, ; and Yy, 1 /2 are bounded as j — co. We consider a single Fourier mode
defined by Egs. (3.18)-(3.22) and

F](f_‘;‘}% — meBeingj+1/2 . (3 .38)
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We find that B and o are defined by

C‘(l —~(051)( OS%)
B=-— , (3.39)
I—c+§ (zhs n%)

and 5
C(l - &]s[) (COS %h)

W = s] — 7 (3.40)
1 2 .. ASh
1 —C+'§ (ﬂSlﬂ%’—)
where wg; is defined by Eq. (3.29).
Using Eq. (3.28) and a trigonometric identity, we may rewrite Eq. (3.40) as
1 -
® = g1 — e(1 — wsi) , (3.41)
AL 1
(1-) 1+ (F) A2 +§n2
where A is defined by Eq. (3.28). Thus, if we fix A, i.e. if we choose A to satisfy
2 Zh
= —_— A2
=gt (1) o4

then Eq. (3.41) implies that @ is a monotonically 1ncreasmg function of XA, taking its
minimum value at Z:A = 0:

C(l — Wg])

Wpin (A) = s —
rmn() SI 1—C+%A2

(3.43)

and its maximum value at Z;h — oo:
Omax(A) = g7 . (3.44)

As Zh — oo, Eq. (3.44) holds and the performance of the DSA scheme reduces to that of
SI. In this case, the discrete DSA scheme is convergent but ineffective — it performs like
Source Iteration. As 2 — 0, Eq. (3.43) holds, and Opga is obtained by maximizing this
expression over A.

In Figure 5 we plot 6psa as a function of X, for various quadrature set orders, and
for c = 0.98. For all finite values of %~ and all quadrature orders N, the discrete DSA
scheme is seen to be convergent, with a smaller spectral radius than SI. For small XA,
the discrete DSA scheme is rapidly convergent, but as Z,/ increases, the scheme degrades

in performance, eventually (for ;4 >> 1) converging only marginally faster than the SI
scheme.
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Figure 5: opga versus X7
(c=0.98, “Inconsistent” DSA Diffusion Discretizations)

This result is marginally acceptable, but much worse results hold for many other com-
mon discretizations of the low-order DSA diffusion problem: the resulting DSA scheme is
rapidly convergent for small Z.h, but it degrades as X, increases and then becomes diver-
gent or unstable (opsa > 1) for Z, 4 sufficiently large. This instability occurs, for example,
with common cell-centered diffusion discretizations [51].

The problem of discretizing the low-order DSA equations in a way that renders the
scheme rapidly convergent for all Z,% was solved by Alcouffe [57], [63] for the Si equa-
tions employing the Diamond-Differencing scheme. Alcouffe’s source-correction method
is algebraically equivalent to the following four-step procedure:

1. After a transport sweep that yields wﬁf}”f 2), formulate the exact Sy problem for the
(discretized) linear cell-edge and cell-average angular corrections fy j and f, ;11/2-

If these corrections are defined as:

£v1/2
T j(£1/2) E\Vn,j(:tl/z)_w.ij(i/l/)z) ) (3.45)

then Egs. (3.10)-(3.13) vield

s N z N £ ¢
%"1,' (fn,j+1/2 _fn,f—l/Z) +Ze,jfni— E3 2 Jnjwn = "% (¢5 *1/2) —¢§ )) , (3.46)
7 n=1
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1
fnj= ) (fn,j+1/2 +fn,j~1/2) : (347
frnj=0 , >0, (3.48)
Joas12=JFmgr12 5 Mn=—pm <0 . (3.49)

(As discussed above, this problem for the corrections f is just as difficult to solve as
the original Sy problem for y.)

. Next, operate on Egs. (3.46)-(3.49) by the discrete Py approximation: multiply by w,,
{or u,w,), sum over n, and introduce the approximations

1
S jiz1/2) = 3 (Fj(:tl/z) +3.unGj(:i:l/2)) : (3.50)
This yields:
Vg vy L(er1) (e+1) _ +1/2) _ (0)
h—j(Gj+1/2—Gj_1/2)+z,,,,-Fj =%, (77 - o) (3.51)
1 (8+1) (+1) (8+1)
3, (Fj+1/2 “Fj-l/z) +2,;G; =0, (3.52)
ey _ L 7orn) | (o) 1) _ L7 o4y | e+1)
Fj ) (Fj+1/2+Fj—1/2) G ) (Gj+1/2 +Gj—l/2) o (333)
£ 4 f 2
0=3, Gufurzpwn Xt (F" + 3G Ywa =V 4 6050
>0 Hn>0
(3.54)
e+
0=G;\) » (3.55)
where, in Eq. (3.54),
1
Y=W= Y ¥ ™5 - (3.56)

>0

. Next, algebraically eliminate all of the unknowns in Eqgs. (3.51)-(3.55) except the

cell-edge scalar flux corrections F}ﬁ}% We begin by using Egs. (3.53) to eliminate

F and G{*Y from Egs. (3.51) and (3.52). After minor algebraic operations, we
obtain

¢ 2ajhi ?
G -G+ =L (T + R ) = Zan; (9517 -o) . @57

j-1/2 2 TR V7R SV J
and ,
(£+1) (6+1) (£+1) (€+1)y _
GinptGiapt 3% jhj (Ffﬂ/z —Fi, /2) =0 . (3.58)

Adding these two equations, we obtain
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e+ _ 1 (1) (e Zafti fo(er1) | (e
Gj+]/2'” 3% ik (P}'—H/Z Fj—l/Z) 4 (F 1/2+F 1/2)

s jh; ? .
N :; j (¢§ +1/2)_¢Sf)) L 1<j<d . (3.59)

Subtracting Eq. (3.57) from Eq. (3.58) and then replacing j by j+ 1, we obtain:

(£+1) 1 E+1) (DY |, Za 1AL (o) | p(e) )
G;+1/2 3Zt,j+1hj+] (Fj+3/2 Fj+1/2) + 4 (F;+3/2 +F;+l/2
Zsj+1hj (4172 £) .
e R B ES E A I (3.60)

For 1 < j < J— 1, we equate the right sides of Eqs. (3.59) and (3.60) to obtain

1 (+1)  L(e+1) 1 (e+1)  L(e+1)
_3Zt,j+lhj+1 (FJ+3/2 _FJ+1/2) + 3%, ih; (F j+1/2 “F 1/2)

Zojr1hjst [ (e+1) | L(E+1) Z,jh] (6+1) | (e+1)
= (Fj+3/2+F+1/2) 4 (F,+1/2+F 1/2)

_ Egjrthis e/ L (8) Yo hi (. (e+1/2) (D)
- it (o0 B (o0 1)

Also, Egs. (3.54) and (3.60) yield the left boundary condition

ISV (E+1) . (6+1) Ea,lhl (+1) | L(E+1)
YFis2 3T (F3/2 —Fip ) a (Fs/z tFp )

Lo o (e+1/2)
== (o o) (3.62)

and Eqgs. (3.55) and (3.59) yield the right boundary condition

1 ( (£+1) F(£+l))+za_,Jh_J(F(€+l)+F(£+l))

m J+/2 1/2 4 J+/2 J-1/2
thJ ( ¢,(e+1/2) ¢3€)) ‘ (3.63)
4. Solve the low-order diffusion Egs. (3.61)-(3.63) for F; ( J/I?)_ aﬁd update ¢(E+1/ 2 by:
¢§e+1)=¢5£+1/2)+ (F(fi/l%ﬂ(eﬁ;}%) N<j<T (3.64)

This “consistent” diffusion discretization [Egs. (3.61)-(3.63)] is similar, but not identi-
cal to the earlier “inconsistent” cell-edge diffusion discretization (Eqgs. (3.32)-(3.34)]. The
differences are:

1. The “removal” (I,) terms in Egs. (3.61)-(3.63) are based on a three-point, rather than
a one-point cell-edge discretization.
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2. Eq. (3.62) contains the parameter y, which by Eq. (3.56) limits to the Eq. (3.33) value
of 1/2 only as N — ce.

The Fourier analysis for the discrete DSA scheme using the consistent low-order equa-
tions (3.61)-(3.63) yields the following result: as before, a single Fourier mode is defined
by Egs. (3.18)-(3.22) and (3.38), with o(A) and A defined by Egs. (3.29) and (3.28). Now,
however, o is defined for all Z;h by

(3.65)

This result is identical to Eq. (3.43), which we have shown represents a rapidly-conver-
gent scheme! In Figure 6 we plot the DSA spectral radii for the “inconsistently” and the
“consistently” discretized low-order diffusion equation (3.61). The “consistent” spectral
radii [marked by filled-in circles, squares, and triangles] are independent of X4, and for
all quadrature orders N and all 0 < ¢ < 1.0 satisfy opga < 0.2247. [This upper bound also
holds for the DSA scheme applied to the continuous transport equation; see Eq. (2.41).]
This analysis shows that a way to obtain a low-order DSA diffusion discretization that
accelerates effectively for any XA is to derive this discretization from the discrete Sy equa-
tions, using the discrete P1 approximation. This was first suggested by Alcouffe [57, 63]

g

1 T T T T T T LI B A L R L AL A B I 8 |

0.9

0.8 "
0.7
0.6

Figure 6: opsa versus X,/
(c=0.98, “Inconsistent” and “Consistent” DSA Diffusion Discretizations)
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for the Diamond-Differenced Sy equations in 1-D and 2-D geometries. (In this paper, Al-
couffe also proposes other schemes in which the “consistent” method is approximated to
make it easier to solve, or to make it more useful for eigenvalue problems.) This same “con-
sistency” principle has been applied to other 1-D spatial differencing schemes by Larsen
and McCoy [83, 85], whose method is sometimes called “Larsen’s Four-Step” method.
The method described in Egs. (3.45)-(3.64) is a simple generalization, which we describe
here as (simply) the “Four-Step” method. The Four-Step method can be viewed as a di-
rect application of Lebedev’s KP;(1) method to the fully-discrete transport problem. [In
Eqgs. (1.37)-(1.39), L — § is the fully discrete transport operator, K is the (P;) projection
onto the subspace spanned by linear functions of y,, and D is the specific discrete operator
obtained when K is applied to L — §.] Unfortunately, practical algebraic difficulties with
the Four-Step method occur with many non-diamond differencing schemes in multidimen-
sional geometries; we discuss this later in detail.

In practical (finite, heterogeneous-media, nonuniform mesh) diamond-differenced Sy
calculations using the consistently-differenced diffusion discretization [Eqs. (3.61)-(3.64)],
iterative convergence is extremely rapid: the iterative error reduces at least two orders of
magnitude for every three DSA iterations. Also, in 1-D, the cost of each DSA iteration is
only slightly greater than that of a single source iteration because the low-order diffusion
problem is tridiagonal and can be solved directly by Gaussian elimination. Thus, most
practical 1-D problems can be solved with a computational cost less than that of about 12
source iterations.

If the underlying transport problem is highly scattering and optically thick, the unac-
celerated SI scheme can require hundreds or even thousands of iterations to converge. In
these cases, the DSA scheme can enable transport calculations to be performed in a very
small fraction of the time required for unaccelerated calculations. Sometimes, DSA en-
ables problems to be solved that would otherwise be viewed as “unsolvable,” due to the
forbiddingly excessive computational effort required.

In DSA, the importance of a consistently-discretized low-order diffusion equation can-
not be overstated. Generally, DSA with a conventionally-discretized low-order diffusion
equation becomes inefficient or even divergent as X;4 increases. To maintain rapid conver-
gence for all X, careful attention must be paid te the low-order diffusion discretization,

II1.C. S; Synthetic Acceleration (S2SA)

In the S2SA and other iterative schemes described below, the problem of consistently
discretizing a low-order problem is finessed by choosing a low-order equation that is a
transport equation — just like the high-order equation — and employing the same spatial
discretization scheme in the high-order and low-order transport equations. In S; synthetic
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acceleration (S preconditioning), the “low-order” problem (preconditioning step) employs
the Sy quadrature set, while the “high-order” equation employs a higher-order Sy quadra-
ture set.

For the diamond-differenced Sy equations in planar geometry, one can show easily
that the S2SA scheme and consistently-differenced DSA scheme are almost algebraically
equivalent. This is because the continuous S, and P; equations are equivalent (assuming a
Gauss-Legendre quadrature set), and the diamond-difference approximation does not alter
this fact for the discrete equations. In planar geometry, the only difference between S;SA
and DSA is that the boundary conditions have slightly different extrapolation distances.
This has no effect on the infinite medium Fourier analysis and no consistently measurable
effect in practical applications. The result is that the S;SA scheme converges with the
same iterative speed as the DSA scheme with a consistently-discretized low-order diffusion
equation.

In multidimensional geometries, the continuous S, and diffusion equations are alge-
braically distinct. Hence, the S;SA and DSA schemes are not algebraically equivalent. We
discuss the implications of this fact later.

For many 1-D non-diamond differencing schemes, the S2SA and DSA methods are
not algebraically equivalent. Nevertheless, in practice, both iteration schemes yield very
rapid convergence for 1-D problems, provided (in DSA} the low-order diffusion equation
is discretized “consistently” with the high-order Sy equation and (in S2SA) the low-order
S, equations are discretized using the same discretization scheme as the high-order Sy
equations.

Thus, the use of a low-order transport (S;) equation, rather than a diffusion equation,
is a way to circumvent the DSA problem of obtaining a consistently-discretized low-order
diffusion equation. However, the price of this success is that it is more costly to solve a
discrete S; equation than to solve a discrete diffusion equation. Therefore, the cost of the
low-order S;SA calculations is greater than in DSA. In 1-D geometries, this cost is suf-
ficiently low that the S; equations can be solved directly (i.e. non-iteratively) with minor
penalty. However, the relative cost of directly solving the S; equations in multidimensional
geometries is greater, in part because multidimensional S» quadrature sets contains more
angles, so the S; equations contain more unknowns per cell. Also, the convergence prop-
erties of the S2SA scheme in multidimensional geometries are not as favorable as in 1-D
geometries. (We discuss this point later.)

II1.D. KP Methods

Now we illustrate the application of a KP method to a discretized transport problem,
We continue to use the DD transport discretization, and we apply the KP; (1}P,(0) method
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to this discretization using two different discretizations of the diffusion equation that arises
in the Py (1) step. This step is identical to the low-order solution in the DSA method (Sec-
tion 1II.B), and the two discretizations that we choose are the edge-centered discretizations
shown in that section.

In the absence of discretization, a KP; (1)P(0) iteration is given by Eqs. (2.60)-(2.64).
With DD, the “K” step [Eq. (2.60)] in this iteration becomes:

Mo [ (£+1/3 £+1/3 i+1/3) _ Zsj. 0, Qj

R (‘3’5:,;{/% —‘l’if_ {/3) +% J\V,(,, /) f«b( ) ’ (3.66)
(£+173) _ (e+1/3) | . (€+1/3)
nJ 2 (wn,}'+l/2 Wn,j—l/?.) ) (3.67)

together with boundary conditions. If we apply the conventional edge-centered discretiza-
tion to the Py (1) step [Eq. (2.61)], we obtain

B 1 (e+2/3) _ p(e+2/3) 1 (42/3)  p(6+2/3)
3% j+1hj+1 (FHW Finp )+3z,,jhj (F1+1/2 —FiLip2 )

¢
+ (Za j+1/2h]+1/2) 1(4-;-%3
_ Zsjriftjn (d}h:l/z ¢J+]) 25,31 (¢§f+1/2)_¢£_f)) 1< j<T ., (3.68)

2 2
¢Se+2/3) (x) _ ¢§€+1/3) (x)+Fj(€+2/3)(x) _ (3.69)
The P,(0) step [see Eq. (2.63)] is:
(e+1) _ Bc (e+2/3) . (8)
£ T—pe (¢ —9; ) : (3.70)

The final step is a simple addition to produce the next iterate:

¢§e+1)(x) ___¢S_e+2/3)(x)+F(e+1)(x) ) (3.71)

Fourier-analyzing this scheme, we obtain:

__ Wpsa — Be
0="2g (3.72)
where P is the adjustable parameter in Eq. (3.70), and where wpsa was shown in Section
IILB to be:

C(l — (1)51)

psa = OS] — 3 , (3.73)
(1-c) [1+(%ﬁ) A2}+%A2
c N W
m51~52 T3l (3.74)



Fast iterative methods 61
2 Zh
= —1t _— . .
h an( > k) (3.75)

As we discussed in Section III.B, wpgs — 1 as the mesh spacing becomes large and
¢ — 1. We see from Eq. (3.72) that the KP,(1)P>(0) spectral radius approaches unity
when wpgs — 1. Thus, with the standard edge differencing of the diffusion equation, the
KP,(1)P:(0) loses effectiveness for optically thick cells when ¢ — 1. If we replace the
standard edge-differenced diffusion equation, Eq. (3.68), with the consistent differencing
developed in Section I11.B, we obtain a different result. The consistent differencing is like
Eq. (3.68) above except that the absorption and source terms have a three-point discretiza-
tion:

1 (£42/3) _ p(£42/3) 1 (0+2/3) _ (€42/3)
‘SE,,J-thH (Ff+3/2 _Fj+l/2 )+32;,jhj (Fj+1/2 —Fj—1/2 )

Za jr1 el [ (04273) | L(6+2/3)\ | Za i [ (42/3) | L(842/3)
B (R FY ) + = (R EE)

s j+1h; E+1/3) (¢ Lo jhj (o (e413) (€
= by (¢§+t/)_¢gll)+%i(¢g+/)_¢5.)) . (3.76)

A Fourier analysis yields the same equation, Eq. (3.72), except that now wpsa satisfies:

Mpsa = g1 "-* _C(l — 0)31)
A I—c+ %—AZ

3.77)
As we discussed in Section II1.B, this expression is bounded below 0.2247¢, the same value
as the DSA method with no discretization. Thus, gtven a consistent discretization of the
diffusion equation, the KP;(1)P2(0) scheme applied to the DD equation performs exactly
as it does with no discretization. As we showed in Section IL.D, if we choose the optimum
value B =~ 1/8.88, we obtain the bound

6 <0.127¢ (3.78)

on the spectral radius of KP;(1)P>(0) scheme applied to DD, independent of the mesh
spacing.

Thus, we see once more that the discretization of the low-order operator is extremely
important to the performance of a preconditioner. If an inconsistent discretization is em-
ployed, the preconditioner can lose effectiveness or even produce a divergent iteration for
sufficiently coarse meshes. However, if a consistent discretization is used, then the precon-
ditioned iteration can retain its un-discretized performance for all mesh spacings.
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HLE. Transport Synthetic Acceleration (TSA)

The TSA method has been developed and applied to spatially discretized Sy equations
by Ramoné, Adams, and Nowak {243] and by Zika and Adams [284, 285]. As with the
S2SA scheme on which it is partly based, the TSA method has no loss of iterative conver-
gence as LA increases, assuming that the low-order problem is fully converged for each
iteration. Figure 7a shows the TSA spectral radius as a function of Z;4 for the DD spatial
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Figure 7a: Gysa versus %,k
(c=0.98, Diamond Differencing in Slab Geometry, S4 high- and low-order.)
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Figure 7b: OTsa versus XA
(¢=0.98, Diamond Differencing in Slab Geometry, S4 high-order, S, low-order.)
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discretization in slab geometry. We note that there is no dependence of ¢ on £:h. (This
is true only for DD; for more complicated spatial discretizations, there tends to be some
variation, but usually the greatest spectral radius occurs for 2,4 ~ 0.) For this figure we used
the S4 quadrature set for both the high-order and low-order problems; the figure displays the
effects of various choices of the parameter [ (the fraction of the scattering cross section that
is neglected in the low-order problem). Figure 7b is identical, except that the S» quadrature
set is used for the low-order problem. This increases the spectral radius somewhat, but not
significantly.

As ¢ — 1 in the high-order problem, the TSA spectral radius approaches 3, provided
that the low-order quadrature set is the same as the high-order set [243]. If the low-order
quadrature set is Sy, this is true as well if § > 1/2; otherwise, the spectral radius can be
slightly higher than 3.

HLFE. The Lewis-Miller (LM) Methods

The LM Second-Moment scheme for the continuous transport equation is defined by (¥)
the high-order transport equations (2.22)-(2.24) for qf(e“/ 2) (x,u), then (i) the calculation

of 512 (x):
o= [

(3"2 )w“’“” (x,m)du (3.79)

and finally (iii) the diffusion equations (2.82)-(2.84) for ¢(€+1)(x). Here we consider the
same Sy and diffusion discretizations as considered in the “inconsistently”-discretized
DSA equations in Sec. IIL.B. Then the high-order Sy equations are defined by Egs. (3.10)-
(3.13), QJ‘(fjJ:]/?z is defined by:

2
+172) _ o 3p—1 (e+1/2) .
¢, g2 Z n2 WY j+1/2Wn > 0<j<J, {3.80)

n—

¢Si-+1]/}2 1s defined by the discrete diffusion equation:

1 (e+1) (e+1) 1 £+1) L (E+1) (£+1)
_3Zt,j+1hj+l(j+3/2 ¢;+1/2) 3)::’1.;,} (¢;+1/2 ;- 1/2) (za1+1/2h1+1/2)¢1+1/2

_ 2 (B+1/2) (£+1/2) 2 (0+1/2) (8+1/2)
T 3%, i1k ( 2,J+3/2 ~¢2:J+1/2) B (¢2:J'+1/2 —¢2,J'-1/2) ’

1
+5 (hjs1 Qi1 +hjQ;)  1<j<T-1, (3.81)

with boundary conditions
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L, e+1) _ e+ ey | (1) _
302~ 3}:, 7 (‘1’3/2 =01/ ) t5 Zath) ), = Q
2 ('—’+1/2 (€+1/2) X1 (£+1/2)
+32;]h] ( 23/2 ¢21/2 ) Z §+ﬂ" WH,I/Z Wn (382)
! n=1
and
(E+1) L (2+1) (441
(£4+1/2) (£+1)2)
321}1] (% J+1/2 - J—1/2) ) (3.83)
and ¢(E+ ) is defined by:
i+l ¢ ¢ i
¢5 - ) (¢(l1/2+¢§ )1/2) , 15T . (3.84)

The Fourier analysis of this discrete LM scheme can be carried out just as described
in Secs. III.A and III.B. Omitting the details of this analysis, we shall just state the resul.
Defining a single Fourier mode for the iterative error by

0 =0y = e 659

and defining A by Eq. (3.28), we obtain

3t — A?
or(h,A) = [Z 5 2 - 5 (3.86)
2[5 LA A2+3(1—¢) [1 + (%ﬁA) }
Thus, we have the upper bound
3k — A?
<<
o (1, A)] < 5 Z 1+u A2 AZ43(1—c) 387)

which is attained for X2 — 0. This result is a discrete version of Eq. (2.50), which has the
same upper bound:
|0y (h,A)] £ 0.2247c . (3.88)

Hence, this discretization of the LM scheme converges rapidly for all 0 < ;A < <o and
0 < ¢ £ 1. This result — rapid convergence with inconsistent discretizations — is very gen-
eral; it holds for many, and perhaps all, reasonable discretizations of the LM diffusion
problem for ¢@+1) Thus, the LM method provides another way to circumvent the prob-
lem of obtaining a consistent low-order diffusion discretization for DSA; consistency is not
needed.

However, as with the S2SA method, which also overcomes this difficulty, there is a
price to be paid. In the S2SA method, the price is that the low-order equation is a discrete
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S, equation, which is more costly to solve than a discrete diffusion equation. The price
associated with the LM scheme is that two numerical estimates for the scalar flux ¢; are
obtained: one from the high-order Sy sweep, and one from the low-order diffusion calcula-
tion. Upon convergence, these two estimates are identical only if the spatial discretizations
of the Sy and diffusion equations are “consistent” in the following sense: when the exact
transport expressions for ¢, ; are used in the right side of the low-order diffusion equations,
the exact transport scalar flux ¢; arises as the solution of these equations.

Therefore, the LM method is rapidly convergent, but it is not a true acceleration scheme:
one does not usually obtain the unaccelerated Sy solution. (The exception occurs when a
consistent discretization is used to solve the LM equations.) However, in the limit Z:hA — 0,
the truncation errors tend to zero, so the two LM scalar fluxes and the unaccelerated discrete
Sn solution all converge to the true solution of the Sy equations. In this sense, the LM
method is a legitimate, rapidly-converging method for solving the Sy equations.

A difficulty with the LM Second Moment scheme is that the terms on the right side of
the diffusion equation contain second derivatives of the second Legendre moment ¢z, which
can be negative. Therefore, it is very difficult to guarantee that the numerical expression
for ¢ that comes from solving this equation is positive. (This problem has been addressed,
but at the price of introducing a nonlinearity [90].) Another difficulty is that the accuracy
of the LM scalar fluxes depends on how accurately both the Sy and diffusion equations are
discretized. In other words, from an accuracy point of view, one must be concerned with
both the Sy and the diffusion discretizations.

The LM First-Moment scheme was tested by Lewis and Miller [61]; a related nonlinear
version of this method has recently been implemented and tested by Smith and Rhodes
[283]. These authors report fast (DSA-like) convergence for neutronics-style problems.

II1.G. The Quasidiffusion (QD) Method

In Chapter IT we showed that when the continuous QD equations are linearized about
a spatially flat solution, the QD method reduces to the LM method. The same is true for
the discretized QD and LM methods. Therefore, the discrete Fourier analysis predicts that
the LM and (linearized) QD methods have the same rapid convergence rates. In practi-
cal problems, the QD, LM, and consistently-discretized DSA schemes all converge with
approximately the same rapid rate of convergence.

As with the LM scheme, the QD solution usually yields two estimates of the scalar
flux: one from the spatially discretized Sy equations, and one from the low-order quasi-
diffusion equation. These two solutions and the solution of the unaccelerated Sy equations
differ by a spatial truncation error. (Thus, as with the LM method, the QD method is not
usually a true acceleration scheme. The exception is when consistent discretizations are
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used.) However, as the optical width of the spatial cells X,/ tends to zero, all three of these
solutions converge to the solution of the spatially continuous Sy equations.

IIL.H. The Weighted Alpha (WA) Methods

In Chapter II we stated that when the continuous WA equations are linearized about a
spatially flat solution, the nonlinear WA method reduces to linear equations that are very
similar to the S2SA equations. The same is true for the discretized WA scheme. Thus,
just as with the QD scheme, spatial and angular discretizations have a minor effect on the
rates of convergence. However, spatial and angular discretizations do have an effect on
the numerical solution; if one uses different discretization schemes for the Sy and WA
equations, one does not achieve the unaccelerated solution of the discretized Sy equations,
but obtains instead a different approximate Sy solution.

IILI. Second-Order Forms of the Transport Equation

We have seen that discretization details can have a crucial impact on the behavior
of iterative methods. For example, given the DD transport discretization, three different
discretizations of the low-order diffusion equation produce three very different iterative
schemes. One (consistent) is always rapidly convergent, a second (edge-centered inconsis-
tent) is convergent but ineffective for thick cells, and a third (cell-centered inconsistent, as
analyzed by Reed [51]) is divergent for thick cells.

Because the second-order forms of the transport equation (discussed in Section ILI)
have the same structure as the diffusion equation, it is straightforward to discretize the
two equations consistently. Consider, for example, the edge-centered discretization of the
diffusion equation that is given by Eq. (3.32) — the discretization that we have already noted
is inconsistent with the DD discretization of the first-order form of the transport equation.
We can apply this edge-centered discretization to the even-parity transport equation. With
iteration indices the result is:

+(£+1/2) +(¢+1/2) +(€+1/2) +(£+1/2)
_pYmiy “Vngen o ¥njere T Vnimie | Bpeihie 3k ey
" % j1hjn " %, jh; 2 mit1/2
Zs jr1hj1 + 2 jhj Qjhj+Qj+ihjti
- > ¢1+1/2 5 (3.89)
Let us consider the iteration scheme given by Eqs. (3.89), (3.32), and the following:
(e+1/2) +(£+1/2)
Oty = > WV jr1/2 Wn o (3.90)
nip, >0
¢ (£+1) ¢(€+1/2 (€+1) (3.91)

j+1/2 = Pjr1)2 Fioip -
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This is much like a one-dimensional version of DSA scheme that Morel et al. first ex-
plored in three dimensions for the even-parity equations [165]. We can Fourier-analyze
this scheme, assuming the same model problem (infinite, uniform) as before. Omitting the
details, we obtain:

C(l — (Ds()
A) = g — ——— 5 3.92
Opsa(A) = oy —c+ln? (3.92)
where N
C w
ws1(A) = 2 Z : +#”2 3 (3.93)
A= — (2[1 —cos(ZAN)])? (3.94)

Wpsa is of the same form as the DSA eigenvalue for the equations without spatial
discretization, and the same form as the eigenvalue of the DD DSA method with consistent
differencing of the diffusion operator. (Only the definition of A is different.) Thus, we have
the bound wpsa (A) < 0.2247¢, which is independent of A.

We can also apply the K Py (1)P>(0) method to the even-parity equations. In this case we
retain the transport sweep, Eqgs. (3.89) and (3.90), and the diffusion equation, Eq. (3.32),

and we define:
¢(E+2/3) q;(””z fasans,

/2 = Qe T (3.95)
(1-Be)F, J(-ﬁ/l% pe [q)ji_-é-f/; _¢§?1/2 : (3.96)
VL NARTS S (3.97)
The Fourier analysis in this case produces
U)KP|P2(A):'"1 1[3 [wpsa(A) —Bc] . ‘ (3.98)

This has the same form as the un-discretized case discussed in Chapter II; thus, if § is
chosen to be ~ 1/8.88, the spectral radius is bounded less than 0.127¢,

The main point of this illustration is that there is a form of the transport equation —
the even-parity form — for which it is simple and natural to obtain consistently discretized
acceleration equations. In this case, spatial discretization has little or no effect upon the
performance of the acceleration scheme — performance is often independent of mesh spac-
ing. Most of Lebedev’s work on KP methods was analyzed and implemented within the
even-parity framework; this is one reason that he did not observe poor iterative behavior
caused by inconsistent discretizations. When Lebedev did employ the first-order form of
the transport equation, it was usually for neutronics calculations in which the mesh cells
were optically thin [Section X1.21 of [10]], [280, 293]. The importance of consistent dis-
cretizations for first-order forms and coarser meshes was recognized by other researchers
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in the former Soviet Union, including Troschiev’s group [42] and Germogenova’s group
[106]. We are confident that if Lebedev had tested his KP metheds for the first-order form
of the transport equation on optically thick meshes, he would have observed poor itera-
tive behavior, in agreement with western experience and analyses (such as our analysis in
Section IIL.D).

A natural question is: why would anyone use a form other than even-parity for a prob-
lem that requires significant iterative acceleration? The answer is that the even-parity form
(and other forms with second-order derivatives, such as the odd-parity, spherical harmon-
ics or Py, and SAAF equations) have strengths and weaknesses different from those of the
first-order form. The first-order form leads to a discrete system of equations for each direc-
tion that can be ordered in block lower-triangular form, enabling a solution by “sweeping”
the spatial grid. Second-order forms, on the other hand, produce banded matrix systems
that usually require more effort to invert. Another factor is the accuracy of the solution on
a given spatial grid. It can be difficult to discretize second-order forms accurately in some
problems (with streaming through void regions, for example). It can also be difficult to
discretize first-order forms accurately in other problems (such as optically thick, diffusive
problems). Given these and other considerations, there is not a convincing argument at this
time to focus exclusively on any one form; instead, research continues on discretization
and iterative acceleration for both first- and second-order forms of the transport equation.
[286, 264, 281, 198, 211].

II1.J. Performance in Non-Model Problems

In this chapter we have Fourier-analyzed iterative methods for the discretized transport
equation, but only for one particularly simple model problem: an infinite medium with
constant cross sections and a uniform space-angle grid. Two obvious questions are: how
do these iterative methods perform on realistic problems with nonuniform spatial grids,
boundaries, and material heterogeneities, and does the infinite-medium Fourier analysis
remain a good predictive guide for the convergence rates in these problems?

Until recently, it was generally believed that performance in realistic problems is almost
identical to performance in the simple model problem, as predicted by the Fourier analysis.
This belief was founded on practical experience, over many years, on a vast number of re-
alistic transport problems with spatial heterogeneities, nonuniform spatial grids, and finite
system boundaries. Indeed, the power of the Fourier analysis is not so much that it accu-
rately predicts the behavior of transport iteration schemes in idealized problelms, but that
it also predicts the behavior in realistic non-model problems as well. (Alternatively, one
could say that the discretization/iteration schemes generally exhibit the same basic iterative
performance on model and non-model problems.)
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However, recent work by Azmy and co-workers has shown that “extreme” problems
exist in which the performance of DSA and similar acceleration schemes [259, 260, 279]
is significantly degraded. (We are not aware that any problems have been seen in which a
“consistently-discretized” DSA scheme has actually become unstable.) These problems are
characterized as being 2-D or 3-D (not 1-D), with strong spatial heterogeneities, and with
spatial grids having large aspect ratios. It is believed that for such problems, the diffusion
approximation to the transport equation is not sufficiently accurate to provide an efficient
preconditioner. Researchers are now seeking to understand how severe this degradation can
be, whether it is significant in problems of practical interest, if it occurs for non-DSA-like

iterative methods, and whether there are ways to make iterative methods more resistant to
it.

IILK. Summary of Chapter 111

Here we summarize the results developed in this chapter:

1. Tterative methods that are algebraically equivalent for the continuous transport equa-
tion, such as the DSA and Lewis-Miller methods, are generally not equivalent for the
discretized transport equation. This 18 because the discrete equations approximate the
continuous equations, and the algebraic manipulations that demonstrate equivalence
for the continuous equations are not possible for the discrete equations.

2. The spectral radius of an iteration scheme depends on the angular discretization (for
discrete-ordinates, the choice of quadrature set) and the spatial discretization (the
choice of the spatial discretization schemes and the spatial grid).

3. The discrete-ordinates approximation of the angular variable in the transport equation
generally has only a minor effect on convergence rates, and this effect does not lead
to divergence for standard symmetric angular quadrature sets.

4. For the first-order form of the transport equation, the choice of the spatial discretiza-
tion schemes for the high-order and low-order DSA equations has a much more sig-
nificant effect on convergence rates than the choice of the angular quadrature set.

5. For the first-order form of the transport equation, unless special steps are taken, the
spatially discretized DSA method generally loses efficiency or becomes divergent
(the spectral radius of the scheme grows to a value equal to or exceeding unity) as
the optical thickness of a spatial cell increases. This can be prevented by choosing
a spatial discretization scheme for the low-order diffusion equation that is consistent
with the discretization scheme of the high-order transport equation. The four-step
method is one way to achieve this consistency.
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For the first-order form of the transport equation, the S2SA, TSA and WA schemes
are unconditionally rapidly convergent if the low-order equations use the same (trans-
port) spatial discretization as the high-order Sy equations. However, the low-order
equations in these schemes are usually more costly to solve than the low-order equa-
tions in the DSA scheme.

The LM, QD, and WA schemes, in which the low-order equation directly determines
the next scalar flux iterate, do not generally experience iterative divergence. These
schemes usually are rapidly-converging for all spatial grids, without requiring that
the diffusion discretization be consistent with the transport discretization. However,
if the high-order and low-order equations are not discretized consistently, then upon
iterative convergence, a truncation error distinguishes the two scalar flux solutions
that come from the low-order and the high-order calculations. Also, neither of these
discrete scalar fluxes equals that of the unaccelerated discrete transport equation. In
the limit X5 — 0, these discretization errors disappear, and all three solutions limit to
the exact solution of the Sy equations. However truncation-error differences exist for
any finite spatial grid. Thus, the LM, QD, and WA methods converge rapidly, but un-
like preconditioning methods, they are not true acceleration methods; upon iterative
convergence, they do not yield the unaccelerated solution of the spatially discrete Sy
equations. (The exception is when the equations are discretized consistently.) One
can view this either as a difficulty (the discrete Sy solution is “contaminated”) or an
opportunity (a good low-order discretization can produce improvements over the un-
accelerated solution). In problems containing important void or streaming regions,
the former is likely to be true, whereas in diffusive problems the latter is likely to be
true.

. For the even-parity transport equation, one can discretize the high-order transport

equation and the low-order diffusion equation using the same spatial differencing
schemes. If this is done, DSA and the various KP iterative methods generally exhibit
very rapid convergence with a rate that is mesh-independent, or nearly so.

. The behavior of DSA and related acceleration schemes for realistic problems is gen-

erally well-predicted by the Fourier analysis of the idealized infinite homogeneous-
medium problem. However, for certain extreme problems, in which diffusion theory
does not accurately describe the behavior of the slowly-converging error modes, DSA
and related schemes degrade in performance.

We have theoretically estimated the convergence rates of transport iteration schemes
for various values of X,k, and we have expressed a desire for iteration schemes that
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are rapidly convergent for all values of £;4. However, there are many practical ra-
diation transport problems — such as neutron transport problems in nuclear reactors
— in which, to achieve acceptable accuracy, spatial cells are rarely more than a few
mean free paths thick. If for a desired application one knows that the spatial cells are
not optically thick, then it is sensible to use an acceleration scheme that is conver-
gent and efficient for optically thin spatial cells, even if it is less efficient for thick
cells. However, the code user must be aware that if the code is applied to problems
with increasingly thick spatial cells, the rate of iterative convergence of the code will
degrade.

IV. OTHER DIFFERENCING SCHEMES AND GEOMETRIES

In Chapters II and III of this Review, we used the simplest geometry (1-D Cartesian) and
one of the simplest spatial discretization schemes [diamond differencing (DD)] to illustrate
some key concepts and properties of modern iterative methods for transport calculations.
In this and subsequent chapters, we discuss, in less detail, the complications associated
with more accurate spatial discretization schemes, more challenging geometries, and more
complex physics. For now, we continue to assume steady state problems with isotropic
scattering and one energy group. We find, not surprisingly, that as the discrete transport
problem becomes more geometrically complex (and realistic), the task of devising a robust
and efficient iterative method becomes more difficult.

IV.A. 1-D Planar Geometry

A 1-D planar spatial discretization that is more accurate and more complicated than
DD is the one-parameter family of linear discontinuous finite-element (LD) methods or
generalized corner balance (GCB) methods [195, 238]. This family, with the SI iteration
scheme, is defined by:

2u, (141/2) | . (1+1/2) (1+1/2) (+1/2) _ € 1 1091
%, ik ( [anL +‘\un,j, ] Wn} 1/2 + W, JWL ¢ 2 Ef,] ) 4.1)
2 gy Vg2 | (41)2) a+1/2) _ iy, 195k
Zz h ( n_1+1/2 [wn,]L +wn,], ] +W,JR = 2¢j,R+§_E:' H (42)
i+1/2)  1+6a; (+1/2) 1-0 +1/2
Wfl,j+{/)2 = _2_"1“1’(1'}_ R/ : + = J"VP(I,} L/ ) y Hp > 0 ) (43)
a+1/2)  146n 41 (4172 1—9n, i+l (14172
n,j+1/)2 9 e n,j+1,L + ——2_1_ (,]+{1% y Hn <0 . (4.4)

[
o' = Zw,,’;’;‘iﬂ W “4.5)
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o = Zw,f;fé/z Wn s (4.6)

with the “update” equations

o = ol @.7)
D = gt “48)

In these equations, the subscripts “L” and “R” refer to the Left and Right halves of the
spatial cell. For example, Eq. (4.1) [(4.2)] represents the balance equation for the left
[right] half of the cell. If in Eqs. (4.3) and (4.4) we define © = 3, the scheme is equivalent
to the standard LD method; if © = 1, the scheme is equivalent to the mass-lumped LD
method and also to the “simple corner-balance” method [140, 195].

To analyze the convergence properties of the SI scheme with these methods, we con-
sider the same infinite homogeneous-medium problem as before. A complication that im-
mediately arises, relative to the analysis of SI for the DD method, in that swo unknowns are
needed to describe the scattering source in each cell. The description of a single Fourier
error mode is now:

QiL=0;r=0, 4.9

o\ = o'Aye™ | H=LR, (4.10)
Vo = @fa, ge™™i | H=LR, (@.11)
Vi = abue ™ @.12)

Using Eqgs. (4.3)-(4.4) to eliminate the edge fluxes from Eqgs. (4.1)-(4.2) and inserting
the above description of a single error mode, we obtain:

L+ g5 (1- [ -6, ™) g (1 ~ll +e"]e_Mh)] ani] < -AL] >0
! ~ &0, 1+ &6, [anr] 2 [AR
(4.13)
n Un - - -
T+ %50 ~EiOn anp)| _c AL] fin <0
. = i <0,
el (1-+0nem) 14+l (1-[1-8)e@k) | lana] ~ 2 |4k
(4.14)
More compactly,
C
Tn(;&)an = '2_A 3 (4;15)

where ap, and A are 2 x 1 vectors and T, (L) is the obvious 2 x 2 matrix. It follows that

= % { 12: wa [T(A)] }A : (4.16)
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Thus, for each value of A the iteration eigenvalue (0 satisfies a matrix eigenvalue prob-
lem. [The analog for DD is the 1 x 1 (scalar) Eq. (3.29).] The dimension of this matrix is
the number of unknowns required to describe the scattering source in a cell. Thus, there
generally are several error modes, one corresponding to each eigenvector A, for each value
of A. A consequence is that much more is asked of the low-order operator.in a synthetic
acceleration scheme (i.e., the preconditioner) for a transport discretization with several un-
knowns per cell than for a scheme with a single unknown per cell: the low-order operator
has many more modes that it must attenuate. The transport discretizations with the most
unknowns per cell are high-order schemes in multidimensional problems. These are the
schemes for which it is most difficult to create efficient acceleration methods.

IV.A.1 Four-Step DSA

It is straightforward, although algebraically tedious, to apply the four-step procedure
to the GCB equations in slab geometry. This has been reported [83] for the © = 3 case.
Results are quite good; spectral radii are < ¢/3 for all values of ¢ and cell thickness. The
four-step procedure yields a diffusion discretization with one unknown at each cell edge,
along with a local calculation in each cell that translates the edge-centered corrections to
half-cell-average corrections. These calculations are much less computationally expensive
than a GCB transport sweep; thus, the four-step procedure produces an extremely effictent
acceleration scheme.

It is interesting that the four-step method can be applied to different (but equivalent)
algebraic forms of a given transport discretization, such as GCB, with different results.
For example, consider Eqs. (4.1)-(4.4) on one hand, and Eqs. (4.1)-(4.2) with the edge
fluxes eliminated [by substitution of Eqs. (4.3)-(4.4)] on the other. The four-step procedure
produces slightly different acceleration equations when applied to these two systems. In
fact, using the four-step procedure on the second system is equivalent to using it on the first
system after pre-multiplying Eqgs. (4.3)-(4.4) by u,. This effectively changes the angular
moments that are taken in step 1 of the procedure. We show later that this can make a
significant difference in the performance of the method.

The following appears to be a general truth in slab geometry: when applied to virtually
any spatial discretization scheme with a symmetric angular quadrature set, the four-step
procedure produces an efficient acceleration scheme. With spatial discretizations more
complicated than DD, it can be algebraically tedious to derive the discrete diffusion equa-
tions. However, with effort these equations can usually be manipulated into tridiagonal
form, making them easy to solve. Spectral radii tend to be < ¢/3, which makes the result-
ing method very fast for problems with isotropic scattering.
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IVA.2 Other DSA Schemes

For transport discretizations that are more complicated than diamond differencing, the
four-step procedure requires algebraic manipulations that can be daunting. Moreover, in
multidimensional geometries it 1S not clear how to solve efficiently the resulting discrete
low-order problems. Thus, there is motivation to develop DSA-like schemes with low-
order equations that are easier to derive and solve. We now introduce one of these schemes,
Adams and Martin’s “modified four-step” (M4S) method, in the friendly setting of planar
geometry.

The basic idea of the M4S method is to make an approximation in the angular first-
moment equations that arise in the full four-step procedure. To illustrate, let us consider a
GCB transport sweep. After this sweep, which produces fluxes at iteration (I + 1/2), the
equations for the exact additive corrections f, are:

-

2un_ |1 €i Cjf (+1/2) U
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1 +6, 01 1— 6,., )
fn,j+1/2 = —fifn,jﬂ,L + '"'""é"iifn,j-i-LR , U <0 . (4.20)

These equations are the analog of Egs. (3.46)-(3.47), previously shown for the DD method.
Now we operate on the first two of these equations [(4.17) and (4.18)] by the discrete Py
approximation: multiply by wy, (or wpp,), sum over n, and introduce the approximations

Tojx12= ( 12 +3Girin) 4.21)

This yields the four equations:
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(Much of the remainder of this subsection is borrowed from Wareing [192].) For sim-
plicity, we now assume that the parameter © = 1, which corresponds to the “lumped” linear
discontinuous method or the “simple” corner balance method. Then, from Eqs. (4.19) and
(4.20) we easily obtain

1 1 «
Git2 = 5 (YFir+Gjr) — 3 (YFjr1L—Gjs12) (4.26)

where y = 1/2 is defined by Eq. (3.54). To this point the development is identical to the
full four-step procedure. The full four-step procedure would now obtain an expression for
the cell-edge scalar fluxes, F;,, 2, in Eqs. (4.24) and (4.25) by taking an angular moment
of Eqgs. (4.19) and (4.20). The approximation made by Adams and Martin is to replace the
cell-edge scalar fluxes in Eqs. (4.24) and (4.25) with values that are constructed entirely
from cell-j information. With a discontinuous finite-element method, this can always be
done by simply evaluating the function expansion at the cell edges. It can also be done
with GCB; in the © = 1 case, for example, we obtain the following approximations for Egs.
(4.24) and (4.25):

2 1
= (FiL+Fir)—F; 1 =0 4.2
33, jh; [2 (P:hL"' J,R) _],L:t +Gjp ; (4.27)
2 F; —1(F» +Fig)|+Gjr=0 (4.28)
3Et’]hj ],R 2 J,L j,R _],R -_— . .
These equations yield very simple Fick’s-Law expressions for the currents:
1
Gig=0GjL= T3% % (Fir—FjL) - (4.29)

These expressions can be used with Eq. (4.26) to easily eliminate all currents from Eqgs.
(4.22) and (4.23). The result is a relatively simple system of two equations per cell for the
scalar-flux corrections Fj g and Fj 1.

In contrast, the fully consistent four-step equations for the Fyy/; in Eqs. (4.24) and
(4.25) contain G terms from neighboring cells. The F;./; terms in these equations arise
from taking the quadrature sum of g2 £, ;11 /2:

N
Y 3#2nfn,j+1/2Wn = 3482 fr, j,R W + > 3B fr it i Wn - (4.30)
n=1 .

Ha>0 <0
Making the P; approximation for each f in Eq. (4.30) [as shown in Eq. (4.21) for f; /2],
we obtain | 9%
Fipip= 2 (Fjg+Fj1L) + 5 (Gig—GjrL) (4.31)
where

a=4 Y wpwy 1.
Hp >0
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Fortunately, when Eq. (4.31) is substituted into Eqgs. (4.24) and (4.25), it is possible to elim-
inate the G terms by solving two equations for two unknowns at each cell edge. (However,
eliminating the G terms from the four-step DSA equation is simple only for this 8 = 1
scheme in the GCB family; other values of 8 lead to much more algebra.) .

Wareing introduced a different simplification of the four-step equations by approximat-
ing Eq. (4.31) as follows:

Fiap= % (Fir+FirL) - 4.32)

Like the Adams-Martin scheme, Wareing’s scheme enables the immediate elimination of G
terms from the equations, but unlike Adams-Martin it produces a discrete diffusion system
that has a symmetric coefficient matrix. We call this method the “simplified symmetric”
scheme.

There is no a priori guarantee that the Adams-Martin or Wareing scheme produces
a rapidly-convergent method; this issue must be addressed by analysis and testing. This
has been done; in Figure 8 we show the Adams-Martin “modified,” Wareing “simplified
symmetric” and the “full” four-step spectral radii as a function of mesh spacing for the
0 = 1 GCB method. In all cases the Sg Gauss-Legendre quadrature set was employed. The
results are very good: the spectral radii approach the expected analytic value (0.2247¢) for
fine meshes, remain < 0.5 for all mesh spacings, and approach zero for thick cells.

We remarked earlier that one can obtain different four-step DSA methods depending on
the form of the discrete transport equations that is used as a starting point (which basically
affects which angular moments are taken). If instead of taking the u? moment in Eq. (4.30)
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Figure 8: Spectral radius vs. mesh spacing; GCB 6 = 1 scheme, various DSA methods,
(c = 1, §1¢ Gauss quadrature)
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we had taken the u® = 1 moment, only the definition of o in Eq. (4.31) would change. How-
ever, this seemingly small change is enough to cause the spectral radius to remain roughly
constant for all mesh spacings instead of limiting to zero for thick cells, as shown in Figure
8. This shows that seemingly small details in a low-order operator can make a significant

difference in its performance as an accelerator (i.e., preconditioner), particularly for large
Zh.

IV.A.3 Transport Synthetic Acceleration (TSA)

The TSA scheme was introduced in Chapters II and III. This scheme eliminates the
question of consistent discretizations of different operators, because the low-order operator
is itself a transport operator. Thus, one simply uses the same spatial discretization for
the high and low-order problems. This causes the performance of TSA to be essentially
independent of the spatial discretization scheme.

The behavior of the TSA method in multiple space dimensions is similar to that in 1-D.
The main difference is that in multi-D, it is possible for the TSA method to diverge if
is sufficiently close to unity [243]. Thus, greater care must be taken in the choice of B to
ensure that the TSA method is not divergent.

VA4 LM, OD, and WA Methods

As discussed in Chapters II and III, these methods do not require that the discretization
of their low-order operators be consistent with the transport discretization — rapid con-
vergence is attained even with independent discretizations. However, when independent
discretizations are employed for the transport and low-order operators, the converged so-
lution is not the same as the solution of the transport discretization, but is influenced by
the discretization of the low-order operator. Thus, given a transport discretization whose
solution has some highly desired properties, one should be cautious about “accelerating”
that solution by using the LM, QD, or WA methods with inconsistent discretizations. It is
possible to derive consistent discretizations for these methods, and these will indeed pro-
duce the same solution as the underlying transport discretization. However, the algebraic
difficulties surrounding such consistent discretizations are just as severe as those associated
with consistent DSA.

IV.B. 1-D Spherical Geometry

In 1-D spherical geometry, the angular flux depends only on the radial distance (r)
from the origin and the angle (0) between the outward radial direction and the direction
of particle flight. This angle changes as a particle streams (unless the particle is moving
directly toward or away from the origin), which means that in this geometry the streaming
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term contains a derivative in the angle variable. If 4 = cos9, the 1-D spherical geometry
transport equation (with source-iteration indices included) can be written [9]:

P rzw(£+1/2) la (1 _ )W(Z-H/Z)
%-—-—-—( pw )(r M+ | 5 ](w)+Ez(r)w(””2)(w)
Esér—)q)(”)(rwgr—) , 0<r<R, -1<u<l, (4.33)
NG / WD (e Nyl (4.34)

The angular derivative term in this equation significantly complicates the analysis of
iteration methods. If we try to analyze source iteration for a simple model problem (infinite
medium, uniform material properties) as we did in slab geometry by postulating that the er-
ror in \y at a given iteration is a separable function of r and g, we find that this algebraically
does not work: the error is not separable. Thus, conventional wisdom has been that it is not
possible to Fourier-analyze iteration schemes in spherical geometry.

Here we show that some Fourier analysis is in fact possible. As before, we set the source
@ to zero and interpret the unknown functions as iteration errors. Then we analytically
eliminate the angular variable to obtain an integral equation for the error in ¢(r) [9]:

o [ PO B (Z |~ r'l) - Er (B + )] (4.35)
Here Ej is the exponential integral:
v o= 1]
E x/ md':f —e"HMay 436
1(2)22,20#6 u (4.36)

Defining ¢(r) for negative » such that ¢(r) = ¢(|r|) for r < 0, we can write Eq. (4.35) in the
following form:

rolé+H (r =3 f Fol (E(Z | r =7 ))dr . (4.37)

Qur definition of ¢ for negative arguments means that the product r¢(r) is an odd function
of . We therefore propose the following Fourier ansatz:

O (r) = w’sin(AZ,r) . (4.38)

If the second definition of the E; function is substituted into Eq. (4.37) along with this
ansatz, then the integral over r' can be performed, yielding the following expression for the
iteration eigenvalue :

du C

1
(D(?L)EC o m=—x

tan A . (4.39)
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This is identical to the slab-geometry result, Eq. (2.12). Thus, in the absence of spatial and
angular discretization, source iteration behaves the same way in 1-D spherical geometry as
in 1-D Cartesian geometry.

We turn next to DSA. In the model problem (infinite uniform medium), the spherical-
geometry equations for the iteration errors can be written as:

roF12 () = % f " O E (- Ndr' | (4.40)
LA b0 50 =, (60 —60m) L @an
QD () = oD (p)  FED () | (4.42)

It is possible to Fourier-analyze this scheme in spherical geometry. The ansatz is similar to
Eq. (4.38), and the result is:

3 A2 V=32 3¢ A2 tan~! 2
“’(’”)“C[x2+3(1—c)”o VAl VI To g [(3 “) T "}
(4.43)

This is identical to the slab-geometry DSA result, Eq. (2.50). Thus, in the absence of spatial
and angular discretization, the performance of DSA is the same in 1-D spherical geometry
as in 1-D Cartesian geometry. To our knowledge, this analytic result is new.

The standard discrete-ordinates angular discretization of Eq. (4.33) is [9]:

(e+172) (e+1/2) (£+1/2)
&d( (”)) lan+1/2‘l’n+1/2 (r) = 01 2W, 1/2 (r)+2,(r) (£+1/2)(r)
r2 dr r Wn W
z(") f)().|_Q() 0<r<R,1<n<N, 4.44)
w,(f“ﬂ)( = B¥pifs) (0 +(= B0 (4.45)

where {B,} are chosen by various prescriptions [95] and {c,} are defined by

Opi1 /o = On—1/2 — 2Wnin , U2 =0. (4.46)

The scalar flux is given by a quadrature sum:

N
PUEHD = 3 i1/, (4.47)
n=1
Unfortunately, with the angular variable discretized in this way, no Fourier analysis of
source iteration or DSA seems to be possible. Spatial discretization adds further substan-
tial complexity. Thus, the development of practical acceleration techniques for spherical-
geometry problems has proceeded to date without the benefit of a sharp Fourier analysis.
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In the absence of a Fourier analysis to guide the development of acceleration methods
in spherical geometry, researchers have applied lessons from slab geometry and relied upon
numerical testing. Experience has been that the techniques that work in slab geometry also
work in spherical geometry. Thus, while spherical geometry makes it difficult to analyze
iterative methods, it does not seem to hamper their effectiveness [144, 175].

IV.C. 1-D Cylindrical Geometry

In 1-D cylindrical geometry the angular flux depends upon the distance from the axis
(r) and swo angular variables. One angular variable, &, is the cosine of the angle between
the axis and the direction of particle flight. The other angular variable, g, is the angle
between the outward radial direction and the radial-plane projection of the direction of
particle flight. This latter variable changes continuously as a particle streams, as was the
case in spherical geometry. Thus, there is once again a difficult angular derivative term [9].

As in spherical geometry, the practical development of acceleration schemes in cylin-
drical geometry has proceeded by applying the lessons learned from successful Cartesian
approaches. As in spherical geometry, this strategy has been effective; cylindrical geometry
has not yielded any major surprises [144, 175].

IV.D. Muiltidimensional Cartesian Geometries

IV.D. 1. Source Iteration

The transport equation in multidimensional Cartesian geometry (still assuming isotropic
scattering and one energy group) is:

Q. TyH172) 4 511/ (7.G3) = ¢(1) )+ ( N 4.48)

Here 7 is the position vector, £ is a unit vector in the direction of particle travel, and we
have inserted iteration indices for a transport sweep. With source iteration, the new scalar
flux is given by:
0 (x,3,2) = [ Y+ (2, 0) a2 (4.49)
U

where the integral is over all possible particle directions. One can again analyze the behav-
ior of this iteration scheme given a simple model problem: infinite medium with constant
material properties. As before, we set the source Q = 0 and interpret the functions y and ¢
as iteration errors. The Fourier ansatz is then

o) (7) = ol AeD ety idad) = lagBh? (450)

Y+ (7 0 = ola(@)e® T | (4.51)



Fast iterative methods 81
Inserting this ansatz into Eqs. (4.48) and (4.49) and manipulating the results, we obtain:
s c
® (x f . (4.52)
) 4n 4r 1+ (A’ Q)

—

If we define the s—axis to be in the direction of A, A = |A| = length of A
A
?\‘ ’

and u = é;- ) to be the direction cosine along that axis, then we obtain

A

ey =

1
® ( ) w{A) = 2 1 +d;flz 5 - (4.53)
This is identical to the slab-geometry source-iteration result. Thus, source iteration behaves
identically in multidimensional and 1-D Cartesian geometries, at least in the absence of any
discretization. The reason for this is fairly simple: each Fourier error mode is a plane wave
along some axis, which means that a coordinate rotation produces one-dimensional equa-
tions for that mode. This remains true when we consider the DSA equations. Thus, in the
absence of discretization, DSA in multidimensional Cartesian geometries behaves exactly
like DSA in slab geometry, because each error mode is a plane wave and a coordinate ro-
tation produces the slab equations. The behavior of an error mode depends only upon its
wave number A = (A2 + 22 + A2)!/2, not on its orientation.
We now turn to the dlscrete-ordmates equations, in which there is angular dlscretlzatlon

o, Vw(l+l/2)+2¢ 1+1/2)() l)(*) Q(r) , (4.54)
Ng
o0 7) = Y, waysd P (7) #:55)
n=1

The Fourier ansatz is essentially the same as before:
o (7) = ol AeTPwrhtda) _ g HEMF ’ (4.56)

yi VYD () = olaye ™ 4.57)

However, now one cannot perform a coordinate rotation to reduce the equations for a given
error mode to slab-geometry equations. The reason for this is that the discrete-ordinates
operator is not rotationally invariant. Thus, SI and DSA may perform differently for error
modes that have the same wave number but different orientations. This implies that SI and
DSA, applied to the 2-D and 3-D discrete-ordinates equations, may perform differently
than in 1-D. If so, we would expect the largest differences to occur with quadrature sets
that have few directions, because such sets are the least rotationally invariant.
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The SI result is; N L
= w1 —ih-Q,
o(f) =Y —=Tw, . (4.58)
n=1] 4 (x- Qn)

If the quadrature set has 180-degree rotational symmetry (the usual situation), then the
imaginary term in the numerator vanishes because it is an odd function of fz, while the
denominator is even. Then the SI result is:

. Ny .
® (A) - % Z:l :6%27 . (4.59)

We note that the “flat” error mode, A = 0, produces the largest eigenvalue, whose value is
c; this is the same as the result with no discretization. For other modes, let us more closely
examine Eq. (4.59) for the standard quadrature set that has the fewest directions: the 52
level-symmetric set, which has 8 directions in 3-D. Each direction cosine is 41/+/3 and
each quadrature weight is ©/2. We consider two different A’s that have the same magnitude,
and explore how differently SI treats these two modes. We choose the first A to be along
a quadrature direction, A= AL, and the second along a coordinate axis, % = Ak. For the
first we obtain:

9+ 72
O TR *.60
and for the second; 3
O=e3e “.61)

For large A, the first eigenvalue approaches 7c/A?, while the second approaches 3¢/AZ.
This illustrates that given a finite discrete-ordinates quadrature set, ST does indeed treat
different error modes differently, even when they have the same A.

IV.D.2. Diffusion Synthetic Acceleration

We turn next to multidimensional DSA. The diffusion equation in multidimensional
Cartesian geometry is rotationally invariant, and thus it treats identically all modes that
have the same value of A. However, when the diffusion equation is used to accelerate
discrete-ordinates iterations, the full iteration operator is not rotationally invariant, and
thus it performs differently for different modes that have the same A.

Without spatial discretization, the DSA discrete-ordinates equations are Eq. (4.54) and:

Ntut
oli+1/2) () = anw’(zlﬂ/z) G (4.62)
’ n=1
9 l & (+1/2) _ 4 (0)
~V. g VP EF =5 (604172 —g0) | (4.63)
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oV (@) = oA @ +F (7). (4.64)
The Fourier ansatz is analogous to previous ones; the final result (again assuming 180-
degree rotational symmetry of the quadrature set) is

B 1 c 7&.2—3(7\-f2n)2
o= (Frr ) w2 T A

For 0 < ¢ < 1, one obtains a zero eigenvalue for the “flat” (_?:. = 0) mode, as was the case

(4.65)

without angular discretization, For other modes we more closely examine Eq. (4.65) given
the S» quadrature set, considering again error modes with two orientations. The first is
along a coordinate axis; the second is A, = A, with A, = 0. For modes along a coordinate
axis we obtain

®0=0, (4.66)
while the other considered modes produce
A2 v
0= (7\.2+3(1—c)) (3+2A,2) ' “en

The first result, Eq. (4.66) is the same as the $; result in one dimension — DSA converges
immediately in that case. The second result is substantially different; as the wave number
A — oo, 0 — ¢/2. We recall that in 1-D the DSA spectral radius is zero for the S» quadrature
set and monotonically increases with increasing quadrature resolution up to approximately
0.2247c for S... The situation in 2-D and 3-D is entirely different: the DSA spectral radius
is 0.5c¢ for the Sz quadrature set and monotonically decreases with increasing quadrature
order down to approximately 0.2247¢ for S... Multidimensional DSA has been studied in
detail by Adams and Wareing [181], who also considered asymmetric quadrature sets and
anisotropic scattering. In addition, Marchuk and Lebedev studied the effects of anisotropic
scattering (Section XI.19 of [10]) on Lebedev’s KP¢(1) preconditioning scheme, which is
equivalent to DSA.

1V.D.3. §; Synthetic Acceleration

In 1-D without spatial discretization, Sy Synthetic Acceleration (S;SA) is equivalent to
DSA. Given the preceding discussion, it is no surprise that this equivalence does not hold
in 2-D or 3-D. Let us consider the S2SA scheme given by Eq. (4.54), Eq. (4.62), the S3
version of Eq. (4.63), and Eq. (4.64). If the high-order quadrature set in Eq. (4.54) is S3,
then the scheme converges in one iteration because the high- and low-order operators are
the same. However, as the high-order quadrature order increases, the spectral radius of the
S>8A iteration scheme increases. In the limit as the high-order quadrature approaches an
infinite number of directions, we have:

C

2—¢

0s28A — (4.68)
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Obviously, this value approaches unity as ¢ — 1. Thus, in 2-D and 3-D, S;SA and DSA
have complimentary behavior: SpSA is best for crude high-order quadratures and degrades
as the quadrature set is refined, while DSA is at its worst for crude quadrature sets (Opsa =
c¢/2 for the S, set) and improves for refined sets. [We remark that if the high-order quadra-
ture is the S level-symmetric set, then the spectral radius of S>SA is bounded below (.86¢,
which is substantially better than the limit of ¢/(2 —¢).]

In the late 1960’s, Gelbard and Hageman derived Eq. (4.68) [32]. Larsen later verified
this result and further showed that S4SA (one transport sweep followed by an 84 low-order
calculation) in 2-D has a spectral radius of ¢/{6 — ¢}, which is always bounded below 0.2¢
[94]. Larsen alsc found that if twe high-order sweeps precede each S; low-order calcu-
lation, then the spectral radius of the entire three-step iteration scheme is bounded below
0.153¢, with this maximum occuring as the high-order quadrature set becomes infinitely
refined. [This three-step scheme is an example of Lebedev's general “K2P” methods, in
which two transport sweeps (Lebedev’s K operations) are performed per low-order calcu-
lation (Section XI.12 of [10]).]

S2SA and S4SA have not received wide use in 2-D and 3-D calculations, mainly be-
cause the low-order equations have appeared to be too difficult to solve efficiently enough to
make them worthwhile. The low-order equations have the same mathematical structure as
the high-order equations; if an efficient technique existed for solving such equations, then
that technique could be directly applied to the high-order equations. However, it might
be that the hypothetical technique is efficient only when the number of angles is relatively
small, as in the Sy or S4 equations. Then, given such a technique, S2SA or S4SA method
could be efficient for accelerating Sy iterations, especially for large N.

Several authors have explored the use of low-order operators that are very similar to
S, or 84 operators. Nowak and Adams analyzed an S;-like Boundary Projection Acceler-
ation (BPA) method (Section V.B). They predicted that for spatially discretized problems,
the spectral radii are smaller than those obtained previously for problems with no spatial
discretization; thus, if efficient methods could be found for solving the S; problems, their
S;-like BPA method would have excellent performance even as ¢ — 1 [119], at least for
problems whose spatial grids are not fine or whose quadrature orders are not high. Ra-
moné et al. developed and analyzed TSA methods (Sections ILE, IILE, IV.A.3), some of
which employ S; low-order operators with modified cross sections [243], and found that
these methods could be very effective if there existed efficient techniques for solving the S2
equations. Hong and Cho have explored “angular rebalance” methods in 2-D (Section V.B),
some of which have low-order equations that are much like 5, equations [266, 267]. These
authors found that their methods significantly reduce iteration counts, and they employed
modern matrix iterative techniques to solve the low-order equations. These techniques are
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reasonably efficient, at least for the test problems that Hong and Cho considered.
IV.D. 4, Effects of Spatial Discretization: Regular Grids

For most spatial discretizations, the preconditioning (or “synthetic acceleration™) of
transport iterations in 2-D and 3-D is more complicated than in 1-D. The chief exception is
the simple DD spatial discretization scheme on a rectangular grid; for that scheme, the four-
step method can be applied to fairly readily produce a vertex-centered discretization of the
diffusion equation that yields a DSA spectral radius equal to that without spatial discretiza-
tion. This diffusion discretization has 9-point (27-point) coupling in two (three) dimen-
sions. It is possible to approximate this consistent 9- or 27-point diffusion discretization
with a simpler 5- or 7-point discretization; this makes the scheme lose effectiveness as the
spatial mesh becomes coarse, but it significantly reduces the computational effort required
to solve the diffusion equations [156]. This is the strategy employed in the DANTSYS
codes [157, 232].

To illustrate the difficulties imposed by more complex spatial discretizations, let us
consider the bilinear discontinuous (BLD) or corner-balance (CB) family [238] of schemes
on rectangular grids in 2-D. (This is the 2-D analog of the 1-D GCB scheme discussed
previously.) This family requires four fundamental unknowns per spatial cell to define
the scattering source. Thus, there are four error modes and four eigenvalues per error-
mode wave number A in the simple model problem that is usually studied. The four-step
DSA method produces a system of low-order equations with 12 unknowns per cell: four
scalar-flux corrections and four corrections to each component of the net current. The
corresponding 1-D system has 2 scalar flux and 2 net current unknowns per cell; we recall
that it is possible to eliminate all of those in favor of one scalar flux unknown per cell edge.
In 2-D, it is not generally possible to algebraically eliminate all unknowns in favor of a
single scalar flux unknown per edge or vertex. For this reason, it is not known how to solve
efficiently the four-step DSA equations.

Given the difficulties of deriving and implementing four-step DSA for complicated spa-
tial discretizations in multidimensional geometries, many researchers have sought DSA
approaches that are algebraically simpler, yet nearly as effective. One such approach was
developed by Khalil [101, 128], primarily to accelerate “nodal” transport discretizations
using “nodal” diffusion equations. Khalil discretized the diffusion equation directly, using
approximations analogous to the approximations made in the given transport discretiza-
tion. (In contrast, the four-step procedure derives DSA equations directly from the discrete
transport equations.) Khalil’s approach produced rapidly convergent DSA schemes for all
spatial discretizations that he tested. To our knowledge, Khalil’s procedure has not been ap-
plied to multidimensional transport discretizations other than “nodal” methods or to spatial
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grids other than rectangular. _

Another approach to simpler DSA equations is that of Adams and Martin [169], which
we introduced previously in a 1-D setting. The authors showed that this modification of
Larsen’s four-step procedure could be applied to any discontinuous finite element (DFE}
spatial discretization of the transport equation. Their “modification” is to replace the first-
angular-moment equations with simple approximations; that is, to use a slightly “inconsis-
tent” discrete Fick’s Law. [In our 1-D example, this was the replacement of Egs. (4.24)
and (4.25) with Egs. (4.27) and (4.28).] The result is a simple expression for each current-
correction in terms of within-cell scalar-flux corrections, which makes it trivially easy to
eliminate the current unknowns. Given the BLD/CB family of transport discretizations on
rectangular grids in 2-D, for example, the Adams-Martin modification quickly reduces the
system from 12 unknowns per cell to 4. The behavior of the Adams-Martin DSA scheme
in XY geometry is much like that in slab geometry (see Figure 8).

Wareing introduced a different modification of the four-step equations that, like the
Adams-Martin modification, makes it easy to eliminate the current unknowns in the ac-
celeration equation [192]. (We illustrated this previously for one discretization scheme
in slab geometry.) The Adams-Martin equations have an asymmetric coefficient matrix,
which could hamper their efficient solution; Wareing’s system is symmetric and positive
definite. (Wareing called this “symmetric simplified” DSA.) The behavior of Wareing's
DSA scheme in XY geometry is much like that in slab geometry (see Figure 8).

Wareing, Larsen, and Adams developed yet another approach to try to derive discrete
diffusion equations that are simple yet effective when used for DSA [167]. Their logic
was as follows. One can derive the analytic diffusion equation from the analytic transport
equation by various procedures; two very different ones are (i) to make the P; approxi-
mation, and (i) to take the asymptotic diffusion limit {140, 172]. Larsen’s four-step DSA
procedure derives discrete diffusion equations from discrete transport equations by mak-
ing the P approximation. Wareing et al. proposed to derive discrete diffusion equations
by taking the asymptotic diffusion limit of the discrete transport equations [167]. That is,
they determined a set of equations that the discrete transport solution satisfies in the limit
of extreme optical thickness and high scattering ratio, and used those equations for DSA.
This idea has strong intuitive appeal; the most difficult iterative problems are optically
thick and highly scattering, and in such problems the low-order and high-order operators
have nearly the same solutions. However, Fourier analysis shows that the scheme loses
effectiveness (even in 1-D) in that limit. The cause is error modes that are discontinuous
at cell edges; the diffusion-limit spatial discretization does not attenuate these modes, and
their eigenvalues approach c¢ for optically thick cells. Wareing et al. solved this problem
by including a post-diffusion calculation that produces discontinuous scalar-flux correc-
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tions. This post-diffusion calculation employs equations borrowed from the four-step or
Adams-Martin method and is independent for each spatial cell — there is no cell-to-cell
coupling. Thus, it does not add significantly to the computational cost. We call this scheme
the “asymptotic” DSA scheme. The authors found that their asymptotic DSA scheme is
very effective in 1-D and in 2-D for square cells. However, as the 2-D cell aspect ratio
approaches infinity, the spectral radius of asymptotic DSA approaches c.

The DSA methods introduced by Khalil, Adams-Martin, Wareing, and Wareing-Larsen-
Adams are all rapidly convergent, with the exception of the aspect-ratio problem encoun-
tered by the latter method. However, rapid convergence is only one piece of the puzzle;
the other piece is the efficient solution of the acceleration equations. Khalil employed rel-
atively straightforward iterative techniques to solve his diffusion discretization; these were
sufficient for the reactor analysis problems that he considered. However, it is not clear
that these techniques would remain efficient given optically thick spatial cells with ¢ near
unity. Adams and Martin used a brute-force matrix decomposition to solve their discrete
diffusion equations (which are asymmetric) and noted that an efficient solution technique
needed to be developed. Wareing solved his symmetric equations via the Conjugate Gradi-
ent method without a preconditioner. The asymptotic DSA of Wareing et al. is of a standard
finite-difference form, with 9-point (27-point) coupling in 2-D (3-D), and thus is amenable
to solution by standard diffusion solvers. However, as already noted, it suffers from loss
of rapid convergence given cells with high aspect ratios. Thus, despite their successes, all
of these efforts left something to be desired: none produced an unconditionally efficient
iteration algorithm. At this point, the only acceleration algorithm that was known to be
unconditionally efficient for multidimensional problems was four-step DSA applied to the
DD equations on rectangular cells; this produces a standard diffusion discretization that
can be accelerated using multigrid techniques. However, this unconditionally efficient al-
gorithm was not implemented in production codes; the TWODANT code, for example,
used a slightly inconsistent 5-point diffusion discretization instead of the consistent 9-point
scheme in order to reduce the cost of solving the diffusion equation. This is a winning
strategy for problems that are not too optically thick and highly scattering, but it does not
work efficiently for the most difficult problems (optically thick cells, ¢ close to unity).

This challenge was answered in 1993, at least for the BLD family of spatial discretiza-
tions on rectangular grids, by Morel, Dendy, and Wareing [190]. They developed an ef-
ficient technique for solving the Adams-Martin BLD equations on such grids, and thus
implemented the first unconditionally efficient DSA scheme for (non-DD) multidimen-
sional transport iterations. A full iteration in their scheme consists of several steps: a
transport sweep, line relaxations on the Adams-Martin discontinuous diffusion equations,
and fixed number (usually 1) of multigrid V-cycles on a bilinear continuous (BLC) diffu-
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sion discretization. The entire scheme can be viewed as a generalized multigrid method:
the highest level is BLD transport, the next is BLD diffusion, the next is BLC diffusion on
the same grid, and the remaining levels are BLC diffusion on coarser grids. Results are
excellent; the scheme converges any fixed-source one-group isotropic-scattering transport
problem for the cost of a few transport sweeps.

Wareing, Walters, and Morel found that they could use the same acceleration equations
— the Adams-Martin equations for the BLD scheme, solved with their multilevel technique
— to accelerate the bilinear nodal transport discretization [201]. Adams and Wareing later
used the same equations to accelerate the bilinear characteristic scheme [247]. Results in
both cases are excellent, even though the acceleration equations are derived from the BLD
transport scheme instead of the bilinear nodal or bilinear characteristic scheme. (We con-
jecture that this procedure works because the three different spatial discretization schemes
all provide essentially the same solution in the asymptotic diffusion limit.) Thus, at the
time of this writing, there exists an unconditionally efficient DSA methodology for sev-
eral transport discretizations of practical interest, given rectangular grids in 2-D Cartesian
geometry.

IV.D.5. Effects of Spatial Discretization: Unstructured Grids

In the preceding section we explained that there now exist unconditionally efficient
DSA schemes for certain transport discretizations on certain kinds of grids. The picture is
more clouded on unstructured grids, for which key questions remain unanswered:

1. Can one obtain a discrete preconditioner — a discretization of the diffusion equation,
for example — that produces a small spectral radius?

2. If so, can one devise solution procedures for the discrete low-order operator that
render the iteration scheme unconditionally efficient?

The answer to the first question is most likely affirmative. For example, we expect Larsen's
four-step procedure to produce a discrete diffusion equation that would yield a small spec-
tral radius. Recent work by Warsa et al., who have analyzed and tested consistent and
inconsistent DSA for LD on tetrahedral grids in 3-D, supports this conjecture [300]. As
another example, the Adams-Martin Boundary-Projection Acceleration procedure will al-
most certainly yield a low-order operator that provides rapid acceleration — one simply
must choose a low-order angular space that approximates the iteration error reasonably
well at cell surfaces [125]. However, despite the attractive logic behind our conjectures, ar-
bitrary grids may yet offer surprises. For example, Warsa et al. show that the M4S method
of Adams and Martin, which is rapidly convergent on orthogonal grids, is actually diver-
gent on skewed tetrahedral grids [300]. This indicates that one should not assume that the
orthogonal-grid behavior of an iterative scheme will automatically extend to arbitrary grids.
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The problem posed by the second question is likely the more difficult one. For example,
while Warsa et al. found that four-step DSA yields a small spectral radius for LD on tetra-
hedral grids, they also found that solving these consistent equations is extremely expensive
relative to a transport sweep with a modest quadrature set, relative to solving the M4S or
asymptotic DSA equations. Thus, their implementation of four-step DSA did not provide
an unconditionally efficient iterative method for LD on tetrahedral grids.

Warsa et al. are not alone; to our knowledge no one has demonstrated an unconditionally
efficient implementation of four-step DSA for any spatial discretization method of the first-
order form of the transport equation on arbitrary grids. Considering a broader perspective,
we note that all unconditionally efficient schemes devised to date rely on multigrid tech-
niques to solve the low-order equations. Such techniques are not as readily available on
unstructured grids as on structured grids, although the emerging class of “algebraic multi-
grid” (AMG) methods may solve this problem [107], [2]. Also, the efficient DSA method
devised by Morel, Dendy, and Wareing [190] for BLD on rectangles relied upon line re-
laxations to attenuate discontinuous error modes. On an unstructured grid, the concept of a
mesh line is not clearly defined; thus, even if AMG can efficiently solve standard diffusion
problems on unstructured grids, it still may not be possible to generalize the Morel-Dendy-
Wareing algorithm to such grids.

IV.E. Second-Order Forms in Multidimensional Geometries

If we consider the second-order forms of the transport equation, for which it is straight-
forward to obtain preconditioners that are standard discretizations of the diffusion equa-
tion, the picture is somewhat simpler. Let us suppose that the emerging AMG methods
ultimately provide efficient techniques for solving standard diffusion discretizations on un-
structured grids. Then we should find that the DSA equations for second-order forms yield
a low spectral radius and are relatively inexpensive to solve. One remaining question would
be whether the same AMG techniques could efficiently solve the high-order equations,
which appear to be similar to diffusion equations, but which have important differences. A
second question would be whether the solutions arising from discretizations of the second-
order forms would be of sufficient accuracy and robustness for the applications of interest.
If these questions are answered affirmatively, then the result will be an unconditionally ef-
ficient arbitrary-grid iterative method for a useful discretization of a second-order form of
the transport equation.

To summarize: at the time of this writing, an unconditionally efficient acceleration
scheme for transport on unstructured grids has not been demonstrated. This is an area
of active research, for discretizations of both the first-order and second-order forms of the
transport equation,
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V. OTHER ITERATIVE METHODS

The methods describe in Chapters II and III make use of “low-order” operators that
are closely related to diffusion or transport equations. In this chapter we discuss other
low-order operators that have been used to accelerate transport iterations. Some of these
produce additive corrections, while others produce multiplicative corrections.

V.A. Rebalance

Rebalance is one of the earliest acceleration schemes to be developed specifically for
particle transport problems [15, 31]. This method has been employed in numerous produc-
tion neutron transport codes [46]. It is quite imperfect in its performance [51, 69, 9], as
discussed below. However, it is simple in both concept and implementation. Rebalance is
usually presented as a nonlinear method, but like the Quasidiffusion scheme, it can be eas-
ily linearized. The linearized scheme can be Fourier-analyzed, and numerical experiments
demonstrate that the nonlinear and linear forms of rebalance have very similar behavior,
which is well-predicted by the Fourier analysis [127, 150].

Like many other acceleration methods, rebalance combines a “high-order” transport
sweep with a “low-order” calculation. For rebalance, the low-order calculation is extremely
simple — it contains no details of the “high-order” transport discretization. (Thus, rebalance
can be applied to all Sy discretizations in basically the same way.) The price of this great
simplicity is that to optimize performance, the code user must determine which form of
rebalance to use. Typically, fine mesh rebalance (FMR) (in which rebalance factors are
calculated on the fine transport spatial mesh) is divergent, although not always. Coarse-
mesh rebalance (CMR), in which rebalance factors are calculated on groups of fine-mesh
cells, is generally convergent if each coarse cell contains sufficiently many fine-mesh cells.
If the coarse cells contain too many fine-mesh cells, the method will be convergent but
inefficient. If the coarse cells contain too few fine-mesh cells, the method may be divergent.
Thus, the code user must select an optimal coarse mesh to make the scheme convergent and
maximize its efficiency. Yet, even if this is done, rebalance is often inefficient for the most
challenging (optically thick, highly-scattering) problems. Because of these limitations,
rebalance is often viewed with disfavor in comparison with more efficient and user-friendly
schemes, Yet, because of its implementational simplicity, it is still used in some codes.

To describe the rebalance method, let us consider the planar-geometry diamond-dif-
ferenced Sy problem defined by Egs. (3.1)-(3.4). The J* fine-mesh spatial cell consists of
the interval:

Xj1y2 <X <Xjp12 1<j<d .

The easiest way to define a coarse grid is to require that J, the number of fine-mesh cells,
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be divisible by a smaller integer K:
J=pK .

Then K is the number of coarse-mesh cells in the system, and p is the number of fine-
mesh cells per coarse-mesh cell. (In practice, this definition of coarse-mesh cells need
not be vniform.) Proceeding from left to right across the system, the first p fine-mesh
cells constitute the first coarse-mesh cell, the next p fine-mesh cells constitute the second
coarse-mesh cell, and so on. Thus, the & coarse-mesh cell consists of the interval

Xpk=1)41/2 <X <Xpy12 » 1 SkSK

Often, fine-mesh or coarse-mesh cells are referred to as simply fine or coarse cells.

Now, let us assume that an estimate ¢S£) of the cell-average scalar fluxes is given on
the fine spatial mesh, and that a transport sweep [Eqs. (3.10)-(3.14)] is performed on this
mesh. At the completion of this sweep, new fine-mesh scalar flux estimates ¢S-£+l/ 2 are
stored. We also require that the exiting partial currents at the edge of each coarse cell be
computed and stored:

£4+1/2),+ 4172
J:(Jk+1//2) =1 ”"Wr(z,pkilizwn
et 1<k<
(+1/2),~ (€+1/2) Sksk . (5.1)

Jok-141/2 = ,u,-,2<0 lpn |‘|’n,p(k—1)+1/zwﬂ

Next, rebalance factors A,(CEH) are introduced on each coarse cell, and accelerated partial
currents and fine-mesh scalar fluxes are defined by multiplying the estimates obtained from
the transport sweep by the appropriate rebalance factor. Specifically, the cell-average scalar
flux estimates in fine-mesh cells contained in coarse cell &, and the partial currents exiting

from coarse cell &, are multiplied by A,EE'H). Thus, foreach 1 <k < K,

£+1 £+1/2) , (£ .
o) = olTPAMY | pk-n+1<i<pk (5.2)
E+1)+ (B4 (D)
Teriry = T A (5.3)
E+)= (el (e41)
Dow=+172 = Dpg—nr12% (5.4)

The constants A,(fﬂ) are determined by requiring that the accelerated cell-averaged
fluxes and partial currents satisfy the balance Eq. (3.1) “integrated” over all directions and
each coarse cell:

k
(E+1),+ _ 5{f+1),~ (e+1),+ (£+1),— p 1
(JP"“/Z ~ o172 ) B (Jp(k—1)+1/2_Jp(k~1)+1/2) + 2 za,jq’S‘ h
J=p{k—1}+1
pk
= X Oy, 1<k<K . (5.5)

j=pk-1)+1
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This is the coarse-mesh balance equation. Introducing Egs. (5.2)-(5.4) into Eq. (5.5), we

obtain the following linear tridiagonal system of equations for Aff“ :

)

k
(€+1) | ,(£+1/2) 4 £+1/2), £ £+1
A ':J;(;k+l/2 JrJ((k 1)11/::+ > Za,f¢§'+)hj]
J=plk=1)+1

(f+1) (£+1/2),+ (+1) | ,E+1/2)—
Ay [J (k- 1)+1/2] —Agn [ka+1/2 ]

=[ 2 Q;h;} , 1<k<K (5.6)
j=p(k—1)+

2+1)

where A((fH) = Aj(,( +1° = 1. This system of equations is solved, ¢S-€+1) are defined by Eqgs.
(5.2), and then one proceeds with the next transport sweep. If this iteration scheme con-
verges, then

lim A(E) 1.

f—r00

The rebalance method has several good features:

I.

Any spatial discretization method that employs the balance equation, in conjunction
with one or more auxilliary equations, can be run iteratively with rebalance. The
algebraic form of the rebalance equations depends only on the balance equation, not
on any of the auxilliary equations, This makes the application of rebalance extremely
simple.

In multidimensional geometries, rebalance can easily be employed on problems with
an unstructured spatial grid. It is only necessary that the coarse cells be simply-
connected and disjoint, and that their union consist of the entire system.

Rebalance is easy to adapt to multigroup problems. Rebalance factors can be defined
on coarse or fine energy-grids, as well as on coarse or fine spatial grids, depending
on the decision of the code user.

Nonlinear rebalance is very easy to adapt to k—eigenvalue problems. In this case,
the set of “low-order” equations for the rebalance factors A; becomes an eigenvalue
problem.

On the other hand, the ease with which rebalance can be implemented is often offset by

its less-than-ideal performance and other poor features. (The following Figures 9-11 apply

to the planar geometry diamond-differenced S4 equations. The data in these figures was
obtained from a Fourier analysis of the linearized fine and coarse-mesh rebalance methods.

The predictions of this Fourier analysis agree very closely with numerical experiments of
both the linearized and nonlinear methods [127, 150].)



Fast iterative methods 93

. Rebalance is generally divergent if the optical thickness of the spatial cells Z;4 is too
small. In particular, rebalance is very difficult to employ effectively if the problem
contains voided regions. (See Figures 9 and 10.)

N
. Rebalance is usually convergent for scattering ratios ¢ sufficiently small. However,
as ¢ — 1, rebalance often becomes divergent. Unfortunately, these are the problems
for which effective acceleration is most needed. (See Figures 9 and 10.)

. Fine-mesh rebalance (p = 1) is usually divergent for ¢ = 1, unless X2 =~ 1. (See
Figure 9.)

. For sufficiently large p (i.e. sufficiently coarse coarse-mesh grids), coarse mesh re-
balance (CMR) is convergent. If p becomes too large, CMR becomes increasingly
inefficient (the convergence rate converges to that of source iteration). The optimal
value of p is neither too small (for which CMR is divergent) nor too large (for which
CMR is convergent but inefficient). (See Figure 11.)

. The coarse-mesh rebalance equations do not limit to a physically or mathematically
meaningful result as s — 0. (This is likely why rebalance becomes divergent in
this limit.)
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Figure 9: Spectral Radius (G) vs. Optical Cell Thickness (Z;4),
for Various Scattering Ratios (c¢) and Fine Mesh Rebalance (p = 1).
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In summary, rebalance is an iterative acceleration method that is easy to implement but
requires careful input from the user to be effective. If the user chooses a coarse grid that is
too fine, rebalance will generally be divergent. If the user chooses a coarse grid that is too
coarse, rebalance will generally be convergent but ineffective. In many problems (contain-
ing voids, or with optically thick, highly-scattering regions) it is difficult or impossible to
define coarse mesh cells whose rebalance factors render the rebalance scheme efficient. For
these reasons, the particle transport community has generally come to prefer iterative ac-
celeration methods such as DSA that are more complex in terms of concept, development,
and implementation, but that offer more in terms of user-friendliness and efficiency.

V.B. Boundary Projection Acceleration (BPA)

In DSA, the low-order equation (i.e., the preconditioner) is constructed by making a
crude approximation in the angular variable, i.e. by assuming that the solution is a linear
function of that variable. It is possible to construct different low-order equations (and thus
different preconditioners) by making different approximations to the angular variable. In
fact, when considering spatially discretized transport equations, one encounters the inter-
esting possibility of making these angular approximations only on cell surfaces and making
no such approximations in cell interiors.

This possibility was first explored independently and simultaneously by Lawrence
[111, 141] and Adams and Martin [104, 116, 125]. Lawrence devised low-order equations
for additive corrections by making a “double-Fy” approximation of the correction at each
cell surface. That is, his approximation was that on each cell surface in the problem, the cor-
rections are half-range isotropic: the incoming-direction corrections are angle-independent
and the outgoing-direction corrections are angle-independent. He found that no angular
approximations were needed in cell interiors; he could obtain readily-solvable low-order
equations without such approximations. After some manipulation, these low-order equa-
tions had the appearance of interface-current equations; thus, Lawrence termed the result-
ing scheme Interface-Current Synthetic Acceleration (ICSA). The structure of the ICSA
low-order equations makes them easy to solve via a simple red-black procedure. (This
red-black iteration may not be efficient for very difficult problems, but it is convergent and
easy to implement.) Lawrence tested ICSA against DSA, SI, and coarse-mesh rebalance
(CMR) on several problems including a 3-D reactor-analysis benchmark problem proposed
by the International Atomic Energy Agency (IAEA). The spatial discretization schemes
that he employed were so-called “nodal” methods. On a 3-D IAEA problem, he found that
ICSA required fewer iterations than SI and CMR by factors of approximately 100 and 60,
respectively, and less CPU time by factors of approximately 60 and 40, respectively. He
found that for this and other problems, ICSA’s performance was approximately the same
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as that of Khalil’s DSA scheme (discussed in Chapter IV above).

Working independently, Adams and Martin used a more general mathematical approach
to develop a family of low-order equations that included Lawrence’s ICSA scheme and
was defined for essentially arbitrary spatial discretization schemes, geometries, and cell
shapes. Because Adams and Martin’s low-order equations are obtained by projecting the
exact angular corrections on cell surfaces onto a low-order angular subspace, they called
their methods Boundary Projection Acceleration (BPA) methods. They analyzed several
members of the BPA family for various spatial discretization schemes in slab geometry and
found some key results. First, even with only two low-order unknowns per cell surface
(i.e., the “double-Fy”" subspace), BPA methods can be defined that are rapidly convergent,
with spectral radii monotonically decreasing from approximately ¢/3 toward zero as the
cells ranged from optically thin to thick. Second, the choice of projection operators sig-
nificantly affects the performance of a BPA method — with the “double-Py” subspace, for
example, different projection operators produced spectral radii of ¢/3, 0.2247¢, and a value
larger than unity (divergence). The chief open question that remained about BPA was how
to solve efficiently the low-order equations in multidimensional problems. Again, it is
straightforward to iterate on the interface unknowns in the low-order BPA equations, but it
is easy to envision difficult problems for which this iteration will converge slowly.

Adams later devised a nonlinear version of BPA, which he called NLBPA [178]. This
family of methods has much in common both with BPA and with the weighted-alpha (WA)
methods described previcusly. Each NLBPA iteration consists of a high-order transport
sweep and a low-order calculation, as is the case with most of the metheds described in
this Review. The low-order equations are obtained by replacing the full angular flux on
cell surfaces with low-order unknowns that are multiplied by angular shape functions. The
high-order sweep produces nothing but these angular shape functions; the low-order equa-
tions produce the scalar fluxes. (In this respect NLBPA is much like the QD and WA
methods, discussed earlier in Chapters II and 1IL.) Adams showed that if one linearizes the
NLBPA equations about the exact solution of a model problem, one obtains the BPA equa-
tions for the corrections. Thus, a BPA method is the result of linearizing a NLBPA method,
much as the Lewis-Miller method is the result of linearizing the Quasidiffusion method.
The connection between the NLBPA and WA methods is that NLBPA makes essentially
the same approximation as WA, except that it does so only on cell surfaces. As a result,
NLBPA converges extremely rapidly when spatial cells become optically thick.

Adams also showed that one can use independent discretizations in the high- and low-
order equations with NLBPA, and that there can be significant advantages in doing so. For
example, he showed that in a number of problems, one could obtain a solution as accurate
as a corner-balance solution by using the crude and inexpensive step-ditferencing method
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Figure 12: Error versus Z;A

for high-order sweeps in combination with the comer-balance method for the low-order
equations (which have many fewer unknowns). In Figure 12 we plot for a specific problem
the errors in (i) the Step solution, (ii) the Corner-Balance solution, and (iii) the NLBPA so-
lution using Step Differencing for the high-order equations and the Corner-Balance method
for the low-order equations. For optically thick spatial meshes, the NLBPA and Corner
Balance solutions are nearly identical, even though the NLBPA method is much less costly
computationally. For optically thin meshes, the NLBPA error is larger than the Corner
Balance error, but is still significantly less than the Step solution error.

In this way, Adams obtained accurate solutions for (potentially) the cost of a “crude”
solution. [However, he did not address the important question of how to efficiently solve
the NLBPA equations in multidimensional problems.]

The same idea can be applied to any of the acceleration methods described in this Re-
view in which the high- and low-order equations do not have to be discretized consistently.
For example, Gol’din [82] and Anistratov [182] have demonstrated this for the QD method,
using a relatively inaccurate discrete-ordinates scheme with a relatively accurate diffusion
scheme, to achieve a solution that is much more accurate than is obtained by the unacceler-
ated transport scheme alone. Anistratov and Larsen [288] have also shown this for the WA
Methods. Cooper and Larsen [292] have even shown that in the QD method, it is possible
to use Monte Carlo to perform the transport sweeps — and estimate Eddington factors — in
combination with an accurate diffusion discretization. The resulting scheme is not one in
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which the transport simulation is inexpensive, but it is highly accurate, and the Eddington
factors, while containing statistical errors, do not suffer from ray effects.

Cho and co-workers later developed a family of “angular rebalance” methods that also
produce linear BPA methods when linearized [223, 240, 252, 266, 267]. (Adams’s NLBPA
method is a special 1-D member of this family.) They have shown that they can solve the
two-dimensional low-order equations reasonably efficiently, at least for typical reactor neu-
tronics problems. In their “angular rebalance™ methods they solve the low-order equations
for angle-dependent multiplicative factors that are applied to angular fluxes from the most
recent transport sweep. Like Adams, Hong and Cho explored the use of independent dis-
cretizations in the high- and low-order equations, with similar results [240]. To solve the
low-order equations (which are not symmetric), Hong and Cho have employed standard
matrix iterative techniques such as Bi-Conjugate Gradient Stabilized (BCGSTAB). (We
discuss such matrix iterative techniques in Chapter VI.) These perform reasonably well for
the test problems that Hong and Cho have presented. For example, for a two-dimensional
iron-water shielding problem, they achieved speedups of approximately a factor of 60 rel-
ative to SI.

We remark that Sanchez and Chetaine have introduced an “Asymptotic Synthetic Accel-
eration” (ASA) scheme [271, 282] that appears to have much in common with Lawrence’s
DPO scheme, which is a particular linear BPA method described above. Sanchz and Chetaine
applied ASA to a long-characteristics discretization of the transport equation and reported
good results for assembly-level problems in reactor analysis.

V.C. Spatial Multigrid

The spatial multigrid (or simply multigrid) method has achieved spectacular success in
the iterative solution of discretized elliptic problems [2, 11]. Thus, it is not surprising that
researchers would investigate this method’s application to transport iterations.

The observation that motivates multigrid is that it is often possible to devise simple
iterative schemes that readily converge high-frequency error modes but not low-frequency
modes, For example, let us consider source iteration (SI) for a spatially discrete transport
problem. We recall that the SI eigenvalue depends on the scattering ratio ¢, the cell thick-
ness XA, and a “frequency” variable 0 = AX:h. When X,/ is small, we find that the STeigen-
value is reasonably small (say, less than 1 /2) for error modes that are “high-frequency”™ with
respect to the spatial grid, i.e. modes such that 1/2 < 0 < x. For example, in Figure 13 we
plot the ST eigenvalue as a function of 8 for the DD spatial discretization in slab geometry.
We see that ST converges the high-frequency error modes (those with 0 > n/2) reasonably
quickly, but it has little effect on the low-frequency modes.

Given this observation, the basic idea underlying multigrid is that some of the “low
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frequency” error modes on a given grid are actually “high-frequency” on a coarser grid.
For example, the modes nt/4 < 8 < n/2 on a grid with & = 1 are the same as the modes
n/2 < 8 < won agrid with 2 = 2. Thus, perhaps one could employ a “simple” iteration
scheme on successively coarser spatial grids and effectively attenuate all error modes. To
say this another way, after a few “simple” iterations, the remaining error may be well-
approximated by a low-order operator defined on a coarser spatial grid. In multigrid
terminology, the “simple” iteration scheme that attenuates high-frequency modes is the
smoother; information is transferred from coarse grids to finer grids via prolongation oper-
ators; information is transferred from fine grids to coarser grids via restriction operators.
To our knowledge, the earliest work on spatial multigrid for the transport equation
was reported by Nowak et al. for slab and XY geometries [120, 130], and by Barnett et
al. for slab geometry [2, 137]. Nowak et al. first reported the Source-Iteration Multigrid
(SIMG) method [120], in which the smoother was simply SI. These authors showed that for
weighted diamond discretizations other than “pure” diamond differencing, SI is a reason-
ably efficient smoother, as follows. If M SI iterations attenuate high-frequency error modes
by a factor of p on a given grid, then 2 iterations attenuate high-frequency error modes by
the same factor on a grid twice as coarse. Since in 2-D geometries, “twice as coarse” means
one-fourth the number of cells, the smoothing step on each coarser grid takes only half the
time as on the previous grid. This renders the algorithm potentially efficient. Nowak’s
numerical results for the constant-constant (CC) “nodal” discretization were very encour-
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aging. However, as the initial finest grid becomes coarser, the SIMG method becomes less
attractive, for it requires more and more smoothing iterations to attenuate high-frequency
errors on that grid.

Nowak et al. also reported results from a slightly more complicated method [130],
which used BPA to accelerate the original transport iterations, and then used multigrid (with
an improved smoother) to accelerate the iterative solution of the low-order BPA equations.
Coarse-mesh discretizations were simply the fine-mesh discretization applied to the coarser
cells with volume-weighted cross sections. Each “smoothing” iteration involved two steps:
first an SI sweep, then a one-cell inversion independently in each cell. [A one-cell inversion
means calculating the solution of the transport problem, including scattering, within each
cell, given estimates for the incident fluxes on the cell.] The smoothing step can be written
as:

WH1/2) = 1 (§¢(£)+q) , 5.7
i1/ goye+1/2) (5.8)
¢ggll/2) = Rocy!t+'/?) | (5.9
o+ = gt/ 1 (1 — o)t (5.10)

Here Kj is the same operator as in Eq. (1.45), i.e.

Kowt) = [ wemdn

and Rocy is a “response matrix” that gives ¢ inside a cell as a function of the angular flux
incident upon the cell.

The authors found that o = 0.2 provides the best smoothing, at least for the CC method
in XY geometry, attenuating high-frequency errors by a factor of 0.6 per smoothing itera-
tion. Their computational results were very good for the CC method. However, for more
accurate spatial discretizations, such as bilinear discontinuous or linear nodal, the smooth-
ing factor approaches unity as the spatial cells become optically thick, and thus the above
smoothing strategy becomes inefficient. ‘

Barnett et al. devised an effective spatial multigrid technique for iteratively solving the
linear discontinuous (LD) equations in slab geometry. Unlike other spatial multigrid re-
search, this work considered general anisotropic scattering. Like Nowak et al., Barnett et al.
created a smoother from a combination of SI and cell inversions, although they employed
overlapping two-cell inversions instead of one-cell inversions. Their smoother satisfied
equations that are somewhat similar to Eqgs. (5.7-5.10):

(£+1/2)

yitP =17 (sy® +q) (5.11)
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Here Ry is the two-cell response matrix that gives the angular flux inside two adjacent
cells as a function of the angular flux incident upon the outer edges of the two-cell block.
Barnett et al. found that o = 1/3 yielded excellent results.

For the restriction (fine — coarse) operator, Barnett et al. used a Galerkin projection of
the fine-mesh finite-element functions onto the coarse mesh functions. For the prolongation
(coarse — fine) operator, they simply required that the coarse-mesh LD function be exactly
replicated on the fine grid. Their method was successful; not only did it achieve rapid
convergence for problems with isotropic scattering, it retained its effectiveness even in the
presence of highly anisotropic scattering.

Manteuffel and co-workers also developed a spatial multigrid method for the LD equa-
tions in slab geometry, but they used a completely different approach to analysis and devel-
opment [154, 173, 186, 196, 210, 225]. (They also considered only the isotropic-scattering
equations.) Instead of using the Fourier-analysis techniques that have been described pre-
viously in this paper, they performed detailed algebraic studies of the LD equations. For
example, let us consider the two-cell inversion process in a ¢ = 1 problem: a complete so-
lution of a two-cell problem subject to given incident fluxes on the outer edges. Manteuffel
et al. were able to prove the following [210]:

1. Given a ¢ = 1 problem and the S quadrature set, the iteration error (difference be-
tween converged solution and current iterate) following a two-cell inversion is a con-
tinuous linear function of position within the two cells. This result is independent of
mesh spacing.

2. Given a ¢ = | problem and any quadrature set, the iteration error following a two-
cell inversion is very nearly a continuous linear function of position within the two
cells if the two cells are optically thin. In fact, it is a continuous linear function plus

O [(Zh)?].

3. Givenac =1 problem and any quadrature set, the iteration error following a two-cell
inversion is very nearly a continuous linear function of position within the two cells
if the two cells are optically thick. In fact, it is a continuous linear function plus

O[1/(Z:h)).

These results mean that following a two-cell inversion on a given mesh, the remaining
error can be calculated almost exactly using a mesh that is coarser by a factor of two (at least
if ¢ = 1). Manteutfel et al. used this fact to build an extremely efficient multigrid technique.
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The smoother is simply a two-cell inversion for the pair of cells touching each cell edge;
unlike previous spatial multigrid methods, there is no “transport sweep.” (Their algebraic
study showed that for thick cells, the transport sweep does not change the spatial shape of
any isotropic error, and thus is not a good candidate for smoothing.) They employed a “V”
cycle with one smoothing step per level, and they directly solved the coarsest (2-cell) level.
For ¢ = 1 problems, their method has a spectral radius that vanishes in the fine-mesh limit
like O ((Z,5)%) and in the coarse-mesh limit like O (1/(Z:h)?). The worst performance
occurs for intermediate mesh spacings, where it is still exceptionally fast, with a spectral
radius never exceeding 0.01 [210].

For problems with absorption (¢ < 1), Manfcuffcl et al. found that in the fine-mesh
limit, the error following a two-cell inversion is linear across the two cells to O [(Z,4)?].
just as in the ¢ = 1 case. However, in the coarse-mesh limit the error is not linear when
¢ < 1. Tt is continuous, but the error at the interior interface falls below a straight line drawn
between the errors at the outer interfaces. The amount by which it falls below the straight
line depends on the amount of absorption in the two cells. (In the limit as absorption goes
to zero, the error approaches a straight line, as discussed above for ¢ = 0.) Because of
this, a direct application of the method that works so well for ¢ = 1 to problems with ¢ < 1
does not produce the same spectacular results. The authors showed that the spectral radius
for such a method increases with increasing X4 and reaches a value of at least .85 when
¥,h = 10*. Not content with this, the authors devised a multigrid technique that accounts
for the predicted shape of the error within two cells following a two-cell inversion. Their
results with this new techniques were again spectacular: given uniform grids, the spectral
radii are always less than 0.01; on a nonuniform grid (with X, randomly varying across
four orders of magnitude), they observed spectral radii only as high as 0.078 [225].

Manteuffel and co-workers have also applied multigrid to discretizations of second-
order forms of the transport equation (which we introduced in Section ILI) [253]. They
have developed a least-squares formulation of the transport equation that is very similar
to the SAAF equation introduced in Section ILI. (One difference is that the least-squares
formulation easily handles regions with Z, = 0; another is that it does not enforce cellwise
particle conservation.) Because the second-order forms of the transport operator are simi-
lar to the diffusion operator, one might hope that a direct application of standard multigrid
techniques developed for elliptic operators would be successful. Manteuffel and Ressel
found that in slab geometry such a multigrid method applied to their least-squares formu-
lation produced a spectral radius of approximately 0.1, independent of mesh spacing and
scattering ratio [253]. However, they found later that because of the structure of the least-
squares system, in multi-dimensional geometries standard multigrid methods do not give
convergence rates independent of mesh spacing [281].
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Thus, at the time of this writing, excellent multigrid methods have been demonstrated
for both the first- and second-order forms of the transport equation in 1-D. Recent work has
been aimed at extending these promising results to 2-D [263, 281, 289].

V1. ALGEBRAIC ITERATIVE METHODS

In the previous chapters, we have discussed iterative methods in which each full itera-
tion contains two stages: a “high-order” stage that is either source iteration or some other
“smoothing” step, and a “low-order” stage that solves some equations for additive correc-
tions to or an accelerated estimate of the latest iterate. Here we consider methods that do
not employ low-order equations, but rather try to obtain the converged solution by purely
algebraic means.

VI.A. Asymptotic Source Extrapolation (ASE)

Asymptotic Source Extrapolation (ASE) [49] is based on a simple premise: that the
remaining error consists only of the error mode associated with the unique iteration eigen-
value with the largest magnitude. If this were true, the following equation would hold:

vy o (y—yt) (6.1)

where © is the eigenvalue with the largest magnitude. This implies that the converged solu-
tion Y can be obtained from two successive iterates from any convergent iterative method,
including SI:

VAR V) R (AR (28 Vo SRR 1)
y=y A (gl (62)

In its simplest form, ASE proceeds by iterating with SI for several iterations and then
extrapolating as shown above. This requires an estimate for ¢, which can be obtained by
taking the ratio of norms of two successive differences:

ey
VT

In the Russian transport literature, ASE is known as Lyusternik’s method [19, 10]. Un-
less care is taken in its implementation, ASE can be divergent. This is the case, for example,
if ASE is applied after every source iteration in a problem with ¢ > 1 /2. Also, if there are
many modes that are very slow to converge, as is the case with transport iterations in op-
tically thick and highly scattering regions, then ASE by itself does not keep the iteration
process from being unacceptably slow. The behavior of ASE is analyzed and discussed in
Section X1.2 of [10]. To our knowledge, ASE is not used in modern Sy codes.

g~

(6.3)
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VL.B. Chebysheyv Acceleration

To describe Chebyshev acceleration, we consider the general preconditioned Richard-
son iteration for the transport equation with isotropic scattering, which is given in Eq.
(1.45). If we define the transport operator 7':

T=[-X5] , (6.4)

where Xs; is the SI iteration operator as defined in the Introduction, then the transport
equation for the scalar flux is:

To=§, where §=KoL 'g . (6.5)

Here L is the streaming-plus-collision operator and Ky is the integral over all directions.
Given a preconditioner P, the preconditioned Richardson iteration for Eq. (6.5) is

o) = (1-PT)o¥ V4 Pg . (6.6)

Equivalently,
o = —-A g (6.7)

where A = PT and § = P4§. Subtracting the converged solution ¢ from both sides of this
equation, and adding and subtracting A¢ on the right side, we obtain an equation for the
iteration error:

e = (71— A) D + (G—A9) = (I - A)1 | (6.8)

where we have used § = A¢. It follows that
e¥) = (1 —A)e® | (6.9)
Now we introduce the eigenvalues and eigenvectors of A:
Ave = Mevie . (6.10)

We assume that the eigenvalues A, are real, positive, and distinct, and that the eigenvectors
v form a basis for the vector space that contains the solution ¢. Then the initial error can
be expressed as a linear combination of the v:

e =Yy . (6.11)
k
It follows from Eq. (6.9) that

e = 3 pll—AYve = T w1~ M) - (6.12)
k k
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Now we ask: Can we generate an improved estimate of the converged solution by taking
a weighted average of all of the Richardson iterates that have been computed to this point?
That is, if we form the average:

e ;' )
8 = Z ag,')q)(l) , . (6.13)
i=0
with
Z =1, (6.14)

can we choose the aff) such that the error &(¢) = (Il(e) — ¢ is smaller than (99 If we subtract

the converged solution from both sides of Eq. (6.13) and use Eq. (6.14), we obtain

£ N, £ i ;
é‘(é‘) — Z(xg')em = z (Ig)ZYk(l - A'k)lvk
i=0 k

i=0

. _
=% (Z“ﬁ')(l—?»k)') v (6.15)
k i=0

We define the £-th order polynomial

Z al’(1-2) . (6.16)
Then we find that our new averaged solution has an error given by
&0 =Y P v - 6.17)
k

We now see that the error in our new “averaged” iterate depends directly upon the poly-
nomial Py, and in particular upon its value at each of the eigenvalues of A. If a P; can be
constructed that is small for each eigenvalue, or that is small across an entire domain that
contains A’s eigenvalues, then it would produce a small error. We note, though, that the
restriction of Eq. (6.14) implies the restriction

P(0)=1 .

Thus, we are interested in a polynomial of order £ that is small in the range (A, Ayax) but
equals unity at A = 0.

Of all possible polynomials of order £ that equal unity at A = 0, a Chebyshev polynomial
attains the smallest maximum value in the range (Amin, Amaz) [7]. This is the basic idea
behind Chebyshev acceleration.

It would be impractical to store all of the Richardson iterates ¢(0),...,¢(€) so that the
linear combination could be taken as in Eq. (6.13). Fortunately, this is not necessary if
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the polynomials Py satisfy a recursion relation. For example, if the polynomials satisfy a
three-term recursion:

Pey1(z) = coPeor () +c1(1—-2)Pe(z) (6.18)

then one can construct /! from the previous two iterates, $©) and $(~1). The Chebyshev
polynomials do satisfy such a recursion relation (with ¢p = —1 and ¢; = 2}. Thus, if one
is willing to store two “old” scalar-flux iterates in a problem with isotropic scattering,
one can apply Chebyshev acceleration to the standard Richardson (SI) or preconditioned
Richardson (DSA, e.g.) iteration. The requirement is that one must know a priori an
interval (a,b) that contains the interval (A, Amax). In difficult iterative problems, A
tends to be very close to zero, while A, is usually approximately unity. The convergence
rate will depend rather sensitively on a, which must be < A,,;,. Asymptotically, in fact, the

error reduction factor is \/__
K—1
OCheby = el (6.19)
where

K=b/a

If @ = Amin and b = Apnas, then K is the condition number of A, defined to be the ratio of
the largest eigenvalue to the smallest. Because A, is not usually known, in practice one
must choose a conservatively, so that a < A, and x is larger than the condition number.
Obviously, the larger K becomes, the slower is the convergence of the iteration. This leads
to two conclusions. First, the performance of Chebyshev iteration depends sensitively on
the value chosen for a; it needs to be as large as possible while not violating the requirement
a < Apin. Second, even with optimal a and b, Chebyshev iteration can be slow to converge
if A has a high condition number. If A is the transport operator with no preconditioning,
then A = T = I — X5, where Xg; is the source iteration matrix, and we can readily obtain
a useful estimate of A’s condition number. If os; is the spectral radius of source iteration,
and the smallest eigenvalue of Xs; is ®p,, then

1 — O 1
£= 1—0":1’1 “T—os -

(6.20)

We note that when SI is very slow to converge, Gs; = 1, and x > 1. Thus, the statements
“ST is slow to converge” and “T has a large condition number” are equivalent. In this
case, Chebychev acceleration can converge much faster than SI, but for the most difficult
problems it can still converge arbitrarily slowly. The way to make Chebyshev acceleration
fast is to find a good preconditioner, so that A has a relatively small condition number.
However, this is the same problem of finding a good low-order operator in a “synthetic”
acceleration scheme — the problem that has been the subject of much of this paper.
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A two-term cyclic form of Chebyshev acceleration exists that does not require storage
of two old iterates, but instead uses the same storage that is required for Richardson it-
eration. The first m — 1 steps of this scheme correspond to Eq. (6.13) with polynomials
Psf =1,...,m— 1, which are not Chebyshev polynomials. However, the polynomial at
the m'” step, B, is the m'*-order Chebyshev polynomial. This leads to an.m-step cyclic
iteration scheme with the same asymptotic error reduction factor per step, Gchepy, as the
original Chebyshev scheme described above.

The two-term m-step cyclic scheme suffers from severe numerical instabilities in gen-
eral. This problem was solved, independently and essentially simultaneously, by two
teams: Lebedev and Finogenov [47], [48] and Samarsky and Nikolaev [13]. The solu-
tion found by these researchers is a careful ordering of the linear factors from which the
polynomials 5, are constructed, such that the two-term scheme is stable to roundoff errors.
See Section X.18 of [10] for a discussion.

In summary, Chebyshev iteration has some intriguing properties but also several draw-
backs. It is not widely used today to accelerate scattering iterations in transport computa-
tions. However, it is sometimes used to accelerate the convergence of eigenvalue iterations,
as we discuss briefly in Section VIIL.C.

VL.C. Conjugate Gradient (CG) Methods

It is not difficult to apply the Conjugate Gradient (CG) method [7, 199] to accelerate
SI (Richardson) or a “synthetic” acceleration (preconditioned Richardson) method in a
problem with isotropic scattering. Compared to Chebyshey iteration, CG converges with
the same asymptotic rate as the Chebyshev scheme with optimally chosen parameters a and
b, but CG does not require estimates of the eigenvalues of the matrix A. We do not explain
here the theory behind CG; instead, we simply show how to apply this methed to transport
iterations.
We consider the matrix representation of the discretized transport problem with isotropic
scattering, as shown in Eq. (6.5):
ol =g | (6.21)

where T is the transport operator. The CG method begins with an initial guess ¢(?), which
defines an initial residual r(:

r0=5-1¢©@ | (6.22)
The first question that arises is how to obtain T¢(0), for we »certainly do not wish to construct

the matrix T. It turns out that we do not need to form this matrix — we simply execute a
transport sweep using $(9) in the scattering source, and then perform a simple manipulation.
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In the notation used in a previous chapter, the transport sweep is:
=L +4] .
Now we can form &:
b = Ko = KoL~ [$0© + ¢] = X560 + g
=(1-T)®+4 . (6.23)
It follows that the initial residual is:
O =g-1¢ =§-¢0 | (6.24)

Thus, we can generate our initial residual, A®), by performing a transport sweep and then
taking the difference between two scalar fluxes.
After finding the initial residual, CG defines an initial “search direction™

d©® =0 (6.25)

With this search direction determined, each CG-SI iteration proceeds as follows. First a
transport sweep determines the action of the operator T on the latest d:

g=17184¥ |

=Td¥ =40_% . (6.26)

Again, operationally this is just a transport sweep followed by the difference of two vectors.
The remainder of a CG-SI iteration is simple manipulation of vectors, which produces a
new iterate, the associated residual, and a new search direction:

® <r(2> ’ r(2)> (6.27)

Tl T4y

) — o0 1 o0t (6.28)
A = O _ g a(O (6.29)
<r(e+1)’r(£+1)>
ECR O
() Z e+ 4 gl g(8) 6.31)

ﬁ(fﬂ) - (6.30)
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Here the notation (, ) denotes an inner product. The inner product must be chosen such that
the operator T is self-adjoint; this leads to the following definition:

)= [ crmOImer)r 632)

We note that the scattering cross section appears in the inner product; without this the
operator T is not self-adjoint. (Another way to view this is that each row of the matrix
T must be multiplied by a scattering cross section to make it symmeiric. See [243] and
[284] for a discussion.) We note also that the integral excludes any portions of the problem
domain for which the scattering cross section is zero; without this we would not have a
legitimate inner product, for it would be possible for the inner product of a non-zero vector
and itself to be zero.

The CG error-reduction factor per iteration, Gcg, is given by the same expression as
the Chebyshev factor, given in Eq. (6.19). The difference is that the parameter € in the CG
expression is the true condition number, Aggy /Amin, rather than the ratio a/b, where a and
b are estimates that must be input into the Chebyshev algorithm.

CG is not difficult to implement; it adds only a few relatively simple vector operations
to each SI iteration. Further, it can substantially reduce iteration count and computation
cost relative to SI. However, CG has two characteristics that reduce its attractiveness for
transport iterations. First, it requires a symmetric positive-definite (SPD) matrix T'; this
means that it can be applied to SI only if scattering is isotropic and the quadrature set is
symmetric. (See reference [284] for a discussion of this point. We remark that Sanchez and
Santrandea have devised a way to symmetrize the transport operator, even with anisotropic
scattering [298], which could pave the way for more general application of CG to transport
iterations. As early as the 1970’s, Kuznetsov also worked on symmetrization of the trans-
port operator and on applying CG to transport iterations [67].) In many transport problems
of interest, scattering is not isotropic, and in some applications the quadrature set is not
symmetric. Second, even though CG can offer substantial speedups over SI in isotropic-
scattering problems, the performance of CG still degrades significantly in optically thick
problems with ¢ ~ 1. The reason for this degradation is that the condition number of the
matrix T becomes large, as discussed earlier [see Eq. (6.20)).

Thus, while CG is potentially powerful, it is not by itself the final answer to trans-
port iterations; its performance depends on having an SPD matrix and on that matrix hav-
ing a condition number whiich is not large. Related methods, described briefly in the
next section, do not require symmetric matrices; these could be applied to problems with
anisotropic scattering, thus removing one difficulty. However, the problem of high con-
dition numbers is more difficult; it can be addressed by finding a good “preconditioner.”
This is equivalently the problem of finding a good low-order operator in a “synthetic ac-
celeration” scheme. Thus, as we have mentioned previously, synthetic acceleration can be
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viewed as the application of a preconditioning operator, the effect of which is to reduce the
condition number of the matrix T.

Derstine and Gelbard were perhaps the first to recognize that DSA is simply precon-
ditioned Richardson iteration (see Introduction), and that it would be beneficial to replace
this preconditioned Richardson method with the more powerful preconditioned Conjugate
Gradient method [100]. The use of CG with DSA was an important step, partly because
it is theoretically guaranteed to converge (neglecting roundoff), given SPD matrices. This
means that with CG, even a very “inconsistent” diffusion discretization could be used with-
out fear of a divergent iteration. This was potentially significant, because consistent dis-
cretizations are often much more difficult than simpler standard discretizations to derive,
code, and solve (as we have discussed previously). Derstine and Gelbard tested CG-DSA
using diamond differenced transport and cell-centered finite-differenced diffusion in XY
geometry; they compared their results against the almost-consistent DSA of TWODANT.
Some of their results are shown in Table 1.

It is clear that CG can dramatically improve the performance of inconsistent DSA: for
some problems, inconsistent DSA diverges by itsell but with CG it converges in less than
20 iterations! However, CG is less effective than the TWODANT treatment, and it is not
clear from these results what happens with optically thicker cells, such as those typically
encountered in radiative transfer problems.

Faber and ManteufTel, not aware of the work of Derstine and Gelbard, also recognized
that SI is Richardson iteration and that DSA is preconditioned Richardson iteration [139].
Their work sparked further investigations by Ashby et al. [149, 158, 184, 204], who per-
formed extensive theoretical and numerical investigations.

Considering the transport equation with isotropic scattering, Ashby et al’s most im-
portant findings can be summarized as follows. First, CG can indeed be employed “on
top of” SI or DSA to improve performance relative to Richardson iteration. Second, CG
does indeed make inconsistent DSA converge even when by itself it would diverge. How-
ever, perhaps most importantly, a “good” DSA method is much faster to converge by itself
than is a “poor” method with CG. Further, because a “good” DSA scheme (such as one
arising from Larsen’s Four-Step Method) converges so quickly, employing CG in addition

ZeAx: 05110 2.0 4.0

TWODANT DSA 6 | 6 7 12

Inconsistent DSA +CG | 10 | 12 13 18
Inconsistent DSA 12 | 15 | diverged | diverged

Table 1: Comparison of Iteration Counts.
{c =10.99 in part of the problem. (Taken from [100].)}
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generally reduces iteration counts by only one or two. Thus, it seems that while CG does
help, it does not remove the need for good preconditioners — which is basically where DSA
research had already been focusing.

For problems with anisotropic scattering, Ashby et al. recognized that the transport
operator is not symmetric and that CG could not be directly employed. They then turned to
more general Krylov-subspace methods and tested an adaptive Chebyshev method [65, 70];
we describe their results in Section VI.D below.

Ramoné et al. [243] used CG in their TSA method, but not in the same way that previous
authors had used it for DSA. We recall that the low-order operator in TSA is contained in
a transport equation with modified cross sections; the implementation of TSA requires
that this low-order equation be solved (at least approximately) during each full iteration.
In Ramoné’s form of TSA, the low-order equation has isotropic scattering even when the
original transport problem has anisotropic scattering. Ramoné et al. found that the most
efficient implementation of TSA obtained its approximate low-order solution by using a
fixed number of CG iterations “on top of”” SI. Thus, these authors did not try to use CG
to accelerate the overall iteration — which is what had been done previously with DSA.
Instead, they used CG as a tool to help solve the low-order isotropic-scattering problem.

Building on these results, Zika and Adams [284, 285] employed CG to solve low-order
problems arising from the application of TSA to assembly-level problems in reactor anal-
ysis. Because these problems have opposing reflecting boundaries, the low-order problem
yields not only scalar-flux corrections, but also boundary angular-flux corrections. The
resulting matrix equations for the combined scalar-flux and angular-flux solution is not
symmetric. However, Zika and Adams recognized that there is an underlying symmetric
problem (the infinite-medium problem simulated by the reflecting boundary conditions),
and they were able to cast the problem in a way that was amenable to CG iteration. They
found that despite the extra work needed to use CG in these problems, this still produced
the most efficient implementation of TSA that they tested.

VL.D. Other Algebraic Methods

Given a linear system of the form

To=4g , (6.33)

with 7 a symmetric and positive definite (SPD) matrix, then there is currently little reason
to use an algebraic method other than CG, with a preconditioner if one is available. How-
ever, when T is not symmetric CG is not an option, and we must turn to other alternatives.

One family of alternative methods that has been used widely in recent years is that of
Krylov subspace methods. Each such method uses the following equation for successive
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iterates:

where p(f) is chosen from the Krylov space of dimension £:

Ky (T, r(ﬂ)) = span {r(o),Tr{O),Tzr(O), ...,Tf“lr(o)} , (6.35)

=51l . (6.36)

The CG method elegantly chooses the “best” value of p'), in a certain sense, given an SPD
matrix. With asymmetric matrices things do not happen quite as cleanly, but the basic goal
is the same: try to find the “best” value of p¥), or some approximation thereto, from the
space Kp. There are many methods that differ in their approaches and their approximations;
two of the more popular are GMRES (with name taken from “generalized minimum resid-
ual”) and BCGSTAB (bi-conjugate gradient, stabilized). We will not discuss the details
of these methods, which can be found in numerous references. (For an introduction to the
application of these methods to transport problems, see for example [255] and [262].)

Ashby et al. seem to be the first to apply Krylov methods to transport problems with
anisotropic scattering (which causes T to be asymmetric) [158, 204]. Building on the CG
work of Faber and Manteuffel [139], they viewed DSA as a preconditioner and applied
GMRES to accelerate its convergence. They also tested an adaptive Chebyshev iteration
procedure {63, 70] designed for asymmetric systems. Much like Derstine and Gelbard had
previously with isotropic scattering and the CG method [100], Ashby et al, studied whether
or not various diffusion discretizations could lead to efficient iterative schemes if they were
used with preconditioned GMRES or Chebysheyv instead of preconditioned Richardson it-
eration. Their study took place in 1-D with the DD and standard LD spatial discretizations.
They employed two different diffusion discretizations as preconditioners. One was the con-
sistent discretization derived using Larsen’s four-step procedure, as discussed previously.
The other was a standard finite-element method (FEM) discretization using linear continu-
ous elements. The latter differs only slightly from the consistent discretization in the case
of the DD transport discretization. A sample of their numerical results is given in Table
2. The underlying test problem is a two-region slab with vacuum boundaries and isotropic
scattering. The left region is 50 mean-free paths thick with scattering ratio ¢ = 0.99998;
the right region is 5 x 107 mean-free paths thick with scattering ratio cg = 0.8. Each re-
gion uses 50 uniform spatial cells with the 16-point Gaussian quadrature set in angle. The
iterations proceeded until a count of 50 was reached or the L, norm of the residual became
lower than 102,

For this test problem, all methods perform well for a consistent discretization of the dif-
fusion equation, as expected. GMRES performs best and Richardson (standard DSA) the
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Transport Diffusion Tterative | Tteration

Discretization | Discretization | Method Count
consistent | Richardson 11
DD consistent | Chebyshev 8
consistent GMRES 7

FEM Richardson >50
DD FEM Chebyshev 22
FEM GMRES 13
consistent | Richardson 11
LD consistent Chebyshev 8
consistent GMRES 7
FEM Richardson 43
LD FEM Chebyshev 20
FEM GMRES 14

Table 2: Tteration Counts for Ashby’s Problem.

worst. The more interesting results involve the inconsistent FEM preconditioner. With this
preconditioner for this test problem, the improvement that GMRES provides over Richard-
son is more dramatic. We remark, however, that the FEM preconditioner is identical to
the consistent one if ¢ = 1; this is partially responsible for its reasonable behavior in this
problem, for which the high-c region has c very nearly equal to unity. Ashby et al. studied
a second test problem, a uniform slab 108 mean-free paths thick with ¢ = 0.998. For this
problem, all methods failed to converge in 50 tterations when the FEM diffusion discretiza-
tion was employed, whereas all methods converged in no more than 2 iterations when the
consistent discretization was used. Thus, while GMRES and Chebyshev are improvements
over Richardson iteration, nothing takes the place of a good preconditioner (such as a con-
sistent diffusion discretization).

A diftferent application of Krylov methods to transport problems is to use them to solve
the low-order problem,; that is, to assist with the preconditioning step itself as opposed to
being “‘outside” of that. If the low-order problem is asymmetric, this can be very important.
The NLBPA method used by Hong and Cho has an asymmetric low-order operator [240,
252, 266, 267]; to solve the low-order equations in two-dimensional problems they have
applied the BCGSTAB method and reported quite acceptable results [252].

Other authors have also employed Krylov methods to transport problems, and the liter-
ature on this subject is growing rapidly. Some examples are [255, 262, 209, 250, 263, 265].

VII. ACCELERATION OF OTHER SCATTERING ITERATIONS

In previous chapters we have discussed the iterative solution of problems with isotropic
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or weakly anisotropic scattering in a single energy group. Here we address the iterative
solution of problems with more difficult kinds of scattering. We first consider the “upscat-
tering” problem commonly found in neutronics when there are many energy groups in the
thermal energy range. Then we consider problems with very highly anisotropic scattering,
which are commonly found in electron transport or in optical photon transport. Finally, we
address the absorption-emission process that occurs in thermal radiative transfer.

VILA. Upscattering

Most transport problems of practical interest contain particles with wide ranges of ki-
netic energies. Because the probability of interaction with the background matter often
depends sensitively upon this energy, an accurate description of the transport process re-
quires an energy-dependent transport equation. The most common method for discretizing
the energy variable is the “multigroup” method, in which the particles are “grouped” by
energy and are assumed to interact via cross sections that have been averaged over each
group’s energy range. Given isotropic scattering in slab geomeltry, the multigroup transport
equations are:

9
P (3, 10) + i g (x) W (3,18) = Z Zsg—g()g (1) + =5 Qg(") 1<g<G, (1)

where g is the energy-group index. Customarily, the g'* energy group is defined by
Egp1/2 € E < Ey_12, with (obviously) E, /2 < E;_;/». Thus, as the group index g in-
creases, the energies in group g decrease.

In some neutron transport problems, the energy groups are chosen such that scattering
from a given energy group to a group of higher energy is a negligibly rare event. In such
problems the multigroup equations can be easily solved in sequence from the highest- to the
lowest-energy group. In this case, each group can be treated using the techniques described
in previous chapters, with the “downscattering” source known from the solution of the
higher energy groups.

However, in many problems, particularly ones involving a detailed description of ther-
mal neutrons, a non-negligible scattering from some thermal groups to thermal groups of
higher energy occurs. This gives rise to an “upscattering” iteration. The simplest way to
solve such problems is to use a Gauss-Seidel (GS) iteration in energy groups:

gy (41 0
M x (x’”)+zf,8( )\l‘g X, U :‘2_ 2 Esg Hg(x)q:' (x)

g -—g+1

g—1
+Esgé—>g¢(ﬂ+l )+1 2 ¥ ,g’—>g )¢(€+1)( )+g32(_x2 , 1<eg<G. (7.2)
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One can Fourier-analyze this iteration scheme using an infinite homogeneous model prob-
lem, much like the analysis of the single-energy problem studied in previous chapters. One
finds that for each spatial error mode with wave number A, there are G eigenvalues ®(A)
that satisfy:

o(A)[I-LJA=RA , (7.3)

where

Lg,g’ =

o

(xgzs,g’—nga g, <g.
, otherwise,

R = G’gzj‘,g’—ag: g< g, )
8:8 0, otherwise,

==Y 555 -
£ 2 % I, + A2,
(To obtain this expression for ¢t, we assumed a symmetric angular quadrature set.)

This Gauss-Seidel iteration can converge arbitrarily slowly if absorption is negligibly
small. In fact, we can easily describe a limiting case in which an eigenvalue is unity in
the infinite-medium problem, as follows. If there is no absorption, then %, , = Z; , which
implies:

L =Zsg =2 Zog g - (7.4)
gl
If we consider the A = 0 mode, then o, = 1/Z; ;, and the gth row of the matrix equation
(7.3) can be multiplied by %, , and rearranged to obtain

g G ‘
(0)Z; A, =0(0) Y Zip Ay + 3 Tog Ay (7.5)

/

g=1 g=g+1

If the eigenvalue ®(0) is unity, then the associated eigenvector A, must satisfy Eq. (7.5)
with @(0) = 1. Egs. (7.4) and (7.5) then give:

G G

Ag 2 Togg = 3, Toggly - (7.6)
g'=1 g=1

It is not difficult to show that this equation has a solution. (It is of the form MA = 0. One
can easily show that the adjoint of M has a zero eigenvalue, from which it follows that M
itself has a zero eigenvalue.) Eq. (7.6) is a discrete version of a continuous problem whose
solution A is a Maxwellian. Thus, in an infinite homogeneous medium with no absorption,
the Gauss-Seidel iteration shown in Eq. (7.2) has an eigenvalue of unity for the A = 0 mode,
and the corresponding eigenvector is a discrete approximation of a Maxwellian. Because
there are practical problems that have well-thermalized neutrons with little leakage and
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little absorption, it follows that for such problems the Gauss-Seidel procedure is slow to
converge the upscattering iteration.

B.T. Adams and J.E. Morel attacked this problem by devising a scheme whose low-
order operator (preconditioner) produces a good approximation of the slowest-converging
error mode of the Gauss-Seidel iteration [179, 180]. Independently and simultaneously,
Averin and Voloschenko devised a similar scheme [193]. In the following, we describe the
work of Adams and Morel and then briefly outline how the work of Averin and Voloschenko
differs.

Adams and Morel began with a Fourier analysis as in Eq. (7.3), using tabulated cross
section sets with 41 “thermal” energy groups (groups in which upscattering can occur) for
heavy water, graphite, and iron. Considering both isotropic and anisotropic scattering cross
sections, they found that the slowest-converging mode for each material occurs at A =0
and is isotropic in angle. This led them to propose the following “Two-Grid” (TG) iterative
scheme, which we write only for the case of isotropic scattering:

a (£+1/2) 2 |G e
M (o) + T bW ) =5 X Bags (00 ()
g'=g+1
Yoo 18]
42 gD () 4 DS E g (005 1+ 20 e, an
2 2g,=1 2
G G
(¢ 2)
REVI=F S [0t -ap] (7.8)
g=1g'=g+l1
£ 2
_iDd_E(:ﬂ +Z¢,E(£+1/2) :R(€+1/2) , (1.9)
dx dx
(0 = g V2 g BN (7.10)
where G
Za(x) = Z (Zrg—Zog) e » (7.11)

D) = (7.12)

I!MQ

,8

Many terms in these equations depend on the function &,, which in the Adams-Morel
method is taken to be the spectral shape of the slowest-converging mode. This proce-
dure requires the calculation of one such function for each unique material in the problem
of interest. This calculation, which takes place before iteration begins, is a numerical so-
lution of the eigenvalue problem given by Eq. (7.3) with A = 0 (for each material in the
problem). The function &g in a given material is the eigenfunction corresponding to the
largest eigenvalue of this problem, normalized such that Eg=1 &y = 1.
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Adams and Morel found that their scheme is surprisingly efficient. For example, the GS
spectral radius for an infinite medium of heavy water is 0.9998, but the TG method gives a
spectral radius of 0.489. This is surprising, because the low-order operator is designed to
remove only one error mode (it is a one-group operator). Adams and Morel investigated
this result and found that the second-largest eigenvalue of the GS iteration operator at A =0
is much smaller than the largest, and in fact is 0.489. (This result holds for their 41-group
cross-section set for heavy water.) This unexpected property of the scattering cross section
makes the TG scheme work exceedingly well. Similarly, for graphite the second eigenvalue
(given their 41-group cross-section set) is 0.622, and as a result the TG spectral radius for
an infinite medivm of graphite is 0.622. The only other material discussed in reference
[180] is iron, for which both GS and TG give spectral radii close to 0.6.

Independently and almost simultaneously, Averin and Voloschenko developed a similar
method for the iterative solution of upscattering problems [193]. The main differences are
in the choice of the spectrum function &, and update equation (7.10). These authors pro-
posed two different options for &g; their linear option takes simply &, = 1/G for all g, and
their nonlinear option defines &, such that system-wide particle balance is achieved in each
energy group at the end of each iteration. Their update equation includes a correction to the
first angular moment (net current density) and the zeroth moment (scalar flux). (Adams and
Morel examined this variation and determined that it had no appreciable effect on the prob-
lems they were considering.) Finally, Averin and Voloschenko primarily used weighted
diamond spatial differencing for their studies, whereas Adams and Morel used LD. Both
sets of authors obtained good results for problems corresponding to the upscattering of
thermal neutrons.

Regarding the effect of spatial discretizations in the upscattering problem, Adams &
Morel and Averin & Voloschenko found that if the one-group diffusion problem is dis-
cretized consistently with the multigroup transport problem, then the behavior of the spa-
tially discrete TG method is essentially identical to the behavior predicted by the Fourier
Analysis of problems without spatial discretization. In other words, if one knows how to
discretize DSA for a within-group scattering problem for a given transport discretization,
one can apply the same discretization to Eq. (7.9) in the upscattering problem.

In heterogeneous-medium problems, a rigorous derivation of the one-group diffusion
equation for the correction E**1/2) produces a first-derivative term that Adams and Morel
decided to omit from their Eq. (7.9). They initially discarded this term for simplicity and
then found via numerical testing that their method was effective without it; thus, there
seems to be no motivation to include it.
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VILB. Highly Forward-Peaked Scattering

Previous sections of this Review have focused on problems with isotropic or mildly
anisotropic scattering. However, highly anisotropic scattering makes the problem consid-
erably more difficult. Such scattering arises in the transport of electrons, and of photons in
the visible and near-visible frequency range.

Let us consider the slab-geometry discrete-ordinates equations with general anisotropic
scattering [1], written with iteration indices for a transport sweep:

oyl K 2k41
ym—w—?—@‘ RGAREIOEDY z+
x k=0

2u) P00 + 2 L <men

(7.13)

Here,

N
(%) = X waPr() Wi ()

n=1

1
T (x) :/_1 Zs(p0,%) P (o) dpo

where
i 2k+1
2

Zs(mo,x) = Zax (x)Pe(10)

k=0
is the differential scattering cross section for scattering through an angle whose cosine is
ug, and Py is the kth Legendre polynomial. Source iteration defines the next iterate as
¢,(f“) = Q),(fﬂ/ 2. A simplified version of the Fourier analysis illustrates how SI behaves
as a function of the scattering coefficients Zy,. First, let us consider Eq. (7.13) for iteration
errors (which causes Q to disappear) and for a homogeneous medium (which implies that
the cross sections are constants). If we consider only the A = 0 modes (for which the spatial

derivative term vanishes), multiply Eq. (7.13) by w,,P,, (4.}, and sum over m, we obtain
£ ¢
0 (@) = Zen (x) - (7.14)

Thus, for the A = 0 modes, the iteration matrix is diagonal, with eigenvalues

ZS n

C’IZ— .
%

We note that ¢ is simply the scattering ratio ¢, as defined in previous sections, because
T = Z;. We also note that as scattering becomes more forward-peaked, ¢, for n > 0
become larger. In the limit of purely forward scattering [in which Z(uo) = Ze8(po — 1)1,
cn = cp for all n, which implies that all K + 1 eigenvalues approach cp when A = 0. Thus,
in a problem with highly forward-peaked scattering, all K + 1 of the A = 0 error modes are
potentially very slow to converge. This makes it very difficult to find a good preconditioner.
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For example, the diffusion preconditioner that is so effective with isotropic scattering (i.e.,
the low-order operator of DSA) addresses only the ¢o and ¢; portions of the scattering
source. Thus, if ¢, is close to unity for n > 1, even DSA will not cause the iteration to
converge quickly.

Manteuffel and Morel recognized that this problem could be solved using a multigrid
method in the angular variable [164]. The basic idea is to use Sy, equations to approx-
imate the exact additive correction to the solution from the latest SNy sweep, and to do
this recursively. In more detail, the following is a description of the method applied (for
example) to an S;4 problem.

1. Perform a “high-order” S;¢ transport sweep. [This is Eq. (7.13) with N = 16.]

2. Perform an Sg transport sweep with the total source equal to an 8-term expansion of
the S;¢ scattering-source residual:
N (x N N o2k 1 _pN 2N
i B M i = Y ZE LB )
k=0
where

r£2N] (x) _ ¢I(c£+1/2) (x) B ¢l(c£) ()

and where N = 8. The superscript {N] on y means that this equation is solved using
the Sy quadrature set. The superscript on the cross sections is necessary because the
cross sections actually change as a function of the number of terms in the scattering
summation on the right-hand side, due to a type of “transport correction” that is
employed. See reference [164] for details.

3. Perform an S4 transport sweep with the total source equal to the P3 expansion of the
Sg scattering-source residual. This is Eq. (7.15) with N = 4 and with

B
Ay =0 = 3 wlhl¥ p ()
m=1

4. Solve a P; problem whose fixed source equals the Py expansion of the S4 scattering-
source residual. This and the previous step constitute one full DSA iteration of an
S4 problem. In slab geometry, which is what Manteuffel and Morel considered, this
step is equivalent to solving an S; problem (not just performing an S, sweep). We
denote the resulting P; (or, equivalently, ;) solution as ¢,[€2] fork=0and 1, .

5. Obtain the next iterate by adding the P;, S4, and Sg solutions to the result from the
S16 sweep of step 1:

¢I(ce+1) (x) = ¢££+1/2) (x) + ¢L3] (x)+ ¢£4] (x) + ¢;[c2] (x)
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where the superscript indicates not only the order of the calculation that produced
the given set of moments, but also the number of nonzero moments in the set. For
example, ¢,[C4] in this equation is defined to be zero for k > 4.

Manteuffel and Morel performed a Fourier analysis of their method with no spatial dis-
cretization and found that the spectral radius occurred for A = 0 modes and was bounded
by less than 0.6. This was the worst-case value, obtained in the limit as the quadrature or-
der — oo, with scattering moments taken from the Fokker-Planck scattering operator [164].
They tested their method using the same spatiai discretization for all of the transport sweeps
at the various levels and a consistent-DSA discretization of the P; equations that constitute
the coarsest level. They observed performance that was consistent with the analysis of the
equations without spatial discretization; they concluded that if consistent discretizations
are used for the P step, then spatial discretization does not degrade the method’s perfor-
mance. Their consistent discretization was obtained using Larsen’s four-step procedure.
In addition, they tested the method with the Adams-Martin modified four-step version of
discretized diffusion equations and again saw no degradation of performance.

Manteuffel and Morel considered only slab geometry. Pautz, Morel, and Adams later
attempted to generalize the Manteuffel-Morel method to multidimensional problems. This
led to the following changes to the one-dimensional algorithm:

1. In problems with highly forward-peaked scattering cross sections and solutions, it is
best to use More!l’s “Galerkin quadrature” [143], for reasons explained by Pautz and
Adams [269]. In multidimensional problems with an order-N quadrature set, this
requires that the scattering term contain more than just the moments of order N-1
and lower. In 2-D, some of the order-N moments must also be retained, while in
3-D some of the moments of orders N and N+1 must be retained. This necessitates a
change in the residual that drives the transport sweep on a given level. For example,
in an S calculation in 2-D, the residual on the right side contains some terms of
order 8, in addition to all of the order-7 terms shown in Eq. (7.15).

2. Rather than solving a P; problem after the S4 sweep, Pautz et al. perform an Sy sweep
and then solve a diffusion problem. The reason for this is that Py acceleration of 54
calculations can be divergent in multidimensional problems for sufficiently highly
forward-peaked scattering, as shown by Marchuk and Lebedev [10] and Adams and
Wareing [181].

Pautz et al. first analyzed this method applied to Sy problems without spatial discretiza-
tion. These authors found that the method has divergent high-frequency modes for which
ordinary SI performs reasonably well; the multigrid method amplifies these error modes so
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much that their eigenvalues exceed unity [270]. Fortunately, the multigrid method performs
reasonably well for the low-frequency modes, much like it does in 1-D.

Thus, what one would like to have is the low-frequency portions of the corrections from
the low-order equations without the high-frequency portions. With this in mind, Pautz et
al. devised a procedure for using the diffusion equation to filter out the high-frequency
portions of the additive corrections. For each moment 0y ,, all of the corrections calculated
from the sweeps at each level are summed and used as a source in a diffusion equation:

V- E i+ 2 W) = 2 [0 ofl ol s

Here Zy is the “filter cross section” and s is the “filtering parameter.” The solution of this
equation is then used as the correction to the result of the high-order transport sweep:

O () = 0P () + finl) -

Pautz et al. obtained very good results with oy = 1 and Zy = X, the “transport” cross
section. In the absence of spatial discretization, their procedure rendered the angular multi-
grid method rapidly convergent for a wide class of practical problems with highly forward-
peaked scattering. However, their method’s performance slowly degrades as the quadrature
order increases. For.example, the worst-case spectral radius is 0.90, 0.92, and 0.94 for the
S10. Si2, and S14 level-symmetric quadrature sets, respectively. More importantly, Pautz
et al. found that for the bilinear discontinuous spatial discretization method, spatial dis-
cretization z'mp-roves the performance of the angular multigrid scheme. In fact, for mesh
cells greater than one transport mean-free path in thickness, the discretized method does
not even need the high-frequency filter.

In summary, the angular multigrid method (with no filter) converges reasonably rapidly
for highly anisotropic scattering problems with relatively coarse spatial meshes. The filter-
ing step extends this performance to the fine-mesh limit. However, as the quadrature order
increases, the filtered method’s spectral radius approaches unity.

In this section we have focused on one approach — multigrid in angle — for solving
problems with highly anisotropic scattering. Other approaches have also been studied; for
example, Gol’din and co-workers have applied the quasidiffusion method to such problems
[235, 239, 278], and Khattab et al. have developed iteration schemes whose low-order
equations employ discrete approximations to the Py equations [161], [241].

VII.C. Absorption-Emission in Radiative Transfer

Much of the development of rapidly convergent iterative methods for the transport equa-
tion has been motivated not by neutron transport problems, but by the problem of absorption
and emission of thermal photons in radiative transfer. In slab geometry, the basic equations
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(neglecting Compton scattering and assuming the multigroup approximation in frequency)
are [246]:

la\pg(X,,U, 1) +#al|lg(x,,u, £)

PR o+ T )Wl 1) = L, 1) By (T (1)) (7.17)
oT (x,t G 1
Cp ét ) _ Zg(x,1) f 1[\|fg(xal-‘gf)—Bg(T(x,t))]du+Q(x,t) , (7.18)
g=1 -
where B, is the Planckian integrated over a frequency (energy) group:
v:,e+1/z4 i3 .
nhy
By(T) = f s D LA (7.19)
Ve-1/2

There are many ways to discretize the time variable in these equations. We choose a
simple one for illustration; most other time discretizations lead to similar iterative diffi-
culties. If the superscript n represents the beginning of the time step and the absence of a
superscript represents the end, the time- and frequency-discretized equations are:

1 o ’ J ! B
E‘l’g(x "‘)ng(x H) +u \|lga(;€ 4 + Zg(x) g (x, 1) = Zg(x) By () (7.20)

x)—-1" & i
6 G = Yn [ - Bldre . 020

Here Eg is a linearized version of the Planckian:
By(x) = Ba(x) + [T (x) ~ T"(x)| BL(x) | (722)
with
n n b ng n
Be(x) = B (T"(x)) , Bplx)=——(T"(x}) .

The change in temperature, [T (x) — T"(x)], can be eliminated from Eqs. (7.20)-(7.21),
producing the following steady-state equation for the unknown angular intensity:

x , e
MHana(x=#) + 2 (X)W, 1) = %')“ ¥ N(x)Zg(x) /11 Wo (1 Ydpd + Sg(x, ) . (7.23)
g=1 -

Here we have introduced:

- 1 =
To(x) =Ep(x)+ ik (£, >Z) (7.24)
G .
§1 Lo (x) B3 (x)
nx) = —2 , (0<n<1) (7.25)

X G ;
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Ag(x) = GES(X)B;(X) : (ixﬁl) , (7.26)
PO |
G
Sp(x,p) = -C—i‘;w;'(x,u) +Zg By (x) +n%§ Q(x)+2 3, ng(x)BZ'(x)J a2
g=1

Equation (7.23) has the form of a subcritical neutron transport problem with fission
but no scattering. The quantities ¥4 (x), N(x), Z,(x), and Z,(x) play the respective roles
of fission spectrum, number of neutrons emitted per fission, fission cross section, and to-
tal cross section. Many radiative-transfer problems of practical interest have regions that
are extremely optically thick in some frequency groups; thus, a typical photon’s energy is
absorbéd and re-emitted many times before it escapes the problem domain. Therefore, a
simple “source-iteration” approach (termed “lambda iteration” in the astrophysical commu-
nity [115, 121]) would require many iterations to converge. If the time steps are sufficiently
small that only a small number of source iterations are needed per step, then a very large
number of steps is required. Unfortunately, larger time steps require many more source
iterations per step. The preferred approach is to use (i) time steps that would require a
very large number of source iterations per step, and (if) a more rapidly converging iteration
scheme than source iteration.

For a single frequency (energy) group, Eq. (7.23) becomes:

“awz(a?p) +E(x)ylx,p) = %n(x)):(x) /_ 1] y(x,u )y + S(x,p) (7.28)

This is the same as Eq. (1.1), with £ and NI playing the roles of %, and Z;, respectively.
Thus, there is a close mathematical connection between the radiative transfer problem and
the problems discussed in previous chapters. We note that in the limit of a large time step,
the effective scattering ratio
W
Z(x)
Given an optically thick problem domain, this implies a difficult iterative problem.

Let us return to the multigroup problem, Eq. (7.23), and examine the “emission” term
(the first term on the right side). This term is the product of a specific energy shape (), (x))
and a term that depends only on position. Thus, the term that drives the iteration is inde-
pendent of direction and energy. This is significantly different from the scattering term in
the general multigroup problem of Eq. (7.1), which depends on both the spatial and energy
variation of the unknown solution.

Larsen took advantage of this “one-group isotropic-scattering” nature of the driving
term in Eq. (7.23) to develop a good preconditioner (“synthetic acceleration method”) for
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the problem [129]. His low-order equation in this Grey Transport Acceleration (GTA)
method is a one-group (or “grey”) transport equation of the form of Eq. (7.28). The cross
sections in this equation are weighted averages of the multigroup cross sections in Eq.
(7.23). The weight functions are the energy shapes of the slowest-converging error modes
as determined by an infinite-medium Fourier analysis. Let us define:

G 1
x) = 350 [ el )il (7.29)
g=1 -1

Then a single GTA iteration is given by
(E+1/2)
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The quantities X, and Z; in Eqs. (7.31) and (7.32) are weighted averages of the Eg and Z,,
respectively. Larsen showed via a Fourier analysis that his GTA method is convergent for
a model analytic opacity, with a worst-case spectral radius of 0.868. The GTA method
requires the solution of the low-order one-group problem, Eqs. (7.31) and (7.32), every full
iteration. For this problem the one-group iteration methods discussed in previous chapters
can be employed.

Gol’din and co-workers have also applied the Quasidiffusion method to the problem
of radiative transfer [43, 82, 108, 216, 261]. The QD method is quite well-suited to this
problem, especially when there is coupling to other physics, such as hydrodynamics. The
basic ideas are illustrated by the following nested iteration scheme. The outermost iteration
uses a previous value of B(x) and produces an Eddington factor for each frequency group:

{e+1/2
pe B 5 P ) = O syt 039

(t+1/2)
BV () = JL ity ,.U)dﬂ.

(7.34)
£
S (e dn

For each outer iteration (index £} an iterative calculation determines a new value of PB(x).
In its simplest form this iteration consists of the solution of the Quasidiffusion equation for
each group followed by the solution of a one-group Quasidiffusion system. Let us define

St g(x) = fj];.r"Sg(x,y)du .
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Then, for nested iteration s inside outer iteration £, the multigroup Quasidiffusion equations
are

(6+1/2,5+1/2
dofy /2l (EH1/2541/2) \ - ()
(1) + S ()0 () = %P + 505l (239)
d [ (6+1/2), (6+1/2,5+1/2) (£+1/2,5+1/2)
e [ By g } Zo(x)9y =81,(x) . (7.36)

If these equations are summed over all groups, the result is a one-group Quasidiffusion sys-
tem with solution-weighted frequency-averaged cross sections. The final part of iteration s
is to solve this system with cross sections weighted by the latest solution:
(8+172 5+1)
dd 1/2 e+1/2,5+1
= P @ef* ) = Spam() | (7.37)
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Here we have defined:
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The energy-averaging procedure that produces these equivalent one-group QD equations
was first presented by Gol’din and Chetverushkin [43]; it was later refined by Gol’din and
co-workers [108, 208]. While the latter two definitions look rather unusual, they achieve
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the purpose of keeping the one-group system exact but avoiding average quantities with
small quantities in denominators. We note that if each group’s first angular moment, ¢; ¢,
has the same sign, then £, is a simple ¢ ,-weighted average and { is zero.)

The solution of this one-group system produces a new estimate for B:

s+ (x) = (D(E+1/2,s+l)(x)2£€+1/2,s+1/2) (x) | (7.39)

where
Z leg( )¢(£+1/2,5+1/2)( )

FlH1/25+1/2)
£4+1/2,5+1/2
2%3’ )
Upon convergence (or a pre-selected number) of the s iterations, the new [3 is declared to
be the B at the next ¢ level:

BEHD (x) = Blésmadd (x) | (7.40)

where 8y, is the number of “s” iterations taken on Eqgs. (7.36)-(7.39).

Before leaving the subject of radiative transfer, we remark that the extreme optical
thickness of typical problems places great stress on spatial discretization methods. Practical
considerations usually require the use of a spatial grid whose cells are extremely optically
thick, at least for certain frequency groups. In such problems, many “simple” spatial dis-
cretization methods (such as diamond differencing) exhibit unphysical behavior. A great
deal of effort has gone into analyzing this behavior and developing spatial discretization
methods with the correct behavior; we refer the reader to [140, 172, 247, 286] and refer-
ences therein.

VIII. ACCELERATION OF k-EIGENVALUE PROBLEMS

The k-eigenvalue problem is of great interest in neutron transport calculations for nu-
clear reactor simulations. The one-group, slab-geometry, isotropic scattering version of
this problem is:

1 vEf(x)

o(x) + -

P o(x) , (8.1)

u%’(x,u) + () y(x, ) = E%@

where .
o) = [ Wi

and for simplicity we have omitted the (homogeneous) boundary conditions.
If we define the loss (L) and production (P) operators as:

E()

oy
Ly = ua + Z, (x)wy( ENTHIITES (8.2)
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Ze(
py =20 fx)[ d)d (8.3)

then the k-eigenvalue problem can be written

1

Equivalently,
ky =L 1Py=Ay . (8.5)

Thus, the so-called k-eigenvalues are the eigenvalues of the operator
A = L7'P = [loss] ! [production] .

Clearly, P, L~', and A are positive, bounded operators. Thus, the eigenvalues of A are
bounded; generally the largest (in magnitude) of these eigenvalues is real and positive,
and the corresponding eigenfunction is of one sign (positive). We denote the eigenvalues
of A =L7'P by {kn,n > 1}, the corresponding eigenfunctions by {u,(x,u),n > 1}, and
we assume that the eigenvalues are ordered such that |k, | < |ks|. Then the largest (in
magnitude) eigenvalue is ky, which is called the multiplication factor. This eigenvalue is of
great practical importance and is the desired output of most reactor eigenvalue calculations.
The ratio

which is strictly less than unity, is the dominance ratio. For systems with an optically thin
fission region, r is usually small. However, for systems with optically thick or “loosely-
coupled” fission regions, » is usually “large” (i.e., near unity). The dominance ratio r
plays the same role for eigenvalue problems as the scattering ratio ¢ does for fixed-source
problems: if r is small, the simplest iteration scheme to determine k; (power Iteration)
converges rapidly, while if 7 is “large” (near unity), power iteration converges slowly.

VIILA. Power Iteration (PI)

The simplest practical iterative procedure to determine %, and the associated eigen-
function u;, is Power fteration (PI} [132]. This can be defined for n > 0 by

Lw(n+1/2) (x,10) =Pw(n) (x,u) -, (8.7)
(n+1/2)
(1) il G0
W () = TCET (8.8)

KD = (gl 8.9)
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where y(® is an arbitrary initial estimate and || || is any convenient norm. Equivalently,

my(0)
w(n)(x ) Ay (x.u)

, 8.10
Ao @10

L e

Tn this scheme, the eigenfunction estimates W™ (x, 1) are normalized to satisfy ||y || = 1
for n > 1. Also, if y©@ (x, ) > 0, then W (x,u) > 0 forn > 1.

Eq. (8.7) implies that power iteration requires ane to solve, within each iteration (n),

(8.11H)

a fixed-source transport problem with scattering and a specified fission source. For many
optically thick problems with weak absorption, such problems can be solved efficiently
only using acceleration methods such as those described in the previous chapters of this
Review.

To analyze the convergence properties of the PI scheme, let us assume that the eigen-
functions of A can be used to expand the initial estimate qJ(O):

O () =¥ aju;(x,m) . (8.12)
j=1
Then forall n > 0,
AmyO) (x 2 aku;(x,p) (8.13)

j_
so Egs. (8.10) and (8.11) can be written

k
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The summations in these two equations are O(r*). For large »,
ui{x,
W () = 'll(l/‘lﬁ) +0(r™) (8.16)
K" =k +0(r) (8.17)

Thus, r is the effective spectral radius of the PI scheme. If r is small, PI converges rapidly,
but if  is close to unity, then PI converges slowly.
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VIILB. Shifted Power Iteration (SPT)

For many problems, Shifted Power Iteration (SPI) [13 1] significantly reduces the spec-
tral radius of Power Iteration. For a suitable positive constant k > k; (described below), let
us write Eq. (8.4) as

1 1 1
(2= 57w = (3 1) pute .19
Then, analogous to Eqgs. (8.7) - (8.9), SPI is defined by:
1 1 1
- {n+1/2) =[-_2 (n)
(L KP) v {x,1) ( X K) Py (x,u) (8.19)
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Equivalently,

A ; (8.22)

= ‘ . (8.23)

For this problem, the dominance ratio is easily shown to be

k
1-k2?K‘

k
*kl K

K—kj
K—ko

ka
ky

r=

(8.24)

4

Because |ky| < k1 < «, this dominance ratio is always less than that of simple power itera-
tion. If a value of k can be found satisfying

0<K—ki €|k~ ky| , (8.25)

then the SPI iteration converges very rapidly. For such values of %, the fixed-source prob-
lems (8.19) that must be solved in each SPI iteration represent nearly-critical [or in the ter-
minology of the previous chapters of this Review, very highly scattering] problems. Thus,
the fixed-source acceleration techniques described earlier in this Review become even more
important in solving SPI problems than in solving PI problems. Moreover, in multigroup
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problems, the fission operator on the left side of the fixed-source problem, Eq. (8.19) in-
troduces an effective upscattering, which further complicates its solution relative to that of
the fixed-source problems encountered with PIL.

The above results for the PI and SPI schemes are very general and hold for transport
problems in general geometries, with anisotropic scattering, and with (multigroup) energy
dependence. The effective spectral radivus for PI is always given by Eq. (8.6), and the
effective spectral radius for SPI is always given by Eq. (8.24), where ¥ is the shifting
parameter. Unfortunately, for difficult problems in which |k;| = ky, it can be difficult to
obtain a value of x satisfying the inequalities (8.25). Also, as noted previously, the fixed-
source problem that must be solved for each SP1 iteration is considerably more difficult than
is the problem that is solved for each PI iteration. For this reason, SPI is not a panacea,
and other acceleration methods have been devised that do not directly require a shifting
parameter X. We turn to these methods next.

VIIL.C. Chebyshev Iteration for k-Eigenvalue Problems

As we discussed in Section VLB, it can be advantageous to replace the £ iterate in
a fixed-source problem with a weighted average of all iterates through iteration £. The
weights in this weighted average can be chosen to correspond to a Chebyshev polynomial;
this can significantly improve iterative convergence.

The same logic, applied to the k-eigenvalue problem, leads to the same conclusion.
Rather than using only the nth iterate, W, we define an average of it and all previous
iterates:

] N
g =3 oyl (8.26)
i=0

As described in Section VI.B, it is not necessary to store all of the previous iterates. In-
stead, we can take advantage of a three-term recursion relation for Chebyshev polynomials,
requiring us to store only two previous iterates while building the new one.

Chebyshev acceleration is used fairly widely in transport and diffusion codes to speed
convergence of k-cigenvalue problems. For example, the DANT system of codes [232, 144,
92] employs Chebyshev acceleration in the solution of its low-order (diffusion)
k-eigenvalue problems (see Section VIILE below) and also in its transport k-eigenvalue
problems in hexagonal geometry. The DIF3D code uses Chebyshev acceleration for its
k-eigenvalue problems; the DIF3D manual nicely explains the method and its implemen-
tation [80]. For very difficult problems — those with dominance ratio r — 1, Chebyshev
acceleration can tremendously reduce the number of iterations compared to standard power
iteration.
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VIILD. Quasidiffusion for k-Eigenvalue Problems

The QD method is excellently suited to the k-eigenvalue problem, as Gol’din and
Kalitkin recognized very early [44], and Gol’din and Anistratov later exploited [82, 168].
Taking the 0% and 1¥ angular moments of the k-eigenvalue problem, Eq. (8.1), one obtains
the QD k-eigenvalue equations:

fitl *)+ Za(x)go(x) = ‘sz(x)%(x) : (8.27)
% [E(x)q)l) (x)] +Z‘Z(X)¢] (x)=0, (8.28)

where E is the Eddington factor. There are various ways to proceed; a simple one begins
with an initial guess for the Eddington factor:

EU/Y — gyess  (usually = 1/3) . (8.29)

Then the iteration proceeds as follows. In the first step of each iteration, one solves a QD
k-eigenvalue problem, using the latest estimate for £

(3]
iicq;_ylc-(x) Zalx )% (x) = G sz(x)%)(x) ) (8.30)
2 B 000 ) + 5000 x) =0 ®31)

(These equations could be solved with PI or SPI, for example.) In the second step, one
performs a transport sweep (with known scattering and fission sources from the previous
step) to generate a new Eddington factor:

(£+1/2)
P e 4 By ) = g0 00, @)

1
E€n2( < L ”ZW(Eﬂm 1) du
]
J2 w2 (x, )
This iteration continues until ¢ and & converge.

Contrasting this procedure with PI or SPT applied directly to the transport problem, as
in Section VIII.A, we observe;

(8.33)

1. With PI or SPI applied directly to the transport problem, the number of transport
sweeps is the number of £ iterations times the average number of scattering iterations
per k iteration. Transport sweeps, of course, solve for the full angle- and position-
dependent angular flux. If the dominance ratio is close to unity, then the number of

k iterations will be large and thus so will the number of transport sweeps (each of
which is costly).
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2. With QD, PI or SPIL is applied only to a low-order problem. The number of transport
sweeps depends not on the dominance ratio, but on how quickly the Eddington factor
converges in the two-step iteration process described above. The potentially large
number of PI or SPI iterations takes place only in the low-order problem, which
has only position (not angle) as an independent variable, This is a central theme in
the QD method: most of the work is done in the relatively inexpensive setting of a
lower-dimensional problem.

We consider next the multigroup k-eigenvalue problem with isotropic scattering:

A _1Y Xeus
(5, 0) + T OV (0) = 5 Y, [Bogme®) + EEVE ()| G0g () . (839)

g'=1

Taking the 0/ and 1% angular moments, we obtain the multigroup QD equations:

d G
Dt (1) 13, (x)00.(5) = gg[ g () F IV () dog (), (B39
L g0, 0)]+ )1 5(8) =0 .36)

As we have shown in Section VILC, it is possible to sum the QD equations over energy
groups and obtain equivalent one-group equations in which the cross sections and other
constants are weighted averages of the fine-group values:

oL (0) + £al)Po(x) = (VB () Pu(x) (837)
% (B ()0 ()] + 55 ()1 (x) + {(x) o = 0 | (8.38)
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The multigroup k-eigenvalue QD iteration begins with a guess for multigroup Edding-
ton factors, E,:

E(I/Z) = guess (usually = 1/3 foreach g) .

One also has an initial guess for the energy shapes of cp(]/ 212 and q)(]/ 22 Then the
gu l.g
iteration proceeds as follows, beginning with £ =5 = 0.

1. Compute the one-group constants from the latest energy shapes:
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2. Solve the one-group QD k-eigenvalue problem with the latest group constants:

acp(’) 1~ (s
—E T e, 6.39)

S +ET P e ) =

d — s — 5 §— ¥
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This produces a new estimate of the eigenvalue and the fission source distribution.

3. Solve a fixed-source multigroup QD problem driven by the new fission source:

¢(z 1/2,54+1/2)

ll,g = () + X (x ) (¢~ 1/2,5+1/2)( %)
Zzsgqg( Wiy P+ BET e, ean
;’x{ (£-1/2) (x )¢E—1/2s+1/2)( )] “E )¢e 1/25+1/2)( =0 . (8.42)

4. Return to step 1 with the iteration counter s incremented by one, unless it is judged
to be time to update the Eddington factors, in which case proceed to the next step.

5. Perform a transport sweep in which the fission and scattering sources are known from
the latest QD calculations.

3 (8+1/2)
Wa (x, P)‘*‘Zt,g(x)‘l’g +1/2)( V1)
1 & 1/2,541/2) (5 1/2) (s)
== Y Log—oX)0y (W) + 25 05" (x) . B4
g=1

Use the resulting angular fluxes to generate multigroup Eddington factors. Increment
the iteration counter £ by one and return to step 1.

This continues until further changes in the Eddington factors and multigroup spectra cause
sufficiently small changes in k and the scalar flux.

Many variations are possible on the above iteration scheme, but all are built around the
fundamental QD philosophy of doing as much of the needed work as possible in a setting
with the fewest number of independent variables. In this case, one solves the k-eigenvalue
equations in the one-group QD setting, which has no independent variables in angle and
energy.

VIIL.E, Synthetic Acceleration Methods for k-Eigenvalue Problems

When Alcouffe introduced his consistent DSA method for the DD equations, he pro-
posed several variants [63]. One was the source-correction scheme, which is linear; this
scheme formed the basis for much of the later DSA work. However, Alcouffe recognized
that for the acceleration of eigenvalue iterations it is advantageous to formulate a low-order
problem that is itself an eigenvalue problem for the desired scalar flux, as opposed to an
equation with an additive driving term. One of his variants, therefore, was a nonlinear
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scheme in which the diffusion coefficient and the removal cross section in a consistently
differenced diffusion equation are defined as nonlinear (rational) functionals of the trans-
port solution. (We remark that such nonlinear schemes do not fit the definitions of synthetic
acceleration or preconditioning methods that we have used throughout this paper. Histor-
ically, however, they have been called nonlinear synthetic acceleration methods.) For the
one-group problem, Eq. (8.1), Alcouffe’s DSA for k-eigenvalue problems is a discretized
version of the following. First, there are initial guesses for the diffusion coefficient and

removal cross section: .

3%,(x)
50 = Zaln)

Then the iteration proceeds as follows:

pi1/2) (x) =

1. Solve a diffusion k-eigenvalue problem with “corrected” diffusion coefficient and/or
removal cross section:
d e-1/2) d% e-1/2), . (8)
dx (x)g " (x) = (B)VEf(x)Q)O (x) . (8.44)
This discrete equation is solved using the discretization that is consistent with the
DD transport discretization. {See Section I11.B.)

2. Perform a transport sweep (with scattering and fission sources known from previous
step), and generate a new corrected diffusion coefficient:

y(E+1/2)

e () + 2 (D () = ()¢(€() ktlf)vzf ) g @x) . (8.45)

(£+1/2)
pE+1/2) (x) = ¢1

dx
These equations are solved in discrete form using the DD discretization. Obviously,
Eq. (8.46) can produce a negative or very large diffusion coefficient, which causes
difficulties in the diffusion solution; to circumvent this, Alcouffe devised a nonlinear
correction to the removal cross section. In practice (in the DANT series of codes

[232]), Alcouffe’s algorithm proceeds as follows when Eq. (8.46) produces an unac-
ceptably large or negative diffusion coefficient:

(8.46)
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During the iterative process in some problems, it is possible for Eq. (8.47) to gener-
ate a negative cross section in some cells. In practice in the DANTSYS codes, this is
permitted unless it causes the discrete diffusion matrix to lose diagonal dominance.
In such cases (which are rare in practice) the code simply tums off the accelera-
tion in the offending energy group, and later turns it back on if and when diagonal
dominance is restored. [287].

This process continues until convergence. For multidimensional problems, Alcouffe
defines a diagonal diffusion tensor:

¢(1£_1 /2)
T s,
(25

In [232], Alcouffe presented results from three two-dimensional k-eigenvalue test prob-
lems, comparing his DSA algorithm against fine-mesh and coarse-mesh rebalance. CMR

DA = (8.48)

where u 18 x, v, or z.

diverged for the first two problems and required 369 iterations for the third; FMR required
48, 143, and 149 iterations for the three problems; DSA required 17, 24, and 80 itera-
tions [63]. Alcouffe’s DSA algorithm for the DD equations is implemented in the DANT
code series [92], which has been widely used for decades to solve both fixed-source and
eigenvalue problems. In recent versions of these codes, this DSA algorithm is employed
for spatial discretization schemes other than DD, including linear discontinuous and linear
nodal. However, for those schemes the diffusion discretization employed in the codes is
not consistent, and it is used to accelerate only the cell-averaged scalar fluxes (not slopes).
It therefore “quickly loses its effectiveness when the slope terms are important” in these
non-DD schemes [287].

We now compare the QD scheme and Alcouffe’s DSA scheme for k-eigenvalue prob-
lems. Alcouffe’s diffusion-correction scheme is somewhat reminiscent of QD, in that the
diffusion leakage term is transport-corrected. However, QD’s nonlinear functional 1s sta-
ble and well-behaved, whereas the DSA functional can become negative or infinite. Either
of these circumstances forces use of the removal-correction scheme. The DSA low-order
problem is a true diffusion problem, and its matrix is symmetric positive definite; the QD
equations are not symmetric and are thus more difficult to solve in general. The DSA
scheme produces the unaccelerated solution, whereas QD does not. On the other hand,
QD does not require consistent discretization. (See Section III.G.) Finally, both methods
require the solution of low-order eigenvalue problems.

We have mentioned that eigenvalue problems are most naturally “accelerated” using
low-order equations that are themselves eigenvalue problems. All such low-order eigen-
value problems that have been proposed make use of nonlinear functionals of the transport
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solution. As a result, these methods require positive transport solutions, which almost al-
ways translates into a requirement for a negative-flux fixup in the transport algorithm. This
has two unfortunate consequences. First, in eigenvalue problems, negative flux fixups tend
to decrease solution accuracy. Second, fixups can cause a transport discretization to be
inconsistent with a diffusion discretization that was carefully constructed to be consistent.
It is possible to devise DSA algorithms for k iterations without introducing nonlinear-
ities and thus without forcing negative fluxes to be “fixed”. Gelbard et al. created such a
linear scheme and showed that it remained robust and fast (without negative flux fixups),
even on problems for which negative fixups caused the DANT DD code to fail [81]. This
scheme requires the solution of one adjoint low-order eigenvalue problem, and for each
DSA iteration it requires the solution of a low-order problem with a singular operator.

VIILF. Summary of Chapter VIII

With nonlinear methods (such as QD or DSA with a diffusion correction), eigenvalue
problems can be accelerated in a relatively straightforward way. It is more difficult to
devise linear methods for such problems, but this too can be done. With nonlinear methods,
each “synthetic” iteration requires the solution of a low-order k-eigenvalue problem. This
problem can be solved with PI or SPI iterations, possibly with Chebyshev or some other
form of algebraic acceleration. Finally, we note that historically, much more effort has
been spent on developing methods for accelerating the iterative convergence of fixed-source
problems than on eigenvalue problems.

IX., DISCUSSION

This Review aims to provide a useful introduction to iterative acceleration methods
for large-scale discrete-ordinates particle transport calculations. Chapter I describes the
main historical events pertaining to this field. Chapters IT and III present a “tutorial,” to
introduce the fundamental ideas that have led to important technical advances. Chapters
IV-VIII discuss acceleration techniques associated with multidimensional geometries, ad-
vanced differencing schemes, unstructured spatial grids, etc.

In this Review, we have stressed the desire for methods that will accelerate robustly and
efficiently for particle transport problems that are more difficult than nuclear reactor prob-
lems — problems containing spatial subregions with spatial cells that are many mean free
paths thick, and with scattering ratios that are exceedingly close to unity. However, there
are important problems in which acceleration is greatly needed, but the physical parame-
ters are not so extreme. One common example is the simulation of neutron transport in
nuclear reactors and shields. For these problems, spatial cells are typically on the order of
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one mean free path in thickness, or less. If a code user is confident that a given discretized
problem has spatial grids that are not optically thick, then there is no need to employ an ac-
celeration method that is (unnecessarily complex because it is) designed to work effectively
for problems with optically thick grids. Thus, acceleration methods that work well in the
fine-mesh limit, but that degrade to the performance of source iteration for optically thick
spatial cells, are viable candidates for efficient acceleration schemes for typical nuclear re-
actor problems. One example of such a scheme is DSA with (i) the diamond-differenced Sy
equations, and (ii) a cell-edge diffusion equation employing a one-point removal term. This
method, in 1-D geometry, is discussed in detail in Chapter III. Other “inconsistent” DSA
schemes involving the diamond-differenced Sy equations in X, Y-geometry were studied in
[156]. (This work was motivated by the slightly inconsistent form of DSA that is actually
implemented in the DANT code.) A related method for DSA with the Linear Discontinuous
difterencing scheme in 1-D and 1-D geometries was developed in [167].

We have also stressed that linear and nonlinear acceleration schemes are often closely
related. (For each nonlinear scheme, there seems to be a corresponding linear scheme,
which can be derived by linearizing the nonlinear scheme around the flat infinite medium
solution.} Linear schemes usually:

¢ involve a low-order (preconditioning) equation for an additive correction to the latest
Sy iterate,

e if they converge, converge to the solution of the unaccelerated (source-iteration)
equations (the converged numerical solution does not change),

¢ for unconditional convergence, require the low-order preconditioning equation to be
discretized consistently with the discretization of the high-order transport sweeps,

¢ do not require the numerical solution to be positive (although, physically, it should
be positive),

e are natural to apply to source-detector problems, but are not natural for eigenvalue
problems.

Nonlinear schemes, on the other hand, usually:

e are not equivalent to preconditioning, and involve a low-order equation for the trans-
port solution,

e produce two estimates for the solution (one from the high-order transport sweeps,
one from the low-order equation), which usually differ from each other and from the
unaccelerated solution by truncation errors,

¢ do not, for rapid convergence, require the low-order equations to be discretized con-
sistently with the high-order equations (although, if the high and low-order equations
are discretized consistently, then the two scalar flux estimates are identical and equal
to the unaccelerated solution),
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e generally require the converged solution and all iterates leading to this solution to be
positive,
e are natural to apply to both source-detector and eigenvalue problems.

Thus, the linear and nonlinear acceleration schemes are somewhat complementary in terms
of advantages and disadvantages. '

An unfortunate aspect of DSA, which has been discussed already, is that as the spatial
discretization scheme and the problem geometry become more complex, the implementa-
tion of a stable, efficient DSA method becomes more problematic. Here we wish to make
one final observation concerning this fact. Typical advanced Sy differencing schemes in-
volve a greater number of unknowns per spatial cell than simple Sy schemes. Often, low-
order DSA equations are proposed for the advanced high-order Sy schemes that contain
fewer scalar-flux unknowns per cell than the high-order Sy equations. Such low-order
equations may be relatively easy to solve, but for some difficult problems, they can be
incapable of producing a satisfactorily small overall spectral radius. On the other hand,
low-order equations with the same number of scalar flux equations per cell as the high-
order equations may yield a satisfactory overall spectral radius, yet be so expensive to
solve that the overall cost is unacceptable [300]. Thus, while advanced spatial differencing
schemes are more accurate, they usually involve multiple unknowns per cell; this adds to
the basic storage and algebraic cost of implementing the scheme, and it greatly adds to the
difficulties of DSA acceleration, particularly in multiple space dimensions.

Many open questions remain concerning practical iterative methods for transport prob-
lems. One that recently came to light is that the performance of DSA, even with fully
consistent spatial discretizations, can degrade substantially in multidimensional problems
with severe spatial heterogeneities. Azmy and co-authors have demonstrated this by Fourier
analysis and by numerical results [260]. These authors showed numerically that spectral
radii can grow as large as 0.88, even with methods that, for homogeneous problems, always
produce spectral radii smaller than 1/3. We are not aware of a remedy to this interesting
degradation.

A second general question pertains to the implementation of rapidly converging iter-
ative transport schemes on massively parallel systems of computers. Is it possible to do
this in a way that preserves scalability, i.e. does not degrade in parallel performance as the
number of processors becomes very large? The answer to this question may be closely
linked to the ability to solve elliptic equations efficiently on massively parallel systems.
(This, of course, is because efficiently solving discrete diffusion problems is the basis of
many of the rapidly converging transport iterative schemes.) At the present time, this is an
active field of research.

Other open questions in the field of transport acceleration methods are related to the
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solution of multidimensional transport problems on unstructured spatial grids. However,
even for less-complicated problems, there is strong interest in new discretization methods
that are more accurate, and new iteration methods that are efficient and easy to implement.
We have tried to indicate in this Review that there is significant ongoing work on the de-
velopment of alternative methods that seem to have the potential to overcome difficulties
associated with present methods.

For example, spatial multigrid has found an extraordinarily wide audience in the math-
ematics and computational physics community. This method is still being extended and
tested for multidimensional transport problems, but it is not yet known how efficient multi-
grid can be made for these applications.

A similar statement holds for the application of the Quasidiffusion method to radiative
transfer problems. This method seems to have significant promise, but there is not a weaith
of accessible literature on various issues associated with this application.

A trend that has received increasing attention for difficult problems — ones with, per-
haps, severe spatial discontinuities, unstructured spatial grids, or even a slightly inconsis-
tent acceleration scheme — is to employ an algebraic iterative method such as Conjugate
Gradient (CG) or GMRES “outside of” DSA (i.e., to use CG or GMRES with a diffusion
preconditioner). If the sweep + preconditioner has only “a few” slowly-converging or un-
stable error modes, then this approach can be quite advantageous. However, it remains
true that for maximum overall efficiency, the diffusion preconditioner should suppress the
maximum number of slowly converging error modes, without causing other modes to be-
come slowly-converging or unstable, at the minimum cost. (If the diffusion preconditioner
efficiently suppresses all error modes, then it is unnecessary — but probably not harmful -
to combine it with an algebraic method such as CG or GMRES.)

Finally, we wish to emphasize two aspects of this Review that are of considerable im-
portance to the authors — our attempts to (i) provide a complete list of English-language
references on Sy acceleration schemes, and (ii) do justice to the extensive research on this
topic performed since the early 1960’s in the former Soviet Union.

In compiling the references for this Review (cited below), we performed an extensive
search through the English-language technical literature. To our knowledge, the list of such

-references given below is complete, up to the time of the writing of this Review. Also, there
has been significant work published on Sy acceleration schemes in the Russian literature,
and we have tried to include in this reference list the most significant of these publications.

Unfortunately, little of the Russian-literature work is known in the west — even though
a fair amount of it has been published in English — so this work has had relatively little
influence on western research. However, the opening of communications between “east”
and “west” that began a decade ago has had a beneficial effect on western awareness of
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this research. We believe that it is now possible to place the Russian-literature work in a
reasonable historical perspective, and we have attempted to do this in the present Review.
In particular, it is now clear that during the 1960’s, the research groups headed by Lebedev
and Gol’din developed an understanding of the problem that was well in advance of west-
ern thinking. Either by insight or by serendipity, these two groups avoided the difficulties
of “consistent discretization” between the high-order and low-order equations. Gol’din’s
group worked with QD, which does not require consistent discretization; Lebedev’s group
worked with the even-parity equations (for which a consistent diffusion discretization oc-
curs naturally) or with very fine spatial meshes (for which a consistent discretization is
not necessary). Thus, this early work did not (and did not need to) discuss the issue of
numerical stability as a function of the size of the spatial grid. In the west, attention has
historically been focused on synthetic acceleration, which does require some form of con-
sistency between the high-and low-order discretizations, and on first-order forms of the Sy
equations, for which consistent discretization is difficult. Thus, much of the western work
since Alcouffe’s publications in the mid-1970’s has dealt with the subject of consistent dis-
cretization of the low-order operator. In the present Review, we have attempted to explain
the differences and similarities in the “western” and “Russian” approaches. We wish to
apologize for any omissions or errors, which we hope are minor.

In conclusion, we have tried in this Review to show that the subject of acceleration
methods for particle transport simulations is a rich and self-consistent field, overlapping
numerical analysis, computational physics, and nuclear engineering. We hope that that
the Review will enable researchers and students to work on this subject more easily, and
thereby help to advance it. In the future, this field may become very different, with dis-
cretization methods that are more accurate and iteration methods that are more efficient.
Changes in computer architecture may drive some of these advances. However, even if all
this change occurs, it seems likely that future simulation methods will be based on princi-
ples that, at least in part, are known today. It will be gratifying if this Review conntributes
to the development of such methods.
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APPENDIX A: LIST OF ACRONYMS

The following is a list of acronyms used in this Review, together with their meaning

and some pages in which they are used and discussed.

page(s)
AMG Algebraic Multigrid 89
ASE Asymptotic Source Extrapolation 98, 103
BCGSTAB Bi-Conjugate Gradient Stabilized 98,112,113
BLC Bilinear Continuous 87
BLD Bilinear Discontinuous 17, 85, 87
BPA Boundary Projection Acceleration 18, 84, 95, 96
CB Corner Balance 85
CC Constant-Constant (nodal method) 99
CG Conjugate Gradient 18, 107, 140
CMR Coarse Mesh Rebalance 90, 93, 95, 96
DD Diamond Difference 48, 98, 137
DFE Discontinuous Finite Element 17, 86
DSA Diffusion Synthetic Acceleration 16, 27, 52, 82
FMR Fine Mesh Rebalance 90, 136
FEM Finite Element Method 112
FF First Flux 45
GCB Generalized Corner Balance 71,73,76
GMRES Generalized Minimum Residual 112, 140
GS Gauss-Seidel 114, 117
GTA Grey Transport Acceleration 124
IAEA International Atomic Energy Agency 95
ICSA Interface Current Synthetic Acceleration 95
KP Lebedev Acceleration Schemes 11, 14, 32, 67
LD Linear Discontinuous 17,71, 100, 117
LM Lewis-Miller 21,37,63,77
M4S Modified 4-Step 74
NLBPA Nonlinear Boundary Projection Acceleration 96,98, 113
PI Power Iteration 127, 132



QD
SAAF
SF

SI
SIMG
SPD
SPI
S2SA
S3SA
TG
TSA
WA

Fust iterative methods

Quasidiffusion

Self Adjoint Angular Flux (equation)
Second Flux

Source [teration

Source Iteration Multigrid
Symmetric Positive Definite
Shifted Power Iteration

Sz Synthetic Acceleration

S4 Synthetic Acceleration
Two-Grid

Transport Synthetic Acceleration
Weighted Alpha

page(s)

19, 40, 65, 77
47, 68

45

8, 23,48

' 99
109, 111
129, 132
31,58, 83

84

116

18, 34, 62,77
20, 43, 66, 77
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