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Abstract — A moving-particle semi-implicit (MPS) method for simulating Jragmentation of incompress-
ible fluids is presented. The motion of each particle is calculated through interactions with neighbor-
ing particles covered with the kernel function. Deterministic particle interaction models representing
gradient, Laplacian, and free surfaces are proposed. Fluid density is implicitly required to be constant
as the incompressibility condition, while the other terms are explicitly calculated. The Poisson equa-
tion of pressure is solved by the incomplete Cholesky conjugate gradient method. Collapse of a water
column is calculated using MPS. The effect of parameters in the models is in vestigated in test calcula-
tions. Good agreement with an experiment is obtained even if fragmentation and coalescence of the

Sluid take place.

I. INTRODUCTION

Computer simulation has been required to analyze
increasingly complex geometry and physics problems.
However, in the field of nuclear engineering, we have
many thermal-hydraulic problems that are still difficult
to analyze via computer with either the finite volume
or the finite element method, including water-steam
two-phase flows, where the shape of the interface changes
continuously; vapor explosions, where water, steam,
and liquid metal should be simultaneously analyzed;
and fluid/structure interactions, where large deforma-
tion of both fluids and structures should be considered.

Computer simulation using particles has the capa-
bility to analyze more complex geometry and physics
than grid methods. Particularly, topological deforma-
tion of the fluid can be analyzed by particles, while it
is impossible to fit and move a grid continuously in such
domains. Another advantage is that convection is di-
rectly calculated by the motion of particles without nu-
merical diffusion. Thus, interfaces are kept clear. In
addition, grid generation is not necessary. Recently it
seems that increasingly complex domains are analyzed
with grid methods, which requires increasingly complex
grids to be generated. Although we need to set initial
configurations of particles in particle methods, this is
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easier than in grid generation because we do not need
to set up topological relations among the particles. It
is also easier to add or remove particles in the midst of
the calculation.

Particle methods can be roughly classified into two
types: (a) those based on probabilistic models, such as the
molecular dynamics,' direct simulation Monte Carlo,>
and lattice gas automaton,® and (b) those based on
deterministic models, such as the particle-and-force
method,* the smoothed particle hydrodynamics’~!0
(SPH), a gridless Euler/Navier-Stokes solution algo-
rithm,'! the element-free Galerkin method,!?"'* and
the discrete element method.'’ The first set of methods
represents macroscopic properties as statistical behav-
iors of microscopic particles, so that a huge number of
particles should be traced for a long period to obtain
accurate average values. The second set of methods re-
quires much shorter computation time and smaller stor-
age. SPH has been used in astrophysics to determine
the fluid dynamics of interstellar gas, which is regarded
as a compressible, inviscid fluid.

Grid-particle hybrid methods, such as marker-and-
cell,'® particle-in-cell,'” and fluid-implicit-particle,'8:°
partially use particles to trace interfaces or to calculate
convection terms without numerical diffusion. In these
methods, successful techniques of grid methods can be
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integrated, although they still suffer from the limita-
tion of grid methods.

A deterministic particle method for incompressible
flows, which appear in many industrial applications,
was proposed.?®?2 All terms in the Navier-Stokes equa-
tion were represented by particle interaction models.
Accuracy of these models was investigated in test cal-
culations; for example, a parabolic profile of the flow
velocity was obtained in a Poiseuille flow calculation.
Using this method, collapse of a water column was cal-
culated. However, particles near the free surface were
too widely dispersed, and comparison with the exper-
imental result was not good. Numerical stability of the
incompressibility model was sensitive to a correction
parameter used in the method, and the calculation of-
ten failed due to numerical instability. Computation
time was much longer than that of usual grid methods.

In this paper, a modified particle method, called the
moving-particle semi-implicit (MPS) method, is pre-
sented. Due to the modified kernel function and in-
compressibility model in MPS, numerical stability and
computation speed are markedly improved. The main
parameters used in MPS are investigated with test calcu-
lations. Collapse of a water column is calculated again
with the modified method with selected parameters.

Collapse of a water column has been used to ver-
ify the calculation of free surfaces.?>?* Motion of the
leading edge has been compared with that of an exper-
iment.”® The free surface is kept smooth in this exper-
iment since there are no obstacles or vertical walls on
which the collapsing water can impinge. In the experi-
ments of Koshizuka, Oka, and Tamako,?"?? a vertical
wall was added to create fragmentation and coalescence
of the fluid. This is used for comparison with the cur-
rent calculation. In Ref. 26, collapse of a cylindrical wa-
ter column with a wall and an obstacle is calculated
using grid methods. The calculation results are com-
pared with experimental ones. Although fragmentation
of the fluid is calculated, the free surface is not clear.
This must be due to the numerical diffusion, which is
inevitable in the convection calculation of the fluid frac-
tion on the stationary grid.

II. GOVERNING EQUATIONS

Governing equations for incompressible flows are
the continuity and the Navier-Stokes equations as
follows:

dp

— =0 1

Y (N
and

Du 1

— =—-VP+f. 2

Dr ; f ()

The continuity equation is written with density, while
velocity divergence is usually used in grid methods. The
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left side of the Navier-Stokes equation [Eq. (2)] denotes
the Lagrangian differentiation including convection
terms. This is directly calculated by tracing particle mo-
tion. The right side consists of pressure gradient and
external force terms. All terms expressed by differential
operators should be replaced by particle interactions.

IIT. PARTICLE INTERACTION MODELS

II1.A. Kernel

A particle interacts with others in its vicinity cov-
ered with kernel function w(r), where r is the distance
between two particles. This concept has been used in
the SPH method. In this study, the following function
is employed (Fig. 1):

ey 0=r<r)
w(ry=4r . 3)
0 (re<vr)

Since the area that is covered by this kernel function
is bounded, a particle interacts with a finite number of
neighboring particles. The radius of the interaction area
is determined by parameter r,. Compared with a ker-
nel function covering an infinite area, such as a Gauss-
ian function, the current function needs less memory
and coOmputation time,

The kernel function is infinity at » = 0. This is good
for numerical stability in the model of incompressibil-
ity. On the other hand, the old kernel function used in
Refs. 20, 21, and 22 gives a finite value at r = 0. Com-
parison between two functions is shown later with test
calculations.

II1.B. Particle Number Density

Particle number density at coordinate r; where par-
ticle 7 is located is defined by

s ny = w(lr,—r) . 4)
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Fig. 1. Kernel function.
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In this equation, the contribution from particle ; jtself
is not considered. When the number of particles in a
unit volume is denoted by (N);, the relation between
{n); and (N),; is written as

(N)Y; = & . (5)

w(r)dv
v

The denominator of Eq. (5) is the integral of the ker-
nel in the whole region, excluding a central part occu-
pied by particle ;. Assuming that the particles have the
Same mass m, we can see that the fluid density is pro-
portional to the particle number density:

(¥ =m(Ny, = KM 6)

w(r)duv
v

Thus, the continuity equation is satisfied if the parti-
cle number density is constant. This constant value is
denoted by n?°,

III.C. Modeling of Gradient

A gradient vector between two particles / and j pos-
sessing scalar quantities ¢; and ¢; at coordinates r; and
r; is simply defined by (¢; - ¢ (r; — r)/|r;—r|? We
can evaluate a gradient vector with any combination of
two particles. The gradient vectors between particle ;
and its neighboring particles j are weighted with the ker-
nel function and averaged to obtain a gradient vector
at particle ;:

gy =2 % [L‘Z”z (r; = ryw(lr, —nl)J , ()
ne i Ll —r

where d is the number of space dimensions. This model

is applied to the pressure gradient term in MPS,

When particles gather, pressure increases and repul-
sive forces work among the particles to satisfy the con-
tinuity equation. Equation (7) gives a larger force to a
shorter distance between two particles. This is a good
property to avoid the clustering of particles.

The current model is not sensitive to absolute pres-
sure. This is consistent with the property of incom-
pressible fluids, which depends on the relative pressure
distribution.

The following equation is a good approximation if
particle 7 is located at the center of its neighboring par-
ticles j:

(rj—r) J
0= s wlr—r| . (8)
j; [l"j —r? 17 |
Thus, Eq. (7) can be rearranged as follows:
d b — @}
Vo) = = —L T e _p
(Vop); nofj": [l’j—’/lz (r ryw(lr, r,l)J , (9)
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where any constant value is allowed to @;. In the code,
Eq. (9) is used instead of Eq. (7) as the model of gra-
dient, and ¢/ is calculated from

é; = min(¢,) , (10)
for any j satisfying
w(lr,—r|)#0 .

II1.D. Modeling of Laplacian

A time-dependent diffusion problem with respect
to ¢ is represented by Laplacian as
d¢o )
— =V , 11
ot @ (11)
where » is the diffusion coefficient. The variance of the
distribution of ¢ increases by 2dvA¢ during time step
At, where d is the number of space dimensions. In the
current model, part of quantity ¢; of particle i is dis-
tributed to the neighboring particles according to the
kernel function such that the variance increase is equal
to 2dvAt. Thus, the quantity transferred from particle
itojis
2dvAt
nOo\

Ag; ;= ow(lr; ~rl), (12)

where

f w(r)r? dy
v

f w(r)dv
v

As far as linear diffusion is concerned, the quantity
transfer can be superposed. Eventually, Laplacian is
represented by

A=

(13)

2d
<V2¢>f: TZ(¢j—¢i)W(lrj*riD . (14)
£ n )\j¢i

The current model of Laplacian is conservative since
the quantity lost by particle i is just obtained by parti-
cles /.

IILE. Modeling of Incompressibility

The continuity equation requires that the fluid den-
sity should be constant. This is equivalent to the par-
ticle number density being constant, n°. When the
particle number density n* is not n°, it is implicitly cor-
rected to n° by

n*+n =no, (15)
where n’ is the correction value. This is related to the

velocity correction value z” through the mass conser-
vation equation:

— = V.. (16)
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The velocity correction value is derived from the im-
plicit pressure gradient term as
u = —EVP"+1 , a7n
fo}

With Eqgs. (15), (16), and (17), a Poisson equation

of pressure is obtained:
p (n*y—n°

(VZP"H),‘:—P - (18)
The right side is represented by the deviation of the par-
ticle number density from the constant value, while it
is usually velocity divergence in grid methods. The left
side of Eq. (18) is discretized by the Laplacian model
[Eq. (14)]. Finally we have simultaneous equations ex-
pressed by a linear symmetric matrix. These are solved
by the incomplete Cholesky conjugate gradient (ICCG)
method.?” The pressure gradient terms are calculated
from the gradient model [Eq. (9)], where scalar ¢ is sub-
stituted by P!,

The computation speed of the current model is
much faster than the previous model used in Refs. 20,
21, and 22 since a matrix equation is constructed, and
it is solved by ICCG. In addition, the calculation is
more stable because of the robustness of ICCG, even
if the particle configuration is strongly distorted.

Equation (18) is obtained through the manipulation
of a differential equation so that the discretization form
of Eq. (18) is inconsistent with discretization forms of
the original equations [Eqs. (15), (16), and (17)]. In
other words, the modified particle number density,
which is evaluated from the modified coordinates of
particles, is not equal to n®. However, this inconsis-
tency is not serious since the error of the particle num-
ber density is not accumulated in each time step and
since the mass conservation is strictly guaranteed by
keeping the number of particles.

The overall algorithm is described in Fig. 2. In each
time step, source terms are explicitly calculated and
temporal velocities 4" are obtained. Next, motion of
particles is calculated, and temporal coordinates r’ are
obtained. This corresponds to the convection term. The
Poisson equation of pressure is solved with the source
term representing the deviation of the particle number
density, and then new-time pressure values are obtained.
Finally we have new-time velocities and coordinates by
adding the pressure gradient terms with the new-time
pressure values. This algorithm is basically semi-implicit
time marching, which has been widely used in grid
methods.

IIL.F. Modeling of Free Surfaces

Free surfaces are always clear as a result of the fully
Lagrangian motion of particles. A particle whose par-
ticle number density satisfies

(n); < Bn?® (19)
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. Fig. 2. Calculation algorithm of MPS.

is regarded as the free surface, where 3 is a parameter
below 1.0. Pressure zero is given to this particle as the
boundary condition when the pressure Poisson equa-
tion is solved. The effect of parameter 8 is described
later.

IV. COLLAPSE OF A WATER COLUMN

V. A. Geometry

The collapse of a water column is calculated, and
the geometry is depicted in Fig. 3. An experiment was
carried out in this geometry.?""?2 The water column is
initially located on the left vertical wall. In the experi-
ment, the initial water column is supported by a remov-
able board, which is quickly slid up to start the collapse.
Collapsing water impinges on the right vertical wall,
which creates fragmentation and coalescence of the
fluid. The problem without this right vertical wall has
been used as a verification problem of the codes for free
surfaces.”*?* In this case, the shape of the free surface
is kept smooth so that grid methods can be applied.

IV.B. Calculation Parameters

Parameters used in the current particle interaction
models are investigated with test calculations of the col-
lapse of a water column.
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Fig. 3. Geometry of collapse of a water column.

The free surface parameter 8 is used to judge whether

the particle is on the free surface or not [Eq. (19)]. Fig- -

ure 4 shows the number of particles regarded as the free
surface. The trajectories are almost the same from § =
0.8 to0 0.99, although they are shifted lower in parallel
when the parameter is smaller. The calculation result
of 8 = 0.7 shows a different trajectory from 0.0 s, and
the calculation is abnormally terminated at 0.6 s. We

can conclude that the free surface parameter is not ef-
fective to the calculation result if the calculation pro-
ceeds stably. The paraméter can be chosen from 0.8 to
0.99. In this study, 0.97 is selected.

The kernel size is represented by parameter r, in
Eq. (3). A larger kernel size leads to more particles for
interactions. The kernel function is used for calculat-
ing the particle number density, the pressure gradient

400 T T T
350 [ :

300 +
250
200
150

100

50

Number of particles on the free surface

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Time [sec]

Fig. 4. Effect of free surface parameter.
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Fig. 5. Effect of kernel size used in Eq. (3)

term, and Laplacian of pressure. It is not necessary to
employ a common kernel size for the three calculations.
In Fig. S, the effect of the kernel size is shown, where
ren 1s used in the particle number density and the pres-
sure gradient term and r, 5, is used in the Laplacian of
pressure. The calculations are successful when r,, =
Terap = 1.8y, where [, is the distance between neigh-
boring particles in the initial configuration. A numer-
ical explosion occurs when r,, = eLap = 1.60g. If 7,
is too small, the number of neighboring particles for
interactions is too small for accurate and stable calcu-
lations. It is reasonable that there is a minimum limit
of r, for numerical stability. When r,,, = eLap = 1.8/,
the number of particles on the free surface is abnor-
mally high between 0.1 and 0.15 s. This means that nu-
merical instability occurs but is suppressed.

We can see strange trajectories from 0.0 to 0.1 s
at Fop = rorap = 3.0 and 4.0/y. The initial numbers are
larger than those of other cases and decrease until
0.1 s. The initial configuration of particles is like a
square grid (see Fig. 10a-2). Peripheral particles are re-
garded as the free surface since fewer neighboring par-
ticles are located where the kernel function lies. When
the kernel size is small, lower than 3.0/ in this case,
particles on the first line from the periphery of the wa-
ter column are judged as the free surface. When the
kernel size is larger, more particles in the inner region
satisfy the free surface condition. Thus, the initial num-
bers are large. Figure 6 shows the calculated configu-
ration of particles at 0.1 s with r,,, = elap = 4.0ly. We
can see that the particles gather near the free surface.
As a result, the particle number densities of the inner
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particles are enhanced, and they are not judged as the
free surface any longer. This leads to a decrease of the
number. Therefore, the kernel size should be <3.0/y,
otherwise particles will gather near the free surface. On
the other hand, it is shown that the discretization of La-
placian is more accurate when the kernel size TeLap 1S
larger.*!-* To satisfy these contrary requirements, dif-
ferent values are employed for r,, and Telap: Fen = 2.11,
and r,y 5, = 4.0/ in this study.

The average CPU time needed in one time iteration
is plotted in Fig. 7. The calculation is carried out with
Indigo#2 from Silicon Graphics, Inc. The most time-
consuming routine is the ICCG solver of the Poisson
equation of pressure. This routine consists of generation
of the matrix, the incomplete Cholesky decomposition,

Fig. 6. Configuration of particles at 0.1 s with Py =
Forap = 4.04, in Eq. (3).
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Fig. 7. Computation time in one time step.

and the iteration procedure. When the kernel size in-
creases, the CPU time of the decomposition becomes
relatively larger because the CPU time of the decom-
position and the iteration is in proportion to NpN3
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and N}A° N3, respectively, where N is the total num-
ber of particles and Np is the number of neighboring
particles for interactions. The number of neighboring
particles is in proportion to the square of the kernel size
in two dimensions, Generation of the table, where the
neighboring particles are listed, is supposed to be dom-
inant in a large problem involving 10° particles since
this routine is in proportion to N3.

The old kernel function used in Refs. 20, 21, and
22 is also tested. This function is

Q2 +2 (0<r< iry)
w(r) =14 (2r/r, - 2)? (3rosr<r,). (20)
0 (re=<r)

The most important difference with the current kernel
function [Eq. (3)] is that the value is finite at » = 0. The
number of particles on the free surface is shown in
Fig. 8. One case of the present kernel function [Eq. (3)]
is also included in the figure. The calculation is suc-
cessful when 1.4/y < r,, = eLap < 1.7/y. This range is
considerably narrow. When Ten = FeLap = 1.8, the tra-
Jjectory deviates upward from the correct one. For in-
stance, the configuration of particles at 0.35 s with
Ten = Ferap = 2.0y is shown in Fig. 9. We can see that
particles are clustered everywhere. With Eq. (20), two
particles can occupy the same position, satisfying the
incompressibility condition if 2w(0) < Bny. These par-
ticles are regarded as the free surface, and no repulsive
force acts between them. Therefore, particles are clus-
tered. This trouble can be avoided if w(0) = o, such
asin Eq. (3). Therefore, the calculation is more stable
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Fig. 9. Configuration of particles at 0.35 s with T =
FerLap = 2.0/ in Eq. (20).

with the current kernel function. Selected values of cal-
culation parameters are summarized in Table I.

IV.C. Calculation Result and Comparison
with the Experiment

Calculation of the collapse of a water column is car-
ried out with the selected parameters listed in Table I.
Viscosity and surface tension are neglected. In Fig. 10,
configurations of the fluid are shown at 0.1-s intervals
from 0.0 to 1.0s for the experimental (the photographs)
and calculated (the computer-generated graphs) results.

A removable board supports the initial water col-
umn in the experiment. This board is pulled up within
0.05 s and collapse starts. In the calculation, the water
column is represented by 648 particles, which are lo-
cated like a square grid. The distance between two
neighboring particles /, is 8.0 x 103 m.

(a-1) T=0.0sec (experiment)

Fig.
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TABLE 1

Calculation Parameters

Kernel size
Particle number density, r,, 2.14,
Laplacian, Telan 4.0/,

Time step control

Courant condition Urnax ALl =102

Maximum limit Ar= 1072
Free surface parameter, (3 0.97
Distance between neighboring

particles in the initial

configuration, /, 8.0x 1073 m

The left, right, and bottom walls are represented by
474 particles. Their coordinates are fixed, and veloci-
ties are zero. The particles on the inner first line of the
walls are involved in the pressure calculation. As the
source term of the incompressibility model, the parti-
cle number densities are needed at these particles. Thus,
two other lines of particles should be added outside be-
cause r,, = 2.1/, otherwise the particle number densi-
ties are small and the wall particles are recognized as
the free surface. In MPS, the wall boundary is repre-
sented by arranging fixed particles. This is simpler than
the grid methods.

In Fig. 10, the flow velocity vectors are shown as
lines from the particles’ centers. The velocity scale is
1072, which means that velocity 1.0 m/s is shown by
line length 10> m. At 0.1 s (Fig. 10b), the right sur-
face of the water column is disturbed by the motion of
the supporting board in the experiment. The collapsing

(a-2) T=0.0sec (calculation)

10a. Comparisons between experimental and calculated collapse of a water column.
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(b-2) T=0.1sec (calculation)

(c-2) T=0.2sec (calculation)

(d-1) T=0.3sec (experiment) (d-2) T=0.3sec (calculation)

Figs. 10b, 10¢, and 10d. Comparisons between experimental and calculated collapse of a water column.
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(g-1) T=0.6sec (experiment)
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Figs. 10e, 10f, and 10g. Comparisons between experimental and calculated collapse of a water column.
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(h-1) T=0.7sec (experiment) (h-2) T=0.7sec (calculation)

(1-2) T=0.8sec (calculation)

[

(j-1) T=0.9sec (experiment) (j-2) T=0.9sec (calculation)
Figs. 10h, 10i, and 10j. Comparisons between experimental and calculated collapse of a water column.
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(k-1) T=1.0sec (experiment)
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(k-2) T=1.0sec (calculation)

Fig. 10k. Comparisons between experimental and calculated collapse of a water column.

water is running on the bottom wall at 0.2 s (Fig. 10c).
Accelerated water impinges on the right vertical wall and
rises up at 0.3 s (Fig. 10d). We can see that water goes
up above the initial column height at 0.4 s (Fig. 10e). In

4.0 - -
®  Exp. (Martin & Moyce, 1.125in)?® o)
o Exp. (Martin & Moyce, 2.25inf
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Fig. 11. Motion of the leading edge in collapse of a water
column.
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the experiment, rising water forms a thin film attached
to the vertical wall, while it is more fragmented in the
calculation. The particle size is too large to simulate
this thin film. The rising water is losing its momentum
at 0.5 s (Fig. 10f) and begins to come down at 0.6 s
(Fig. 10g). A mushroom shape can be seen at 0.7 s
(Fig. 10h). Falling water hits the bottom water and is
reflected in the upper-left direction at 0.8 s (Fig. 101).
The reflected water flies toward the left wall at 0.9 s
(Fig. 10j) and impinges on it at 1.0 s (Fig. 10k). Cal-
culated configurations of water agree well with the ex-
perimental results until 1.0's. Agreement is much better
than that in Refs. 21 and 22. This is attributed to the
modified kernel function and modeling of incompress-
ibility in MPS.

Motion of the leading edge, which is the front of
the collapsing water running on the bottom wall, is
shown in Fig. 11. The calculated result in Ref. 23 and
the experimental data in Ref. 25 are included as well.
The current calculation result is almost the same as that
of SOLA-VOF. In the experiments, the speed of the
leading edge is slower than that of the calculations. This
is due to the friction between the fluid and the bottom
wall. We can see that the leading edge is rounded in
Fig. 10c-1.

V. CONCLUSIONS

The MPS method for analyzing incompressible
flows with free surfaces has been developed. Pressure
gradient, diffusion, incompressibility, and free surfaces
are modeled by using deterministic particle interactions
with a kernel function. As a result of the modified ker-
nel function and incompressibility model in MPS, nu-
merical stability and computation time are markedly
improved. Calculation parameters are investigated with
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test calculations. Different values should be used for
the kernel sizes of the particle number density and the
Laplacian model. The kernel sizes selected are 2.1 and
4.0/, for the particle number density and the Laplac-
ian model, respectively. Parameter 8 used in the free
surface model is not sensitive to the result when it is
within the range of 0.8 to 0.99; 0.97 is selected for this
study. With these selected parameters, collapse of a
water column is calculated and compared with the ex-
periment. Agreement is good until 1.0s, even if fragmen-
tation and coalescence of the fluid take place. Motion
of the leading edge before the fragmentation is almost
the same as the result of SOLA-VOF.

If other physical processes that have been solved
by using grids are modeled as particle interactions and
added to MPS, application of MPS will be wider. For
instance, particle interaction models representing sur-
face tension and phase change are necessary for many
problems of multiphase flows.
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