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Common ecology quantifies human insurgency
Juan Camilo Bohorquez1, Sean Gourley2, Alexander R. Dixon3, Michael Spagat4 & Neil F. Johnson2

Many collective human activities, including violence, have been
shown to exhibit universal patterns1–19. The size distributions of
casualties both in whole wars from 1816 to 1980 and terrorist attacks
have separately been shown to follow approximate power-law dis-
tributions6,7,9,10. However, the possibility of universal patterns
ranging across wars in the size distribution or timing of within-
conflict events has barely been explored. Here we show that the sizes
and timing of violent events within different insurgent conflicts
exhibit remarkable similarities. We propose a unified model of
human insurgency that reproduces these commonalities, and
explains conflict-specific variations quantitatively in terms of under-
lying rules of engagement. Our model treats each insurgent popu-
lation as an ecology of dynamically evolving, self-organized groups
following common decision-making processes. Our model is con-
sistent with several recent hypotheses about modern insurgency18–20,
is robust to many generalizations21, and establishes a quantitative
connection between human insurgency, global terrorism10 and eco-
logy13–17,22,23. Its similarity to financial market models24–26 provides a
surprising link between violent and non-violent forms of human
behaviour.

The political scientist Spirling27 and others9,10 have correctly
warned that finding common statistical distributions (for example,
power laws) in sociological data is not the same as understanding
their origin. Possible political, ideological, cultural, historical and
geographical influences make conflict arguably one the ‘messiest’
of all human activities to analyse. Mindful of these challenges, yet
inspired by recent studies of human dynamics1–11,17,28, we analyse the
size and timing of 54,679 violent events reported within nine diverse
insurgent conflicts, placing equal emphasis on both finding and
modelling common patterns. Such insurgencies typify the future
wars and threats faced by society18,19.

Our data sources are real-time media databases, official (govern-
ment and non-governmental organization) reports and academic
studies. Supplementary Information provides details, plus data-set
extracts. The event data from different conflicts were compiled by
different researchers, often with cross-checking by independent

research teams, thereby reducing systematic collection or record-
ing biases. Comparison of event accounts across a wide range of
sources12,29 reduces potential media bias and mistaken aggregation
(for example, misreporting two events of sizes x1 and x2 as one event
of size x3 5 x1 1 x2), which would create significant errors in a tail-
dependent estimate such as a power-law slope. We focus on measuring
deaths, because injuries are harder to cross-check. However, where
possible, we check that our conclusions are robust to the inclusion of
injuries.

Figures 1 and 2 show our empirical findings for event size, whereas
Fig. 3 shows event timings. Our model (described later and shown
schematically in Fig. 4) provides a quantitative explanation of these
findings by treating the insurgent population as an ecology of
dynamically evolving, decision-making groups, in line with several
recent sociological hypotheses18–20. In addition to explaining the ubi-
quity of approximate power laws in the event size distribution and
the apparent central role of the 2.5 exponent value (Fig. 1), it explains
the conflict-dependent deviations beyond a power law (see green
curves in Fig. 2). Furthermore, the same model framework also
explains the common burstiness in the distribution of event timings
that we observe across insurgent conflicts (see black curves in Fig. 3).

Figure 1 gives exponent values, obtained by applying Clauset et
al.’s9,10 established methodology for estimating discrete power-law
distributions, p(x) < x2a, for x $ xmin where xmin is estimated
together with a. In all cases we cannot reject the hypothesis that
the size distribution of the events follows a power law, but we can
reject log-normality. Four detailed examples are shown in Fig. 2.
Following our preliminary 2005 results for Iraq and Colombia, we
had suggested12 that other insurgent wars might be clustered around
a 5 2.5. All the insurgent wars that we have analysed support this
hypothesis. By contrast, we find that the Spanish Civil War and the
American Civil War—neither of which are considered insurgent—
each give distributions where log-normal can not be rejected, and
where even the best-fit a value is much smaller (near 1.7, which is the
value for the aggregated sizes of conventional wars9). This finding pro-
vides quantitative support for claims circulating in social science18,19
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Figure 1 | Power-law exponents. Value a for power law p(x) < x2a deduced
from the empirical distributions of event size x (that is, the number of
casualties) for insurgent conflicts. Statistical procedures follow refs 9 and 10.

Blue dot shows the value 2.48 for distribution of total size of global terrorist
events, from Clauset et al.10. The years in parentheses describe the empirical
data set range used to deduce a, not the actual conflict duration.
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that insurgent wars represent ‘open-source’18, ‘fourth-generation’19

warfare, with qualitatively different dynamics from traditional wars.
Several trivial explanations of the data can be ruled out, such as pro-
portionality to city size10.

Figure 3 demonstrates a common burstiness in the distribution for the
number of events per day, n, irrespective of size. As explained in the
Methods and Supplementary Information, we compare the distribu-
tions over daily event counts for different epochs within the four modern
conflicts for which we have such data, against control distributions

(‘random war’) obtained by randomizing event occurrences within each
epoch. The data for each conflict (green circles) deviate from its random
war (dashed curve) in a similar way: the real war exhibits an over-
abundance of light days (that is, days with few attacks) and of heavy
days (that is, days with many attacks), but a ‘lack’ of medium days
compared with the random war (see lower panel). By considering
subsets of days, we have determined that these features are not just an
artefact of a variation in attack volume across days of the week (for
example, Fridays; see Supplementary Information). Interestingly, this
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Figure 2 | Size of events. a–d, Log–log plot of the complementary
cumulative distribution of event size P(X $ x) (that is, the probability of an
event of size greater than or equal to x) for four conflicts from Fig. 1.

Horizontal axis shows event size x, namely the number of casualties. Solid
green curves show the results from our model. Blue dashed line is a straight
line guide to the eye, not a power-law fit.
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Figure 3 | Timing of events. A time series with n 5 0, 1, 2, … events per day.
Green circles show distribution p(n) for the number of days with n events in
actual conflict. Dashed lines represent average values for random wars. Solid
lines denote average distributions calculated from 10,000 realizations of our
model (Fig. 4). Histograms below represent differences D(n) between real

and random wars, in units of standard deviations from the mean. Error bars
for random wars, namely one standard deviation from the mean of 10,000
shufflings, are shown but are small. Error bars for model wars demonstrate a
small spread in run outcomes.
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burstiness has become more pronounced over time for the wars in both
Iraq and Colombia, suggesting that they have become less random as
they have evolved. These findings are insensitive to the precise specifica-
tion of the epochs within a given conflict.

Our model framework in Fig. 4 incorporates two key features: (1)
ongoing group dynamics within the insurgent population (for
example, as a result of internal interactions and/or the presence of
an opposing entity such as a state army); (2) group decision-making
about when to attack based on competition for media attention.
Within this framework, we find that mechanism (1) dictates the
features observed in Figs 1 and 2 whereas mechanism (2) dictates
those in Fig. 3. Mechanism (1) is consistent with recent work on
human group dynamics in everyday environments28, and with cur-
rent views of modern insurgencies as fragmented, transient and evol-
ving18. Mechanism (2) is consistent with comments by former US
Senior Counterinsurgency Adviser David Kilcullen, who noted20 that
when insurgents ambush an American convoy in Iraq, ‘... they’re not
doing that because they want to reduce the number of Humvees we
have in Iraq by one. They’re doing it because they want spectacular
media footage of a burning Humvee.’ We consider the insurgent
population as having an overall strength N comprising human com-
batants, information, resources and weapons—though, for simpli-
city, one can think of N humans. N is continually being re-
partitioned through coalescence and fragmentation processes,
thereby producing an ecology of groups. A group’s strength at
time-step t determines the number of human casualties x it would
produce if it decided to engage in an event at that time-step. We take
N to be approximately constant over time, though our main conclu-
sions are unchanged if N evolves slowly with small fluctuations.

These two coexisting dynamic mechanisms generate rich time series
that can explain the numbers of events of different sizes at each time-
step. However, because the data in Figs 1 and 2 are time-aggregated
whereas those in Fig. 3 are size-aggregated, we can provide far more
insightful explanations by using simplified versions that treat the
respective non-dominant mechanism in an averaged way. Consider
first the simple situation in which the group coalescence and frag-
mentation processes in the insurgent population are represented by
probabilities18. The fragmentation probability nfrag is taken to be small

(,1%) to mimic the infrequent situation in which a group member
suddenly senses imminent danger and the entire group scatters. If
fragmentation does not occur, the group may coalesce with another
group with probability ncoal. This mimics the situation in which two
individuals initiate a communications link between them of arbitrary
range (for example, a mobile phone call), and hence their respective
groups of strength s1 and s2 act in a coordinated way with strength
(s1 1 s2). Because these two processes can be triggered by any particu-
lar constituent group member at any time, the probability that it
affects a specific group should be proportional to s (refs 24–26).
Treating mechanism (2) in an averaged way, we assume that all groups
are equally likely to be involved in an event over time. This is consis-
tent with the time-averaged behaviour of the full decision-making
model (see later). The time-averaged distribution of group strengths
s therefore acts like the distribution of event sizes x (ref. 12), resulting
in a steady-state approximate power-law distribution whose analytic
solution a 5 2.5 (refs 25, 26) is within the empirical bounds of Clauset
et al.’s total value of 2.48 6 0.07 for global terrorism10. This analy-
tically obtained theoretical value25,26 of 2.5 is robust to many model
generalizations21,25,26 (for example, coalescence of multiple groups,
fragmentation into groups larger than one), thereby offering an
explanation for the observed bunching of the empirical values around
2.5 in Fig. 1.

Invoking a more realistic mechanism for grouping dynamics than
simple probabilities (see Supplementary Information), we find that
our model framework can explain not only the approximate power-
law behaviour and central role of the 2.5 exponent (Fig. 1) but also
the behaviours beyond power law observed in Fig. 2. Accounting
explicitly for an opposing population (for example, state army) with
total strength NB, the coalescence and fragmentation are now caused
by the interactions between groups. The casualties produced by
clashes between opposing groups can then be used to obtain the event
size distributions (green curves in Fig. 2). Full details are given in the
Methods and Supplementary Information, with the four model para-
meters for each conflict (total insurgent strength NA, total state
strength NB and casualty scales CS and CL). When two opposing
groups meet they fight, with some members of both groups killed
and the smaller group fragmenting. CS (CL) sets the scale for the
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Figure 4 | Model framework for insurgency. The insurgent population
comprises an overall strength N, distributed into groups with diverse
strengths at each time-step t. This distribution changes over time as groups
join and break up. Dark shadows indicate strength, and hence casualties that

can be inflicted in an event involving that group. Figures 1 and 2 are derived
from the number of events of size x aggregated over time. Figure 3 is derived
from the number of events at a given time-step aggregated over size.

NATURE | Vol 462 | 17 December 2009 LETTERS

913
 Macmillan Publishers Limited. All rights reserved©2009



number of the smaller (larger) group’s members destroyed. As CS is
increased, the model deviates increasingly from a straight line at low
x, suggesting that Afghanistan and Colombia share the following
similarity: in a clash in which the insurgent group is the smaller
group, this insurgent group takes heavier relative losses than for
the wars in Iraq and Peru. The ratio between the two populations’
strengths (NA and NB) tends to control the slope itself, with greater
strength differences resulting in steeper slopes. This suggests that
there might be a greater difference between the strengths of the army
and insurgency in Colombia than in Iraq or Afghanistan. The total
insurgent strength NA controls the large x roll-off in Fig. 2.
Afghanistan and Peru deviate substantially from power laws for large
x, which our model interprets as relatively small insurgency strength.
Colombia and Iraq hardly deviate from power laws for large x, imply-
ing greater insurgency strength.

Because Fig. 3 features data aggregated over size, we replace the
detailed grouping dynamics (that is, mechanism (1)) by a time-averaged
number of groups. Given the resolution of our data and the typical
numbers of observed daily attacks, we take one time-step as equivalent
to one day. If a group launches an attack during a day with many other
attacks, its media coverage will in general be reduced. If, instead, it
launches an attack on a quiet day, its media coverage will increase20.
Each group receives daily some common but limited information (for
example, public radio or newspaper announcements about previous
attacks, opposition troop movements, a specific religious holiday, even
a shift in weather patterns). The actual content is unimportant provided
it becomes the primary input for the group’s decision-making process.
(See ref. 26 for a full description of an equivalent financial-market
version.) Although the groups are heterogeneous in terms of their
strategies, they tend to converge towards similar responses when fed
the same information26, thereby generating distributions (black curves)
that are almost identical to those observed (green circles). Our model
(see Supplementary Information and ref. 26) includes a confidence
threshold that must be surpassed before any decision can be made,
allowing us to interpret the increase in non-randomness over time for
Iraq and Colombia as a decrease in this confidence threshold; that is, the
insurgent groups in both wars have become less cautious over time
about whether to launch attacks. Reference 30 presents independent
empirical evidence that groups of humans do indeed use such generic
decision-based mechanisms.

To our knowledge, our model provides the first unified explana-
tion of high-frequency, intra-conflict data across human insurgen-
cies. Other explanations of human insurgency are possible, though
any competing theory would also need to replicate the results of
Figs 1–3. Our model’s specific mechanisms challenge traditional
ideas of insurgency based on rigid hierarchies and networks, whereas
its striking similarity to multi-agent financial market models24–26

hints at a possible link between collective human dynamics in violent
and non-violent settings1–19.

METHODS SUMMARY
For the event size distribution (Figs 1 and 2), we use Clauset et al.’s methodo-

logy9,10 to estimate power-law exponents, and test power-law and log-normal
hypotheses, with the time-aggregated time series of events. This methodology9,10

is a widely accepted, published state-of-the-art statistical procedure for analysing

power-law-like distributions. For the event timing distribution (Fig. 3), we

divide the time series for the number of events per day into epochs. These epochs

are chosen such that there is no significant trend in the moving-average within

each epoch. The precise specification of each epoch’s time-window does not

affect our main findings. We then generate 10,000 random wars by shuffling

the date of the events within each section, averaging across the shuffles. Our

model (Fig. 4) replicates the empirical size and timing patterns of Figs 1–3. Full

details are given in Methods and Supplementary Information.
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