
of ice in supercooled clouds at temperatures
below about –10 or –20°C. It has already been
established that contrails affect the atmosphere
primarily at temperatures below –40°C (15). This
process extends the envelope for aircraft effects
on the atmosphere to warmer temperatures. In-
advertent seeding may not be important globally,
but regionally near major airports in midlatitudes
during cool weather months it may lead to en-
hanced precipitation at the ground. Polar clouds
are particularly susceptible to the effect, modify-
ing incoming and outgoing radiative fluxes near
the surface and therefore local meteorology and
climatology.
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Pattern in Escalations in Insurgent
and Terrorist Activity
Neil Johnson,1 Spencer Carran,2,3 Joel Botner,4 Kyle Fontaine,5 Nathan Laxague,1

Philip Nuetzel,5 Jessica Turnley,6 Brian Tivnan7,8

In military planning, it is important to be able to estimate not only the number of fatalities but how
often attacks that result in fatalities will take place. We uncovered a simple dynamical pattern that may
be used to estimate the escalation rate and timing of fatal attacks. The time difference between
fatal attacks by insurgent groups within individual provinces in both Afghanistan and Iraq, and by
terrorist groups operating worldwide, gives a potent indicator of the later pace of lethal activity.

In 1948, Lewis Fry Richardson found that the
number of wars with a given number of fa-
talities follows an approximate power-law

statistical distribution as a function of the number
of fatalities (1). Recent research has shown that a
similar statistical distribution arises for the num-
ber of fatalities in individual clashes and acts of
terrorism (2, 3), whereas the relative stability of
these distributions over time allows an estimate
to be given of the severity of future wars or
clashes within an ongoing war (2–4). However,
these existing studies say nothing about the op-
erationally relevant questions (5–7) of how the
underlying arms race evolves over time, or when
fatal attacks might occur. Here, we confront these
questions using fatality data obtained on an un-
precedented daily scale from the ongoing insur-
gent war in Afghanistan and the recent one in
Iraq. Our data analysis is freely available for pub-
lic scrutiny: The coalition military fatality data
come from the public Web site www.icasualties.
org. Our analysis was done with the free down-

loadable tool Open Office, which runs on any
computer platform. The supporting online ma-
terial (SOM) for this paper contains step-by-step
instructions together with OpenOffice worksheets.
For Afghanistan, we include fatalities from the
start of Operation Enduring Freedom in 2001
until summer 2010, when General Petraeus be-
came commander of the International Security
Assistance Force and the U.S.-led surge started.
For Operation Iraqi Freedom, the data include
fatalities from 2003 until summer 2010, when
U.S. military action officially ended. The ter-
rorism results are derived from a recent study,
which used the database of the Memorial Insti-
tute for the Prevention of Terrorism, compris-
ing the 3143 fatal attacks carried out by the 381
known terrorist groups operating within the pe-
riod 1968–2008 (8). Suicide bombing data for
Hezbollah (1982–1985) and Pakistan militants
(1995–2008) comes from the public Web site
http://cpost.uchicago.edu.

For a wide range of human activities, the time
taken to complete a given challenging task de-
creases with successive repetitions, following an
approximate power-law progress curve (8–12).
This inspires us to analyze the insurgents’ com-
pletion of fatal attacks against coalition military
forces in a similar way (Fig. 1, A and B). We
calculated the best-fit power-law progress curve
tn ¼ t1n−b, where tn represents the interval
between the (n – 1)’th and n’th fatal day (one in
which the insurgent activity produces at least one

coalition military death), where n = 1, 2, 3, etc.
b indicates the escalation rate. t1 is the time
interval between the first 2 days with coalition
military fatalities. (For global terrorism, a fatal
day is one in which a particular terrorist group
produced at least one death anywhere in the
world.) Figure 1C shows the best-fit values t1 and
b for each province in Afghanistan, for all forms
of hostile death. The average number of fatal-
ities per fatal attack is fairly constant in a conflict
(2, 3, 8), hence it is in insurgents’ interest (or that
of a particular terrorist group) that the time be-
tween fatal days decrease rapidly, and hence b is
large and positive, while the opposite is true for
the military (or counterterrorism force). The scat-
ter in tn in Fig. 1B is typical for real-world tasks
(in particular, given the ongoing two-way strug-
gle), and the Pearson rank product-moment cor-
relation coefficient (R2) is within an acceptable
range for social systems (9–14). Although alter-
native progress curve forms are possible, any
such two-parameter progress curve amounts to a
nonlinear transformation of the power-law form
and hence generates a more complex version of
Fig. 1C. An exponential form does not generate
systematically better progress-curve fits; R2 for
the power-law form is better by up to 70% for
three-quarters of the provinces, including (most
importantly) those with the most data points,
and only tends to be comparable for the few
provinces having sparse datapoints and larger
tn scatter. We do not consider events with no
deaths because they occur almost daily;moreover,
the injury statistics are not publicly available. Al-
though the data resolution time scale is 1 day, this
is not problematic, because the tn values dictating
the best-fit progress curve for a given province, or
terrorist group, are usually much larger than 1.

Figure 1C reveals a surprising linear relation-
ship between the best-fit progress curve values t1
and b for individual provinces. The straight line
through the provinces has R2 = 0.9 and is given
by the equation b ¼ mlog10t1 þ c, with best-fit
parameter valuesm = 0.89 and c = −1.22. Even
if one speculated that the t1 and b values have
to lie somewhere in this range (which, a priori,
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they do not), a simple Monte Carlo calculation
puts the probability of this linear relationship
emerging by chance with a comparable R2 at less
than 1 in 106. Figure 2 shows that the linear re-
lationship extends to a specific weapon [that is,
fatalities caused by improvised explosive devices
(IEDs)] and to a completely different insurgent
conflict (Iraq), as well as to global terrorism and
suicide bombings by individual groups. These
t1 and b values suggest, for example, that com-
mon organizational processes underlie all hostile
military fatalities in Farah and Kunar, IED mil-
itary fatalities in Kabul, and fatal terrorist attacks.
The fact that Fig. 2 shows larger scatter than
Fig. 1C is understandable given its inclusion of
events in separate countries and the sparser num-
ber of IED fatalities as compared to total hostile
fatalities. Although the Afghanistan provinces
exhibit an escalation of fatal days throughout the
entire data set (that is, decreasing tn), the Iraq
provinces cease to show pure escalation toward
the end of the conflict, where fatalities cease. Be-
cause this paper focuses on escalation, the Iraq
data points in Fig. 2 correspond to the initial
escalation up to the turning point in the cumu-
lative moving average of tn. Other reasonable
methods for determining a turning point retain
the same linear structure as that in Fig. 2.

We considered the possibility that these re-
sults derive from contagion or diffusion effects
due to proximity. The data points for Kandahar,
Kunar, and Farah sit nearby in Fig. 1C, showing
that their escalation patterns are almost iden-
tical; however, they are widely separated geo-
graphically within Afghanistan, with Kandahar
in the south, Kunar in the east, and Farah in the
west. If fatal days in different provinces were
synchronized in calendar time (which they are
not), they would sit at the same point in Fig. 1C,
but they do not. Likewise, if fatal days in different
provinces were independent, then the individual
(t1, b) points should be scattered randomly across
Fig. 1C, but they are not. Comparing Fig. 1C to
detailed sociotechnical maps (15), we could not
detect a clear systematic relationship between the
data point locations and effects such as proximity
to Pakistan, density of internally displaced per-
sons, common tribal warlords, or levels of poppy
production (16). In terms of increases in troop
or insurgent numbers, it would have required a
very complex and specific province-dependent
increase, combined with a very contrived math-
ematical relationship to fatalities, to produce
the observed patterns. Instead, the calendar times
for the n’th fatal day vary wildly between prov-
inces (for instance, the first recorded military
fatality in Paktia was 4March 2002, whereas in
Wardak it was 25 July 2007). Nor are the ob-
served patterns simply linked to an increase in
the number of troops and hence to an increase
in the number of targets, because monthly troop
increases in Afghanistan were almost linear, not a
power curve (16, 17). Furthermore, as observed
in Iraq after the surge, significant troop increases
can actually decrease the military fatality rate.

Fig. 1. (A) Schematic timeline of successive fatal days shown as vertical bars. t1 is the time interval
between the first two fatal days, labeled 0 and 1. (B) Successive time intervals tn between days with IED
fatalities in the Afghanistan province of Kandahar (squares). On this log-log plot, the best-fit power-law
progress curve is by definition a straight (blue) line with slope −b (b is an escalation rate). (C) The solid
blue line shows best linear fit through progress-curve parameter values t1 and b for individual
Afghanistan provinces (blue squares) for all hostile fatalities (all coalition military fatalities attributed to
insurgent activity). The green dashed line shows value b = 0.5, which is the situation in which there are no
correlations. The subset of fatalities recorded in icasualties as “southern Afghanistan” is shown as a
separate region because of their likely connection to operations near the Pakistan border.

Fig. 2. The solid black line shows the best linear fit through progress-curve parameter values t1 and b for
IED fatalities in provinces in Afghanistan (blue squares) and Iraq (red squares). Because the frequency of
IED fatalities for provinces sitting just below b = 0 is low, their b values are relatively uncertain and should
be regarded simply as b ≈ 0. The green dashed line is at b = 0.5. These findings are consistent with results
for IED data aggregated over all Afghanistan (blue star) and for global terrorism and suicide bombings.
Global terrorism: The dark diamond shows the t1 and b values deduced from the best-fit progress curve for
global terrorist group activity when averaged over all attacks (8); the light diamond is an alternative
estimate where t1 and b are calculated directly by inserting the time intervals between initial attacks into
the progress curve formula (SOM). Suicide bombings: The blue triangle is for Hezbollah suicide attacks, and
the white triangle is for suicide attacks within Pakistan (data are from http://cpost.uchicago.edu/).
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We also analyzed timelines from detailed online
reports concerning political events (SOM); how-
ever, these timelines represented a poor fit to a
progress curve (R2 = 0.2) and produced (t1, b)
values (t1 = 12.4 and b = –0.75), which were
unlike those shown in Figs. 1C or 2.

Our broad-brush theory does not require
knowledge of specific adaptation or counter-
adaptation mechanisms, and hence bypasses is-
sues such as changes in insurgent membership,
technology, learning, or skill set, as well as a need
to know the hearts and minds of local residents.
We regard the escalation of hostilities as represent-
ing adaptation and counteradaptation in a way
that is analogous to the Red Queen hypothesis
of evolutionary biology (18, 19). The traditional
story features the RedQueen (which in our context
is an insurgency, or terrorist group) running as fast
as she can just to stay at the same place, implying
that her Blue King opponent (the coalition mili-
tary or antiterrorism organization) instantaneous-
ly and perfectly counteradapts to her advances
so that they are always neck and neck (the dis-
tance between the twoR = 0). However, instanta-
neous and perfect counteradaptation is unrealistic;
indeed, complex adaptation-counteradaptation
dynamics generated by sporadic changes in cir-
cumstances imply that R’s temporal evolution is
likely to be so complex that it can be modeled as
a stochastic process (20, 21). We do not need to
know exactly why R changes at any specific
moment, nor do the changes in R have to have
the same value, because each change is the net
result of a mix of factors [such as learning by ex-
perience or changes in personnel and technol-
ogy (5–7)] for each opponent. When the Red
Queen is in the lead (R > 0), there will inevitably
be fatal days. If her lead increases, the rate of
fatal days should also increase, hence for R > 0,
we take the instantaneous rate of fatal days as
proportional to R. As R tends to 0, fatal days
become increasingly rare. When R < 0, the Blue
King holds the lead and there are no fatal days.
By definition, provinces with no fatal days do
not appear in Figs. 1C and 2 (mathematically, t1
becomes infinite and b is undefined). The prov-
inces in Figs. 1C and 2 exhibit escalation and are
therefore consistent with an R that is generally
positive and increasing over time. For these prov-
inces, significant changes in the Red Queen’s
lead R are likely to occur around fatal days,
making R a function of n: The Red Queen has
by definition become successful at that moment
and this may stimulate a further increase in R,
whereas the Blue King’s failure may stimulate an
effective counteradaptation effort and hence re-
duce R. In the simple limiting case where changes
in R are statistically independent and have finite
variance, the Central Limit Theorem (20) says
that the typical magnitude (the root mean square)
of the Red Queen’s lead R after n steps varies as
nb, where b ¼ 0:5 (SOM), which is the random
walk result widely used in physics, biology, and
economics (20–22). For the more general and
realistic case in which changes in R depend on

prior history, research on correlated walks shows
that b will deviate from 0:5 but will typically
remain in the range0 ≤ b ≤1:5 (20–22), in agree-
ment with Figs. 1C and 2. Because the rate is
inversely proportional to the time interval, this
gives tn = an–b, where a is a constant of pro-
portionality. Setting n ¼ 1 yields t1 = a, hence
our theory reproduces the empirical finding that
the escalation of fatal days follows an approxi-
mate power-law progress curve tn ¼ t1n−b with
typical values in the range 0 ≤ b ≤1:5. Our theory
interprets provinces with b values near 1 as hav-
ing an ineffective military counteradaptation, so
that R persistently increases at every step n,
hence R º nb with b ¼ 1. This is analogous to
the Red Queen moving steadily forward at con-
stant velocity while the Blue King remains stuck
at the starting line. If the Red Queen gains
momentum, R can start accelerating and hence
b > 1 as observed for some provinces such as
Paktia and Ghazni in Fig. 1C. The fact that b
values for IEDs appear to be concentrated be-
tween 0 and 1 (Fig. 2) whereas the all-hostile
range is from 0 to 1.5 (Fig. 1C) suggests that the
coalition military counteradapts to IEDs better
than to other threats. Provinces at b ¼ 0 (Kabul
and Zabul in Fig. 1C) have a constant rate of
fatal days, implying that the military is managing
to contain further escalation. Similar interpreta-
tions can bemade for any other data point in Figs.
1C and 2, according to its b value.

The linear relationship between t1 and b in
Figs. 1C and 2 can be reproduced by adding a
coupling between the Red Queen–Blue King
arms races in different provinces. This coupling
can arise for various reasons: Even though the
insurgent groups (Red Queens) operating in two
different locations may be unconnected, and
even though they inflict military fatalities at dif-
ferent points in space and calendar time, the Blue
King opponent is essentially the same for each
(the same military coalition), and hence the in-
surgents in one province may eventually adopt
successful tactics from another. On the Blue
King side, the widespread use of similar tactics
or equipment could generate coupling. For ex-
ample when MRAPs (Mine Resistant Ambush
Protected vehicles) were moved to Afghanistan,
the Blue King effectively took on very similar
operational characteristics in each country: slow,
lumbering movement restricted to certain trans-
port corridors.

To illustrate the potential of our findings, sup-
pose that a quiet region suddenly experiences 2
fatal days. We can estimate the escalation rate b
for future fatal days in that region by taking the
initial time interval to be t1 and reading off the
corresponding b value from Fig. 1C or 2. An
estimate for the date of the m’th future fatal day
can also be obtained by summing all time intervals
n < m using tn ¼ t1n−b. Figure 1B suggests that
actual time intervals may exhibit significant
scatter around the tn estimates; however, their
sum (and hence the actual calendar date) will
show less variability because positive and nega-

tive errors in tn tend to cancel when summed.
Inputting only the first data point in Fig. 1B, the
error between the predicted and actual time of
the ultimate fatal day (n = 92, which occurred
on 13 May 2010) is less than 25%, which is far
smaller than the scatter in individual tn values
might have suggested. Access to detailed classi-
fied data sets would enable future analysis to
fully explore this possibility, and may help es-
tablish a systematic approach to quantifying an
insurgency’s momentum, the effectiveness of
countermeasures, and that of countermeasure
training processes. The fact that Figs. 1C and 2
link progress curves across two current theaters
of war and global terrorism may open broader
lines of inquiry into group learning, adaptive man-
agement strategies, and production metrics as-
sociated with modern uprisings, such as those
underway in the Middle East. One might argue
that analyses of this kind are useless once pub-
licly known, because they can be invalidated by
insurgents’ free will. However, we believe this
will not happen for the same reason that all com-
muters know that a traffic jam will appear every
day at rush hour on a certain route, yet many still
end up joining it. External constraints of working
hours, school schedules, and finite numbers of
direct roads mean that such predictability is hard
to avoid. Similarly, the spontaneity of fatal attacks
by an insurgency is probably constrained by
many factors, including the availability of troop
convoys, explosive materials, and sympathy within
the local population.
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Mechanism of RAD51-Dependent DNA
Interstrand Cross-Link Repair
David T. Long,1 Markus Räschle,2 Vladimir Joukov,3 Johannes C. Walter1*

DNA interstrand cross-links (ICLs) are toxic DNA lesions whose repair in S phase of eukaryotic
cells is incompletely understood. In Xenopus egg extracts, ICL repair is initiated when two
replication forks converge on the lesion. Dual incisions then create a DNA double-strand break
(DSB) in one sister chromatid, whereas lesion bypass restores the other sister. We report that the
broken sister chromatid is repaired via RAD51-dependent strand invasion into the regenerated
sister. Recombination acts downstream of FANCI-FANCD2, yet RAD51 binds ICL-stalled replication
forks independently of FANCI-FANCD2 and before DSB formation. Our results elucidate the
functional link between the Fanconi anemia pathway and the recombination machinery during
ICL repair. In addition, they demonstrate the complete repair of a DSB via homologous
recombination in vitro.

Invertebrate cells, DNA interstrand cross-link
(ICL) repair is coupled to DNA replication
and involves structure-specific endonucleases,

translesion DNA polymerases, recombinases, and
numerous proteins mutated in the human disease
Fanconi anemia (FA) (1). FA is characterized by
genomic instability and cellular sensitivity to DNA
interstrand cross-linking agents. A central event
in the FA pathway is the ubiquitylation of the
FANCI-FANCD2 heterodimer, which activates it

for ICL repair (2, 3). Extensive evidence indi-
cates that homologous recombination (HR) is es-
sential for ICL repair (4–9). However, the precise
role of HR in ICL repair remains conjectural, and
the functional connection between the FA and
HR pathways is unclear.

Using Xenopus egg extracts, we established a
cell-free system for replication-dependent repair
of a plasmid containing a single, site-specific cis-
platin ICL (pICL) (Fig. 1A) (2, 10). Upon addi-

tion of pICL to egg extracts, replication initiates
at a random site, and two replication forks con-
verge on the ICL (Fig. 1B, i). The leading strand
of one fork is then extended to within one nucle-
otide of the ICL (Fig. 1B, ii). Next, dual incisions
surrounding the ICL create a DNA double-strand
break (DSB) in one sister chromatid, and trans-
lesion DNA synthesis restores the other sister by
first inserting a nucleotide across from the ad-
ducted base (Fig. 1B, iii), followed by strand ex-
tension beyond the ICL (Fig. 1B, iv). Ultimately,
5 to 25% of replicated pICL is fully repaired, as
measured by regeneration of a SapI site that was
originally interrupted by the cross-link (2, 10). In
the absence of ubiquitylated FANCD2, DNA
incisions, lesion bypass, and SapI site regenera-
tion are greatly diminished (2). Given the estab-
lished links between HR and ICL repair and the
inefficient removal of the unhooked ICL in egg
extracts (10), we postulated that SapI site regen-
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Fig. 1. The X-arc contains intermediates of ICL repair. (A) pICL schematic. (B)
Model of ICL repair in Xenopus egg extracts (2, 10). (C) pControl or pICL was
replicated in egg extract, digestedwithHincII, and analyzed by 2DGE. Arrowheads,
see main text. (D) Cartoon of 2DGE patterns and relevant DNA intermediates.

(E) ICL repair of samples from (C) was analyzed under normal and branchmigration
(+BM) conditions. Background, SapI fragments from contaminating un–cross-linked
plasmid. For primary data, see fig. S1, E and F. All graphed experiments were
performed at least three times, and a representative example is shown.
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