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How Long Is the Coast of Britain? 


Statistical Self-Similarity and Fractional Dimension 


Abstract. Geographical curves are so involved irz their detail tllat their lerzgtlzs 
are of ten infinite or, sather, ilndefinable. However, inany are statistically "self-
similar," meaning that each portion can be considered a redlrcerl-scale imrrg~ of 
the whole. In that case, the degree o f  con2plicntion can be rlescrihecl by n quantity 
D that 110s nzany properties o f  n "dinzension," though it is frc~ctiorzal; that is, i f  
excc~eds the vnlile itnity associated with the ordinniy, rectifiable, curvcc.. 

Seacoast shapes are examples of high- considered as superpositions of features 
ly involved curves such that each of of widely scattered characteristic size; 
their portion can-in a statistical sense as ever finer features are taken account 
-be considered a reduced-scale image of, the measured total length increases. 
of the whole. This property will be re- and there is usually no clearcut gap be- 
ferred to as "statistical self-similarity." tween the realm of geography and de- 
To  speak of a length for such figures tails with which geography need not be 
is usually meaningless. Similarly ( I ) ,  concerned. 
"the left bank of the Vistula, when Quantities other than length are thus 
measured with increased precision, needed to discriminate between vari-
would furnish lengths ten, hundred or ous degrees of con~plication for a geo-
even thousand times as great as the graphical curve. When a curve is self- 
length read off the school map." More similar, it is characterized by an expo-
generally, geographical curves can be nent of similarity, D, which possesses 

TH AFRI AN COAST ,L 

I . o y ~ o  (Lenxth of Side in  Kilometers) 

Fig. 1 ,  Richardson's data concerning measurements of geographical curves by way of 
polygons whicln have equal sides and have their corners on the curve. For the circle, 
the total length tends to a limit as the side goes to zero. In all other cases, it increases 
as the side becomes shorter, the slope of the doubly logarithmic graph being in absolute 
value equal to D-1. (Reproduced from 2, Fig. 17, by pern~ission.) 

many properties of a dimension, though 
it is usually a fraction greater than 
the dimension 1 commonly attributed 
to curves. We shall reexamine in this 
light some empirical observations by 
Richardson ( 2 ) .  I propose to interpret 
them as implying, for example, that the 
dimension of the west coast of Great 
Britain is D = 1.25. Thus, the so far 
esoteric concept of "random figure of 
fractional dimension" is shown to have 
simple and concrete applications and 
great usefulness. 

Self-similarity methods are a potent 
tool in the study of chance phenomena, 
including geostatistics, as well as eco-
nomics ( 3 )  and physics (4). In fact, 
many noises have dimensions D con-
tained between 0 and 1 ,  so that the 
scientist ought to consider dimension 
as a continuous quantity ranging from 
0 to infinity. 

Returning to the claim made in the 
first paragraph, let us review the meth- 
ods used when attempting to measure, 
the length of a seacoast. Since a geog- 
rapher is unconcerned with minute de- 
tails, he may choose a positive scale G 
as a lower limit to the length of geo-
graphically meaningful features. Then, 
to evaluate the length of a coast be-
tween two of its points A and B, he 
may draw the shortest inland curve 
joining A and B while staying within 
a distance G of the sea. Alternatively, 
he may draw the shortest line made 
of straight segments of length at most 
G,  whose vertices are points of the 
coast which include A and B. There are 
many other possible definitions. In prac- 
tice, of course, one must be content 
with approximations to shortest paths. 
We shall suppose that measurements 
are made by walking a pair of dividers 
along a map so as to count the number 
of equal sides of length G of an open 
polygon whose corners lie on the curve. 
If G is small enough, it does not matter 
whether one starts from A or B. Thus, 
one obtains an estimate of the length 
to be called L(G). 

Unfortunately, geographers will dis- 
agree about the value of G,  while L(G) 
depends greatly upon G. Consequently, 
it is necessary to know L(G) for several 
values of G. Better still, it would be 
nice to have an analytic formula link- 
ing L(G) with G. Such a formula. of 
an entirely empirical character, was pro- 
posed by Lewis F. Richardson ( 2 )  but 
unfortunately it attracted no attention. 
The formula is L(G) = M GI-a, where 
M is a positive constant and D is a 
constant at least equal to unity. This 
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D, a "characteristic of a frontier, may 
be expected to have some positive cor- 
relation with one's immediate visual 
perception of the irregularity of the 
frontier. At one extreme, D = 1.00 for 
a frontier that looks straight on the 
map. For the other extreme, the west 
coast of Britain was selected because 
it looks like one of the most irregular 
in the world; it was found to give D 
= 1.25. Three other frontiers which, 
judging by their appearance on the 
map were more like the average of the 
world in irregularity, gave D = 1.15 
for the land frontier of Germany in 
about A.D. 1899; D = 1.14 for the 
land frontier between Spain and Portu- 
gal and D = 1.13 for the Australian 
coast. A coast selected as looking one 
of the snloothest in the atlas, was that 
of South Africa and for it, D = 1.02." 

Richardson's empirical finding is in 
marked contrast with the ordinary be- 
havior of smooth curves, which are 
endowed with a well-defined length 
and are said to be "rectifiable." Thus, 
to quote Steinhaus ( 1 )  again, "a state- 
ment nearly adequate to reality would 
be to call most arcs encountered in 
nature not rectifiable. This statement 
is contrary to the belief that not recti- 
fiable arcs are an invention of mathe-
maticians and that natural arcs are 
rectifiable: it is the opposite that is 
true." 

I interpret Richardson's relation as 
contrary to the belief that curves of 
dimension greater than one are an 
invention of mathematicians. For that, 
it is necessary to review an elementary 
feature of the concept of dimension 
and to show how it naturally leads to 
the consideration of fractional dimen- 
sions. 

To begin, a straight line has dimen- 
sion one. Hence, for every positive 
integer N, the segment ( 0  x < X )  
can be exactly deconlposed into N 
nonoverlapping segments of the form 
[(n-1)X/N x < nX/N], where n 
runs from 1 to N. Each of these parts 
is deducible from the whole by a simi- 
larity of ratio r(N) = 1/N. Similarly, 
a plane has dinlension two. Hence, for 
every perfect square N, the rectangle 
(0 x < X; 0 y < Y) can be de- 
composed exactly into N nonoverlapping 
rectangles of the form [(k-l)Xl fi 

x < kX/ fl (h-1)Y/ fiS y < 
hYl m,where k and 11 run from 1 
to m.Each of these parts is deducible 
from the whole by a similarity of ratio 
r(N) = 1/ flMore generally, when- 
ever NilD is a positive integer, a D-

N=5, r = 1/4 
d =  log 5 /  l o g 4  

0 


N=8, t = 1 / 4  
d = - =log8 

1.5 
0 l o g 4  

Fig. 2. Nonrectifiable self-similar curves 
can be obtained as follows. Step 1: 
Choose any of the above drawings. Step 
2: Replace each of its N legs by a curve 
deduced from the whole drawing through 
similarity of ratio 114. One is left with 
a curve made of N2legs of length (1/4)2. 
Step 3: Replace each leg by a curve ob-
tained from the whole drawing through 
similarity of ratio (114)'. The desired 
self-similar curve is approached by an 
infinite sequence of these steps. 

dinlensional rectangular parallelepiped 
can be deconlposed into N parallelepi- 
peds deducible from the whole by a 
similarity of ratio r(N) = l / N 1 l D .  
Thus, the dimension D is characterized 
by the relation D = - log N/log r(N). 

This last property of the quantity 
D means that it can also be evaluated 
for more general figures that can be 
exactly decomposed into N parts such 
that each of the parts is deducible from 
the whole by a similarity of ratio r(N), 
or perhaps by a similarity followed by 
rotation and even symmetry. If such 
figures exist, they may be said to have 
D = -log N/log r(N) for dimension 
( 5 ) . To show that such figures exist, 
it suffices to exhibit a few obvious vari- 
ants of von Koch's continuous non-
differentiable curve. Each of these 
curves is constructed as a limit. Step 
0 is to draw the segment (0, 1 ) .  Step 
1 is to draw either of the kinked curves 
of Fig. 2, each made up of N intervals 
superposable upon the segment (0, ]A). 
Step 2 is to replace each of the N seg- 
ments used in step 1 by a kinked curve 
obtained by reducing the curve of step 1 
in the ratio r(N) = ?4.One obtains 
altogether N2 segments of length 1/ 16. 

Each repetition of the same process 
adds further detail; as the number of 
steps grows to infinity, our kinky curves 
tend toward continuous limits and it 
is obvious by inspection that these lim- 
its are self-similar, since they are ex-
actly decomposable into N parts de-
ducible from the whole by a similarity 
of ratio r(N) = 1/4 followed by trans- 
lation. Thus, given N, the limit curve 
can be said to have dimension Il = 
- log N/log r(N) = log N/log 4. 
Since N is greater than 4 in our ex-
amples, the corresponding dimensions 
all exceed unity. Let us now consider 
length: at step number s, our approxi-
mation is made of NS segments of 
length G = (%)a, so that L = (N/4)" 
GI-". Thus, the length of the limit 
curve is infinite, even though it is a 
"line." (Note that it is not excluded for 
a plane curve to have a dimension equal 
to 2. An example is Peano's curve, 
which fills up a square.) 

Practical application of this notion 
of dimension requires further consid-
eration, because self-similar figures are 
seldom encountered in nature (crystals 
are one exception). However, a sta-
tistical form of self-similarity is often 
encountered, and the concept of di-
mension may be further generalized. 
To say that a (closed) plane figure is 
chosen at random implies several defi- 
nitions. First, one must select a family 
of possible figures, usually designated 
by 0.When this family contains a finite 
number of members, the rule of ran-
dom choice is specified by attributing 
to each possible figure a well-defined 
probability of being chosen. However, 
0 is in general infinite and each figure 
has a zero probability of being cho-
sen. But positive probabilities can be 
attached to appropriately defined 
"events" (such as the event that the 
chosen figure differs little-in some 
specified sense-from some specified 
figure). 

For the family Q, together with the 
definition of events and their proba-
bilities, to be self-similar, two condi-
tions are needed. First, each of the 
possible figures must be constructible 
by somehow stringing together N fig-
ures, each of which is deduced from a 
possible figure by a similarity of ratio 
r ;  second, the probabilities must be so 
specified that the same value is ob-
tained whether one selects the overall 
figure at one swoop or as a string. (The 
value of N may either be arbitrary, or 
chosen from some specific sequence, 
such as the perfect squares relative to 




