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Abstract

In this work, we demonstrate the validity of the simplified spherical harmonics equations to approximate the more com-
plicated equation of radiative transfer for modeling light propagation in biological tissue. We derive the simplified spher-
ical harmonics equations up to order N = 7 for anisotropic scattering and partially reflective boundary conditions. We
compare numerical results with diffusion and discrete ordinates transport solutions. We find that the simplified spherical
harmonics methods significantly improve the diffusion solution in transport-like domains with high absorption and small
geometries, and are computationally less expensive than the discrete ordinates transport method. For example, the simpli-
fied P3 method is approximately two orders of magnitude faster than the discrete ordinates transport method, but only 2.5
times computationally more demanding than the diffusion method. We conclude that the simplified spherical harmonics
methods can accurately model light propagation in small tissue geometries at visible and near-infrared wavelengths, yield-
ing transport-like solutions with only a fraction of the computational cost of the transport calculation.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The equation of radiative transfer (ERT) has successfully been used as a standard model for describing light
transport in scattering media. However, providing solutions to the ERT is a major endeavor and remains a
challenging task in the fields of tissue optics and radiological sciences. In general, analytical solutions to
the ERT cannot be found for biological tissue with spatially nonuniform scattering and absorption properties
and curved tissue geometries. Instead, approximations to the ERT, such as the discrete ordinates (SN) and
spherical harmonics (PN) equations, have been established to overcome the constraints for directly solving
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the ERT. A low-order PN approximation, such as the diffusion (P1) equation, can be solved numerically for
problems with optical tissue properties at near-infrared wavelengths constituting diffusive regimes. Many
numerical techniques are available and have been employed for the diffusion approximation. Higher-order
PN equations cover also transportive properties of light propagation in tissues, e.g. when strong light absorp-
tion or small geometries are present. However, these equations are complicated and computationally demand-
ing, and therefore are not widely-used in tissue optics. In this paper, we propose a simplified spherical
harmonics (SPN) method for tissue optics, which significantly improves the diffusion approximation, but is
much less computationally expensive than solving the full PN or SN equations. The SPN equations can be used
for solving light propagation problems at visible and near-infrared wavelengths, especially when small tissue
geometries and high light absorption are encountered. The SPN equations have already been applied for solv-
ing neutron transport problems in nuclear sciences, but until now have not been used for solving problems in
tissue optics. For the first time, we have derived the SPN equations up to order N = 7 for anisotropically scat-
tering media and partially reflective boundary conditions, and we provide solutions for the exiting partial
current.

Light propagation models in biomedical optics are essential for tomographic imaging of biological tissue
using visible and near-infrared light [1]. These models predict light intensities, which are subsequently com-
pared to measured light intensities on the tissue boundary. Based on the predicted and measured data, image
reconstruction algorithms recover either the spatial distributions of intrinsic optical tissue properties or the
concentrations of light emitting molecular probes inside tissue. For example, diffuse optical tomography
(DOT) of tissue parameters has been employed in breast imaging for breast cancer diagnosis [1], in functional
brain imaging of blood oxygenation [2], in imaging of small joints for early diagnosis of rheumatoid arthritis
[3], and in small animal imaging for studying physiological processes and pathologies [4]. Tomographic imag-
ing of fluorescent and bioluminescent light sources inside tissue is used in fluorescence molecular tomography
(FMT) and bioluminescence tomography (BLT) [5]. The targets of these imaging modalities are exogenous
fluorescent reporter probes, endogenous fluorescent reporter proteins, and bioluminescent enzymes in small
animal models of human disease. Tomographic imaging of light emitting sources is a valuable tool for drug
development and for studying cellular and molecular processes in vivo. The development of new light prop-
agation models, which are computationally more efficient and provide solutions with higher accuracy, will
facilitate and improve the outcome of optical image reconstruction calculations. Most light propagation mod-
els are based or derived from the ERT. But, which particular light propagation model is used depends on the
optical wavelength of the light and the spatial size of the tissue domain interacting with the light.

The light-tissue interaction is governed by the optical tissue parameters, such as the scattering, ls, and the
absorption, la, coefficients, which are wavelength-dependent. The absorption coefficient, which can vary over
several orders of magnitude, increases towards the visible wavelengths. Typical absorption parameters are in
the range of 0.5–5 cm�1 at wavelengths k < 625 nm. In the red and near-infrared regions with k > 625 nm, the
absorption coefficient varies between 0.01 and 0.5 cm�1. On the other hand, the scattering coefficient varies
only slightly as a function of the wavelength between 10 and 200 cm�1. Light scattering events are strongly
forward-peaked and are well-described by the Henyey–Greenstein scattering kernel with the mean scattering

cosine (also termed anisotropy factor) g, which varies typically between 0.5 and 0.95 depending on the tissue
type. The reduced scattering coefficient is defined as l0s ¼ ð1� gÞls. Typical reduced scattering coefficients
are between 4 and 15 cm�1 and are slightly wavelength-dependent. The mean free path (mfp) is the length
1/(ls + la), whereas the transport mean free path (tmfp) is defined as the length 1=ðl0s þ laÞ, which plays an
important role in diffusion theory. We refer the reader to [6–8] for a comprehensive review of optical tissue
parameters.

Most light propagation models in optical tomography are based on the diffusion approximation to the ERT
when the condition la � l0s holds. The diffusion model is widely applied in DOT to tissues with relatively large
geometries, such as human brain and breast tissue [1]. However, when imaging small tissue geometries, e.g.
whole-body imaging of small animals [4], the diffusion model becomes less attractive, partly because boundary
effects are significant due to the increased tissue boundary to tissue volume ratio. Another important fact of
the limited validity of the diffusion model in whole-body small animal imaging is the large range of the absorp-
tion coefficients for different interior organs and tissue types when probing with near-infrared light. The
absorption coefficient of most tissue types is la � l0s for k > 700 nm, and here the diffusion model is valid.
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However, this is not the case for highly vascularized tissues, due to the increased light absorption of hemoglo-
bin. Typical absorption coefficients at 650 < k < 900 nm for liver, kidneys, heart, and aorta of small animals
(mice, rats) are between 0.7 and 2.7 cm�1 [6–8]. Hence, the diffusion model has limited validity when modeling
light propagation in the vicinity of those highly vascularized tissue parts [9,10].

When using visible instead of near-infrared light, as is done in FMT of green (GFP), yellow (YFP), and red
(DsRed) fluorescent proteins or of bioluminescent luciferase in BLT [11,12], large absorption coefficients are
encountered. For example, the emission peaks of GFP and DsRed are at 510 and 570 nm, whereas their exci-
tation peaks are at 488 and 555 nm. Different firefly luciferases have emission peaks at 538–570 nm [12–14].
Hence, fluorescent and bioluminescent light, propagating to the tissue surface, is strongly absorbed by hemo-
globin and other tissue chromophores. The large absorption coefficients at those wavelengths make the diffu-
sion model as a light propagation model less accurate [9,10]. Tomographic imaging, which relies on an
accurate light propagation model, will subsequently lead to erroneous reconstruction results of the sought
fluorescent and bioluminescent source distributions.

Higher-order approximations to the ERT are required, such as the discrete-ordinates (SN) [15,16] or spher-
ical harmonics (PN) [15,17,18] approximations, to overcome the limiting constraints of using the diffusion
model. Both methods have already been implemented and applied in tissue optics, with promising results
[10,19]. The SN and PN approximations yield exact transport solutions as N!1. The number of PN equa-
tions grows as (N + 1)2 for a three-dimensional (3-D) medium. The SN method uses discrete ordinates and
solves a system of N(N + 2) coupled equations. Consequently, the SN and PN methods are computationally
expensive, and, e.g., a full 3-D image reconstruction of a mouse model for recovering the fluorescent probe
distribution can take up several hours or days of computation time [19]. Also, the SN method suffers from
an increased ray effect in the vicinity of sources when highly absorbing media are present [1,10].

Therefore, we have developed a light propagation model that is based on the simplified spherical harmonics
or SPN approximation to the ERT. The SPN method was originally proposed by Gelbard [20,21] for neutron
transport, but a thorough theoretical foundation was laid out by Larsen and co-workers only during the
1990’s [22–26]. The SPN equations have also been applied to other problems in particle transport and heat
radiation transfer [27–33]. However, there are distinct differences between the formulations of the SPN equa-
tions in nuclear sciences and tissues optics. SPN applications in the nuclear engineering community have
focused on problems that are driven by internal sources, with no radiation entering the system through its
outer boundaries. Applications in tissue optics constitute the opposite regime, where the light propagation
is usually driven by external sources on the tissue surface. Also, the boundary conditions in tissue optics have
nonlinear partial reflection, in which some of the exiting photons are reflected back into the system, but partial
reflection is absent in nuclear radiation problems. Furthermore, nuclear radiation problems focus on obtain-
ing estimates of the fluence at spatial points within the physical system, whereas photonic problems in biolog-
ical tissue require accurate estimates of the exiting partial current on the outer boundary of the system. And
last, the applications of SPN methods for neutrons and high-energy photons in nuclear sciences have dealt
mainly with isotropic and weakly-anisotropic scattering, but SPN methods in tissue optics need to take the
more highly anisotropic scattering of photons into account. (However, we note that Josef and Morel have suc-
cessfully applied the SPN approximation to 2-D electron–photon problems, and that electron transport is
much more severely forward-peaked, with much smaller mean free paths, than photon transport in tissue
[30]. This strongly suggests that the SPN approximation will be adequate for the anisotropic scattering in tissue
optics.)

The SPN equations have several advantages when compared to the SN and full PN equations. First, the SPN

method approximates the ERT by a set of coupled diffusion-like equations with Laplacian operators. Thus,
the SPN method avoids the complexities of the full PN approximation, in which mixed spatial derivatives
instead of Laplacians occur. Second, the SPN approximation captures most of the transport corrections to
the diffusion approximation [23]. Third, there are fewer equations to solve than with the full PN or SN method.
Fourth, the SPN system can be solved with standard diffusion solvers, and the solution can be obtained several
orders of magnitude faster than with the SN or PN methods. Last, the SPN method does not suffer from ray
effects, as the SN method does. A disadvantage of the SPN methods has historically been its weak theoretical
foundation [25], and its full appreciation in nuclear radiological sciences was only gained within the last dec-
ade. Furthermore, SPN solutions do not converge to exact transport solutions as N!1. Instead, the SPN
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solution is asymptotic; for each problem, there is an optimal N that yields the best solution. Only for one-
dimensional (1-D) problems are the SPN and PN equations and boundary conditions the same, yielding iden-
tical solutions.

Until now, the SPN approximation has not been formulated for physical problems in tissue optics. Our goal
in this paper is to fully establish a comprehensive mathematical framework of SPN equations for solving the
physically relevant light propagation problems in biological tissue. Specifically, (i) we formulate the SPN equa-
tions up to order N = 7 for partially reflective boundary conditions and anisotropically scattering media. The
derived system of SPN equations results either in the diffusion, SP3, SP5, or SP7 approximations. Partially
reflective boundary conditions are taken into account by providing the refractive index of the tissue. Aniso-
tropic light scattering in tissue is addressed by including the Henyey–Greenstein phase function into the
SPN framework. (ii) We numerically solve the SPN equations for two-dimensional media with typical tissue
properties at visible and near-infrared wavelengths, and compare the numerical results to solutions obtained
from the discrete-ordinates method. Since we expect an asymptotic behavior of the SPN solutions with increas-
ing N, we will determine an N that gives best solutions. Finally, (iii) we show that the SPN equations provide
solutions that are significantly more accurate than diffusion solutions. We demonstrate that SPN equations
provide accurate solutions for media with transportive properties, significant for small animal imaging at vis-
ible and near-infrared wavelengths, but at a much lower computational cost than solving the discrete-ordi-
nates transport equations.

The remainder of this paper is organized as follows. In Section 2 we introduce the underlying ERT for light
propagation in tissue. In Section 3 we derive the SPN equations for anisotropically scattering media and with
partially reflective boundary conditions. A benchmark based on an SN method is provided in Section 4, which
will subsequently be used for a numerical validation of the SPN method in Section 5. A discussion and con-
clusion will be given in the last section.

2. Equation of radiative transfer

The ERT defines the radiance w(r,X), with units of W cm�2 sr�1, at the spatial point r 2 V and direction-
of-flight (unit vector) X:
X � rwðr;XÞ þ ltðrÞwðr;XÞ ¼ lsðrÞ
Z

4p
pðX �X0Þwðr;X0Þ dX0 þ QðrÞ

4p
: ð1Þ
The attenuation coefficient lt, with units of cm�1, is the sum of the absorption la and scattering ls coefficients.
The phase function p(X Æ X 0) is the distribution function for photons anisotropically scattering from direction
X 0 to direction X. Q(r) describes an isotropic interior photon source density. The fluence / in units of W cm�2

is defined by:
/ðrÞ ¼
Z

4p
wðr;XÞ dX: ð2Þ
2.1. Boundary conditions and detector readings

Photons that propagate from boundary points r 2 oV into V originate from (i) an external boundary source
S(r,X), and (ii) photons that attempt to leak out through oV, but due to the refractive index mismatch at oV,
are reflected specularly back into V with probability R. The partly-reflecting boundary condition specifies w as
the sum of these two contributions:
wðr;XÞ ¼ Sðr;XÞ þ RðX0 � nÞwðr;X0Þ; r 2 oV ; X � n < 0: ð3Þ
Here n is the unit outer normal vector and X is the specular reflection of X 0, which points outward (satisfies
X 0 Æ n > 0):
X0 ¼ X� 2ðX � nÞn: ð4Þ
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The reflectivity R(cos# 0) in Eq. (3) is given by:
Rðcos#0Þ ¼
1
2

nm cos#00�n0 cos#0

nm cos#00þn0 cos#0

� �2

þ 1
2

nm cos#0�n0 cos #00

nm cos#0þn0 cos #00

� �2

; #0 < #c;

1; #0 P #c;

8<: ð5Þ
where the angle # 0 from within the medium with refractive index nm satisfies cos# 0 = X 0 Æ n, and the refracted
angle #00 in the outside medium (air) with n0 = 1 satisfies Snell’s law: nm sin# 0 = n0 sin #

00
. The critical angle #0c

for total internal reflection (R = 1) is given by nm sin#0c ¼ n0. The term S(r,X), having the same units as w,
describes an external photon source at the tissue boundary.

The detector readings are obtained from the exiting partial current J+(r) at oV. At each point r 2 oV for
which the external source S(r,X) = 0, we have:
JþðrÞ ¼
Z

X�n>0

½1� RðX � nÞ�ðX � nÞwðr;XÞ dX: ð6Þ
2.2. Phase function

The phase function p(X Æ X 0), with units of sr�1, has the following interpretation: p(X Æ X 0) dX = the prob-
ability that when a photon traveling in direction X 0 scatters, the scattered direction of flight will occur in dX
about X. The angle # between the incident direction of flight X 0 and the exiting direction of flight X is the
scattering angle, and cos# = X 0 Æ X. Biological tissue is anisotropically-scattering, with a highly forward-
peaked phase function. A commonly-applied phase function in tissue optics is the Henyey–Greenstein phase
function [34,35]:
pðcos hÞ ¼ 1� g2

4pð1þ g2 � 2g cos hÞ3=2
: ð7aÞ
This model is widely-used because (i) it is accurate, (ii) it depends on a single adjustable parameter g, which
can be space-dependent, and (iii) it has the following simple Legendre polynomial expansion:
pðcos hÞ ¼
X1
n¼0

2nþ 1

4p
gnP nðcos hÞ: ð7bÞ
Now we define the differential scattering coefficient ls(r, cosh) = ls(r)p(cosh) and write the equation of radia-
tive transfer as:
X � rwðr;XÞ þ ltðrÞwðr;XÞ ¼
Z

4p
lsðr;X �X0Þwðr;X0Þ dX0 þ QðrÞ

4p
: ð8Þ
3. SPN methods

The SPN equations have been derived in three ways: (i) by a formal procedure, in which they are hypoth-
esized as multi-dimensional generalizations of the 1-D PN equations, (ii) by an asymptotic analysis, in which
they are shown to be asymptotic corrections to diffusion theory, and (iii) by a variational analysis. The first
(formal) approach was historically the first to be proposed, in the early 1960’s [20]. This approach is relatively
simple, but is theoretically weak. The second (asymptotic) approach was developed in the 1990’s [23]; this is
much more theoretically convincing, but it only leads to the basic SPN equations without boundary conditions
(the boundary conditions must be hypothesized). The third (variational) approach was also developed in the
1990’s [22,25]; this yields both the SPN equations and their boundary conditions. Unfortunately, from the
algebraic viewpoint, the variational derivation is exceedingly complicated.

In the subsequent sections of this paper, we present the formal derivation of the SP7 equations for the case
of fully anisotropic scattering, with the partly-reflecting boundary conditions of Eq. (3). These new results
have not previously been published. The simpler SP5, SP3, and SP1 = diffusion approximations are easily
obtained from the results presented here.
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3.1. The planar-geometry PN method

To begin, we formulate the planar-geometry version of Eq. (1) with the partially-reflective boundary con-
dition (3). We consider the planar system 0 6 x 6 X; the corresponding planar-geometry version of Eq. (1) is:
x
ow
ox
ðx;xÞ þ ltðxÞwðx;xÞ ¼

Z 1

�1

lsðx;x;x0Þwðx;x0Þ dx0 þ QðxÞ
2

; ð9Þ
with:
lsðx;x;x0Þ ¼
X1
n¼0

2nþ 1

2
lsðxÞgnP nðxÞP nðx0Þ: ð10Þ
The partly-reflecting boundary conditions are:
wð0;xÞ ¼ Sð0;xÞ þ RðxÞwð0;�xÞ; 0 < x 6 1; ð11aÞ
wðX ;xÞ ¼ SðX ;xÞ þ Rð�xÞwðX ;�xÞ; �1 6 x < 0: ð11bÞ
Next, we calculate the PN approximation to this 1-D problem. For n P 0, we define the Legendre moments of
the radiance:
/nðxÞ ¼
Z 1

�1

P nðxÞwðx;xÞ dx; ð12Þ
and the nth-order absorption coefficients:
lanðxÞ ¼ ltðxÞ � lsðxÞgn: ð13Þ

(Note that for n = 0: la0 = lt � ls = la; and for n = 1: la1 ¼ lt � lsg ¼ l0s þ la.) Then, for n P 0, we operate
on Eq. (9) by

R 1

�1
P nðxÞð�Þ dx to obtain:
nþ 1

2nþ 1

d/nþ1

dx
ðxÞ þ n

2nþ 1

d/n�1

dx
ðxÞ þ lanðxÞ/nðxÞ ¼ dn0QðxÞ; ð14Þ
with /�1 = 0. Also, for n P 1 and odd, we operate on Eq. (11b) by
R 0

�1
P nðxÞð�Þ dx to obtain:
Z 0

�1

P nðxÞwðX ;xÞ dx ¼
Z 0

�1

P nðxÞSðX ;xÞ dxþ
Z 0

�1

P nðxÞRð�xÞwðX ;�xÞ dx: ð15Þ
[A similar equation can be derived from Eq. (11a), but we will not do this here.] Eq. (14) for n P 0 and (15) for
n P 1 and n odd are exact, but they do not yield a closed system of equations for a finite number of the Legen-
dre moments /n.

To close this system by the PN approximation, we select an odd positive integer N and take [36]:
wðx;xÞ �
XN

n¼0

2nþ 1

2
/nðxÞP nðxÞ: ð16aÞ
This approximation is equivalent to setting:
/nðxÞ ¼ 0; N < n <1: ð16bÞ

Then, (i) we introduce Eq. (16b) into Eq. (14) and require that result to hold for 0 6 n 6 N; and (ii) we intro-
duce Eq. (16a) into Eq. (15) and require that result to hold for 1 6 n 6 N and N odd. For the N + 1 unknown
functions /n(x), 0 6 n 6 N, this yields a closed system of (i) N + 1 first-order differential equations in
0 6 x 6 X, and (ii) (N + 1)/2 boundary conditions at each boundary point.

To proceed, we rewrite this system by algebraically eliminating the odd-order moments. For 1 6 n 6 N and
n odd, Eq. (14) gives:
/nðxÞ ¼ �
1

lanðxÞ
d

dx
nþ 1

2nþ 1
/nþ1ðxÞ þ

n
2nþ 1

/n�1ðxÞ
� �

: ð17Þ
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Using this result to eliminate the odd-order moments in the remaining of Eq. (14), we obtain the following
second-order equations for the even-order moments:
� nþ 1

2nþ 1

� �
d

dx
1

la;nþ1

d

dx
nþ 2

2nþ 3

� �
/nþ2 þ

nþ 1

2nþ 3

� �
/n

� �
� n

2nþ 1

� �
d

dx
1

la;n�1

d

dx
n

2n� 1

� �
/n þ

n� 1

2n� 1

� �
/n�2

� �
þ lan/n ¼ Q:

ð18Þ
These equations hold for 0 6 n 6 N � 1 and n even; and with 0 = /�2 = /N+1.
Also, we use Eq. (17) to eliminate the odd-order moments in Eq. (16a), and then in the boundary condition

(15). The end result is a system of (N + 1)/2 second-order differential equations defined on 0 6 x 6 X (Eq.
(18)), with (N + 1)/2 boundary conditions imposed at each of the two boundary points x = 0,X, for the
(N + 1)/2 even-order moments /0,/2, . . . ,/N�1.

The differential equations obtained by this process (Eq. (18)) involve conventional second-order diffusion
operators. The boundary conditions are mixed; they consist of linear combinations of the even-order /n

and their first x-derivatives. This well-defined system of equations constitutes the second-order form of the

PN approximation to the planar-geometry transport problem of Eqs. (9)–(11).
PN approximations can also be derived for multidimensional problems. However, to do this, it is nec-

essary to expand the angular variable in terms of the spherical harmonic functions, which depend on two
scalar angles, not one. This greatly increases the complexity of the multi-D PN approximation; for a given
odd order N one obtains many extra unknowns and equations than in 1-D. Also, the equations no longer
have the relatively simple diffusion character of Eq. (18). For these reasons, the multidimensional PN

equations are not widely used. However, the Simplified PN or SPN equations, discussed next, have found
increasing applications in recent years.
3.2. The SPN equations

In the formal derivation of the 3-D SPN equations, one simply takes the 1-D PN equations and replaces
each 1-D diffusion operator by its 3-D counterpart. That is, we replace:
d

dx
1

lanðxÞ
d

dx
/ðxÞ by r � 1

lanðrÞ
r/ðrÞ: ð19Þ
Thus, Eq. (18) become:
� nþ 1

2nþ 1

� �
r � 1

la;nþ1

r nþ 2

2nþ 3

� �
/nþ2 þ

nþ 1

2nþ 3

� �
/n

� �
� n

2nþ 1

� �
r � 1

la;n�1

r n
2n� 1

� �
/n þ

n� 1

2n� 1

� �
/n�2

� �
þ lan/n ¼ Q:

ð20Þ
For the case N = 7, it is useful to rewrite these equations in terms of the composite moments:
u1 ¼ /0 þ 2/2;

u2 ¼ 3/2 þ 4/4;

u3 ¼ 5/4 þ 6/6;

u4 ¼ 7/6:

ð21Þ
These imply:
/6 ¼
1

7
u4; ð22aÞ

/4 ¼
1

5
u3 �

6

35
u4; ð22bÞ
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/2 ¼
1

3
u2 �

4

15
u3 þ

8

35
u4; ð22cÞ

/0 ¼ u1 �
2

3
u2 þ

8

15
u3 �

16

35
u4: ð22dÞ
Then Eqs. (20) can be rearranged into the following four coupled diffusion equations for the four composite
moments:
�r � 1

3la1

ru1 þ lau1 ¼ Qþ 2

3
la

� �
u2 �

8

15
la

� �
u3 þ

16

35
la

� �
u4; ð23aÞ

� r � 1

7la3

ru2 þ
4

9
la þ

5

9
la2

� �
u2 ¼ �

2

3
Qþ 2

3
la

� �
u1 þ

16

45
la þ

4

9
la2

� �
u3 �

32

105
la þ

8

21
la2

� �
u4;

ð23bÞ

� r � 1

11la5

ru3 þ
64

225
la þ

16

45
la2 þ

9

25
la4

� �
u3 ¼

8

15
Q� 8

15
la

� �
u1 þ

16

45
la þ

4

9
la2

� �
u2

þ 128

525
la þ

32

105
la2 þ

54

175
la4

� �
u4; ð23cÞ

� r � 1

15la7

ru4 þ
256

1225
la þ

64

245
la2 þ

324

1225
la4 þ

13

49
la6

� �
u4 ¼ �

16

35
Qþ 16

35
la

� �
u1

� 32

105
la þ

8

21
la2

� �
u2 þ

128

525
la þ

32

105
la2 þ

54

175
la4

� �
u3: ð23dÞ
These are the 3-D SP7 equations.
The SP5 equations are obtained by setting /6 = 0 and solving Eqs. (23a)–(23c) for u1, u2, and u3. The SP3

equations are obtained by setting /6 = /4 = 0 and solving Eqs. (23a), (23b) for u1 and u2. The SP1 (diffusion)
equation is obtained by setting /6 = /4 = /2 = 0 and solving Eq. (23a) for u1. [In all cases, the scalar flux is
obtained from Eq. (22d).] Thus, we explicitly have the SP1 (diffusion) equation:
�r � 1

3la1ðrÞ
r/0ðrÞ þ laðrÞ/0ðrÞ ¼ QðrÞ: ð24Þ
3.3. The SPN boundary conditions

As described previously, the 1-D P7 boundary conditions at x = X are obtained by (i) using Eq. (17) to
eliminate the odd-order moments in Eq. (16a) with N = 7, (ii) introducing this approximation into Eq. (15)
with n = 1,3,5, and 7; and (iii) using Eqs. (22) to cast these results into equations for the composite moments.
This results in four equations, each consisting of a linear combination of the composite moments and their first
derivatives with respect to x.

In the formal derivation of the 3-D SPN boundary conditions, we take the mixed 1-D PN boundary con-
dition at x = X and interpret the spatial derivative du/dx as the directional derivative of u in the direction of
the outward normal vector n. Thus, we take the 1-D boundary condition at x = X and replace
du
dx
ðX Þ by n � ruðrÞ: ð25Þ
In the formulation of these boundary conditions, various angular moments of the reflectivity R occur. We de-
fine these as:
Rn ¼
Z 1

0

RðxÞxn dx: ð26Þ
These constants depend on the refractive indices and must be pre-calculated. Also, we replace angular inte-
grals (over the incoming directions) of the external source
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Z 0

�1

jxjmSðX ;xÞ dx by

Z
X�n<0

jX � njmSðr;XÞ dX: ð27Þ
We will not include in this paper the straightforward but lengthy algebra required to derive these equations;
instead, we will just state the final results:
1

2
þ A1

� �
u1 þ

1þ B1

3la1

� �
n � ru1 ¼

1

8
þ C1

� �
u2 þ

D1

la3

� �
n � ru2 þ � 1

16
þ E1

� �
u3 þ

F 1

la5
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n � ru3
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þ G1

� �
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H 1

la7
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Z
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SðXÞ2jX � nj dX; ð28aÞ
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41

384
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n �ru3
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16
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H 2
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ð28dÞ
The coefficients A1, . . . ,H1, . . . ,A4, . . . ,H4 in these equations are defined in Appendix (A.1)–(A.5).
The SP5 boundary conditions are given by Eqs. (28a)–(28c) with /6 = 0. The SP3 boundary conditions are

given by Eqs. (28a) and (28b) with /6 = /4 = 0. The diffusion boundary condition is given by Eq. (28a) with
/6 = /4 = /2 = 0. Thus, we obtain the following 3-D diffusion boundary condition [37–39]:
1

2
þ A1

� �
/0 þ

1þ B1

3la1

� �
n � r/0 ¼

Z
X�n<0

SðXÞ2jX � nj dX: ð29Þ
3.4. Detector readings

The detector readings are obtained from the exiting partial current J+ at the tissue boundary oV. At the
right boundary point x = X in the 1-D planar medium, assuming that the external source S(X,x) = 0 at this
point, we have:
JþðX Þ ¼
Z 1

0

½1� RðxÞ�xwðx;xÞ dx: ð30Þ
Substituting the approximation (16a) with N = 7 into Eq. (30), we obtain the exiting partial current J+(X) as a
function of the Legendre moments /n(X):
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Jþ ¼ 1

4
þ J 0

� �
/0þ

1

2
þ J 1

� �
/1þ

5
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þ J 2

� �
/2þ J 3/3þ � 3
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þ J 4

� �
/4þ J 5/5þ

13
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þ J 6

� �
/6þ J 7/7;

ð31Þ
where the coefficients Jn are given in the Appendix (Eqs. (A.6)). Using Eq. (17), we eliminate the odd-order
moments to obtain the exiting partial current in terms of the even-order moments:
Jþ ¼ 1

4
þ J 0

� �
/0 �

0:5þ J 1

3la1
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d
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� �
d
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ð7/6Þ:
Finally, we introduce into this equation the composite moments (Eqs. (21) and (22)); and for a 3-D problem
we replace d/dx by the outward normal derivative n � r. We obtain the following SP7 expression for the exit-
ing partial current J+(r), for each point r 2 oV at which the external source S(r,X) = 0:
Jþ ¼ 1
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The SP5 exiting partial current is obtained by setting /6 = 0; the SP3 exiting partial current is obtained by
setting /6 = /4 = 0, and the SP1 (diffusion) exiting partial current is obtained by setting /6 = /4 = /2 = 0.
Thus, the exiting partial current for the 3-D diffusion approximation is:
JþðrÞ ¼ 1

4
þ J 0

� �
/0ðrÞ �

0:5þ J 1

3la1ðrÞ

� �
n � r/0ðrÞ: ð33Þ
3.5. Solution methods

The SPN equations for the composite moments un are a system of coupled diffusion equations. These equa-
tions have a standard elliptic form, and many computationally efficient numerical solvers are available for
solving them [40,41].

In our 2-D work, the diffusion equations are discretized using a standard finite-difference approach. The
Legendre moments /n and the composite moments un are defined on spatial grid points ri = (xi,yi) of a
2-D Cartesian grid. The diffusion operators are approximated by centered finite difference approximations.
This spatial discretization yields an algebraic system of coupled equations, which are solved by a successive
over-relaxation (SOR) method. An over-relaxation parameter x = 1 yields the Gauss–Seidel method.

The ERT is an integro-differential equation with a five-dimensional phase space. All of the computational
techniques available for solving this equation are expensive, demanding large amounts of computer memory
and a long processing time. (This is the primary motivation for the work presented in this paper.) To obtain
solutions of the ERT to which we can compare the SPN solutions, we have adopted a straightforward
approach: the spatial derivatives of the ERT are discretized by a first-order finite-difference scheme, termed
the step difference (SD) method, or with a second-order finite-difference scheme, termed diamond difference

(DD) scheme [42]; the angular variable X and the integral term in Eq. (8) are discretized by discrete ordinates
[15,43]. The resulting system of algebraic equations is iteratively solved by the Gauss–Seidel method with the
source iteration (SI) technique. For more details we refer to [19].

The SPN and diffusion equations are approximations to the equation of radiative transfer. Therefore, exact
solutions derived from the SPN and diffusion equations will exhibit inherent physical model errors rM when
compared to exact solutions to the ERT. Besides the model errors rM, which depend on the particular type of
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equation used for modeling the light propagation, we also have discretization errors, due to the use of a finite
grid. (Moreover, exact solutions of the ERT are not available for complex tissue geometries and non-uniform
distributions of optical properties, and our numerical estimates of the ERT solutions have their own discret-
ization errors.) Consequently, a successful model error validation requires a sufficiently small discretization
error. Therefore, we must (i) estimate the discretization error of our solution techniques for solving the
ERT, and (ii) validate the physical model error of the SPN and diffusion equations when compared to numer-
ical solutions of the ERT. Numerical solutions of the ERT will subsequently be used as benchmark for val-
idating the accuracy and computational performance of the SPN method. We discuss the discretization errors
rE in the next section, and the model errors rM later in Section 5.

4. Discretization error estimation of SN method

The SPN light propagation models used throughout our study are discretized using finite-difference meth-
ods, which approximate the spatial derivatives, e.g. the Laplacian and first-derivative operators, by finite dif-
ference approximations derived from truncated Taylor series expansions. The truncation of the Taylor series
results in a truncation error. The application of a particular finite-difference approximations with different
truncation error leads to numerical solutions with different accuracy. Furthermore, a convergence error is
introduced due to the employment of iterative numerical solution techniques such as the Gauss–Seidel method
and the source iteration method. Therefore, it is necessary to assess the numerical error of the SN method
before the validation of solutions of the SPN and diffusion equations are carried out.

The most prevalent part of the numerical error when using finite difference methods is due to the Taylor
series truncation of the finite-difference approximation [40,41]. The truncation error E is a function of the spa-
tial step length Dx of adjacent grid points. The truncation error ESD of the step difference approximation of
the ERT is only first-order: ESD = O(Dx). Thus, the step difference (SD) method generally requires very fine
Cartesian grids for yielding solutions with sufficient accuracy. On the other hand, the diamond difference (DD)
method has a second-order truncation error: EDD = O(Dx2). This enables us to use coarser grids for yielding a
similar numerical accuracy. However, a downside of the DD method is that it can produce unphysical oscil-
lating solutions [42,44]. The truncation error of the centered finite-difference approximation of the SPN and
diffusion equations is also O(Dx2). Therefore, in principle, we can use similar Cartesian grids for solving
the diffusion, SPN, and diamond-differenced radiative transfer equations.

To validate our 2-D code, we ran it in 1-D mode and compared the solutions to those of a different inde-
pendently-validated 1-D benchmark code with a S32 quadrature set and DD scheme. Our SN code employed
either the SD or DD scheme in conjunction with a S16 quadrature set. We define the numerical error rE as the
average deviation of our SN solutions / from the 1-D S32 solution ~/ at all I grid points along the 1-D Carte-
sian grid:
rE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

I

XI

i

/i � ~/i

~/i

 !2
vuut � 100%: ð34Þ
The quantities /i and ~/i constitute the fluence of the solution under consideration at a grid point i.
The numerical error rE of our SN solutions with respect to the 1-D benchmark solutions substantially

increased when the absorption coefficient la and optical thickness were increased. We found that the SD
scheme requires a spatial grid size Dx < 0.02 mfp for highly absorbing domains to obtain numerical errors less
than 2% (see Table 1). These results encouraged us to use our SN code and SD scheme – with very fine spatial
grids – for benchmark calculations to validate the SPN methods.

5. Methods

We performed numerical experiments to evaluate the computational performance and numerical accuracy
of the SPN methods. We demonstrate their suitable application as a light propagation model for biological
tissue by choosing appropriate numerical tissue models. In particular, we considered optical parameters at vis-
ible and near-infrared wavelengths, covering a wide range of absorption coefficients. We also studied the



Table 1
Numerical error rE of fluence / obtained from our SN methods with (i) step-differencing (SD) scheme and (ii) diamond-differencing (DD)
scheme as a function of the spatial separation Dx of adjacent grid points

Dx (cm) mfp (cm) tmfp (cm) Optical thickness (mfp) ls (cm�1) g (n.u.) la (cm�1) rE (SD) (%) rE (DD) (%)

0.001389 0.0999 0.0999 10.01 10 0 0.01 0.18 0.33
0.001389 0.0909 0.0909 11 10 0 1 2.14 0.52
0.001389 0.0399 0.1996 25.01 25 0.8 0.01 0.69 0.75
0.002778 0.0999 0.0999 20.02 10 0 0.01 0.36 0.36
0.002778 0.0909 0.0909 22 10 0 1 8.53 0.88
0.002778 0.0399 0.1996 50.02 25 0.8 0.01 0.55 0.53
0.008334 0.0999 0.0999 20.02 10 0 0.01 0.92 0.97
0.008334 0.0909 0.0909 22 10 0 1 27.11 2.36
0.008334 0.0399 0.1996 50.02 25 0.8 0.01 0.69 0.86

The 1-D medium had different optical parameters and optical thickness. The benchmark method is an independently-validated 1-D SN

code with S32 quadrature set and DD scheme.
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impact of small tissue geometries on the accuracy of the SPN solutions. The numerical solutions of the SPN

methods were compared to solutions of the diffusion equation and to solutions of our validated SN code with
the SD scheme. The SN solutions serve as a benchmark throughout our numerical study. Our numerical stud-
ies for validating the SPN solutions are similar to studies of neutronic scattering problems that have been per-
formed in nuclear engineering [22,23,25,27].

We used two different physical models, with sizes of 1 cm · 1 cm and 2 cm · 2 cm, mimicking the scattering
and absorption physics of an 2-D transverse tissue slice of a small animal with typical optical parameters at
visible and near-infrared wavelengths. A single isotropic light source with spatial size of 0.2 cm was symmetri-
cally placed at the left hand side of the medium boundary (x = 0 cm). The small model with a cross-sectional
area of only 1 cm2 enabled us to study the impact of small tissue geometries on the accuracy of the SPN solu-
tions. Here, we presumed that boundary effects would dominate the light propagation, resulting in different
solutions for the SPN and diffusion equations. This case study is relevant in tomographic imaging of small tissue
geometries, e.g. the brain in rats [45,46]. The second model has a four-times larger spatial cross-sectional area of
4 cm2. Boundary effects here should be minimal, due to the increased tissue-volume to tissue-boundary ratio.
This model is primarily used for studying the impact of large absorption coefficients, which is relevant in optical
molecular imaging of fluorescent and bioluminescent probes emitting light at visible wavelengths [11,12].

In both models, the target medium is homogeneous. We conducted different numerical experiments while
varying the scattering coefficients from 10 to 50 cm�1, the absorption coefficient from 0.01 to 2 cm�1, and the
anisotropy factor from 0 to 0.8. In this way, we were able to study the impact of large tissue absorption and
anisotropic scattering on the accuracy of the SPN solutions. We expected a good match between all solutions
(diffusion, SPN, SN) in optically thick media with a diffusive regime where l0s � la holds. But, we anticipated
larger deviations between the diffusion and SN solutions in media with large absorption coefficients and in
optically thin media near the boundary. All numerical experiments were carried out for either non-reentry
(nm = 1) or partially-reflective (nm = 1.37) boundary conditions (see Fig. 1).

The SPN and the diffusion equations were solved on Cartesian grids with spatial grid point separation of
0.008333 cm for both models. Therefore, a 121 · 121 grid, as shown in Fig. 2a, modeled the 1 cm · 1 cm med-
ium, and a 241 · 241 grid modeled the 2 cm · 2 cm medium. The Cartesian grids of the SN simulations had a
smaller cell size of only 0.001389 cm between adjacent grid points in order to alleviate the impact of the
numerical error rE originating from the SD scheme (see Table 1). Hence, we needed to employ Cartesian grids
with 721 · 721 and 1441 · 1441 grid points, as shown in Fig. 2b. Only for low-absorbing media could we also
use a larger grid point separation of 0.002778 cm and the 721 · 721 grid.

For processing time evaluations, the SN equations were also solved by using the DD scheme. Therefore, the
SN method with DD scheme could be employed on coarser Cartesian grids with same size as used for solving
the diffusion and SPN equations. However, the DD scheme does not always produce physically meaningful
solutions [15,42,43], and only SD solutions were available for cases with large absorption coefficients.

The solutions of the diffusion and SPN equations on the 121 · 121 grids were compared to solutions of the
ERT obtained with an S16 method (288 discrete ordinates) on the 721 · 721 grid. The solutions of the diffusion



Fig. 1. Light leaving the medium (refractive index nm) along the outward direction X 0 is reflected back into the medium along X and
refracted along X00 into the outside medium (refractive index n0).

Fig. 2. Cartesian grids with different amount of grid points. The coarse grids (a) are used for solving the SPN and diffusion equations,
whereas the fine grids (b) are used for solving the SN equations with the SD scheme.
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and SPN calculations on the 241 · 241 grids were compared to solutions of the ERT obtained with an S6

method (48 discrete ordinates) on a 1441 · 1441 grid. We could only use an S6 approximation for the
1441 · 1441 grid, due to the limited computational capabilities of our 32-bit processor. (This can manage
an address space of four GBytes, but our S16 method on a 1441 · 1441 grid requires more than nine GBytes
storage.) Therefore, we were not able to model anisotropically scattering media on fine spatial grids.

Moreover, we were not able to model partially-reflective boundary conditions when using the 1441 · 1441
grid with the S6 quadrature set. The reflectivity R(# 0) (Eq. (5)) is a strongly varying function for nm > 1 and
# 0 < #c. Hence, the discretization of R requires a sufficiently large number of discrete ordinates. We found that
an S6 quadrature set is not sufficient to obtain accurate numerical results for partial reflection.
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Fig. 2 shows both fine and coarse Cartesian grids. The medium boundary is, for example, along the line
between the points (A,B) and (A 0,B 0). The line (A 0,B 0) depicts the x-axis and line (A,B) depicts the y-axis.
Boundary grid points, such as grid points A, C, etc., are exactly located at the physical medium boundary.
We obtain the fine grid by placing additional grid points (white circles in Fig. 2b) in between grid points of
the coarse grid (black circles in Fig. 2a). Consequently, the spatial separation between adjacent grid points
of the fine grid is only one sixth the spatial separation of the coarse grid. The source is extended along the
line between the points (C,D) at the medium boundary. We allocated 25 grid points as source points in the
coarse grid, and 145 grid points as source points in the fine grid. The dashed rectangle in both figures encloses
all source points.

5.1. Model error of fluence and partial current

The SPN and diffusion solutions are compared to our SN benchmark solutions in order to quantify the
physical model error rM of each individual method. The SN method employed the SD scheme and 288 discrete
ordinates (S16). The fluence / was calculated at all interior grid points, whereas the partial current J+ was only
calculated at boundary grid points. The model error of the fluence r/

Mi inside the medium is taken at an interior
grid point i along the x-axis, starting from the source location towards the opposite medium boundary. It is
calculated by taking the relative difference at a mutual grid point i of the fluence /i of the SPN or diffusion
method with respect to the fluence ~/i of the SN method:
Fig. 3.
mediu
r/
Mi ¼

/i � ~/i

~/i

� 100%: ð35Þ
The model error rJþ
Mi of the partial current J+ is taken at each mutual boundary grid point i along the y-axis on

the side opposite to the source. We did not include boundary points in the proximity of medium corners, be-
cause we presume larger model errors of the benchmark method.
rJþ

Mi ¼
Jþi � eJ þieJ þi � 100%: ð36Þ
The model errors rJþ ;/
Mi at each individual grid point is shown in Figs. 3–18 for the fluence / and the partial

current J+. The total model errors rJþ ;/
M of the partial current and fluence at I mutual interior grid points and

IB mutual boundary grid points on the opposite side to the source location are defined as
Case 1: Model errors of (a) fluence / along x-axis through medium center (y = 0.5 cm) and of (b) partial current J+ along y-axis at
m boundary opposite to source (x = 1 cm). Optical properties: ls = 10 cm�1, la = 0.01 cm�1, g = 0, nm = 1.



Fig. 4. Case 2: Model errors of (a) fluence / along x-axis through medium center (y = 0.5 cm) and of (b) partial current J+ along y-axis at
medium boundary opposite to source (x = 1 cm). Optical properties: ls = 10 cm�1, la = 0.01 cm�1, g = 0, nm = 1.37.

Fig. 5. Case 3: Model errors of (a) fluence / along x-axis through medium center (y = 0.5 cm) and of (b) partial current J+ along y-axis at
medium boundary opposite to source (x = 1 cm). Optical properties: ls = 20 cm�1, la = 0.01 cm�1, g = 0.5, nm = 1.37.

A.D. Klose, E.W. Larsen / Journal of Computational Physics 220 (2006) 441–470 455
rJþ

M ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

IB

XIB

i

Jþi � eJ þieJ þi
 !2

vuut � 100%; ð37Þ

r/
M ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

I

XI

i

/i � ~/i

~/i

 !2
vuut � 100%: ð38Þ
We show the total model error r/
M and rJþ

M of the fluence and partial current in Tables 2, 3, 5, and 6.



Fig. 6. Case 4: Model errors of (a) fluence / along x-axis through medium center (y = 0.5 cm) and of (b) partial current J+ along y-axis at
medium boundary opposite to source (x = 1 cm). Optical properties: ls = 50 cm�1, la = 0.01 cm�1, g = 0.8, nm = 1.37. S16 iso

represents the solution of the isotropically-scattering ERT (Eq. (39)).

Fig. 7. Case 5: Model errors of (a) fluence / along x-axis through medium center (y = 0.5 cm) and of (b) partial current J+ along y-axis at
medium boundary opposite to source (x = 1 cm). Optical properties: ls = 10 cm�1, la = 1 cm�1, g = 0, nm = 1.
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5.2. Processing time

Another performance measure besides the model error rM is the relative processing time T for achieving the
numerical solutions. The iterative solvers for the diffusion, SPN, and SN equations used a stop criterion
/lþ1�/l

/l < 10�6 of the fluence / at consecutive iteration steps l and l + 1. The number of iteration steps after
the calculation has been completed, i.e. satisfying the stopping criterion, determined the total processing time.
We decided to compare the processing time of solving the SPN and SN equations to the time needed for com-
pleting the diffusion calculation. The diffusion model is the most widely used light propagation model in tissue
optics and, hence, it is reasonable to use it as a benchmark for processing time. We compared the relative



Fig. 8. Case 6: Model errors of (a) fluence / along x-axis through medium center (y = 0.5 cm) and of (b) partial current J+ along y-axis at
medium boundary opposite to source (x = 1 cm). Optical properties: ls = 20 cm�1, la = 2 cm�1, g = 0.5, nm = 1.37. S16 iso and SP7

iso represent the solutions of the isotropically-scattering ERT (Eq. (39)) and the SP7 equation for g = 0.

Fig. 9. Case 7: Model errors of (a) fluence / along x-axis through medium center (y = 1 cm) and of (b) partial current J+ along y-axis at
medium boundary opposite to source (x = 2 cm). Optical properties: ls = 10 cm�1, la = 0.01 cm�1, g = 0, nm = 1.
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speed of all methods for each numerical example by assigning the same unit time to each diffusion calculation.
By doing so, the measure of performance, the relative processing time T, is independent of the used processor
type. The relative processing time T of all numerical examples is given in Tables 4 and 7, with T(P1) = 1 being
the processing time of the diffusion method.

Our SN code for tissue optics is not optimized for time performance, so the given timing comparison of our
SPN methods to the SN method is not likely to be an objective measure of time performance for optimized
codes. Therefore, we further estimate in Section 7, as an additional performance measure, the relative process-
ing time of our SPN methods to processing times of optimized diffusion and SN codes as they are employed in
nuclear engineering codes.



Fig. 10. Case 8: Model errors of (a) fluence / along x-axis through medium center (y = 1 cm) and of (b) partial current J+ along y-axis at
medium boundary opposite to source (x = 2 cm). Optical properties: ls = 10 cm�1, la = 0.01 cm�1, g = 0, nm = 1.37.

Fig. 11. Case 9: Model errors of (a) fluence / along x-axis through medium center (y = 1 cm) and of (b) partial current J+ along y-axis at
medium boundary opposite to source (x = 2 cm). Optical properties: ls = 20 cm�1, la = 0.01 cm�1, g = 0.5, nm = 1.37.
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6. Results

6.1. Size: 1 cm · 1 cm

We defined six tissue-like media (cases 1–6) with different levels of absorption, ranging from 0.01 to 2 cm�1.
Also, we kept the reduced scattering coefficient l0s ¼ ð1� gÞls ¼ 10 cm�1 constant, but varied the scattering
coefficient ls from 10 to 50 cm�1 and the anisotropy factor g from 0 to 0.8. The calculations of the SPN and
diffusion methods were performed on the 121 · 121 grid, whereas the S16 benchmark method run on the
721 · 721 grid. We display in Figs. 3–8 the model errors rM of the fluence / inside the medium along the
x-axis, and of the partial current J+ at the medium boundary along the y-axis opposite to the source. The total
model error and processing time of all methods are given in Tables 2–4.



Fig. 12. Case 10: Model errors of (a) fluence / along x-axis through medium center (y = 1 cm) and of (b) partial current J+ along y-axis at
medium boundary opposite to source (x = 2 cm). Optical properties: ls = 10 cm�1, la = 0.5 cm�1, g = 0, nm = 1.

Fig. 13. Case 11: Model errors of (a) fluence / along x-axis through medium center (y = 1 cm) and of (b) partial current J+ along y-axis at
medium boundary opposite to source (x = 2 cm). Optical properties: ls = 10 cm�1, la = 1 cm�1, g = 0, nm = 1.
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Case 1 is an isotropically scattering medium with ls = 10 cm�1, la = 0.01 cm�1, g = 0, and non-reentry
boundary conditions (nm = 1). We see a relatively good agreement between all solutions. The model error
rM of all methods is in the range of the numerical error rE of our S16 benchmark solution with respect to
the 1-D S32 solution (see Table 1). But, the model error rM slightly increases for partially reflective boundary
conditions (nm = 1.37) as considered in case 2. In case 3 we defined an anisotropically scattering medium with
g = 0.5 and ls = 20 cm�1 with partially reflective boundary conditions (nm = 1.37), but keeping l0s ¼ 10 cm�1

constant. The model error only slightly changes for all SPN methods, indicating a minor impact of anisotropic
scattering in diffusive regimes with l0s � la. The largest change in the model error for small absorption coef-
ficients could only be seen when introducing partially reflective boundary conditions.

In cases 5 and 6 we increased the absorption coefficient to la = 1 cm�1 and la = 2 cm�1, i.e. shifting
towards visible wavelengths. We see a significant increase in the model error rM for the diffusion solution.
However, the model error of the SPN solutions remains relatively small, with rM = 2–4%.



Fig. 14. Case 12: Model errors of (a) fluence / along x-axis through medium center (y = 1 cm) and of (b) partial current J+ along y-axis at
medium boundary opposite to source (x = 2 cm). Optical properties: ls = 10 cm�1, la = 2 cm�1, g = 0, nm = 1.
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In Fig. 6 we also compare the S16 solution of the ERT with anisotropic scattering (Eq. (1)) to the S16 solu-
tion of the isotropically-scattering ERT as given by:
X � rwðr;XÞ þ ½laðrÞ þ ð1� gÞlsðrÞ�wðr;XÞ ¼
ð1� gÞlsðrÞ

4p

� � Z
4p

wðr;X0Þ dX0 þ QðrÞ
4p

: ð39Þ
Both ERTs have the same diffusion approximation, but have different SPN and SN solutions. In our numerical
study, we found that the S16 solution of the isotropically-scattering equation (39) closely approximates the S16

solution of the anisotropically-scattering equation (1). The model error rM of the isotropically-scattering ERT
is less than 4%.

However, as the problem becomes less diffusive, the solutions of the two ERTs begin to differ. In Fig. 8 we
included solutions of the isotropically-scattering ERT and of the SP7 equations for an isotropically scattering
medium with g = 0 and l0s ¼ 10 cm�1. Both solutions are similar but show relatively large models errors, e.g.
rJþ

M ¼ 15%, when compared to the SN and SP7 solutions of the anisotropically scattering medium with g = 0.5.
Thus, the accurate modeling of anisotropic scattering gains importance in highly absorbing media.

6.2. Size: 2 cm · 2 cm

We also studied the physical model error rM of the SPN and diffusion methods for the optically thick med-
ium with size of 2 cm · 2 cm. The optical parameters, ls, g, and la, were varied for six different media while
keeping l0s ¼ 10 cm�1 constant (cases 7–12). As before, we calculated the fluence / inside the medium along
the x-axis, and the partial current J+ at the medium boundary along the y-axis opposite the source location.

The calculations for cases 7–9 were performed on a 121 · 121 grid for the SPN and diffusion methods,
whereas the S16 method employed the 721 · 721 grid. Cases 10–12 deal with highly absorbing media, requiring
finer Cartesian grids due to the increased numerical error rE of our SN benchmark approach (see Table 1).
Therefore, the S6 transport method ran on a 1441 · 1441 grid, whereas the diffusion and SPN equations were
solved on a 241 · 241 grid. Cases 10–12 did not model anisotropically scattering media with partially reflective
boundary conditions, due to the small S6 quadrature set.

Case 7 is an isotropically scattering medium with ls = 10 cm�1, g = 0, la = 0.01 cm�1, and non-reentry
boundary conditions (nm = 1). We anticipated a good match of all SPN and diffusion solutions and a relatively
small model error due to the diffusive regime holding l0s � la. The actual model error rM of all methods is less
than 1%, being in the range of the numerical error rE of the S16 transport solution with respect to the 1-D S32

benchmark solution (see Table 1). Case 8 is similar to case 7, except that partially reflective boundary condi-



Fig. 16. Case 13: 2-D spatial distribution of model error r/
M in (%) of fluence derived from (a) diffusion solution and (b) SP3 solution with

respect to fluence of S6 solution. Source position is at the center on the left-hand side. Optical properties: ls = 10 cm�1, la = 0.01 cm�1,
g = 0, nm = 1. A single absorber (la = 2 cm�1) with diameter 0.6 cm was placed at center (x,y) = (1,1).

Fig. 15. Case 13: Model error rJþ
M of partial current J+ at medium boundaries (a) along x-axis at y = 0 cm (side view) and (b) along y-axis

at x = 2 cm (front view opposite to source). Optical properties: ls = 10 cm�1, la = 0.01 cm�1, g = 0, nm = 1. A single absorber
(la = 2 cm�1) with diameter 0.6 cm was placed at center (x,y) = (1,1).
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tions (nm = 1.37) were used. This example allows us to study the impact of boundary conditions with refractive
index mismatch as found at tissue–air interfaces. We found the largest model error rJþ

M of 3.45% for the dif-
fusion solution, but the smallest error was at 0.44% for the SP7 solution. Case 9 studies the impact of aniso-
tropic scattering on the model error. The scattering coefficient was ls = 20 cm�1, whereas the anisotropy
factor was set to g = 0.5, while keeping l0s constant. We anticipated that case 9 would give similar results
as case 8, due to the diffusive regime.

Cases 10–12 consider isotropically scattering media with non-reentry boundary conditions (nm = 1). We
varied the absorption coefficient, 0.5, 1, and 2 cm�1, shifting towards wavelengths of visible light. All three
cases show a gradually increased model error for the diffusion solution, the largest being at rJþ

M ¼ 68%.
The largest model error rJþ

M of all SPN solutions was less than 6%. The model error of the partial current
was twice the error of the fluence inside the medium.



Fig. 17. Case 14: Model error rJþ
M of partial current J+ at medium boundaries (a) along x-axis at y = 0 cm (side view) and (b) along y-axis

at x = 2 cm (front view opposite to source). Optical properties: ls = 10 cm�1, la = 0.01 cm�1, g = 0, nm = 1. Two absorbers (la = 2 cm�1)
with diameter 0.6 cm were placed at (x,y) = (1,0.5) and (x,y) = (1,1.5).

Fig. 18. Case 14: 2-D spatial distribution of model error r/
M in (%) of fluence derived from (a) diffusion solution and (b) SP3 solution with

respect to fluence of S6 solution. Source position is at the center on the left-hand side. Optical properties: ls = 10 cm�1, la = 0.01 cm�1,
g = 0, nm = 1. Two absorbers (la = 2 cm�1) with diameter 0.6 cm were placed at (x,y) = (1,0.5) and (x,y) = (1,1.5).
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6.3. Diffusive medium with highly absorbing inclusions

We also considered a diffusive medium with size of 2 cm · 2 cm containing small highly absorbing domains.
The optical parameters of the bulk medium were ls = 10 cm�1, g = 0, la = 0.01 cm�1, and nm = 1. The
reduced scattering and absorption coefficients are typical for wavelengths in the near-infrared range
ðl0s � laÞ. We have embedded a single absorbing object in case 13 at position (x,y) = (1,1) and two absorbing
objects in case 14 at positions (x,y) = (1,0.5) and (x,y) = (1, 1.5). All circular inclusions have a diameter of
0.6 cm. The absorption coefficient was la = 2 cm�1 for the inclusions, representing a highly vascularized tissue
with strong light absorption. These tissue types can be found e.g. in the liver and heart of small animals.



Table 4
Relative processing time T for completing a numerical calculation of the SPN and SN methods with respect to the processing time for the
diffusion calculation

Case # ls (cm�1) g (n.u.) la (cm�1) nm (n.u.) T(SP3) (n.u.) T(SP5) (n.u.) T(SP7) (n.u.) T ðSDD
16 Þ (n.u.) T ðSSD

16 Þ (n.u.)

1 10 0 0.01 1 2.52 5.06 10.12 17.88 681.32
2 10 0 0.01 1.37 2.41 4.93 9.86 18.88 734.13
3 20 0.5 0.01 1.37 2.43 4.94 9.88 34.73 1370.52
4 50 0.8 0.01 1.37 2.42 4.94 9.87 77.94 3442.55
5 10 0 1 1 2.60 5.21 10.44 17.73* 644.41
6 20 0.5 2 1.37 2.78 5.27 10.97 35.65* 1519.01

T ðSDD
16 Þ constitutes the relative processing time of the S16 method with DD scheme on a 121 · 121 grid, and T ðSSD

16 Þ is the processing time
used by of the S16 method with SD scheme on a 721 · 721 grid. *Note: The S16 DD method yields oscillating solutions with large
discretization errors.

Table 5
Total model error r/

M of fluence in (%) for the diffusion (P1), SP3, SP5, and SP7 solutions on 241 · 241 grid with respect to the S6 transport
solution on 1441 · 1441 grid (cases 10–12)

Case # ls (cm�1) g (n.u.) la (cm�1) nm (n.u.) r/
M ðP 1Þ (%) r/

M ðSP 3Þ (%) r/
M ðSP 5Þ (%) r/

M ðSP 7Þ (%)

7 10 0 0.01 1 0.85 0.65 0.62 0.60
8 10 0 0.01 1.37 3.86 4.07 3.74 1.39
9 20 0.5 0.01 1.37 2.41 2.88 2.42 0.81

10 10 0 0.5 1 6.22 2.31 2.43 2.48
11 10 0 1 1 14.96 2.62 2.55 2.53
12 10 0 2 1 38.99 4.40 4.19 4.20

Cases 7–9 consider SPN and diffusion solutions on the 121 · 121 grid, and S16 solutions on the 721 · 721 grid. Medium size is 2 cm · 2 cm.

Table 2
Total model error r/

M of fluence in (%) for the diffusion (P1), SP3, SP5, and SP7 solution with respect to the S16 transport solution

Case # ls (cm�1) g (n.u.) la (cm�1) nm (n.u.) r/
M ðP 1Þ (%) r/

M ðSP 3Þ (%) r/
M ðSP 5Þ (%) r/

M ðSP 7Þ (%)

1 10 0 0.01 1 1.73 1.45 1.51 1.51
2 10 0 0.01 1.37 6.22 2.40 2.08 1.51
3 20 0.5 0.01 1.37 4.30 2.83 2.05 0.88
4 50 0.8 0.01 1.37 3.36 2.44 2.05 1.24
5 10 0 1 1 6.26 2.69 2.80 2.81
6 20 0.5 2 1.37 10.68 4.18 3.97 2.93

Medium size is 1 cm · 1 cm.

Table 3
Total model error rJþ

M of partial current in (%) for the diffusion (P1), SP3, SP5, and SP7 solution with respect to the S16 transport solution

Case # ls (cm�1) g (n.u.) la (cm�1) nm (n.u.) rJþ
M ðP 1Þ (%) rJþ

M ðSP 3Þ (%) rJþ
M ðSP 5Þ (%) rJþ

M ðSP 7Þ(%)

1 10 0 0.01 1 0.70 0.33 0.47 0.53
2 10 0 0.01 1.37 5.02 1.67 1.67 1.39
3 20 0.5 0.01 1.37 3.50 1.66 1.67 1.67
4 50 0.8 0.01 1.37 1.14 2.70 2.54 0.91
5 10 0 1 1 15.53 2.60 2.97 3.11
6 20 0.5 2 1.37 30.11 3.04 3.10 2.23

Medium size is 1 cm · 1 cm.
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Case 13 demonstrates the impact of a single highly absorbing inclusion inside a diffusive medium on the
fluence and partial current. We anticipated similar results as in case 7 with uniform distribution of optical
parameters. We observe a good match between the SPN and S6 solutions, but a relatively large model error
of the diffusion solution, due to the elevated absorption of the embedded inclusion. Fig. 15 shows the model



Table 6
Total model error rJþ

M of partial current in (%) for the diffusion (P1), SP3, SP5, and SP7 solution on 241 · 241 grid with respect to the S6

transport solution on 1441 · 1441 grid (cases 10–11)

Case # ls (cm�1) g (n.u.) la (cm�1) nm (n.u.) rJþ
M ðP 1Þ (%) rJþ

M ðSP 3Þ (%) rJþ
M ðSP 5Þ (%) rJþ

M ðSP 7Þ (%)

7 10 0 0.01 1 0.88 0.22 0.12 0.08
8 10 0 0.01 1.37 3.45 2.75 2.66 0.44
9 20 0.5 0.01 1.37 1.79 2.24 1.98 0.19

10 10 0 0.5 1 11.24 0.71 1.00 1.11
11 10 0 1 1 32.18 2.73 3.01 3.14
12 10 0 2 1 67.43 6.86 6.32 6.45

Cases 7–9 consider SPN and diffusion solutions on the 121 · 121 grid, and S16 solutions on the 721 · 721 grid. Medium size is 2 cm · 2 cm.

Table 7
Relative processing time T for completing a numerical calculation of the SPN methods, S16 method with DD or SD scheme, and S6 method
with SD scheme with respect to the processing time for the diffusion calculation

Case # ls

(cm�1)
g

(n.u.)
la

(cm�1)
n m

(n.u.)
T(SP3)
(n.u.)

T(SP5)
(n.u.)

T(SP7)
(n.u.)

T ðSDD
16 Þ

(n.u.)
T ðSSD

16 Þ
(n.u.)

T ðSSD
6 Þ

(n.u.)

7 10 0 0.01 1 2.51 5.03 10.08 41.93 2091.34 –
8 10 0 0.01 1.37 2.35 4.83 8.61 45.91 2343.54 –
9 20 0.5 0.01 1.37 2.37 4.85 8.63 86.23 4512.51 –

10 10 0 0.5 1 2.55 5.11 10.22 5.87* – 31.98
11 10 0 1 1 2.60 5.22 10.44 5.84* – 31.17
12 10 0 2 1 2.71 5.43 10.87 6.09* – 31.76

The diffusion, SPN, and S16 (DD scheme) calculations are performed either on a 241 · 241 grid (cases 10–12), or on a 121 · 121 grid (cases 7–
9). The S16 calculations with SD scheme were performed on a 721 · 721 grid (cases 7–9), whereas the S6 calculations were performed on the
1441 · 1441 grid (cases 10–12). *Note: S16 method with DD scheme yields oscillating solutions with partially large discretization errors rE.

464 A.D. Klose, E.W. Larsen / Journal of Computational Physics 220 (2006) 441–470
error rJþ
M of the partial current at the medium boundaries along the x-axis (side view) and y-axis (front view

opposite to the source). Fig. 16 displays the spatial distribution of the model errors r/
M within the x–y plane

inside the medium of the diffusion and SP3 solutions. We found an increased model error r/
M of the diffusion

solution at the location of the absorber and on the rear site of the medium, being in the ‘‘shadow’’ of the
absorber. The SP3 solution shows a relatively small deviation from the transport solution. The same observa-
tion holds in case 14 for the fluence (Fig. 18) and partial current (Fig. 17). Two highly absorbing inclusions
further increase the model error of the diffusion solution as seen in Fig. 18. However, the solutions of the SPN

methods are in relatively good agreement with the S6 transport solution.

7. Discussion

We have derived the SPN equations up to order N = 7 from the equation of radiative transfer for anisotrop-
ically scattering biological tissue with partially-reflective boundary conditions. Our numerical study for vali-
dating the derived SPN equations has focused on scattering media less than 22 tmfp thick. Accurate modeling
of light propagation in small tissue geometries is relevant in small animal imaging, an imaging modality that
has gained increased attention in recent years. Furthermore, we have considered optical parameters at wave-
lengths ranging from the near-infrared to the visible region.

We derived the SPN equations and boundary conditions by employing a formal approach. The resulting
SPN equations are coupled diffusion equations, which we numerically solved. We made several observa-
tions concerning the accuracy of the SPN solutions, in comparison to the SN benchmark solutions. We
considered the impact of partially-reflective boundary conditions, large absorption, and anisotropic scatter-
ing on the SPN solutions.

Our first observation is that all SPN, diffusion, and SN solutions are in good agreement for a diffusive
regime with non-reentry boundary conditions (nm = 1). This can be seen for cases 1 and 7, having optical
parameters of ls = 10 cm�1 and la = 0.01 cm�1. We observed for case 7 an average model error of the fluence
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of less than r/
M < 0:65% for all SPN solutions, and a model error of r/

M ¼ 0:85% for the diffusion solution. The
model error of the partial current was less than rJþ

M < 0:22% for the SPN solutions and rJþ
M ¼ 0:88% for the

diffusion solution. Similar results were obtained from the small medium (case 1: 1 cm · 1 cm) with same opti-
cal parameters. Our observation is consistent with the theoretical expectation that P1 and SPN solutions
should agree well with the transport solution in diffusive regimes. Based on these findings, we became confi-
dent that our numerical implementations of all methods were correct.

However, we found that the diffusion solution significantly deviates from the SN transport solution in near-
boundary domains, with distances of less than two tmfp from the medium–air interface. The model error of
the diffusion solution is approximately up to five times larger (cases 2 and 3 in Figs. 4 and 5) than the model
error inside the bulk medium, even when the diffusion condition l0s � la holds. In contrast, SPN methods
yield more accurate results for the fluence / in near-boundary subdomains. We did not observe a significantly
increased model error for SPN solutions in these subdomains.

Our second observation concerns the impact of partially-reflective boundary conditions on the model
error. Partially-reflective boundary conditions, due to a refractive index mismatch (nm > 1) between the
air–tissue interface, influence not only the partial current J+ at the boundary, but also the fluence distri-
bution deep inside the medium. In general, the model error of all solutions increased when using partially
reflective boundaries, as can be seen for example in case 2 (nm = 1.37). When compared to case 1 (nm = 1),
we found an increase of r/

M up to 2.40% for the fluence and of rJþ
M up to 1.67% for the partial current of

the SP3 method. The model error decreased for N > 3 and was smallest for the SP7 solution with
r/

M ¼ 1:51% and rJþ
M ¼ 1:39%. The model error of the diffusion solution was 6.22% and 5.02%, in average

four times larger than the error of the SP7 method. This result confirms that SPN methods describe par-
tially reflective boundary conditions more accurately than the diffusion method.

In our numerical study, we did not take into account the refractive index mismatch of interfaces between
tissue domains with different scattering and absorption coefficients. For example, in cases 13 and 14 we did not
model partial reflectance of light between the interfaces of the high-absorbing domain and the background
medium. Also, the boundary source did not model the partial-entrance of light due to R > 0 for cases with
refractive index mismatch nm > 1. And last, we considered only isotropic boundary sources in all cases and
no collimated sources. The SPN methods provide a convenient framework for modeling collimated boundary
sources by using a direction-dependent source function S(X) in Eqs. (28). Including this physics will signifi-
cantly increase the effect of boundary layers on the problem and should measurably improve the SPN solutions
in comparison to the diffusion solutions. However, the extension of our SPN methods with the mentioned
additional physics will be left for future work.

Our third observation concerns the impact of large absorption coefficients la on the light propagation
models. Our numerical study clearly shows that the SPN approximation is more transport-like in highly
absorbing tissue media than the diffusion approximation. We considered two different groups of cases:
(i) non-diffusive media mimicking highly absorbing tissue at visible wavelengths of k < 600 nm (cases 5,
6, 10, 11, and 12), and (ii) tissue-like media with diffusive properties at red and near-infrared wavelengths
of k > 600 nm, but with highly absorbing non-diffusive subdomains (cases 13 and 14). Regarding the first
group of cases, we found that the model error of the fluence of the SPN methods is less than r/

M ¼ 2:48%
for la = 0.5 cm�1 and medium size 2 cm · 2 cm (case 10). For stronger light absorption, such as
la = 1 cm�1 and la = 2 cm�1 (cases 11 and 12), we obtained model errors r/

M of only 2.62% and
4.40%, compared to 14.96% and 38.99% for the diffusion solution. The model error rJþ

M of the partial
current increased by a factor of two for the diffusion solutions – we found 11.24%, 32.18%, and
67.43% for absorption coefficients la = 0.5 cm�1, la = 1 cm�1, and la = 2 cm�1. Surprisingly, the smallest
model error rJþ

M of all SPN methods was given in some cases by the SP3 solution: 0.71% and 2.73%.
Concerning the second group, when modeling light propagation in diffusive domains with highly absorbing
subdomains, we found a model error of the fluence of less than 1.26% for the SPN methods, whereas the
model error of the diffusion equation amounted up to 6.65%. The model error rJþ

M of the partial current
for the SPN methods was always less than 1.7%, but the error of the diffusion solution was 8.73%. In
conclusion, the SPN methods yielded solutions with smallest error when non-diffusive or partially non-dif-
fusive domains were considered. The model error of the diffusion solutions, such as in case 12 with
rJþ

M ¼ 67:43%, are unacceptable for accurately modeling light propagation in highly absorbing media.
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Solutions of the discrete ordinates approximation to the ERT suffer from ray effects, which are mainly
present in highly absorbing media or in the vicinity of sources. We observed ray effects in almost all S16

and S6 solutions in the proximity of the boundary source (see Figs. 16 and 18). The SPN equations are rota-
tionally invariant and are free of ray effects. Therefore, SPN methods can be applied to highly absorbing
tissue at visible wavelengths, where ray effects decrease the accuracy of the fluence and partial current in
SN solutions.

Our fourth observation concerns the impact of anisotropic scattering on the SPN approximations. We
found that all SPN solutions in cases 3, 4, 6, and 9 had model errors of less than 3% for the fluence and partial
current, which decreased down to 1% with increased N. Moreover, we found that the ERT could be replaced
by the simpler isotropically-scattering ERT (Eq. (39)) in cases of low-absorbing and diffusive media with more
than 10 tmfp (cases 4 and 9). Both ERTs yield similar solutions as shown in Figs. 6 and 11. Furthermore, the
SPN and diffusion solutions are in good agreement with the SN solutions.

However, when non-diffusive media with high absorption and anisotropic scattering are considered, the
SPN equations yield significantly more accurate results than either the diffusion solution, or the SN solutions
of the isotropically-scattering ERT (Eq. (39)); see Fig. 8. Thus, in cases of strong tissue absorption, anisotropic
scattering must be modeled very accurately, and the diffusion equation is not an adequate approximation any-
more. Future studies still need to be carried out, to estimate the impact of modeling of anisotropic scattering in
media with optical thickness of less than 10 tmfp and forward-peaked boundary sources. We anticipate an
increased model error for the diffusion solution, but smaller deviations of the SPN solutions from the SN trans-
port solutions.

Our last important observation concerns the processing time needed to complete a full light propagation
calculation. We compared the relative processing times of the SPN and SN methods with respect to the diffu-
sion method. The SPN and diffusion models used the same numerical solvers (Gauss–Seidel method). Hence,
being consistent with the numerical solvers, we could objectively quantify the processing time needed for solv-
ing the model equations independent of a particular numerical solution technique. We found that the SP3,
SP5, and SP7 methods are, respectively, about 2.5, 5, and 10 times more computationally demanding than
the diffusion equation. Thus, a transport-like SPN solution can be achieved while only requiring only 2.5–
10 times the computational processing time of the diffusion method.

Our SN method with SD scheme on fine Cartesian grids was approximately 700–4500 times slower than the
diffusion method. The SN method with the DD scheme on coarse Cartesian grids was 40–80 times slower than
the diffusion method for tissue optics problems, but did not always yield physically meaningful solutions when
large absorption was considered [42,44].

However, we cannot directly compare the processing speed of our SN transport method to the processing
time needed by the SPN and diffusion models as an objective measure for computational performance. Our SN

method, which was specifically developed for tissue optics, is not optimized for a time-efficient computation.
Therefore, our SN method is inherently much slower than other more computationally efficient transport tech-
niques as widely employed in nuclear engineering. In nuclear engineering, an optimized SN technique with dif-
fusion-synthetic acceleration (DSA) is still much slower than an optimized diffusion method. Although the
slowdown is problem-dependent, for large 3-D problems, a slowdown of 25–50 is typical. However, these
are neutronics problems, for which the quadrature set is usually S6 or S8. For the S16 quadrature set, the num-
ber of ordinates is at least quadrupled, so the cost of solving the ERT is quadrupled. Moreover, it is well
known that DSA becomes less efficient when the scattering becomes more forward-peaked. Thus, if one esti-
mates the entire cost of a large tissue optics calculation as compared to the cost of a neutron transport calcu-
lation on the same Cartesian grid, a factor of eight increase in cost for the tissue optics problem is reasonable –
and is probably low. Applying this factor of 8, we obtain the conservative estimate that for tissue optics prob-
lems, an optimized SN code will be about 200–400 times slower than an optimized diffusion code. This estimate
is lower than the slowdown that we observe with our SN method with SD scheme, but it is still very large, and
it argues strongly that even for optimized codes, SN will be at least 100 times more expensive than low-order
SPN methods.

In conclusion, we have derived a system of diffusion-like SPN equations that approximate the equation
of radiative transfer in tissue-like domains. We have demonstrated in numerical simulations that the SPN

approach, unlike the diffusion method, captures most of the transport properties of biological tissue. We
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recommend using the SP3 method for many tissue optics problems, because it yields transport-like solu-
tions with lowest computational cost, especially for highly-absorbing media. SP5 and SP7 solutions exhibit
a further improvement in accuracy, but with an increased expense of processing time. SP7 methods show
best results for anisotropically-scattering media with partial-reflection at boundaries. Overall, SPN methods
promise to become a powerful light propagation model for tomographic imaging of biological tissue at
wavelengths in the visible region with high tissue absorption. This is particularly important for optical
molecular imaging of fluorescent proteins and luciferases, which emit light at visible wavelengths. Further-
more, whole-body tomographic imaging of small animals at near-infrared wavelengths could be improved
when highly vascularized tissues with large absorption coefficients, e.g. liver, heart, and kidneys and their
tissue vicinities, are imaged. SPN methods can achieve transport-like solutions at a cost of only a few dif-
fusion calculations, but several orders of magnitude faster than full SN transport solutions. Therefore, SPN

methods are well-suited for tomographic imaging schemes, where image reconstruction codes repetitively
employ light propagation calculations.

Appendix A

A.1. Legendre polynomials
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A.3. Coefficients for partial current
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