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Abstract--Recent progress in the development of coarse-mesh nodal methods for the numerical solution of the 
neutron diffusion and transport equations is reviewed. In contrast with earlier nodal simulators, more recent nodal 
diffusion methods are characterized by the systematic derivation of spatial coupling relationships that are entirely 
consistent with the multigroup diffusion equation. These relationships most often are derived by developing 
approximations to the one-dimensional equations obtained by integrating the multidimensional diffusion equation 
over directions transverse to each coordinate axis. Both polynomial and analytic approaches to the solution of the 
transverse-integrated equations are discussed, and the Cartesian-geometry polynomial approach is derived in a 
manner which motivates the extension of this formulation to the solution of the diffusion equation in hexagonal 
geometry. Iterative procedures developed for the solution of the nodal equations are discussed briefly, and 
numerical comparisons for representative three-dimensional benchmark problems are given. 

The application of similar ideas to the neutron transport equation has led to the development of coarse-mesh 
transport schemes that combine nodal spatial approximations with angular representations based on either the 
standard discrete-ordinate approximation or double P, expansions of the angular dependence of the fluxes on the 
surfaces of the nodes. The former methods yield improved difference approximations to the multidimensional 
discrete-ordinates equations, while the latter approach leads to equations similar to those obtained in interface- 
current nodal-diffusion formulations. The relative efliciencies of these two approaches are discussed, and directions 
for future work are indicated. 

1. INTRODUCTION 

It has been nearly 30 years since the initial implemen- 
tation of finite-difference techniques in computer 
codes designed to solve the few-group neutron diffu- 
sion equations in more than one spatial dimension. 
Codes such as the PDQ program 1 developed at Bettis 
Atomic Power Laboratory employed very novel 
iterative acceleration techniques, and their develop- 
ment represented a major advance in our capability to 
analyze nuclear reactors. Further improvements in 
solution algorithms, combined with continued 
advances in computer hardware, have made possible 
the solution of increasingly complicated problems in 
reactor physics. However, even with current com- 
puters, practical limitations on computer storage and 
execution time generally prohibit the explicit modeling 
of each fuel pin in a light water reactor (LWR). Instead, 
'equivalent' few-group diffusion-theory parameters 2 
are determined for relatively large homogeneous 
regions often consisting of entire fuel assemblies in the 
radial plane. With these parameters in hand, global 
solutions are computed for this homogenized-assem- 
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bly representation of the reactor. Solution of this 
problem using traditional finite-difference techniques 
requires a large number of mesh points in order to 
represent accurately the spatial variation of the 
neutron flux. The computational expense associated 
with these calculations motivated the early develop- 
ment of less rigorous, yet more computationally 
efficient techniques oriented towards the determina- 
tion of the flux averaged over each homogeneous 
region or 'node'. This class of methods thus became 
known as nodal methods, and the FLARE model 3 
developed in 1964 is representative of the first 
generation of these schemes. 

The evolution of nodal methods over the 20 years 
since the development of the FLARE method has 
proceeded along two rather different paths. The first 
direction has focused on refinements to the initial one- 
group FLARE model, which involved parameters 
adjusted to match actual operating data or the results 
of more accurate calculations. A number of improved 
schemes have resulted from this work, and these 
methods, often referred to as 'simulators', are the 
subject of a review paper 4 which appeared in this 
Journal several years ago. (The reader is also referred 
to earlier review papers by Henry 5 and Wagner. 6) 
FLARE and its successors have been used extensively 
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by utilities and vendors in the analysis of LWR's, and 
with appropriate tuning of adjustable parameters, 
these models are capable of accurate predictions of 
conditions in an operating reactor. Most of these 
methods are,based on so-called 1.5 group theory 4 and 
most treat LWR reflectors using albedos computed 
from the results of auxiliary calculations or analytical 
procedures. As a consequence, in the limit of infinitely 
fine spatial mesh, these schemes do not yield solutions 
consistent with the exact solution of the few-group 
diffusion equation. This behavior, plus more practical 
concerns about the use of simplifying assumptions and 
adjustable parameters under different (e.g. transient) 
conditions, has led to the development over the past 10 
years of an alternate class of nodal schemes. Some- 
times referred to as 'consistently formulated '6 or 
'modern' 7 nodal methods, these schemes avoid the use 
of empirical parameters by computing inter-node 
coupling relationships using higher-order approxima- 
tions to the multigroup diffusion equation. Therefore, 
unlike the earlier nodal simulators, these more recent 
nodal schemes can be viewed as true coarse-mesh 
approximations to the neutron diffusion equation, and 
thus can be expected to converge to the exact solution 
of the diffusion equation in the limit of zero mesh 
spacings. It is these consistently formulated nodal 
methods with which we will be concerned in this 
review paper. 

As noted above, the use of nodal methods for global 
LWR calculations requires the determination of 
'equivalent' parameters for each assembly. These 
homogenized parameters traditionally have been com- 
puted by weighting the spatially-dependent cross 
sections with the flux solution obtained in an assembly 
calculation with zero net current boundary conditions. 
Recent nodal schemes yield very accurate approxima- 
tions to the diffusion equation, and the errors intro- 
duced by the use of flux-weighted cross sections may be 
much larger than the spatial truncation errors present 
in the nodal solution of the homogenized problem. 
Therefore, the development of accurate homogeniza- 
tion procedures is essential to the successful appli- 
cation of nodal diffusion methods to LWR analysis. 
This important aspect of nodal analysis is reviewed in a 
companion paper by Smith. s 

In Section 2 of this paper, we review recent work in 
the development of nodal diffusion methods for global 
calculations, and indicate briefly how these methods 
are modified to accommodate recent advances in 
homogenization procedures. Both polynomial and 
analytic nodal formulations in Cartesian geometry are 
discussed, and the Cartesian-geometry polynomial 
method is derived in a manner which motivates the 
extension of this formulation to the solution of the 

diffusion equation in hexagonal geometry. The high 
computational efficiency demonstrated for the consis- 
tently formulated nodal diffusion methods has 
prompted the application of analogous ideas to the 
numerical solution of the neutron transport equation, 
and two nodal transport formulations are discussed in 
Section 3. The first combines nodal spatial approxima- 
tions with the conventional discrete-ordinates angular 
discretization, while the second uses double Pn expan- 
sions of the angular dependence of the nodal interface 
fluxes. The latter formulation is shown to yield 
interface current equations very similar to those 
obtained in the nodal diffusion methods. 

2. NODAL METHODS FOR THE SOLUTION OF 
THE DIFFUSION EQUATION 

2.1. Introduction 

We begin with the multigroup neutron diffusion 
equation written in P1 form: 

V '  Jg(r) + Y~(r)~g(r) = Qg(r), re v, (1) 

J g ( r )  = - Dg(r)V~g(r), (2) 

where 

1 ~ 

ag(r)=~g~,=l ~gv~aY'(r)~b¢(r)+g,~l ~ 3z~g,(r)~¢(r), (3) 

g'~g 

2 denotes an eigenvalue, and the remaining notation is 
standard. 2 Equations (1) and (2) are solved subject to 
the conditions that the neutron flux ~bg(r) and the 
surface-normal component of the net current Jg(r) be 
continuous across all material interfaces contained 
with the reactor. Appropriate boundary conditions are 
imposed on all external surfaces. 

Nodal procedures are based on subdividing the 
domain V into nodes V k, k = l , . . . , K ,  such that 
wV k= V and vkc~vZ=O, k:/:l, and then integrating 
equation (1) over an arbitrary node. Let us assume for 
the moment that homogenized cross sections are 
available for each node. As mentioned above, such 
parameters are often obtained by weighting the 
spatially-dependent cross sections with the flux 
obtained in a local calculation with zero net current 
conditions on the boundaries of the assembly. Inte- 
grating equation (1) over re V k, dividing by the node 
volume V k, and then applying the divergence theorem 
to the integrated leakage term yields the balance 
condition 

- -  n Jg(r,) + Y~o q~0- Qa, (4) vk d 2r~ ~ • ,.k k_ --k 
sgS k 
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where c~k o is the node-averaged flux, 

~ko--V 1~ t ~d3r~bko(r)' 
dr tV  

0~ is the node-averaged group source term, and ~,k 
denotes the value of the removal cross section 
averaged over V k. Apart from the determination of the 
homogenized cross sections, equation (4) is an exact 
balance equation; however, the solution of this 
equation requires additional equations relating the 
surface-averaged net current on each surface of the 
node to the fluxes in the two nodes on either side of the 
surface. It is these additional coupling relationships 
that characterize the various nodal schemes which 
have been developed for the solution of the neutron 
diffusion equation. Certainly one of the simplest 
means of obtaining these relationships is the approach 
used to derive the standard mesh-centered finite 
difference equations, in which the surface net currents 
are approximated by assuming that the flux varies 
linearly between the node centerpoint and the mid- 
point of any surface of the node. Eliminating the 
surface fluxes by enforcing continuity of net current 
and flux across each interface leads to equations 
involving only the node-averaged fluxes. Of course, 
the development of nodal schemes is motivated by the 
need for improved accuracy relative to the finite- 
difference method, and alternative procedures for 
deriving the coupling relationships in Cartesian and 
hexagonal geometries are discussed in the following 
sub-sections. 

Before proceeding further, however, it is necessary 
to add several comments concerning the solution of 
equation (4) in light of recent advances in the develop- 
ment of homogenization procedures. Let us assume 
that we know the solution to equations (1) and (2) for 
the heterogeneous model of the reactor, and then use 
this reference solution to compute homogenized cross 
sections and diffusion coefficients (which can be 
directionally dependent). Irrespective of the manner in 
which the homogenized cross sections are determined, 
the solution of equation (4) using these homogenized 
values cannot reproduce the node-averaged reaction 
rates and leakages inferred from the reference solution 
without the introduction of additional degrees of 
freedom. This shortcoming has led to the development 
of more rigorous homogenization procedures based 
on 'equivalence theory', a concept introduced by 
Koebke 9.1o and subsequently generalized by 
Smith. l 1,12 Koebke demonstrated that it is possible to 
develop a homogenization method which is capable of 
reproducing rigorously all node-integrated properties 
(i.e. reaction and leakage rates) of the known reference 
heterogeneous solution. Equivalence theory requires 

the introduction of additional degrees of freedom into 
the solution of the homogenized balance equation, 
equation (4), and the manner in which these para- 
meters are introduced is the essential difference 
between Koebke's and Smith's formulations. This and 
other differences in the two developments are dis- 
cussed in Refs 8 and 12, and for our purposes here, we 
simply note that both formulations require that the 
method developed for the solution of equation (4) 
permit the surface-averaged fluxes to be discontinuous 
across each nodal surface. This is accomplished in 
generalized equivalence theory 11'az by introducing 
additional homogenization parameters called 'dis- 
continuity factors', which are defined by 

t ~ h e t , k l  
k l _  TO 

f0 -- (5) ~ h o r a , k l  " 
T g  

Here, kl denotes the surface common to nodes k and l, 
t~h,t.k~ is the surface-averaged flux obtained from the 0 
reference heterogeneous solution, and ,~hom,U is the "r 0 

surface-averaged flux implied by the solution to 
equation (4) for the k th node. Since the face-averaged 
heterogeneous flux must be continuous across an 
interface, equation (5) implies the following interface 
condition on the homogenized flux (which we write 
without the identifying superscript): 

funk,  =flk3tk (6) 
g T 0 a g  ~ O "  

Note that if the discontinuity factors are unity, 
equation (6) reduces to the usual flux-continuity 
condition. Of course, in practice the reference hetero- 
geneous solution is not known, and the determination 
of the homogenization parameters (including the 
discontinuity factors) for practical situations is dis- 
cussed in Refs 8-15. Therefore, in the following sub- 
sections, we will be concerned with approximations 
based on equations (4) and (6) with known values of 
the homogenization parameters. 

2.2. Cartesian geometry 
Equation (1) takes the form 

~xg- Jk°~ (x, y, z) + ~YO Joy Y, z) + ~Z j~(x,  y, z ) 

,.k k z), (x, z)~ VL + x 0 q~0(x, y, z) = Q~(x, y, y, (7) 

where, for example, the x-component of the net current 
is 

k C3 k 
Jkx(x, y, z)= --D o t~x(%(x, y, z), (8) 

and cross sections are assumed to be independent of 
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position within the node. It is convenient to take the 
center of the node as the origin in local coordinates, 
and define the k th node in terms of the mesh spacings: 

vk: (X, y, Z) x e [ - - A x ' / 2 ,  +Ax' /2] ,  ye[- -Ayk/2  

+ Ay k/2], Z e [ -- Az k/2, + Az'/2].  

The node volume is given by the product of the mesh 
spacings, and in the following development we omit 
the node index on the mesh spacings. We use x + and 
x -  to denote the plus-x-directed (right) and minus-x- 
directed (left) faces of the node, with similar notation 
for the y- and z-directed surfaces. Using this notation, 
the balance equation [equation (4)] is 

t t , 
_ _  k k - -  OY- ] Ax [J;x+ - J ; ~ -  ] + ~yy [J;r+ j k  

t r,k k__ --k 
+ Azz [s;'~÷ - jko,_ ] + Y', ~o - Qo, (9) 

where 

, 1 I Az/2 (" Ay/2 

c~°=Ax Xy Az d_,x,/2dz J_ar/2dY 

f 
ax~2 
-ax/£ dx ~bk(x, y, z), (t0) 

and, for example, ark+ are the x-components of the net 
current averaged over the x-directed faces of the node: 

t /. A~/2 f Ay/2 
j~k± _ Ay Az 3 [_Az/2 dz / dy 

, J -  Ay/2 

- o ~ ¢ : ¢ x ,  y, zL~ ±~/~. (t t) 

All face-averaged currents and fluxes with node index k 
are evaluated in the limit as the node surface is 
approached from within the k th node. Surface-aver- 

/'out,k~ and incoming (e.g. o0~+, aged outgoing (e.g. ~0~+, lin'k ~ 
partial currents are defined in an analgous manner, 
and the partial currents satisfy the usual relationships 

jff:tik_j~,~ =ark+ (12a) 

j ~ t , k _ j ~ , k  = _ jkx_  (t2b) 

2rro-t.k .a_ fi., ,  1 - .~' (t 2c) 
L~OX± " ° g x ± J - - W ' O x ± ,  

where ok0x ± denotes the face-averaged fluxes. Note that 
the balance condition, equation (9), can be written in 
terms of surface-averaged partial currents using equa- 
tions (12a) and (12b). 

2.2.1. The transverse-inteoration procedure. As 
noted in Section 2.1, it is the equations used to 
compute the surface currents in equation (9) which 

distinguish one nodal formulation from another. 
However, nearly all recent nodal methods have one 
feature in common, and that is they are based on 
approximations to one-dimensional equations derived 
by integrating the three-dimensional equation over the 
two directions transverse to each coordinate axis. For 
example, operating on equations (7) and (8) with 

1 (. Az/2 ( '  Ay/2 

dz Ay Az J_a~/z J_, dy, 
yields the one-dimensional P - 1  form of the x- 
direction equation: 

d ~ r,k k _ 1 L~r(x) dx :;x(x) + X, ,~o,,(x)- O.*ox(x) - Ay 

1 
- A-~ L ~  (x), (13a) 

~xix)= - O '  d ~x(x), (tab) 
o dx 

where 
f' Ayl2 

d-az/2 J-ar/2 Y' 

(14) 

and the leakages transverse to the x-direction are 
defined by 

Az d-a~12 

(15a) 

1 I Ay/2 k O ~l z=az/2 
L k°z(x) ~-- Ayy ,J - a~,/2 d y -  D o ~z $~(x, y, zm= - a~/2 . 

(t5b) 

Substitution of equation(13b) into equation (13a) 
yields the conventional second-order form of the 
transverse-integrated equations: 

d , d  , r ,k k 

dx Do dxx ~°x(x) + x° q~'x(x) 

1 1 L~, (x). (16) = ~?~(x) - yy L;, (x) - Az 

The one-dimensional fluxes and transverse leakages 
are related to their respective node-averaged values by 

t Ax/2 k k 
Ax .J-a~/2 dx q~o~(x) = ~ (17a) 

1 [ Ax[2 
- -  dx Effy(x)= - '  - k _ j k  Loy-d~r+ or- (17b) 
Ax d -~ /2  
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1 r A x / 2  r-k __  F-k - -  k 
- -  I d x  L g ~ ( x ) = L g z - ~ =  + - J ~ = _  . (17c) 
A x  d - ~ x / 2  

Integrating equation (13a) over x, dividing by Ax, and 
using equations (17) yields the nodal balance equation, 
equation (9). One-dimensional equations in the y- and 
z-directions are derived in an analogous manner. 

The development of nodal schemes based on the 
approximation of equation (16) is motivated by the 
simple observation that it is generally easier to solve a 
one-dimensional equation than a two- or three- 
dimensional equation. Of course, in order to solve 
equation (16) it is necessary to have some knowledge of 
the shape of the transverse-leakage terms. As noted in 
Section l, nodal methods traditionally have been 
oriented towards the calculation of the node-averaged 
fluxes (and leakages), and equation (16) provides a 
convenient framework for the development of schemes 
with this objective. An important consequence of this 
approach is that the one-dimensional solutions con- 
tain only information concerning the shape of the one- 
dimensional fluxes, and it generally is not possible to 
reconstruct rigorously the multidimensional flux 
shape within the node using only the information from 
the solution of equation (16) and its y- and z-direction 
analogs. However, flux-reconstruction techniques ~6 
based on the use of higher-order polynomial fits to the 
information obtained from the nodal calculation have 
been developed, and numerical tests 16 have shown 
that the reconstructed flux shapes agree well with fine- 
mesh finite-difference calculations. It should be noted 
that ultimately it is the flux shape in the heterogeneous 
node that is required, and this information can be 
obtained by modulating the solution computed in a 
local assembly calculation with a 'form function' 
representing the reconstructed flux in the homoge- 
neous node. These procedures are described in 
Refs 13-16, and will not be discussed further here, 
other than to note that these procedures have made 
possible the accurate calculation of pin-power distri- 
butions in a LWR using the nodal methods discussed 
in this paper. 

The use of solutions for one-dimensional problems 
to construct multidimensional nodal solutions 
appears to have originated with the development in the 
early 1970's of two very different nodal formulations, 
the Nodal Synthesis Method 1 v (NSM) of Wagner, and 
an analytical procedure S'~8 due to Antonopoulous 
and Henry. Both methods approximated the trans- 
verse-leakage terms using bucklings computed under 
the assumption that the flux within the node is 
separable into a normalized product of one-dimen- 
sional fluxes. Like the much earlier Gross-Coupling 

Method, 19 the NSM used coupling coefficients defined 
by ratios of face-averaged partial currents to node- 
averaged fluxes, e.g. 

~.x+ -= ~ x ~ .  

Using these expressions to eliminate the surface 
currents in equation (9) yields a finite-difference-like 
equation for the nodal flux. The coupling coefficients 
in the NSM were evaluated from the results of one- 
dimensional finite-difference calculations for each one- 
dimensional 'channel' in the reactor, and these coeffi- 
cients were recomputed periodically during the iter- 
ative solution of the nodal equations. The analytic 
procedure ~'ls did not involve any auxiliary calcula- 
tions, but instead used truncated Taylor-series expan- 
sions of exact analytic expressions (for one energy 
group) relating the face-averaged net current to the 
average fluxes in the two nodes on either side of the 
surface. These expressions depend upon the global 
eigenvalue and the transverse bucklings, and hence it 
was necessary to update the coupling expressions 
during the iterative procedure. 

The NSM and the one-group analytic method 
represented important steps in the development of 
nodal schemes with more consistent, more computa- 
tionally-efficient procedures for the determination of 
the inter-node coupling relationships. The desire to 
eliminate the fine-mesh finite-difference calculations in 
the NSM led to the development of the well-known 
Nodal Expansion Method, Z 0-23 in which polynomials 
defined within each node are used to approximate the 
one-dimensional fluxes defined in equation (14). The 
analytic procedure has been extended to two 
groups, 24.25 and further refinements resulted in the 
very efficient Analytical Nodal Method 26'27 imple- 
mented in the QUANDRY code. The essential differ- 
ence in the polynomial and analytic approaches 
suggests classification of the methods developed for 
the solution of equation (16) on the basis of whether 
information obtained from an analytic solution of the 
diffusion equation within the node is incorporated into 
the numerical scheme. In the first class, we include 
schemes in which the one-dimensional fluxes are 
approximated by a polynomial without the use of 
analytic information. Examples of the polynomial 
methods are the aforementioned Nodal Expansion 
Method, 20 23 the polynomial scheme 28'2~ developed 
by Sims, the NODLEG method 29 due to Maeder, and 
a polynomial method 3° developed for multigroup 
fast-reactor analysis. Examples of the second class, the 
analytic methods, are the Analytical Nodal 
Method, 2,-27 the Nodal Green's Function 
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Method 3~'a2 and the AN2D method. 33 The poly- 
nomial and analytic nodal methods are described in 
the following sub-sections. 

2.2.2. The polynomial methods. The one-dimen- 
sional fluxes are approximated by polynomials of the 
general form 

N 

k ~ k a;xnfn(x) ,  Gx(X)= ~do(x)+ Y, 
n = l  

x e [ - Ax/2,  + Ax/2], N_> 2, (18) 

where, in accordance with equation (17a), the basis 
functions satisfy 

± lax,2 d x f . ( x ) = { l o  n=O (19) 
Ax  d_ax/2 n = 1 . . . . .  N. 

The node-averaged flux satisfies the balance condition, 
equation (9), and the choice of basis functions and the 
determination of the expansion coefficients ag~,k char- 
acterize the various methods. One feature common to 
the polynomial schemes discussed here is that in 
addition to the node-averaged flux, the principle 
unknowns are the face-averaged partial currents 
across the nodal interfaces. Equations for the partial 
currents can be derived by inserting equation (18) into 
Fick's law [equation (13b)] evaluated on the node 
surfaces. These interface current equations are solved 
in conjunction with the node balance equations. 

As an example, we consider the earliest of the 
polynomial methods, the Nodal Expansion 
Method 20-23 (NEM). In the following development, 
the NEM approximations 22 are cast in a form 3° which 
parallels the application in Section 2.3 of similar ideas 
to the solution of the diffusion equation in hexagonal 
geometry. The basis functions are 

fo(x) = 1 (20a) 

X 

f , ( x )  =- A x  - ~ (20b) 

f2(x) -- 3¢ 2 --¼ (20c) 

f 3 ( x )  ~ ¢ ( ~ - - ½ )  (¢ + ½ )  (20d) 

f,)()x = (~z _ ~oo) ({: -- ½) (~ + ½), (20e) 

and so on. The NEM polynomial is constructed such 
that the two face-averaged fluxes in the x-direction are 
preserved, i.e. 

k - -  k ~g~( + Ax/2)= 05g~ ±. 

These constraints are satisfied by setting 
k k k ag~l = 05,~+ - q~g~_ (21a) 

akx2 k k = 05ox+ +050:, - - 2qSok, (21b) 

and requiring that the higher-order basis functions 
satisfy the additional constraints: 

f~( +_ Ax/2) = O, n = 3 . . . . .  N. 

Equations for the outgoing partial currents on the two 
x-directed surfaces of the node are readily obtained: 

out,k k d 
J ~  + = - Do ifi~gx(X)]~ = a~/2 + J ~  

Dk I 1 k , 1 k ] . - - i n k  
o k + ~ a o x 4 l + j d x T  " = - Ax  a°~l + 3ag~2 + 2 ag~3 

L 
(22a) 

j~7,.k= + D  ~ d k in* 
dx  (b gx(X)[" = - A:,/2 + J3~,'- 

D k [  k I k l_k  ] , . i , , k  
+AXXL aox' -3%~2 + 2agx3--5"gx4J -r'lgx~" 

(22b) 

Using equations (21) and (12c) to eliminate %xk 1 and 
in favor of the partial currents and node-averaged aox2 

flux yields two coupled equations for the outgoing 
partial currents in terms of the node-averaged flux, the 
incoming partial currents on the x-directed surfaces, 
and the higher-order expansion coefficients. If, for the 

k _ k =0  [i.e. N = 2  in moment, we assume aax 3 =aax 4 
equation (18)], then equations (22), their y- and z- 
direction analogs, and the nodal balance equation 
represent a total of seven equations for the seven 
unknowns (the node-averaged flux and the six outgo- 
ing partial currents) per node. Since the incoming 
partial currents are simply outgoing partial currents 
from adjacent nodes, and the node source terms Okg are 
computed in terms of the node-averaged fluxes, this 
system of equations is well-posed. As will be discussed 
in Section 2.4, a slightly modified interface condition is 
required if the interface fluxes are discontinuous as in 
equation (6). 

For N > 2 in equation (18), the higher-order coeffi- 
k , n>3,  are determined by applying a cients aax n 

weighted residual procedure to equation (13a). Mul- 
tiplying equation (13a) by weight function w,(x), n = O, 
. . . .  N - 2 ,  and then integrating over x e [ - A x / 2 ,  
+ Ax/2] yields the moment equation 

d _ 53. k k 
(w.(x) ,  {ix ~ , ( x ) )  + o" 050:'~ 

_ k 1 k 1 
- Qgx. - Ay Lgyx" Az L°R~"' (23) 

where the inner products are 

J [" Ax/2 

- A~ J-a~/2 dx w.(x)~Jko~(x) -- 05~., 

(24a) 
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<w,Cx), L~y(x)> - L+ky~,,, (24b) 

k and the spatial moments Q k  and L~,x, are defined in 
an analogous manner. The nodal balance equation is 
recovered using Wo(X ) -  1 and noting that ~bkg~o--~kg. 
Equations for the coefficients aox at' and a0~ak are 
obtained by weighting with w~(x) and w2(x ), where 
these functions are specified using either moments 
weighting 22, 

%(x)=fl(x) (25a) 

w2(x ) =fE(x), (25b) 

or Galerkin weighting 2z, 

wl(x)-f3(x ) (26a) 

w2(x ) -f+(x). (26b) 

Numerical studies 22 have shown that moments 
weighting yields superior accuracy relative to Galerkin 
weighting. Integrating the first term in equation (23) 
by parts, and then using equations (25) yields the 
following moment equations: 

1 1 ~ +  1 DR k _l_]~r.kt~k 
2Ax Ax Ax ao,a - + ",'oxt 

1 k 1 k (27a) 
= ook.+, - a y  - L , , = ,  

1 1 Z~o~+ 3 D~ k ~_,r,.k,6t 
2 Ax Axx Axx %x2 - -0 "ro~z 

1 k 1 
= o o k 2  - -  Ayy L°r"2 AZ Lokzx2 (278) 

where 

~x -- J~x + + j k  _ (28a) 

~+ - J~x + -J~x_.  (28b) 

Substituting equations(18) and (25) into equa- 
tion (24a) yields the following relationships between 
the higher-order expansion coefficients and the flux 
moments appearing in equations (27): 

rents or flux moments, and then eliminating the flux 
moments (including the node-averaged flux) in favor of 
the source and higher-order leakage moments using 
the balance condition [equation (9)] and the moments 
equations [equations (27)]. The node-averaged leak- 
ages are eliminated in terms of the partial currents. 
Combining these results with the analogous equations 
in the y- and z-directions yields an interface current 
equation of the form 

out,k - -  k k k k in,k Jg - [ P g ]  {Qa-L~}+[Rg]J9 , 

k = 1 . . . . .  K; ,q = 1 . . . . .  G, (30) 

where 

j o u t , k _  out,k /out ,k  / ou t& /out ,k  iou t ,k  ./out,kq g =c°l[Jgx+'-ax- '~gy+ '~gr- ' ~ +  '-g~ 

a ~ , k  =. col[Jign.k+, j~xn~,  j ~ y ~ ,  j ~ y ~ ,  j~n~k,  j~n,_k ] 

= )~o~Z¢ d~g + E (31) 2 2 f , k  k ~',$,k~l~k ~ gg,-C'g,, 
9'=1 g ' = l  

g'~g 

k _ k k r~k .hk ~ k  k ~ = c o l [ ~ ,  ~ 

and 

k k k k Egg--col[0, Lgk, , Lgky,, Lo~ , , Lox z , L,y 2 , Lg~2 3. 

The components of the leakage vector L k involve sums 
of the higher-order transverse leakage moments, e.g. 

1 k 1 k L,\. = ~ L~,~. + ~ L~=.. 

The matrices [P~] and [R~] contain nodal coupling 
coefficients which can be computed and stored for 
unique nodes characterized by mesh spacings and 
material zone assignment. Equation (30) is solved in 
combination with the balance equation and the 
equations for the flux moments. 

The calculation of the transverse-leakage moments 
requires additional approximations to L~y(x) and 
L~(x) defined in equations (15). In the initial NEM 
development 2o, it was assumed that the transverse 
leakage and the one-dimensional fluxes have the same 
shape, i.e. 

agxak = -- 120~bkxl + 10akxt (29a) 

k k k %x4 = - 700~bgxz + 35%x2. (29b) 

Equations (27) and (29), plus their y- and z-direction 
analogs, provide the additional equations required for 
the calculation of the higher-order expansion coeffi- 
cients. 

The final form of the partial current equations is 
obtained by first eliminating from equations (22) all 
expansion coefficients in favor of either partial cur- 

1 1 _ _  k ~ 2 k k Ay Lky(x) + Azz La~(x)= [DB ]gx~gx(x). (32) 

The bucklings are assumed constant within the node, 
and are determined by integrating equation (32) over 
xe [ -  Ax/2, + Ax/2] to yield 

[DB2"]~x=~o[-~y~Lgr + ~1 L-~o:]. (33) 

This approximation is exact if the flux within the node 
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is separable, and it provides a simple means of relating 
the leakage moments to the flux moments: 

1 k 1 k _ 2 k  k 
L°~" ==-Ay L"'x" + Azz L ° ' x " - [ D B  ],x~b,~,. (34) 

Use of the buckling approximation leads to large 
errors in many realistic (highly nonseparable) prob- 
lems, and thus an improved procedure 11 was deve- 
loped in which the leakage is approximated by a 
quadratic polynomial, e.g. 

k ~ k L,y(x) = p,y(x), xe V k, (35) 

where 

k - -  r--k k k pgr(x) = Lgy + Poylfl(x) + pgy2f2(x), (36) 

and fl(x) and f2(x) are defined in equations (20). The 
expansion coefficients are determined by assuming 
that pkoy(x ) extends over the k th node and its two 
immediate x-direction neighboring nodes (denoted by 
k + and k - ) ,  and then requiring that the polynomial, 
upon separate integration (using coordinates relative 
to the k th  node) over x g V  k+ and x e V  k-, return the 
two average leakages qy+ and q T '  As indicated in 
equation (35), p~y(x) is used only to approximate the 
leakage in the k'h node, even though the coefficients 
are computed under the assumption that the poly- 

.0 
nomlal extends over the neighboring nodes as well. 
Substitution of equation(35) into equation(24b) 
makes it possible to evaluate the required leakage 
moments in terms of average leakages (and thus the 
face-averaged partial currents) in the adjacent nodes. 
The quadratic leakage fit has little theoretical basis 
because its derivation does not rely on the diffusion 
equation itself. Nevertheless, this approximation is 
used in nearly all recent nodal m e t h o d s  2°-23"25-32 

because it produces acceptable accuracy with relative 
computational simplicity compared to more rigorous 
procedures (suggested in Ref. 7) based on solving 
additional equations for the spatial moments of the 
surface net currents. More recently, a somewhat 
modified p r o c e d u r e  22'23 has been implemented in the 
NEM in which flux and current continuity arguments 
are used to determine the quadratic coefficients. An 
informative numerical study of the errors associated 
with the use of the quadratic leakage fit is described in 
Refs 26 and 27. 

Setting the leakage coefficients in equation (36) to 
zero yields a simple constant (or 'flat') 
approximation 24,25 to the transverse leakages: 

k ~ r-'k Lor(x)=Lgy. (37) 

Use of this approximation causes the leakage moments 
to vanish because the weight functions [equations (25) 
or (26)] are orthogonal to fo(X)= 1. As noted by 

Maeder, 29 the polynomial approximations to the 
one-dimensional fluxes are then completely consistent 
with the multidimensional expansion 

N N 

Skg(x, y, z)= ~ + ~ a~x . f~(x) + ~ a~y. f.(y) 
n = l  n = l  

N 

+ ~ a;z.f~(z). (38) 
n = l  

A more general expansion 22 (including cross terms) 
has also been considered, and the quadratic leakage fit 
can, in principle, be viewed 22 as a means of computing 
additional cross terms in the general expansion. 

The above derivation assumes spatially uniform 
cross sections within each node, and this basic 
formulation has been extended in Ref. 23 to include 
low-order polynomial representations of the spatial 
dependence of the cross sections within the node. This 
extension has been s h o w n  23 to be important for the 
accurate modeling of effects associated with space- 
dependent burnup and nonlinear feedback. 

The polynomial nodal methods due to Sims  25'2s 

and Maeder 29 also lead to interface current equations 
of the same form as equation (30). In Sim's method, the 
basis functions in equation (18) (with N =  4) are chosen 
such that the expansion coefficients aox .k  , n = 1, . . .  ,4, 
can be identified as J;~:*, j;~,_.k, j~.~ and J~"~. 
Applying the weighted residual procedure described 
above yields equations for the two outgoing partial 
currents on the x-directed surfaces. The higher-order 
source moments are evaluated directly in terms of the 
node-averaged fluxes and interface partial currents, 
and thus the higher-order source moments do not 
appear explicitly in the final equations. In the NOD- 
LEG method 29 developed by Maeder, the basis 
functions in equation (18) are Legendre polynomials 
p,(x), and thus the expansion coefficients are simply the 
Legendre moments. Unlike the NEM, the one- 
dimensional polynomial is not constrained to preserve 
the surface fluxes, and the two additional constraints 
are obtained by forming moments equations with 
weight functions p.(x), n = 1 , . . . ,  N, instead of with 
only f.(x), n = l  . . . . .  N - 2 ,  as in the (moment- 
weighted) NEM. 

In summary, the polynomial nodal methods des- 
cribed here are based on interface current equations 
derived by applying polynomial approximations to the 
one-dimensional equations obtained by transverse 
integration of the multidimensional diffusion equa- 
tion. It is appropriate that we mention here several 
coarse-mesh diffusion-theory methods which use 
higher-order multidimensional polynomials (with 
cross terms) to represent the flux shape within the 
node. Unlike the nodal methods described above, 
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these methods are not developed from the perspective 
of requiring additional interface equations in order to 
solve nodal balance equations for the node-averaged 
fluxes, and they do not rely on the solution of 
transverse-integrated equations. Following Ref. 7, we 
refer to these formulations as (polynomial) coarse- 
mesh methods in order to distinguish them from the 
polynomial nodal methods described above. One very 
successful method in this class is the QUABOX/CUB- 
BOX method reported initially 34 in 1973 and extended 
in later publications. 3s'36 The QUABOX/CUBBOX 
scheme uses an asymmetric weighted residual tech- 
nique to determine the coefficients of the multidimen- 
sional flux expansions. Both separable polynomials 
such as equation (38) and more general nonseparable 
expansions have been implemented. 35,36 The principal 
unknowns in the method are the node centerpoint 
fluxes, and these fluxes satisfy finite-difference-like 
equations with coupling coefficients which involve 
ratios of surface midpoint fluxes to the node center- 
point fluxes. The QUABOX/CUBBOX method thus 
can be viewed more as a nonlinear, higher-order finite- 
difference method with iteratively generated coupling 
coefficients than as a linear nodal procedure based on 
the solution of the nodal balance equations. The 
QUABOX/CUBBOX codes 35 were developed pri- 
marily for transient applications, and the accuracy and 
computational efficiency of these schemes is compar- 
able to that of the time-dependent formulations of the 
nodal methods described here. Modified formulations 
of the QUABOX/CUBBOX methods have been 
investigated by Rydin. 37'38 More recently, Dilber and 
Lewis 39 have developed two variational coarse-mesh 
methods in which complete multidimensional poly- 
nomials are used as trial functions. The more promis- 
ing of these schemes resembles the conventional nodal 
methods in that the nodal balance equation is 
automatically satisfied, but avoids the quadratic 
leakage fit by by using independent polynomial 
expansions of the surface net currents. 

2.2.3. The analytic methods. We consider here 
nodal diffusion methods based on analytic solutions of 
the one-dimensional, transverse-integrated equations. 
Included in this class of methods are the several 
variants 5,18.24.-27 of the Analytic Nodal Method, the 
Nodal Green's Function Method 3L32 and the AN2D 
method. 33 The following discussion is limited to the 
transverse-integrated analytic nodal methods, and we 
simply note that several elaborate schemes 4°~3 have 
been developed which rely on analytic solutions (e.g. 
eigenfunctions of the Laplacian operator) to multidi- 
mensional problems. 

The Analytic Nodal Method (ANM) is based on an 

analytic solution to the transverse-integrated equa- 
tions [equation (16)] with different assumed shapes for 
the transverse leakages. In one dimension, it is possible 
to obtain exact coupling expressions relating the 
surface net current to the average fluxes in the two 
nodes on either side of the surface. This is done by 
solving the P - 1  form of the diffusion equation 
analytically in each of the two adjacent nodes, and 
then eliminating the flux on the surface shared by the 
two nodes to yield an equation for the net current on 
this surface in terms of the two node-averaged fluxes. 
Substitution of these exact coupling relationships into 
the balance condition yields exact three-point differ- 
ence equations for the node-averaged fluxes. The 
coupling coefficients in these finite-difference-like 
equations depend upon the global eigenvalue in 
addition to the cross sections and the mesh spacings, 
and thus must be updated during the outer iteration 
procedure. 

The structure of the multidimensional ANM equa- 
tions depends upon the assumed shape of the trans- 
verse leakages. Use of the buckling approximation 
given in equation (32) makes it possible to eliminate 
the leakages completely and thus obtain seven-point 
difference equations (in three dimensions) for the fluxes 
alone. As noted previously, this approach was used by 
Antonopoulous and Henry, 5"18 although they made 
low-order Taylor-series approximations to the exact 
coupling relationships. Shober 24'2s retained the ana- 
lytic form of these relationships, and replaced the 
buckling approximation with the constant leakage 
representation shown in equation (37). With this 
leakage approximation, the coupling relationships 
involve average values of the transverse leakage in 
adjacent nodes in addition to the node-averaged fluxes 
in these nodes. Unlike the buckling formulation, it is 
not possible to eliminate the leakages and thus the 
seven-point flux equations include additional terms 
involving the adjacent-node leakages. Equations for 
the average leakages are obtained by subtracting the 
analytic expressions for the net currents [see equa- 
tion (17b)], and these equations are solved in tandem 
with the flux equations. In order to further improve the 
accuracy of the ANM, Greenman and Smith 26'27 
implemented the quadratic leakage representation 
shown in equation (36). This approximation leads to 
more complicated equations because, for example, the 
directed leakage is coupled to average transverse 
leakages in the two adjacent x-directed neighboring 
nodes plus the two 'second-neighbor' nodes in the x- 
direction. The quadratic-leakage formulation, with 
very efficient iterative solution strategies, has been 
implemented in the two-group code QUANDRY. 26.27 
It should be noted that the quadratic representation of 
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the transverse leakages is the only approximation 
introduced in the ANM (QUANDRY) formulation. 
An important computational advantage of the ANM 
is that it involves only four unknowns (~ ,  L-~gx, ~y,  ~z) 
per node per group, while the interface-current 
schemes described in Section 2.2.2 involve at least 
seven principal unknowns (q~ plus six outgoing partial 
currents) per node. However, while the interface- 
current polynomial methods can be readily applied to 
multigroup problems, the algebraic complexity inher- 
ent in the evaluation of the coupling expressions 
effectively restricts the ANM (and the QUANDRY 
code) to two energy groups. This is not a serious 
limitation for most global light water reactor calcula- 
tions. 

The Nodal Green's Function Method 31.32 (NGFM) 
is an interface-current formulation in which equations 
for the outgoing partial equations are obtained via 
approximations to coupled one-dimensional integral 
equations. The integral equations are obtained from 
the second-order form [equation (16)] of the trans- 
verse-integrated equations using the Green's function 
for the one-dimensional diffusion-removal operator 

d 2 
- o~ ~ G~x(XlXo) + Z;'kG~(XlXo = 6(x- Xo), 

xe[ -Ax /2 ,  + Ax/2]. (39) 

Equation (39) is solved analytically subject to zero 
incoming partial current boundary conditions on the 
surfaces (x = + Ax/2) of the k th node. The following 
exact integral equation is obtained for the one- 
dimensional flux: 

l ' a x l2  

~x(x) = | dxoG;,,(XlXo) 
d -  a x / 2  

1 1 k 
[Qk,~(x0)- ~y L ~, (Xo) -- ~zz L,z (Xo) ] 

k i n , k  + 2Ggx(xla)J~x + + 2G~x(xl-aLl i"'k (40) / v f f X  - , 

where a=Ax/2. Equations for the outgoing partial 
currents are obtained using equation (12c). 
j g o u t  ,k l_,hk _ l i n , k  

x ±  ~ 2 W g x ±  ~ g x ±  

=½ I Ax/2 dxoG~x(+alxo ) 
d - a x / 2  

I k 1 k 1 q 
P.gx(Xo)- ~ Lg,(~o) - ~ L;~(Xo)| 

+ [G~x(ala)- ,1,i*.k + G~tal in,k --a)Jd:,T_ (41) - d ~ g x ±  

The one-dimensional fluxes are expanded in quadratic 
polynomials with the expansion coefficients computed 
using a moments weighted residual procedure applied 

to equation (40). The quadratic representation of the 
transverse leakages is used. With these approxima- 
tions, the discretized forms of equation (41) and its y- 
and z-direction analogs can be combined to yield the 
interface-current equation given as equation (30). The 
NGFM evolved from the Partial Current Balance 
Method 44"45 in which Green's functions for the 
two-dimensional diffusion-removal operator were 
used to convert the two-dimensional diffusion equa- 
tion to coupled integral equations for the node-interior 
flux distribution and the position-dependent outgoing 
partial currents on the node surfaces. The essential 
difference between the ANM and the NGFM is that in 
the ANM the energy groups are solved simultaneously 
including fission production and group-to-group scat- 
tering, while in the NGFM the groups are decoupled 
by treating only the within-group diffusion-removal 
terms analytically. Thus, the ANM requires only 
approximation of the shape of the transverse leakage 
terms, while the NGFM requires additional approxi- 
mations to the shape of the group source terms due to 
fission and in-scatter. However, the errors introduced 
by the weighted-residual calculation of the flux 
expansion coefficients are much smaller than those due 
to the quadratic leakage fit, and hence similar accuracy 
is obseri, ed in the ANM and the NGFM. The NGFM 
is an interface-current scheme, and thus, as noted 
above, it involves more unknowns than the ANM. 
However, because the Green's functions are defined 
only for the within-group diffusion-removal operator, 
application of the NGFM to multigroup problems is 
straightforward. 

An approach somewhat similar to the NGFM has 
also been developed by Shober 33 for fast-reactor 
calculations. In this method, the group source terms 
O kgx(x ) as well as the transverse-leakage terms are 
projected onto quadratic polynomials, and the one- 
dimensional equations are solved analytically for each 
group using the same procedure as in the ANM. The 
coefficients of the source expansion are determined 
using a Gaussian collocation technique. The final 
equations involve the node-averaged fluxes and leak- 
ages as in the ANM, plus additional flux expansion 
coefficients as in the NGFM. 

2.3. Hexagonal geometry 
The analysis of liquid-metal fast breeder reactors 

(LMFBR), high-temperature gas-cooled reactors 
(HTGR), Soviet-built pressurized-water reactors, and 
other reactors with hexagonal lattices requires the 
capability to solve the neutron diffusion equation in 
hexagonal geometry. Global calculations for these 
reactors traditionally have been performed using 
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conventional finite-difference methods applied on a 
uniform triangular grid introduced within each hexa- 
gonal fuel assembly. The success of the Cartesian- 
geometry nodal methods has prompted the develop- 
ment of analogous formulations 46-s° which can be 
applied directly on the hexagonal mesh. Other higher- 
order finite-difference schemes 51-54 have also been 
formulated in hexagonal geometry. As in Cartesian 
geometry both polynomial 47~9 and analytic 42'46'5° 
nodal approaches have been developed although, to 
date, only the polynomial methods have been applied 
to the one-dimensional equations obtained in the 
extension of the transverse-integration procedure to 
hexagonal geometry. In order to illustrate some 
important differences relative to the Cartesian-geo- 
metry case, we develop here a transverse-integrated 
polynomial method 45'49 which retains many of the 
features of the Cartesian-geometry formulation de- 
rived in Section 2.2.2. 

For the sake of simplicity, we consider only two- 
dimensional hexagonal geometry in the following 
development. The extension to three-dimensional 
hexagonal-z geometry is straightforward, and the z- 
direction fluxes are approximated as shown in equa- 
tion (18). The hexagonal node is defined in terms of 
local (x, y) coordinates: 

Vk: (x, y) x ~ [ - h / 2 ,  +h/2], ye[-y~(x),  +y~(x)], 

1 
y~(x) = ~ ( h - I x l ) ,  (42) 

where h is the lattice pitch, and the x-axis is taken as 
perpendicular to one pair of opposite faces of the 
hexagon. The one-dimensional flux analogous to 
equation (14) is 

1 I r,~:,) 
@kox(X) ~ 2~s(X) d-ys(x) dy  dpko(x, y). (43) 

However, because the y-direction mesh spacing 
depends upon x, it is more convenient to work with 

- dy ¢kka(x, y). (44) 
d -  y,(x) 

In order to distinguish these fluxes, we refer to the flux 
in equation (44) as the partially-integrated flux, and 
denote it without the bar. The partially-integrated x- 
component of the net current is 

O 
J~(x) -- [ r~tx) d y -  D~ fix ~b,(x, y). (45) 

d -  ys(x) 

Analogous partially-integrated fluxes and currents are 
defined for the two opposite faces. That is, the u- 
direction is rotated 60 ° counter-clockwise with respect 

to the x-axis, and the v-direction is rotated 120 ° from 
the x-axis. 

The P -  1 form of the transverse-integrated equa- 
tions is derived by performing a simple neutron 
balance over the vertical strip defined by 

6vk: (X, y) Xe.[X, x+dx] ,  ye[-y~(x),  +y,(x)]. 

The result is 

d . , '  k k 
dx J~x(x) + ~.o'~c~(x) = Q~(x) 

2 
x/3[J~(x, y~(x))-J~(x, -y~(x))], (46a) 

where J~(x, + ydx)) are surface-normal components of 
the net current across the u- and v-directed faces. 
Applying Leibniz' rule for differentiating an integral 
with variable limits to equation (44) and then re- 
arranging yields 

d 
J~x (x) - - D k dx dp~,,(x) + D~y'~(x) 

[~b~(x, y~(x)) + dpkg(x, -- y.(x))], (46b) 

where 
1 

y's(x) = - ~-j sgn(x). (47) 

Note that equations (46) are the hexagonal-geometry 
analogs of equations (13). 

It is clear that the partially-integrated net current 
introduced in equation (45) must be continuous over 
x e [ -h /2 ,  + h/2]. Therefore, with reference to equa- 
tions (46b) and (47), it is also clear that the partially- 
integrated fluxes in the three hex-plane directions will 
exhibit first-derivative discontinuities of the form 

lim - ~bkgx(x) 

2o~ 
= ~/~ [~bk,(x, y~(x)) + c~k.(x, - ys(x))]x = o. (48) 

This behavior, which does not appear in Cartesian 
geometry, must be represented by any polynomial 
used to approximate ~b~x(x ). 

The partially-integrated fluxes in the three hex- 
plane directions are approximated by 

d~:x(X)~2ys(x)[~Jk,+ ~=l a~,,.f.(x)], (49) 

where k and k agxl agx2 are defined as in equations (21), 
and 

X 
f~(x) - h = ~ (50a) 
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36 2 5 (50b) 
f2(x) - B ~ 56 

10 2 1 3 
f3(x) = ~ ~ -- ~ Ill + ~ (5Oc) 

f4(x) =- ~(1~1- ~). (50d) 

As in equation (19), the basis functions satisfy the 
constraint 

f h/2 dx 2ys(x)f,(x)=O, n =  1 . . . . .  4, (51) 
-hi2 

and, as before, 

f,(+_h/2)=-O, n=3,  4. 

Note that f3(x) has a first-derivative discontinuity at 
x=0 .  

The expansion coefficient aox 3k is calculated by 
requiring that equation (49) satisfy the jump condition 
shown in equation (48). This calculation 49 requires an 
approximation to the y-directed leakage term, and this 
is done by replacing the leakage with its respective 
averages over the half-intervals x e [ - h / 2 , 0 ]  and 
xe[O, + hi2]. It is possible to eliminate the coefficient 

k from the final equations. agx3 
The expansion coefficient agx4k is computed by 

applying a weighted residual procedure [as in equa- 
tion (23)] to equation(46a) with weight function 
wl(x ) = sgn(x). This procedure, when applied in the x-, 
u- and v-directions, is equivalent to preserving a 
neutron balance over each pair of half-nodes in the 
three directions. The coefficient k is eliminated from aox4 
the final equations in favor-of the x-direction flux 
moment defined as in equation (24a). 

Equations for the outgoing partial currents on the 
two x-directed surfaces of the node are derived in a 
manner similar to equations (22). Combining results in 
the three hex-plane equations leads to the interface 
current equation 

out,k - -  k k [ - R  k ' ]  J i n , k  Jg - [Pg]Qg + k = 1, K, t . - - f f  . i  - - f f  , • • • 

g = 1 . . . . .  G.  (52) 

Here, jo,t.k and .I in'k contain the six outgoing and six 
- - f f  - - f f  

incoming partial currents for the node, and Q~ 
contains the node-averaged source plus the three 
source moments generated by the weighted residual 
procedure in the x-, u- and v-directions. The leakage- 
moment vector L~ in equation (30) does not appear in 
equation (52) because the transverse leakages are 
approximated using information from the k th node 
instead of the quadratic fit given by equation (36). 

The approximation of the transverse-integrated 

equations in hexagonal geometry using polynomial 
techniques is relatively straightforward, provided that 
the jump condition given by equation (48) is accounted 
for in the choice of approximating polynomial. 
Substitution of equation (46b) into equation (46a) 
yields the second-order form of the transverse-inte- 
grated equations, but this form involves a .delta 
function contribution which arises due to differentia- 
tion of the sgn function in equation (47). Because of 
this term, the application of analytic procedures to the 
solution of the one-dimensional equations would 
appear to be considerably more complicated in 
hexagonal geometry than in Cartesian geometry. 

2.4. Iterative solution of the nodal equations 

The iterative procedures developed for the solution 
of the steady-state nodal diffusion equations are based 
on the standard nested combination of outer and inner 
iterations used in finite-difference codes. (For example, 
see Ref. 55.) Chebyshev polynomials have been shown 
to be an effective means of accelerating convergence of 
the outer iterations in finite-difference codes, and this 
procedure has been applied to several recent nodal 
formulations. 25,28,33 Coarse-mesh rebalance 56"57 has 
become particularly popular for the acceleration of the 
outer iterations in the interface-current methods 
because the partial currents needed to compute the in- 
and out-flows across the rebalance mesh boundaries 
are immediately available in these schemes. The 
rebalance acceleration typically is combined with 
asymptotic source extrapolation 5s of the fission source 
vector. Wielandt's method 56 of fractional iteration is 
used in the QUANDRY code, 26'27 and although this 
method is probably the most effective means of 
accelerating the outer iterations, the efficient appli- 
cation of this technique requires that the energy groups 
be solved simultaneously (as is the case in the two- 
group QUANDRY code). 

As will be shown in Section 2.5, the recent nodal 
methods require substantially less computer time than 
fine-mesh finite-difference methods in order to pro- 
duce results of comparable accuracy. Of course, one 
reason for this is that the nodal methods can be applied 
on a much coarser spatial mesh, and therefore require 
far fewer unknowns. Another very important reason 
for the dramatic improvement in computational 
efficiency has to do with the total number of iterations 
required in the calculations. The convergence rate of 
the (unaccelerated) outer iterations is determined by 
the dominance ratio, 56 which is more dependent on 
the physical properties of the reactor (e.g. its dimen- 
sions measured in diffusion lengths) than on the 
method used to approximate the diffusion equation. 
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On the other hand, the convergence rate of the inner 
iterations is determined by the spectral radius 56 of the 
associated iteration matrix, and this number is very 
sensitive to the choice of mesh spacings. For  a given 
spatial approximation, the spectral radius increases 
(and thus the convergence rate decreases) as the spatial 
mesh becomes finer. Therefore, for these reasons, the 
nodal and finite difference methods require roughly the 
same number of outer iterations (although this 
depends upon the choice of acceleration techniques as 
well as the degree of convergence achieved during the 
inner iterations), but the nodal schemes, because they 
are applied on a much coarser spatial mesh, require far 
fewer inner iterations per outer iteration. Thus, simply 
stated, the nodal methods involve fewer unknowns, 
and these unknowns are recomputed far fewer times 
than in conventional finite-difference methods applied 
on a fine mesh. 

The inner iterations in the interface-current meth- 
ods consist of sweeps through the mesh for the purpose 
of computing all partial currents for a given group. 
Since equation (30) is derived by combining results 
from each coordinate direction, an obvious iterative 
procedure 2s.31 in Cartesian geometry is to solve first 
for the x-directed partial currents on each x-line of the 
mesh, followed by all y-directed and then all z-directed 
partial currents. For  each direction, the transverse 
leakage terms are computed using the most recently 
available partial currents in the two transverse direc- 
tions. A more computationally efficient algorithm, 
which accesses the partial current data in a more linear 
fashion, is obtained by sweeping the axial mesh planes 
in a one-dimensional (odd-even) checkerboard order- 
ing, i.e. the odd-numbered planes are processed first 
followed by the even-numbered planes. The x- and y- 
directed partial currents for each plane are computed 
from equation (30) using a red-black checkerboard 
sweep on the plane. The outgoing z-directed partial 
currents are then computed using a sequential sweep of 
the nodes on the plane. This procedure is easily 
extended to hexagonal geometry, where the hex-plane 
partial currents are computed using a 'four-color' 
checkerboard sweep. 46'47 If unity discontinuity factors 
are used in equation (6), the incoming partial currents 
are simply outgoing currents from neighboring nodes; 
otherwise, the following interface condition is used: 

. x  + = [ J ; ~ -  + ~ J ; x  + ], 
L I - J  

where 

and the x + surface of the k ,h node corresponds to the 
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x- -  surface of the neighboring I th node. For  light- 
water reactor problems on an assembly-size mesh, 
only one or two checkerboard partial current sweeps 
typically are required for each group at each outer 
iteration. Optimized finite-difference codes, 55 on the 
other hand, require at least 10 inner iterations when 
applied on the fine spatial mesh necessary for accept- 
able accuracy. 

A very efficient iterative strategy based on the use of 
discontinuity factors has been developed indepen- 
dently by Koebke 1°'59'6° and Smith. 61 To demon- 
strate, suppose we have available both a higher-order 
method (e.g. a nodal diffusion or a nodal transport 
scheme) and a corresponding lower-order method (e.g. 
a mesh-centered finite-difference diffusion method or a 
nodal diffusion method, respectively). Using disconti- 
nuity factors, it is possible to modify the coupling 
relationships in the lower-order scheme such that they 
will reproduce exactly the known interface net currents 
computed with the higher-order method. Therefore, 
instead of solving the higher-order equations at each 
step of the calculation, the majority of the computatio- 
nal effort may be shifted to the less expensive solution 
of the lower-order equations, with coupling coeffi- 
cients (i.e. discontinuity factors) periodically updated 
in order to match the most recent iterate of the higher- 
order method. Smith's approach was developed for the 
primary purpose of reducing the amount of storage 
required for the coupling coefficients in QUANDRY. 
Koebke 59 has applied this approach to the solution of 
nodal transport equations (discussed in Section 3.3), 
as well as to the solution of the NEM equations using a 
low-order flux approximation [N = 2 in equation (18)] 
as the lower-order scheme. 1°'6° The procedure out- 
lined here can be applied to all of the nodal diffusion 
methods discussed in this paper. 

2.5. Numerical examples 

2.5.1. The Cartesian-geometry IAEA benchmark 
problem. The IAEA benchmark problem 62 has been an 
important standard used to measure progress in the 
development of coarse-mesh diffusion-theory meth- 
ods. Although this problem represents a highly 
simplified model of a pressurized water reactor, the 
large thermal flux gradients at the core-reflector 
interface present a severe (and reasonable) test of 
numerical diffusion-theory methods. The problem is 
specified using two energy groups, and both two- and 
three-dimensional models have been defined. The two- 
zone core consists of 177 (homogenized) fuel assemb- 
lies 20 cm on a side, and is reflected radially and axially 
by 20 cm of water. Each of nine fully inserted control 
rods is represented as a smeared absorber within a 
single homogenized fuel assembly. Four additional 



284 R.D. LAWRENCE 

partially inserted control rods are included in the 
three-dimensional model. 

Comprehensive numerical comparisons for the two- 
dimensional configuration have been given in Refs 7 
and 32, and Table 1 summarizes nodal and finite- 
difference results for the three-dimensional IAEA 
problem. The errors are with respect to a reference 
solution 62,63 obtained by extrapolation of the finite 
difference results. A reasonable accuracy criterion is 
that the assembly-averaged power densities be com- 
puted to within 2% of the reference solution, and each 
of the nodal methods shown in Table 1 achieves this 
level of accuracy using a uniform 20 cm mesh. The 
mesh-centered finite-difference method requires a very 
fine mesh, 1.67 cm in the radial direction and 3.33 cm 
axially, in order to obtain similar accuracy. The 
original finite-difference calculations 63 used an older 
version of the VENTURE code 64, and two of these 
calculations were repeated using the optimized finite- 
difference option 5S'65 in the DIF3D code in order to 
obtain more realistic computing times for these 
calculations. Using these DIF3D calculations as a 
basis, it appears that the 1.67 cm finite-difference 
calculation might require roughly 2hr  on the 
IBM 370/195, or at least two orders of magnitude 
more c6mputing time than the nodal calculations. 

In comparing the nodal results shown in Table 1, it 
is necessary to note that the extrapolated finite- 
difference solution used as a reference is probably not 
fully converged spatially, and therefore the errors with 
respect to the true diffusion-theory reference solution 
may differ slightly from those shown in Table 1. The 

nodal methods all use the quadratic leakage fit shown 
in equation (35), but we expect the QUANDRY 
solution to be the most accurate because, unlike the 
other methods, this is the only approximation intro- 
duced in this method. The small errors observed in the 
QUANDRY calculation thus demonstrate the very 
acceptable accuracy of the quadratic leakage approxi- 
mation. The polynomial methods use either N = 4  
(DIF3D) or N = 5  (NEM and NODLEG) in equa- 
tion (18), and the fact that the errors are only slightly 
larger than the QUANDRY errors indicate that the 
one-dimensional fluxes are adequately approximated 
by these polynomials. A fortuitous cancellation of the 
errors due to the leakage representation and the 
weighted-residual flux approximation in the N G F M  is 
apparently responsible for the smaller value of em~ x in 
the N G F M  calculation. Comparison of the execution 
times is complicated by the use of different computers 
and planar symmetry options. However, after adjust- 
ing for these factors, the QUANDRY execution time 
appears to be the smallest, as would be expected based 
on the smaller number of unknowns. The remaining 
methods are all based on interface-current formula- 
tions, and the NEM and the DIF3D nodal method 
appear to be somewhat faster than the N G F M  and the 
NODLEG method, probably due to more efficient 
iteration strategies. Independent of the question of 
which method is faster, one conclusion is clear: recent 
nodal methods, using either polynomial or analytic 
approximations to the transverse-integrated equa- 
tions, are capable of very high accuracy in LWR 
calculations with one node per assembly, and for 

Table 1. Comparison of nodal and finite difference results for the three-dimensional IAEA benchmark problem a 

Radial/axial 
mesh CPU 

Method Reference  spacings (cm) kef f ek(% ) era,z(% ) Time b (min) Computer 

Polynomial nodal 
DIF3D/NODAL 30 20.0/20.0 1.02898 -0.005 1.5 0.3/0.4 IBM 370/195 
NEM 22,63 20.0/20.0 1.02911 +0.008 0.9 1.0/-- CDC 6600 
NODLEG 29 ,66  20.0/20.0 1.02895 -0.008 1.3 1.7/-- CDC 6600 

Analytic nodal 
ANM 
(QUANDRY) 26 ,27  20.0/20.0 1.02902 -0.001 0.7 0.2/0.3 IBM 370/195 
NGFM 32 20.0/20.0 1.02909 +0.006 0.4 --/1.0 CYBER 175 

Finite difference 
VENTURE 63,64 5.0/10.0 1.02864 -0.039 13.7 --/49 IBM 360/91 
VENTURE 63,64 2.5/5.0 1.02887 -0.016 4.9 --/192 IBM 360/91 
VENTURE 63,64 1.67/3.33 1.02896 -0.007 2.1 --/360 IBM 360/195 
DIF3D 55,65 5.0/10.0 1.02864 -0.039 13.7 --/3 IBM 370/195 
DIF3D 55,65 2.5/5.0 1.02887 -0.016 4.9 --/40 IBM 370/195 

"e k =error in kef f with respect to reference eigenvalue (1.02903). 
era, z = maximum error in assembly-averaged power densities. 

b The execution times are for calculations using eighth-core/quarter-core planar symmetry. 
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comparable accuracy, very substantial reductions in 
computer time are observed relative to optimized 
finite-difference codes. However, it is important to 
note that the IAEA problem involves spatially- 
constant cross sections within each node, and the 
inclusion of space-dependent burnup and nonlinear 
feedback can introduce additional errors beyond the 
spatial truncation errors considered here. The accu- 
rate modeling of such effects requires either the use of a 
finer spatial mesh (e.g. 2 by 2 within each fuel 
assembly), or an explicit representation of the spatial 
dependence ofthe cross sections within the node. 23 

2.5.2. The hexagonal-geometry SNR benchmark 
problem. The SNR benchmark problem 67"6s is a 
4-group model of a 300 MWe homogeneous-core 
LMFBR originally specified in both Cartesian and 
triangular geometries. The modified problem 6s solved 
here is obtained by altering the outer boundary of the 
triangular-geometry model (while preserving the 
volume of the core) to allow imposition of boundary 
conditions along surfaces of hexagons. The model 
consists of a two-zone core surrounded by radial and 
axial blankets without a reflector. The height of the 
active core is 95 cm, and each axial blanket is 40 cm 
thick. A total of 11 rings of hexagons (including the 
central hexagon) are included in the model, with a 
lattice pitch of 11.2003 cm. Vacuum boundary condi- 
tions are imposed on the outer surfaces of the blankets. 
The full-core model includes a total of 18 control rods, 
with 6 of these rods parked at the core-upper axial 
blanket interface, and the remaining 12 rods inserted 
to the core midplane. All calculations were performed 
using sixth-core planar symmetry. 

Results for the three-dimensional SNR benchmark 

transport methods 285 

problem are summarized in Table 2. The calculations 
were done using the hexagonal-geometry nodal 
option 49"69 and the mesh-centered triangular-geo- 
metry finite-difference option 65 in the DIF3D code. 
The finite-difference calculations used either 6 or 24 
triangular mesh cells per hexagonal fuel assembly, and 
the nodal calculations used the hex-plane approxima- 
tion shown in equation (49) in combination with a 
cubic axial approximation [ N = 3  in equation (18)'1. 
The calculations with 8 and 18 axial mesh planes used 
4 and 10 mesh planes, respectively, in the active core, 
and 2 and 4 mesh planes, respectively, in each axial 
blanket. Extrapolated results assuming an infinite 
number of axial mesh planes have been included in 
order to allow isolation of the errors due to the axial 
approximations in the nodal and finite difference 
schemes. For example, these results show that the 
0.16% eigenvalue error in the 8-plane nodal calcula- 
tion involves contributions of 0.13 % and 0.03 % due to 
the hex-plane and axial approximations, respectively. 
Similar analysis of the finite difference results shows 
that the axial contribution to the total eigenvalue error 
in the 18-plane and 36-plane calculations is 0. 30% and 
0.074).08%, respectively. Similar trends are observed 
in the flux errors, although there is some fortuitous 
cancellation of hex-plane and axial errors in the finite- 
difference results for the inner core and radial blanket. 
We conclude that the axial accuracy of the nodal 
scheme with 8 axial planes is superior to that of the 
finite difference approximation using 36 planes. Furth- 
ermore, although the overall accuracy of the 8-plane 
nodal calculation is superior to that of the 36-plane 6 
triangles-per-hexagon finite difference results, the 
nodal calculation required a factor of 8 less computing 
time than this finite difference calculation. 

Table 2. Comparison of nodal and finite-difference results for the three-dimensional SNR benchmark problem a 

No. of CPU 
Method axial planes kef f £K(%) eic(O//o) eoc(%) eR,(%) CA.(%) ~CR(%) Time (min) 

DIF3D (NODAL) 8 1.01150 0.16 -0.17 0.23 0.95 -0.30 -0.60 0.2 
DIF3D (NODAL) 18 1.01125 0.13 -0.18 0.22 0.96 -0.11 -0.44 0.6 
DIF3D (NODAL) ~ 1.01120 0.13 -0.18 0.22 0.96 -0.07 -0.39 --- 
DIF3D (6A) 18 1.01505 0.52 -0.18 0.52 0.22 -2.55 -2.56 0.6 
DIF3D (6A) 36 1.01280 0.29 -0.27 0.42 0.47 -0.60 - 1.72 1.6 
DIF3D (6A) oo 1.01205 0.22 -0.29 0.38 0.56 -0.06 - 1.44 --- 
DIF3D (24A) 18 1.01342 0.35 -0.05 0.23 -0.20 -2.61 - 1.48 3.1 
DIF3D (24A) 36 1.01118 0.13 -0.04 0.13 0.05 -0.64 -0.64 6.0 
DIF3D (24A) oo 1.01043 0.05 -0.08 0.09 0.14 0.02 -0.36 -- 
Reference b - -  1 .00989 . . . . . . . .  

"e~c, eoc , era , eAa, and ecR, are errors in the group- and region-averaged fluxes for the inner core, outer core, radial blanket, 
axial blanket, and control rod regions, respectively. 

b The reference solution is obtained by Richardson extrapolation of the DIF3D(6A)-18 plane and DIF3D(24A)-36 plane 
solutions. 
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Comparison of the results in Tables 1 and 2 shows 
that the gain in computational efficiency offered by the 
nodal approach is much more modest in LMFBR 
applications. This is due in large measure to the fact 
that LMFBR fuel assemblies, measured in diffusion 
lengths, are much smaller than LWR assemblies, and 
thus far fewer finite-difference mesh cells are required 
for acceptable accuracy. For routine LMFBR analy- 
ses, 6 triangles per hexagon generally are considered 
sufficient, and hence a nodal calculation offers a 
reduction in radial mesh cells by only a factor of 6, 
instead of the 100-fold decrease observed in the IAEA 
LWR problem. A similar situation exists in the 
analysis of fast-reactor critical experiments, 3° where 
the square homogenized fuel 'drawers' are only 5 cm 
on a side. Nevertheless, while the improvements in 
computational efficiency are less dramatic than those 
observed in LWR applications, the implications for 
the analysis of LMFBR's and fast-reactor critical 
experiments are important, particularly since no 
additional homogenization steps are required relative 
to established analysis procedures based on the finite- 
difference method. 

2.6. Time-dependent formulations 
Many of the nodal methods discussed here have 

been extended to the solution of the time-dependent 
diffusion equation. Time-dependent formulations of 
the NEM, Sim's polynomial method, the ANM 
(QUANDRY), and the NGFM are obtained using 
simple fully-implicit (backward-difference) approxi- 
mations to the time derivatives, often in combination 
with a simple 'frequency' (or 'exponential') transforma- 
tion introduced for the purpose of factoring out the 
dominant (asymptotic) transient mode. The fully- 
implicit equations can be solved at each time step using 
iterative procedures similar to those discussed in 
Section 2.4. The QUABOX/CUBBOX coarse-mesh 
methods use an alternating direction technique 34'35 
based on an efficient combination of explicit and 
implicit treatments. Accuracy considerations limit this 
scheme to smaller time steps than the fully-implicit 
methods, but this increased number of time steps is 
offset by the very small computing times required at 
each time step. 

The BWR kinetics benchmark problem, 62'68'7° like 
the IAEA steady-state problem, has proved very 
valuable for the comparison of time-dependent diffu- 
sion-theory methods. This problem involves a super- 
prompt critical transient initiated by the simulated 
ejection of a control rod from a low-power initial 
condition. A simple thermal feedback model involving 
adiabatic heatup and Doppler feedback in the fast- 

group absorption cross section is included. The 
transient is followed for 3.0 s, and the power increases 
by nine orders of magnitude before decreasing due to 
the Doppler feedback. Comparison 32 of results for the 
two-dimensional problem have shown that the nodal 
methods (and the QUABOX/CUBBOX coarse-mesh 
method) require roughly 1-3 CPU minutes for this 
calculation, or at least two orders of magnitude less 
time than that estimated for a 5 cm finite-difference 
calculation using the alternating-direction explicit 
code MEKIN (Ref. 71). The NEM, QUABOX/ 
CUBBOX, and QUANDRY codes have also been 
used to solve the three-dimensional model, a problem 
so large as to preclude solution (with reasonable 
accuracy) by conventional finite-difference codes. 

For some applications, particularly small, tightly- 
coupled fast-reactor systems, time-dependent nodal 
formulations based on the quasi-static method 72 may 
offer some advantages. Quasi-static models require an 
adjoint solution for the evaluation of the inner 
products used in computing the coeffÉcients of the 
amplitude equations, and it is the calculation of the 
correct adjoint solution which poses a problem in the 
development of a nodal quasi-static formulation. In 
order to demonstrate this problem, we introduce two 
possibly different adjoint solutions. The first, or 
'physical adjoint', is the solution to the matrix equation 
obtained by discretizing the continuous-space, multi- 
group adjoint diffusion equation. The second, or 
'mathematical adjoint', is the solution to the matrix 
equation obtained by discretizing the continuous- 
space, multigroup forward diffusion equation, and 
then transposing the coefficient matrices. The two 
adjoints are equivalent in finite-difference diffusion- 
theory methods since the leakage r0atrices are sym- 
metric. This is not the case in recent nodal formula- 
tions, where the matrix operating on the vector of all 
principal unknowns (e.g. fluxes and partial currents) 
for group g is nonsymmetric. The mathematical 
adjoint must be used in the calculation of the inner 
products in order to eliminate first-order errors in the 
reactivity expression, but direct calculation of this 
solution is complicated by the unusual coupling 
introduced by transposing the in-group nodal coeffi- 
cient matrices. However, as shown in recent work 73 on 
nodal perturbation theory, the required mathematical 
adjoint can be obtained via a transformation applied 
to the more easily computed physical adjoint. A 
different procedure 74 has been proposed for the 
calculation of the mathematical adjoint for the 
QUANDRY equations. This approach, suggested by 
the aforementioned work by Smith, 61 is based on the 
use of discontinuity factors to cast the QUANDRY 
equations in equivalent finite-difference form, and 
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then transposing the coefficient matrix to obtain an 
equation for the mathematical adjoint. Both 
approaches to the calculation of the mathematical 
adjoint make possible the development of a consistent 
nodal quasi-static formulation, but it remains to be 
seen whether the quasi-static approach will be more 
efficient than the simple fully-implicit formulation. 

A more direct extension 7s of Smith's steady-state 
nonlinear procedure 6~ has been developed for the 
solution of the fully-implicit equations at each time 
step. As in the time-independent case, the essential idea 
is to solve finite-difference-like equations with cou- 
pling coefficients involving discontinuity factors com- 
puted to match the net currents from a previous 
solution using the QUANDRY coupling coefficients. 
In transient applications, this solution can be either a 
previous iterate at the current time step or, if the shape 
of the flux has not changed substantially, a converged 
solution from a previous step. As in the steady-state 
strategy, the motivation for this approach is the 
reduction of computer storage requirements for the 
QUANDRY coupling coefficients, although improve- 
ments in computational efficiency would also seem 
likely depending upon the frequency with which the 
discontinuity factors must be recomputed. 

2.7. Conclusions 
Recent progress in the development of nodal 

methods has made possible the efficient and accurate 
solution of the neutron diffusion equation in Cartesian 
and hexagonal geometries. Very accurate three- 
dimensional global calculations for light water reac- 
tors with homogenized fuel assemblies can now be 
performed at a small fraction of the cost required by 
conventional finite-difference methods. Application of 
these methods to transient problems has made poss- 
ible many calculations that before had been prohibiti- 
vely expensive. From a practical viewpoint, the 
accuracy of the nodal diffusion methods is quite 
adequate, and thus future work probably will focus 
more on improved homogenization (and dehomogeni- 
zation) techniques, and on the development of 
improved iterative procedures which take advantage 
of the continuing advances (e.g. vector processing, 
multi-processors, etc.) in computer architecture. 

3. NODAL METHODS FOR THE SOLUTION OF 
THE TRANSPORT EQUATION 

3.1. Introduction 
Many of the essential ideas developed in the 

previous section can be applied in a straightforward 
manner to the solution of the neutron transport 

equation in Cartesian geometry. For simplicity, we 
consider only two-dimensional (x-y) geometry here. 
As in the diffusion-theory development, we assume 
that homogenized cross sections are known for each 
node. We introduce local coordinates within the k th 
node such that x and y are dimensionless in terms of 
the respective mesh spacings Ax and Ay, i.e. xe[-½, + 

y [ - ~ ,  +½]. Using these coordinates, the two- 
dimensional transport equation 76 with isotropic scat- 
tering is 

1 O k 1 
Axx " ?xx O°(x' y' "' 49) + Ay 

k cos th ~yy O.(x. y, , .  4~) 

1 k + x~k¢¢~, y. f,. 6 ) = ~  s , (~ .  y). (x. y ) e V  k, 

(53) 

where # and the azimuthal angle ~b are defined such 
that 

f~x-#, fJr---x/1 _ . 2  COS q~. 

The source term S~(x, y) involves contributions due to 
fission and scattering into group 9, and it is convenient 
to write the contribution due to within-group scatter- 
ing explicitly, i.e. 

S~o(x. y)= Q~(x. y)+ Z;'k~b~(x. y). (54) 

where Q~(x. y) is defined as in equation (3). and the 
scattering, total and removal cross sections are related 
by 

y~.k_ zt.k E~.k 
O - - - -g  - - - -9  " 

The one dimensional transverse-integrated trans- 
port equation for the k 'h node is obtained by 
integrating equation (53) over ye [ - ½, + ½]. The result 
is 

1 ~ k ~,k k 1 
- -  4))+~ O.~(x,., S~x(X) 

k -L,,(x. ,. 4,). xe(-½. +½). (55) 

where the one-dimensional angular flux is 
1 

k X f - -  ~kox ( . , .  ~b) i dy ~Oko(x. y. , .  qS). (56) 

and the transverse leakage term specifying the net loss 
of particles due to streaming across the y-directed faces 
is 

1 2 
L k,(x, = c o s  , .  

- ~bko(x. -- ½... q~)]. (57) 
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The nodal approximations developed in the following 
subsections are derived from the integral form of 
equation (55) obtained by solving equation (55) as a 
simple ordinary differential equation in the x variable. 
For/~ > 0, the integral form is 

dx o - exp[ - Y.(x - xo)/la] O~x(X, l, >o, 4))= Ax _~ # 

S ~ x ( X o ) - L a r ( X o ,  / z>O,  4~) 

in ,k + O~x- (~, 4~)exp[ - l~(x + ½)/~], 

(58) 

where 

~ i n , k  ( k 1 ~- ,~ ,  4,)= ¢) ~'a~(- ~, ~>0,  

is the incoming angular flux on the left (or minus-x 
directed) surface of the node, and 

Z -- l~'*Ax. 

Evaluating this result at x = + ½ yields an equation for 
the outgoing angular flux across the right (plus-x 
directed) surface of the node: 

f - I  1 
o~t,k x e x p [ -  1~(½- Xo)//~ ] ~a-~ + (1~, dp) = A ~ d x  o 

in ,k + 0g~-(~t, q~)exp[ - E//O. (59) 

Solving equation (55) for /~<0 yields two similar 
equations for 0~(x,/l < 0, ¢) and qJax"k'- t#, ¢). Repeating 
this procedure in the y-direction yields four analogous 
equations. 

Two classes of angular approximations will be 
discussed here. The first, developed in Section 3.2, is 
based on a conventional multidimensional discrete- 
ordinates approximation of the angular dependence. 
In Section 3.3, an alternate approach is developed in 
which the angular dependence of the surface fluxes is 
represented by a low-order double P, expansion. A 
comparison of numerical results obtained using the 
different angular representations is given in Sec- 
tion 3.4. 

3.2. N o d a l  d iscre te  ord inates  me thods  

The methods in this class can be viewed as higher- 
order spatial approximations to the multidimensional 
discrete-ordinates equations. An attractive feature of 
these schemes is that they converge to the exact 
solution of the discrete-ordinates equations in the limit 
of infinitely-fine spatial mesh. Included in this class of 

methods are the Discrete Nodal Transport 
Method 77-79 (DNTM), the TWOTRAN nodal 
method 8°-s2 due to Waiters, and an exponential 
expansion method 83'84 developed by Pevey. In order 
to illustrate these methods, we begin with the basic 
development of the DNTM, and then indicate some 
extensions and modification to this basic formulation. 

In the following development, we denote the i tla 

ordinate by the direction cosines (/a i, q.), where r / -  

f~r=x/1 - # ~  cos ~b. Equations (58) and (59) are eva- 
luated along the i th ordinate, and thus 

Okox(x, ~>0,  ~)- ,¢#x ,  u,, ~,), ~,>0, 

and so on. The one-dimensional spatial dependence of 
the node-interior fluxes and sources, and the spatial 
dependence of the transverse leakage terms are 
expanded in low-order polynomials: 

N 
/c ~ k Oar( x ,  Izi, qi) = ~, a.Oax.(~ i, r l ) f . (x ) ,  0<N<2,_ _ (60a) 

n = 0  

N 

S~ox(x) ~- ~, a.S~x.f.(x) (608) 
n = 0  

N S  
k , ~  Lay (x,  I&, rli) = ~. * a .Lay.  (Ui, rl~)f.(x), N S  < N ,  (60e) 

n = 0  

where, as in equations (20), 

fo(x) =- 1 

L ( x ) = x  

f~(x)- 3x 2_ -I. 

The constants a. are defined by 
1 

f 1 _ ~ dx[f.(x)] 2, [a.] -½ 

and thus 

ao= 1 

a1=12 

a 2 = 20. 

Although the original DNTM formulation 79 used 
Legendre polynomials as the basis functions, the 
slightly modified form shown in equation (60) is used 
here so that the resulting spatial moments for the 
scalar flux are identical to those employed in the 
diffusion-theory development in Section 2.2.2. As in 
equation (24a) [with w , ( x ) = f , ( x ) ] ,  the scalar-flux 
moments are given by 

1 

dpax. - dxdp~,(x) f . (x) .  (61) 
-½ 

and thus k q~,,o is the node-averaged flux. The scalar- 
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flux moments are computed as in any discrete- 
ordinates method, i.e, 

1 

rkka~. = ~ w,~bk~,(#i, r/i), (62) 
i = 1  

where w i are the angular quadrature weights. Equa- 
tions (60a) and (62) imply the following expansion of 
the scalar flux: 

N 

#akox(X) ~-- ~ a.~kox.f.(x). (63) 
n = O  

The source moments sk~. in equation (60b) can be 
computed from the scalar-flux moments. 

An equation for the spatial moments of the angular 
flux is obtained using a moments weighted residual 
procedure very similar to that described in Sec- 
tion2.2.2. Substituting equations(60) into (58), 
weighting with f,,(x), m = 0 . . . . .  N, and then integrat- 
ing over x~(-½, +½) yields 

*~(/~i, r/,)= [Gg~(U,)] {S~-Lko,(#i, qi)} 
x +  in,k +[Gg (#i)]~bg~_(#i, th), /~i>0. (64) 

where ,kg~, Skgx, and Lkgy are vectors containing the 
respective spatial moments. Substituting equa- 
tions (60b) and (60c) into equation (59) yields the 
discretized equation for the outgoing angular flux on 
the right surface: 

~/out,k~ + x T k k ,~, + t#i, r/i) = [Go (#,)] {Sg~- Lg,(/~ i, r/i)} 
+ d xin,k ~g~_ e x p [ -  E//~/h #i > 0. (65) 

The entries of the matrices shown in equations (64) and 
(65) involve weighted integrals of the exponentials 
appearing in equations (58) and (59), and the unique 
entries of these matrices can either be pre-computed 
and stored or re-computed during the mesh sweeps. 

Several different approximations for the transverse 
leakage terms have been developed. The original 
DNTM formulation used a flat approximation [as in 
equation (37)] in which the x-dependent leakage is 
replaced by its average value over the node. Thus, 
NS--O in equation (60c), and from equation (57) we 
find 

k l t k  Lg~,o (Hi, r/i) = ~yy r/ i [O;;:; (#,, r/i) 

~ i n , k  -q~gr-t/~i, ql)], r/i >0. (66) 

Construction of higher-order approximations to the 
transverse leakage requires calculation of additional 
moments in the leakage expansion [equation (60c)]. 
From equation (57), it is clear that the higher-order 
leakage moments involve additional spatial moments 
of the angular fluxes on the two transverse surfaces. 

Since only average (zero-moment) values of these 
fluxes are available from the solution of equation (65) 
and its y-direction analog, one possibility is to use 
adjacent-node information as in the quadratic leakage 
fit utilized nodal diffusion theory. For example, if 
#i>0, r/i>0, the linear m o m e n t  Lgkyl(#i, r/i) can be 
computed by fitting the average fluxes on the y- 
directed faces of the k th node and the node immediately 
to its left. More elaborate fits which employ additional 
information are also possible, but one suspects that 
fitting procedures in general will be less accurate in 
transport theory than in diffusion theory because of 
the more rapid spatial variations exhibited by the 
angular current than by the scalar current. Neverthe- 
less, numerical tests s5 of this linear fitting procedure 
showed substantial improvements in accuracy relative 
to the fiat approximation, although iterative conver- 
gence difficulties ultimately forced this scheme to be 
abandoned, s6 

A more rigorous approach s°'ss to the calculation of 
the leakage moments is based on the introduction of 
additional equations 7 for the spatial moments of the 
surface angular flux. To illustrate, we introduce the 
'transverse' flux moment 

1 ;f Oko:,T( x, I1i, r/i) -- dy yOko(x, y,/-t i, r/ih (67) 

and note that this moment, evaluated at x = ½ (right 
surface), can be used to construct a linear approxima- 
tion to the y-dependent flux on the right surface, e.g. 

out,k 1 ~out,k~ 
qJgx + ~gi, 

12--out,k • , + ~llgxT+l, lli, r/i)Y, /2i> 0. (68) 

The analogous expansion on the top (y +)  surface is 
out,k 1 ~ out,k 0g (x, ~, ~i, r/i)= ~0gr + (Ul, r/i) 

l ~--out.k, + z~0rr+U~i, r/i)x, r/i>0. (69) 

Note that this expansion has the same form as the 
linear expansion [ N S -  1] in equation (60c) and thus 
the following expression is obtained for the first 
moment of the transverse leakage: 

Lgkl (#i' r/i) 

= ~ y r l ~ / g y ~ + t ~ / i  , r / i  out k , r / i ) - -  ~lgyTin'k- (/ti ' r/i)], r/i > 0. (70) 

An equation for the transverse flux moment defined in 
equation (67) is obtained by operating on the discrete- 
ordinates form of equation (53) with 

l 

f~l  dyy ,  
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to yield 

/~ 0 k 
q~)+ ~o ~gxT(X, I~, q~) Ax a-x ~oxr(X, ~ ,  ,.~ k 

=S~xT(X)-- rti ~,k, 1 2~y L~U°tx' ~'/~i, qi) 

.~ ~]ko(x, - -  2'1 [~i' I~i ) -- 2~b~(x,/~i, q,)]- (71) 

Equation (71) is converted to an integral form similar 
to equation (59), and the resulting equation approxi- 
mated to yield the required equations for the linear 
moments of the surface fluxes. No additional node- 
interior unknowns are introduced if, as in Ref. 80, the 
two-dimensional source is represented using equa- 
tion (60b) and its y-analog without cross terms: 

Sk(x, y) ~ ~ + 12Sko,,, x + 12sok,, y, (72) 

which leads to 

k ~ k S~x T (X) = SOy 1" 

Numerical comparisons a°'8~ have shown that the 
linear surface-flux approximation described here 
yields improved accuracy relative to the flat approxi- 
mation; however, as will be discussed below, the 
computing time per mesh cell can be considerably 
greate~ for the linear surface approximation due to the 
increased number of surface unknowns. 

Equations for the transverse surface-flux moments 
were first introduced in Ref. 7 for the purpose of 
reconstructing the intra-node flux shape from the 
results of a converged nodal solution. The essential 
idea of the reconstruction scheme 7 is to use the 
transverse-moments equations to compute the cross- 
term coefficients of a full biquadratie expansion of the 
node-interior flux. Walters 8° used these same equa- 
tions in the manner described above to compute the 
linear surface moments required for his linear leakage 
approximation. The original DNTM formulation 79 
used quadratic and constant approximations [i.e. 
N = 2  and NS=O in equations(60)] to the node- 
interior sources and leakages, respectively; following 
the terminology used in Ref. 80, we refer to this as the 
constant-quadratic (CQ) approximation. Waiters 8° 
combined his linear surface-flux approximation with a 
linear source representation, and this LL formulation 
subsequently has been extended to three 
dimensions, av 

The nodal discrete-ordinates equations are solved 
using directed sweeps through the mesh very similar to 
those used in standard S u codes. 76 Consider the ease 
for /~  > 0, t/~ > 0. The in-flow information on the left 
and bottom surfaces is available from the calculations 
of the outflow in adjacent nodes processed during the 
current mesh sweep. The node-interior source infor- 

mation is available from either the previous outer 
iteration (fission source) or the previous inner iteration 
(within-group scattering source). Using this informa- 
tion, the outflow quantities on the right and top 
surfaces can be computed using equation (65), and its 
y-analog, and, in the case of the linear surface-flux 
approximation, the two additional equations for first 
moments of the surface fluxes. These equations are 
coupled through the transverse-leakage terms, but 
they can be solved simultaneously for the average 
fluxes and flux moments on the outgoing surfaces: 

i ~ o u t , k i  . +  t~,. 7 , ) - -  [ e~ ( l , , .  ~ , ) ] s .  ~ 

+l-Tk(/t,, ~/,)]~-_.k(#,, q,), # ,>0,  r/,>0. (73) 

Here, q;~,k contains the out-flow information on the 
top and right surfaces, d~ i".k contains the in-flow 

T 0 -- 

information on the left and bottom surfaces, and Sk0 
contains the spatial moments of the node-interior 
source. Equation (73) represents a 2 by 2 system for the 
constant leakage approximation, and a 4 by 4 system 
for the linear surface-flux approximation. (In three 
dimensions, this becomes a 9 by 9 system involving an 
average flux and two transverse flux moments on each 
of the three outgoing faces.) At each node encountered 
in a sweep for a specified ordinate, equation (73) is 
solved to yield the out-flow data, and then this 
information is used in equation (64) to compute the 
node-interior flux moments. 

As noted above, the increased complexity intro- 
duced by the linear surface-flux approximation leads 
to much longer execution times per mesh cell than in 
the constant leakage case. For this reason, 
Waiters sl,82 has developed a simplified linear-linear 
scheme [which he refers to as the linear nodal (LN) 
formulation] where the coupling inherent in equa- 
tion (73) is reduced by neglecting the linear moment of 
the leakage term appearing in the equation for the first 
moment of the surface flux. This additional approxi- 
mation makes it possible to cast the equations in an 
'augmented' a2 weighted-difference form in which the 
weights do not depend upon the solution itself. These 
equations are solved by first computing the average 
angular flux in the node, and then extrapolating 
(analogous to the usual diamond-difference algorithm) 
to obtain the outflow information. The use of the 
augmented weighted-difference formulation makes 
possible a significant reduction in the computational 
effort relative to the solution of the (exact) linear-linear 
equations east in the form shown in equation (73). A 
very similar procedure has been reported in Ref. 88, 
where it is stated that the (exact) linear-linear equa- 
tions can be cast in an augmented weighted-difference 
form. However, the coefficients in the final equations 
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shown in Ref. 88 are derived using the same simplify- 
ing approximation as introduced in Waiters' simplified 
linear-linear method. 

The approximations used in the linear-linear nodal 
discrete-ordinates method are very similar to those 
used in the linear characteristic (LC) method, s9'9° 
Both methods assume a linear variation of the angular 
flux along the in-flow surface, and both assume the 
linear source representation shown in equation (72). 
Using these approximations, the LC method solves 
analytically for the two-dimensional angular flux 
within the node. Taking spatial moments of this 
solution yields equations for the constant and linear 
flux moments on the outgoing surfaces. The LC 
method does not use the transverse integration 
procedure, and thus, in contrast to the nodal method, 
the calculation of the angular flux across an out-flow 
surface does not require an approximation to the 
shape of the angular flux on the other out-flow surface. 
For  example, consider the solution f o r / ~ - r / >  0 in a 
square, pure-absorber node with a spatially uniform 
(incoming) angular flux on the left surface and a zero 
angular flux on the bottom surface. While the LC 
method will correctly predict a zero angular flux along 
the right surface of the node, the nodal method will not 
because it requires an  additional approximation to the 
unknown angular flux on the top surface. However, as 
shown in Ref. 91, the nodal and LC methods exhibit 
the same order of convergence in the limit of zero mesh 
spacing. An advantage in favor of the nodal approach 
is its more straightforward extension to three dimen- 
sions. 

The nodal discrete-ordinates methods discussed so 
far use low-order polynomials to approximate the 
spatial dependence of the node-interior and node- 
surface angular fluxes. An alternate procedure, deve- 
loped by Pevey, s3's4 is to approximate equations (58) 
and (59) using simple exponentials as basis functions. 
The transverse leakage is approximated using either a 
flat representation or an exponential shape derived 
from a full two-dimensional solution similar to that 
used in the linear characteristic method. Results s 5 for a 
test problem representative of a nuclear well-logging 
application indicate that while the exponential method 
is somewhat more accurate than the linear-linear 
nodal method discussed above, it requires consider- 
ably longer execution times. 

Experience with nodal discrete ordinates methods in 
geometries other than Cartesian is relatively limited. 
Wahers 92 has developed a method for an equilateral- 
triangle mesh which combines approximations similar 
to those embodied in the linear nodal and character- 
istic methods. This procedure has been generalized 93 
to treat arbitrary triangular meshes. An extension of 
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the transverse-integrated nodal method to the solution 
of the discrete-ordinates equations in r-z geometry is 
sketched in Ref. 94. 

A very important issue which bears directly on the 
ultimate computational efficiency of the nodal discrete 
ordinates methods is the development of more efficient 
techniques for accelerating convergence of the inner 
iterations on the within-group scattering source. The 
development of efficient diffusion-synthetic acceler- 
ation (DSA) techniques 9~'96 for the diamond-differ- 
ence S~ equations has made possible very significant 
reductions in computational cost relative to conven- 
tional acceleration methods such as coarse-mesh 
rebalance (which is used in most nodal discrete 
ordinates codes). DSA utilizes diffusion-theory solu- 
tions to accelerate the transport iterations, and the 
stability of this method is very dependent upon the 
choice of a diffusion model which is consistent with the 
approximation techniques embodied in the transport 
m e t h o d  itself.  96 For this reason, application of the 
DSA technique to more complicated transport meth- 
ods is not straightforward, and it is only very 
recently 97.98 that this acceleration method has been 
extended to include nodal approximations. Although 
the schemes developed in Refs 97 and 98 have been 
applied only to lower-order nodal approximations 
(constant-linear in Ref. 97 and constant-constant in 
Ref. 98), the results are encouraging, and the further 
refinement of these techniques is important for the 
efficient application of nodal discrete ordinates meth- 
ods to problems with high scattering ratios. We shall 
return to this point in Section 3.4. 

3.3. Nodal interface-current methods 

Interface current methods 99 have been used to solve 
neutron transport problems for a number of years. 
Based on the multidimensional integral form of the 
transport equation, these methods precompute source 
and transmission probabilities using a polynomial 
representation of the intra-node source and low-order 
double Pn expansions of the angular dependence of the 
interface fluxes. The nodal approach described here 
combines interface angular expansions with nodal 
spatial approximations similar to those applied in the 
previous sub-section to the discrete-ordinates equa- 
tions. 

In 1979 M. R. Wagner 1°° reported a nodal trans- 
port method based on the approximation of one- 
dimensional equations derived, for example, by inte- 
grating the two-dimensional transport equation 
[equation (53)] over the y-direction and the azimuthal 
angle ~b defined as in equation (53). The resulting 
equation, which can also be derived by integrating 
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equation (55) over 0 < ¢ < 2n, takes the form 

1 c3 k t k k  1 k " 
~ Ux ¢,,~(x. ~) + X; ¢,,x(x. ~) = ~ S L ix ) -  L L ix. u). 

(74) 

where, with reference to equations (56) and (57), 

I: O~x(X,/~)= d¢ k x ~O.~( , U, ¢ )  (75)  

fo Lok,(x. #) = d¢ k Lgy(x, #, dp). (76) 

Wagner 1°°'1°a solves equation(74) using a one- 
dimensional discrete-ordinates approximation 
applied on a fine spatial mesh introduced within the 
node, in combination with double P. approximations 
of the surface-averaged angular fluxes. The transverse- 
leakage term is assumed independent of /~, or 
'isotropic',l°° i.e. 

1 k Lgk r (X, ~ )  ~ ~L.r (x), (77 )  

and the x-dependence in equation (77) is then repre- 
sented by a constant or quadratic fit as in diffusion 
theory. This approximation is equivalent to a double 
Po representation of the surface angular currents. 3o 
Because one-dimensional discrete-ordinates approxi- 
mations are used, this scheme x°°'l°~ is called the 
Nodal Discrete-Ordinates Method (NDOM); how- 
ever, it is important to note that this approach is very 
different from the nodal discrete-ordinates methods 
discussed in Section 3.2 because it does not converge 
to the exact solution of the multidimensional discrete- 
ordinates equations, and it involves additional angular 
approximations to the interface fluxes. An important 
characteristic of the NDOM is that the final equations 
resemble the Nodal Expansion Method 22 diffusion- 
theory equations, and thus can be solved without 
introducing a scattering source iteration. 

In this section, we develop a method 3° which draws 
on many of the ideas introduced in the NDOM, but 
which more closely parallels the nodal diffusion- 
theory and nodal discrete-ordinates developments 
given in Sections 2.2.2 and 3.2, respectively. Unlike the 
NDOM, the transport method developed here is based 
on the approximation of the one-dimensional integral 
equations shown in equations (58) and (59). The 
surface-averaged angular fluxes are approximated by a 
double Pt expansion which accounts for azimuthal 
dependence. For example, the outgoing flux on the 
plus-x-directed face of the two-dimensional node is 
given by 

1 out,k ~ out,k out,k 

where 

1 1"19/out,k (adlout,k-] 
+ ~L*~ax+ --~WOx+ JP" 

1 
out,k COS ~ ,  + ~ [ 3 j ; ~ r  + ix/1 _/~2 

~x-,u, fly- 1 ~ - ~  2cos4,, 

(78) 

f 2"dq ~ f 1 ,/,out.k _ d/z --out.h, v-,x+ = ~t,x+ t/t, q~) (79) 
do do 

f O n f O' 'b°ut'k{ t °ut'k = d e  d # / ~  ~-,x + ,/~, ¢) (80)  " gx+ -- 

f?fo 7out.k de  d# x/ l  - / f i  cos ¢ ~out.k, ~'gx+ t/~, ¢). ~gxT+ ~ 

(81) 

Two different approximations to the angle dependence 
k of the transverse-leakage term Lgr(x, #, ¢) will be 

described here. The first approximation is the isotropic 
assumption shown in equation (77). In this case, the 
azimuthal term in equation (78) is unnecessary (it 
always integrates to zero) and the approximation 
given in equation (78) reduces to a simple, one- 
dimensional (azimuthally-symmetric) double /'1 
expansion. A more consistent approach, which we 
refer to as the angle-dependent leakage formulation, is 
obtained by using the y-direction analogs of equa- 
tion (78) to evaluate the full angular dependence of the 
transverse-leakage term Lky(x, I~, ¢) appearing in the 
x-direction equations. 

We first consider the isotropic-leakage scheme. 
Using equation (77), equation (58) and its analog for 
/~<0 can be integrated over their respective half- 
ranges to yield an equation for the one-dimensional 
scalar flux: 

! ? 4,"~(x) = Ax dxo E ,  [Xlx - Xol] 

1 k k ~[ S~x(Xo)- Lg,(Xo)] 

+ d .  0~'k_bu) e x p [ -  X(½+x)/~] 
0 j.o 

+ d/t i..k qJgx + (U) exp[ - Z(½ - x)/Jl.tl], (82) 
- 1  

where E.(x) is the exponential integral function 

;o' E,(x) -= d~ ~"- 2 exp[ - x/l~], 

and 

in,k d e  , / ) . ,k / , ,  ~gxAU) - ~gx ± , . ,  ~). (83) 
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The scalar flux, the source term skx(x), and the 
transverse-leakage term Lky(x) are expanded in up to 
quadratic polynomials as in equations (63), (60b) and 
(35), respectively. The incoming angular fluxes are 
approximated by double PI expansions analogous to 
equation (78). Substituting all of these expansions into 
equation (82), and then taking spatial moments as 
indicated in equation(61) yields the following 
equation 3o for the scalar-flux moments: 

k k l s,k k k k in,k ~gx= [Ag~] ~{Eg t~g~ + Qg~- Lgy/+ [Bg~]~gx , (84) 

where 
k - -  k k k Cgx=COl[4'gxO, 4'gxl, ~g,~2] 

I]/gx + ' =col[Jj~+ 

As in equation (54), the source contribution due to 
within-group scattering has been written explicitly, 
and Q ~  contains moments of the source due to fission 
and scatter into group g, Solving for d~kgx yields 

k k S k k k in,k d~g x = [?g~ ] {Qg~ - L , , }  + [T;~]~#x . (85) 

Applying similar approximations to equation (58) 
leads eventually to an equation of the form 3° 

out,k __ k 1 s,k k k k k m k d/g~ - [Cg~ ] ~{Zg 0g~ + Qg~- Lgy} + [Dg~ ] ~ , '  . 

(86) 

Using equation (85) to eliminate d~x yields 

~ / o u t , k  [ p k  ] k k [ R k  "]~/in,k (87) 
g~ - ~- #x~ {Ogx- Lg,} + ~--gx~g~ • 

The entries in the matrices shown in equations (84) and 
(86) are computed in terms of the integrals 

dxf,(x) f_ dxof  xo)E,[XlX-Xol] (88) 

1 

[3i~--- f ~ dxfi(x)E~[Z(½+x)], (89, 

which can be evaluated analytically. 
The goal in this development is to cast the nodal 

transport equations in the same interface-current form 
[equation (30)] as in nodal diffusion theory. This form 
is obtained by combining equation (86) with its y- 
dependent analog (and its z-direction analog in three 
dimensions), and then eliminating the constant com- 
ponent of the transverse-leakage term in favor of the 
scalar partial currents. The result 3° is 

k k ~ k  in,k xg~l/°ut'k = t-F/~k]--g ~ {Qg-  Lg} + [Rg ]~g , (90) 

where Qk and Lkg are defined exactly as in diffusion 
theory, d~ °~t'k contains an outgoing face-averaged x g  
partial current [equation (80)] and an outgoing half- 

angle integrated flux [equation (79)] for each of the six 
faces in a three-dimensional node. As indicated above, 
the source contribution due to (isotropic) within-group 
scattering is included in the calculation of the matrices 
[pk] and [R~ ,  and thus the nodal transport method 
does not require an iteration on the scattering source. 
Instead, equation (90) is solved using iterative pro- 
cedures identical to those used to solve the diffusion- 
theory equations [equation (30)]. The elimination of 
the scattering-source iteration can lead to very signifi- 
cant reductions in computational cost, particularly for 
problems characterized by high scattering ratios. 

The above formulation has been implemented as the 
nodal transport-theory (NTT) option in the DIF3D 
code. A surprising trend observed in results obtained 
using both NDOM (see Ref. 101) and DIF3D(NTT) is 
that the isotropic leakage assumption [equation (77)], 
when combined with a flat spatial approximation to 
the leakage, actually yields better accuracy than when 
it is combined with the usual quadratic fit. The spatial 
and angular approximations both artificially redistri- 
bute neutrons crossing the transverse surfaces, and it is 
apparent that the errors associated with these effects 
are of opposite sign when the flat spatial approxima- 
tion is used. This approximate cancellation of errors 
thus permits somewhat better accuracy than would 
otherwise be expected using these rather crude approx- 
imations. For example, calculations 3° for a fast- 
reactor critical experiment have shown that the 
DIF3D nodal transport option, with a flat, isotropic 
leakage approximation, gives results that are almost as 
accurate as an S 4 angular approximation. An obvious 
cause for concern, however, is that in the limit of 
infinitely fine mesh spacing, the error in the spatial 
approximation of the leakage goes to zero, but the 
error in the angular approximation does not. As the 
spatial mesh is refined, more node surfaces are 
introduced, and hence refining the spatial mesh has the 
effect of introducing more isotropic-leakage approxi- 
mations. Thus, even though the spatial accuracy is 
improved, the solution may actually move further 
from the true transport solution as the mesh is refined. 
This poor convergence behavior provides a strong 
impetus to develop improved angular representations 
of the transverse leakage. 

Before discussing the angle-dependent leakage 
approximation, several comments are in order. The 
isotropic-leakage approximation shown in equa- 
tion (77) is based on the assumption that k L g y ( x ,  ~ )  i s  

independent of/~. However, it is possible to represent 
the l~-dependence without retaining the final (azi- 
muthal) term in equation (78). We first write the 
azimuthally-symmetric form of equation (78) for the y- 
direction, i.e. 
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1 i]/out,kt ~ - -  [" A ~ b O u t , k  - -  ~fou t , k  1 gy+ qz, ~b) 2nL--~'gY+ wgy+ j 

out,k out,k 2 + l [ 1 2 J j y +  -6q/g,+ ] ~  cos ~b, 

and then substitute this result into equations (57) and 
(76) (with either a flat or quadratic representation of 
the spatial dependence). A similar approach 3° is to 
make an azimuthally-symmetric double Pz approxi- 
mation to the angular currents on the transverse 
surfaces. However, numerical tests of both procedures 
showed very little difference in either with respect to 
the isotropic approximation. These results suggest 
that the azimuthal term in equation (78) is important 
nfor the approximation of the transverse leakages in 
the y-direction equations. Additional support for this 
conclusion has been provided by analysis 1°2 of a 
model problem, and by the improved accuracy 
observed in numerical results obtained using the 
azimuthally-dependent leakage approximation dis- 
cussed in the following paragraph. 

As noted above, the angle-dependent approxima- 
tion to the transverse-leakage terms is obtained by 
retraining the final (azimuthal) term in the expansion 
[equation (78)-I of the interface fluxes, and using the y- 
direction analogs of equation (78) to evaluate the 
transverse leakage terms in the x-direction equations. 
The isotropic leakage approximation involves two 
outgoing unknowns (the partial current and half- 
angle-integrated flux) per surface. The angle-depen- 
dent leakage formulation introduces one additional 
unknown (the transverse component [equation (81)1 
of the outgoing current) per surface in two-dimen- 
sional applications, and a second additional transverse 
component in three dimensions. These equations can 
be cast in the form shown in equation (90), with 
correspondingly larger dimensions. The angle-depen- 
dent leakage formulation, which is discussed in more 
detail in Ref. 30, introduces additional integrals simi- 
lar to equations (88) and (89), only involving Bickley- 
Nayler functions instead of exponential integral func- 
tions. Unlike more traditional interface current 
methods, 99 these one-dimensional integrals can be 
evaluated analytically without the use of any numeri- 
cal quadratures. The numerical behavior 3° of the 
angle-dependent leakage formulation is more satisfy- 
ing in that the accuracy is improved by replacing the 
flat spatial approximation with the quadratic repre- 
sentation. 

Although the angle-dependent leakage formulation 
reduces the errors associated with the isotropic- 
leakage approximation, it suffers from several disad- 
vantages. Two-dimensional calculations for relatively 
fine meshes have shown that use of this approximation 

leads to divergence of the red-black checkerboard 
iteration used to solve equation (90) at each outer 
iteration. This behavior apparently is caused by loss of 
diagonal dominance in the global iteration matrix 
formed from the local response matrix [ ~ ]  shown in 
equation (90). Another drawback of the angle-depen- 
dent formulation is the increased number of surface 
unknowns (four per surface in three-dimensions) 
relative to the isotropic-leakage scheme with only two 

,/,o,t.~ and lout ,k~ unknowns (e.g. v-gx+ ~0x+, per surface. It is 
possible that the iterative convergence difficulties can 
be overcome by casting the equations in a form 
different than equation(90). For example, these 
approximations can be implemented such that the 
resulting equations can be solved using iterative 
procedures very similar to those used in the nodal 
discrete ordinate methods. This would introduce an 
iteration on the scattering source, but it would also 
eliminate the need to store the additional surface 
unknowns. 

An alternate approach to the construction of angle- 
dependent transverse leakages in NDOM has recently 
been developed by Wagner. 101 Instead of introducing 
an additional (azimuthal) component of the surface 
current as in equation (78), the NDOM procedure uses 
the information available for the node and its imme- 
diate neighbors to reconstruct the full angular depen- 
dence of the cornerpoint fluxes; this latter information 
is then used to obtain the quadratic spatial shape and 
#-dependence of the transverse leakage shown in 
equation (76). Numerical results 1°1 have shown that 
this approach does improve the accuracy relative to 
the isotropic-leakage NDOM, but at the expense of 
doubling the execution time due to the complexity of 
the fitting procedure. 

Very accurate angular representations (up to P3 in 
each angular quadrant) have been developed by 
Stephanek lo3.to4 in his SURCU method. Unlike the 
nodal methods discussed here, SURCU is based on the 
two-dimensional integral form of the transport equa- 
tion and thus more closely resembles traditional 
interface current methods. 99 Separate expansions are 
made for the spatial dependence on the surfaces and in 
the node-interior, and these approximations, coupled 
with the high-order angular representation, have been 
shown t°4 to give very accurate solutions to the 
transport equation for a difficult test problem. 

3.4. Numerical examples 

Computational benchmark problems such as the 
IAEA problem discussed in Section 2.5.1 have pro- 
vided a convenient basis for the comparison of coarse- 
mesh diffusion-theory methods. With the exception of 
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the one-group 'pool reactor '  analyzed in Ref. 104 (and 
Ref. 30), essentially no inter-comparisons of nodal 
transport methods have appeared. In this sub-section, 
several of the nodal transport approximations dis- 
cussed in Sections 3.2 and 3.3 are applied to a two- 
dimensional (x-y) version of the 4-group, hexagonal- 
geometry SNR benchmark problem discussed in 
Section 2.5. The x-y  model retains the essential 
features of the hexagonal-geometry version, and a 
complete description of this problem is given in 
Ref. 67. The model analyzed here corresponds to the 
rods-in (or upper-core) configuration of Ref. 67. 

Table 3 summarizes S 4 discrete-ordinates results t°5 
obtained using the T W O T R A N ( N O D A L )  method 
developed by Walters, 8°-s2 and the diamond-differ- 
ence (DD) codes T W O T R A N  (Ref. 106) and T W O -  
D A N T  (Ref. 107). T W O D A N T  uses diffusion-syn- 
thetic acceleration (DSA) coupled with a multigrid 
method for the diffusion solution, while T W O T R A N  
and T W O T R A N ( N O D A L )  use the same rebalance 
algorithm. The errors in Table 3 are with respect to 
spatially-converged (exact) S 4 solution obtained by 
extrapolating the T W O D A N T  results. Using the same 
spatial mesh, the CL and LN schemes require about 
50% more C P U  time than DD, but the accuracy of the 
nodal schemes is better. The LL and LN errors are 
very similar, thus justifying the simplifying assumption 
made in deriving the LN scheme; the simplified 
computational  form of the LN equations is responsible 
for the reduction in C P U  time relative to the full LL 
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method. The LN method is the most efficient nodal 
option, and its accuracy appears roughly comparable 
to D D  applied on the next finest mesh. For  example, 
the 19 x 19 LN calculation required 79 s in order to 
produce a result that is similar in accuracy to the 
38 x 38 T W O T R A N - D D  results, which took 188 s. 
Thus, for this problem, the LN scheme runs about 2.4 
times faster than D D  to produce results with compar- 
able accuracy. This is a reasonable comparison 
because, as noted above, the nodal and D D  schemes in 
T W O T R A N  use identical rebalance techniques. How- 
ever, when the nodal schemes are compared with the 
diffusion-accelerated T W O D A N T  code, the advan- 
tage for the LN method disappears completely. 
T W O D A N T  is an order of magnitude faster than the 
D D  option in T W O T R A N ,  although some of this 
speed-up (perhaps a factor of 2) is due to additional 
vectorization in T W O D A N T .  It is clear that although 
the nodal scheme shows a definite gain in efficiency 
relative to the D D  method when both schemes use the 
same acceleration techniques, this improvement is 
more than offset when DSA is applied to the D D  
method. This example demonstrates the importance of 
developing an effective DSA technique for the nodal 
discrete-ordinates methods. 

Table 4 compares results using the nodal interface- 
current methods described in Section 3.3 with spa- 
tially-converged S N solutions (obtained by extrapolat- 
ing the T W O D A N T  results) and with a nodal 
diffusion-theory solution. The errors shown in this 

Table 3. Summary of $4 discrete-ordinates results for the two-dimensional (x~y) SNR benchmark problem a 

Spatial CPU 
Method approximation b Mesh k~f r q~cr ek(%) e.,(%) time c (s) 

TWOTRAN(NODAL) CL 19 x 19 1.11799 2.503 0.060 -0.48 --/78 
CL 38 x 38 1.11758 2.510 0.023 -0.20 --/294 
LL 19 x 19 1.11675 2.518 -0.051 0.12 --/'98 
LL 38 × 38 1.11723 2.514 0.008 -0.04 --/398 
LN 19 x 19 1.11673 2.518 -0.053 0.12 --/79 
LN 38 x 38 1.11723 2.514 0.008 -0.04 --/267 

TWOTRAN DD 19 x 19 1.11588 2.542 -0.129 1.07 ---/57 
DD 38 x 38 1.11690 2.523 -0.038 0.32 ~,188 

TWODANT DD 19 x 19 1.11588 2.542 -0.129 1.07 --/'5 
DD 39 x 39 1.11688 2.523 -0.039 0.32 47/7 
DD 78 × 78 1.11720 2.516 -0.011 0.04 173/18 
DD 156 × 156 1.11729 2.515 -0.003 0.00 736/58 

Reference ($4) o~ 1.11732 2.515 - -  - -  

' ~bcr is the group 1 flux (x 10 a) averaged over the control-rod region (material M5), normalized to 
(3.1 x 10 l° fiss/watt-s) for the quarter-core model, e k and e~ are the errors in kef f and ~bcr relative to the reference 

b CL = constant surface, linear interior nodal approximation. 
LL-= linear surface, linear interior nodal approximation. 
LN-= linear nodal (simplified linear-linear). 
DD = diamond difference. 
The CPU times are for the IBM 370-195/CRAY-1 computers. 

0.75 watt 
solution. 
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Table 4. Summary of nodal interface-current and spatially-converged discrete-ordinates results for the two-dimensional (x-y) 
SNR benchmark problem a 

Transverse 
leakage approximation 

CPU 
Method b Space Angle Mesh kerf ~bcr ek(%) e~(%) time c (s) 

DIF3D(NDT) Quadratic 

DIF3D(NTT) Flat 
Quadratic 

Flat 
Quadratic 

NDOM Flat 
Quadratic 

s, 
$8 
S16 
Reference (S~) 

- -  19 x 19 1.11007 2.725 -0.594 8.01 6.0 

Isotropic 19 x 19 1.11548 2.555 -0.109 1.27 5.3 
Isotropic 19 x 19 1.11473 2.570 -0.176 1.86 6.3 

Angle-dep. 19×19 1.11747 2.490 0.069 -1.31 8.7 
Angle-dep. 19 x 19 1.11666 2.506 0.004 -0.67 9.9 

Is0tropic 19 × 19 1.11585 2.554 -0.076 1.23 16.0 
Angle-dep. 19 x 19 1.11602 2.561 -0.061 1.51 60.0 

- -  oo 1.11732 2.515 0.055 -0.32 - -  
- -  ~ 1.11681 2.521 0.009 -0.08 - -  
- -  oo 1.11672 2.523 0.002 0.00 - -  

- -  oo 1.11670 2.523 - -  - -  - -  

a See Table 3. 
b NDT =- Nodal diffusion theory. 

NTT =Nodal transport theory. 
NDOM =Nodal Discrete Ordinates Method. The NDOM calculations used an S s quadrature to approximate the 

t-dimensional equations. 
c DIF3D: IBM 370/195. 

NDOM: CYBER 176. 
10-5 pointwise convergence on fission source. 

table are with respect to the space- and angle- 
converged solution of the transport equation. The 
group 1 flux in the control rod region is included 
because it is particularly sensitive to the angle 
approximation;  for example, the use of diffusion 
theory produces an 8% error in this flux, although this 
error is reduced to only 0.32% in going to an S 4 
angular representation. Using the fiat, isotropic 
approximation to the transverse leakage, the D I F 3 D  
nodal transport option eliminates over 80% of the 
error in the diffusion-theory calculation, although the 
results are not  quite as accurate as S 4. Fairly close 
agreement is seen in the D I F 3 D  and N D O M  results 
when both use the fiat, isotropic approximation. The 
principal difference between the two methods is that 
N D O M  uses a one-dimensional S s quadrature to 
approximate the node-interior angular flux, while the 
D I F 3 D  scheme makes no angular approximations 
within the node. However, this difference is small 
compared to the dominant  error introduced by the 
approximation of the transverse leakage. As has been 
observed previously, 3°'~°~ the quadratic, isotropic 
leakage approximation actually gives poorer  results 
than the flat, isotropic representation. This behavior is 
not observed in the D I F 3 D  results using the angle- 
dependent leakage, The D I F 3 D  quadratic, angle- 
dependent leakage approximation is considerably 
more accurate than the fiat, isotropic calculation, and 

its accuracy is much closer to that of the spatially- 
converged S 4 result. In contrast to other 
applications, 1 o 1 the N D O M  angle-dependent leakage 
approximation (which, as noted in Section 3.3, is much 
different than that used in DIF3D)  does not  improve 
the accuracy of the method. 

The very high computational  efficiency of the nodal 
interface-current methods is demonstrated by com- 
parison of the execution times with those required by 
nodal diffusion theory. The fiat, isotropic 
DIF3D(NTT)  calculation actually ran faster than the 
N D T  calculation due to a decrease in the number of 
outer iterations required for convergence. Results 3° 
for a three-dimensional model of a fast-reactor critical 
experiment have shown that DIF3D(NTT),  with a fiat, 
isotropic leakage approximation, requires a factor of 2 
less time than the D I F 3 D  finite-difference diffusion- 
theory option even when the latter is applied on a fairly 
coarse spatial mesh. The DIF3D(NTT)  option appears 
to run faster than N D O M  for this problem, and this is 
due to differences in the form of the final computa-  
tional equations. D I F 3 D  uses the form shown in 
equation (90), and seeks to minimize the C P U  time per 
iteration by pre-computing and storing the unique 
entries of the coefficient matrices in equation (90). 
N D O M ,  on the other hand, minimizes storage of the 
coupling coefficients, and this objective, plus the 
additional computational  effort associated with the 
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use of a fine spatial mesh within the node, increases the 
computing time per iteration. The two strategies 
reflect the different intended applications of the codes: 
DIF3D is used primarily for the three-dimensional 
analysis of fast-reactor critical experiments where 
many nodes have the same dimensions and material 
compositions, while NDOM is intended primarily for 
LWR calculations involving large numbers of different 
compositions. 

In order to compare the relative efficiencies of the 
nodal interface-current and nodal discrete-ordinates 
methods, it is necessary to establish an acceptable level 
of accuracy. The errors in the spatially-converged S n 
results given in Table 4 are due to the respective 
angular approximations, and on this basis we assume 
that S 4 angular accuracy is sufficient. The errors 
shown in Table 3 are due to the respective spatial 
approximations, and it is clear that the 19 × 19 LN 
calculation is a sufficiently accurate approximation to 
the S 4 equations. Therefore, under these assumptions, 
it is reasonable to compare the 19 × 19 LN solution 
with the quadratic, angle-dependent DIF3D(NTT) 
calculation since both give roughly the same S 4 
accuracy. (One difficulty in this comparison is that the 
space and angle errors sometimes cancel; for example, 
the 38 × 38 LN calculation is a less accurate approxi- 
mation to the exact transport solution than the 
19× 19 LN solution.) Allowing for differences in 
computer speeds, it would appear that the nodal 
interface-current scheme is at least an order of 
magnitude faster than the LN scheme. This compari- 
son hinges on the acceptability of S 4 accuracy since the 
angular approximations made in DIF3D(NTT) and 
NDOM limit the accuracy to about this level. (Of 
course, improved accuracy could be obtained at 
increased cost using higher-order angular 
representations, lo3) Furthermore, this problem is 
characterized by high scattering ratios (>0.9 in all 
groups except group 1), and this poses a severe (but 
still realistic) test of discrete-ordinates methods such as 
TWOTRAN and TWOTRAN(NODAL) which do 
not use diffusion-synthetic acceleration. Thus, within 
the framework discussed here, the nodal interface 
current approach offers a definite advantage in 
computational efficiency, but this advantage may be 
less pronounced in problems where transport effects 
are more important. 

3.5. Summary and conclusions 

It is appropriate that we close this section with a 
brief discussion of the relative advantages of the two 
classes of nodal transport methods discussed here. 
Two important advantages of the nodal discrete- 

ordinates methods are (i) convergence to the exact 
solution of the multidimensional discrete-ordinates 
equations in the limit of infinitely-fine spatial mesh, 
and (ii) the straightforward incorporation of anisotro- 
pic scattering. The nodal interface-current methods 
offer the following advantages: (i) at present, they 
require significantly less computer time than the nodal 
discrete-ordinates methods, and (ii) they are less 
susceptible to ray effects 76 introduced by the discrete- 
ordinates approximation. Obvious directions for 
future work are suggested by the principal short- 
comings of each formulation. For  the nodal discrete- 
ordinates methods, the slow iterative convergence for 
problems with high scattering ratios requires the 
further development of effective diffusion-synthetic 
acceleration techniques along the lines of those 
proposed in Refs 97 and 98. The high computational 
efficiency of the nodal interface-current methods is 
impressive, but further improvements in the angular 
approximations (perhaps along the lines of Ref. 103) 
and possibly the incorporation of anisotropic scatter- 
ing are needed in order to take full advantage of this 
computational speed. 

4. OVERVIEW 

Given the high computational efficiency of present 
nodal diffusion methods, it is likely that future work in 
this area will focus more on related applications such 
as homogenization and dehomogenization than on 
new nodal procedures for solving the diffusion equa- 
tion. Experience gained in the development of nodal 
diffusion methods has made possible the rapid exten- 
sion of these ideas to the solution of the neutron 
transport equation. The development of effective" 
diffusion synthetic acceleration techniques for the 
nodal discrete ordinates methods is essential if these 
methods are to realize fully their potential for efficient 
three-dimensional calculations. The computational 
efficiency of the nodal interface-current methods is 
already quite high, but further improvements in the 
angular approximations are required for many appli- 
cations of interest. Beyond these immediate needs, 
much exciting work remains in the development of 
more efficient algorithms tailored to advanced com- 
puter architectures, and in the further extension and 
refinement of these ideas for the solution of problems 
encountered in areas such as fluid flow ~°8 and 
charged-particle transport. 109 
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