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Abstract--Recent progress in development and application of advanced assembly homogenization methods for 
light water reactor analysis is reviewed. Practical difficulties arising from conventional flux-weighting 
approximations are discussed and numerical examples given. The mathematical foundations for homogenization 
methods are outlined. Two methods, Equivalence Theory and Generalized Equivalence Theory which are 
theoretically capable of eliminating homogenization error are reviewed. Practical means of obtaining approximate 
homogenized parameters are presented and numerical examples are used to contrast the two methods. 

Applications of these techniques to PWR bame/reflector homogenization and BWR bundle homogenization are 
discussed. Nodal solutions to realistic reactor problems are compared to fine-mesh PDQ calculations, and the 
accuracy of the advanced homogenization methods is established. Remaining problem areas are investigated, and 
directions for future research are suggested. 

I. INTRODUCTION 

The physics design and analysis of modern light water 
reactors necessitates extensive knowledge ofquantities 
which influence reactor operation. The determination 
of power distributions, control rod worths, shutdown 
margins, and isotopic depletion rates must be known 
throughout the reactor cycle. The ability to perform 
such core-follow calculations depends critically on 
models employed to predict the free neutron density in 
space, direction and energy. If thermal-hydraulic 
properties of the reactor and fundamental nuclear data 
are assumed to be known, the reactor physicist is faced 
with the conceptually straightforward task of solving 
the three-dimensional neutron transport equation, t 
Unfortunately the complexity inherent in explicit 
modeling of every fuel pin, control rod, burnable 
poison rod, and water channel limits the direct 
methods of solving the three-dimensional transport 
equation. Although tools such as three-dimensional 
continuous energy Monte Carlo are available, 2 the 
magnitude of the computational problem posed by 
explicit modeling is such that even the most sophisti- 
cated digital computers are incapable of determining 
reactor parameters, with the possible exception of keff, 
to the required degree of accuracy. Deterministic 
neutron transport methods (e.g. multigroup S 3,  
integral transport, 4'5 or collision probability 6 meth- 
ods) are similarly overwhelmed by the complexity of 

the computational problem of explicit geometrical 
modeling on a core-wide basis. 

1.1. Spatial homogenization and ~roup condensation 

Many reactor analysis methods *-a circumvent the 
computational burden of explicit geometrical model- 
ing by coupling geometrically-simple, energy-intensive 
calculations with few-group, geometrically-compli- 
cated calculations via spatial homogenization and 
group condensation. Typically, pin cell transport 
spectral calculations (whose geometry consists of fuel 
pin, clad, coolant, and buffer material) are performed 
in 1-dimensional cylindrical geometry with 20-100 
energy groups. The resultant neutron spectrum is used 
to collapse cross sections to 6-20 groups. Collapsed 
pin cell cross sections are used in assembly transport 
calculations which model all fuel pins, control rods, 
water channels, can walls, etc. Assembly calculations 
can be performed by employing one of two distinct 
methods: (i) collision probability methods 8 which 
explicitly model all fuel pins and channels, or (ii) 
Cartesian geometry transport calculations (including 
collision probability 6, transmission probability, 5 S~, 
or nodal transport 7"9't° methods) in which pin cell 
cross sections are homogenized into 'equivalent' cross 
sections. It is important that the assembly transport 
calculation be performed with sufficient numbers of 
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energy groups to account properly for the spectral 
interactions between pins of different compositions, 
between pins and control rods, between control rods 
and water channel, etc. It is also important to 
recognize that approximations are required to define 
the 'equivalent' pin cell cross sections; simply flux- 
volume weighting of cross sections is not sufficiently 
accurate. Other approximations such as the SPH, 11 
CPH, 7 and g-factor 5 methods have been developed to 
perform the pin cell homogenization, but they will not 
be treated in this paper. The details of the lattice 
calculation, although outside the scope of this paper, 
are very important, particularly since lattice calcula- 
tions must be performed (for each type of fuel 
assembly) for several fuel temperatures, moderator 
temperatures, moderator densities (void fractions), 
boron concentrations, and depletion steps. For  our 
purposes, it will be assumed that a lattice physics code, 
such as  C A S M O ,  6 DIT, 4 EPRI-CELL, 12 
MULTI-MEDIUM, 7 TGBLA,13 or WIMS, s is avail- 
able to the reactor physicist. The goal of this paper is to 
examine theoretical foundations for and practical 
application of three-dimensional reactor analysis 
methods which utilize information from lattice physics 
calculations. 

1.2. Global heterogeneous reactor analysis methods 

The lattice physics calculations described in Section 
1.1 provide an abundance of information with respect 
to spatial and spectral distributions of reaction rates 
and neutron densities. The question of how to make 
the best use of this information has prompted several 
different approaches to reactor analysis. The two most 
distinctly different approaches are the 'pin-by-pin' and 
the 'nodal'  diffusion methods. 

In a 'pin-by-pin' diffusion method, cross sections 
utilized in the lattice physics calculation are group 
collapsed (usually to 2 4  groups) on a pin-by-pin basis. 
Straightforward spectral collapse of pin cell cross 
sections for use in diffusion theory models will not 
preserve the properties of the lattice physics solution. 
Consequently, adjustments to absorption cross sec- 
tions or diffusion coefficients are made such that 
diffusion calculations will preserve certain region- 
averaged interaction rates. 4'6'8 Although this adjust- 
ment procedure is not rigorous, for reasons to be 
discussed presently, adjusted cross sections can be 
obtained such that fine-mesh diffusion calculations do 
accurately predict the lattice reaction rate distribu- 
tions. Full two-dimensional, planar, pin-by-pin diffu- 
sion calculations are then performed (with codes such 
as PDQ 14) using the collapsed, and adjusted, pin cell 
cross sections. The drawbacks to fine-mesh diffusion 

calculations arise primarily from the fact that the large 
expense of the detailed calculations restrict their use to 
a single 'representative' plane. The three distinct 
advantages of these models (explicit assembly-to- 
assembly interaction, automated pin power peaking, 
and explicit pin depletion capabilities) are severely 
limited by the fact that details of axial variations in 
control rod positions, moderator density (void frac- 
tion) and depletion must be represented in the 
calculation of a single representative plane. These 
limitations are much more pronounced in BWR 
analyses than in PWR analyses because of the large 
axial variations in void fractions and the extensive use 
of control rods during BWR cycles. 

1.3. Nodal reactor analysis methods 

Alternative methods which provide true three- 
dimensional reactor analysis capabilities have been 
developed over the years, and most of these methods 
fall into a general class called nodal diffusion methods. 
Although early nodal methods 15'16 were based on 
ad-hoc approximations or heuristic derivations, many 
consistently-formulated nodal methods have been 
developed during the 1970s. These advanced nodal 
methods have been proven to be capable of solving the 
three-dimensional neutron diffusion equation, using 
assembly-size mesh, with calculational error in assem- 
bly-averaged powers of less than 2%. A companion 
paper 9 by R. D. Lawrence contains an excellent review 
of these important methods. Most of these nodal 
methods assume that the pin-by-pin lattice cross 
sections have been spatially homogenized to obtain 
'equivalent' diffusion theory parameters which are 
spatially constant (or smoothly varying) over the entire 
cross sectional area of a fuel assembly. Provided 
accurate homogenized parameters can be determined, 
modern nodal codes are capable of accurately predict- 
ing global reactor power shapes, critical control rod 
patterns, boron letdown curves, etc. In addition to 
these global parameters, it is necessary that the local 
pin peaking and nonuniform assembly depletion can 
be modeled by the nodal methods. The difficulty in 
predicting peak pin powers arises from the fact that the 
nodal solution provides only nodal (volume-averaged) 
and surface (face-averaged) fluxes and reaction rates. 
Three quite different approaches to reconstructing 
intra-assembly heterogeneities have been developed. 
The first approach is simply to modulate the smooth 
nodal flux shapes with the detailed assembly flux 
shapes (obtained from lattice physics codes). Such 
approaches are straightforward and quite inexpensive, 
but not accurate in regions of the core where adjacent 
assemblies are very different in enrichment or 



Assembly homogenization techniques 305 

depletion, t7 A second approach is to perform imbed- 
ded heterogeneous calculations for a single-assembly 
(or small groups of assemblies), using boundary 
conditions obtained from the nodal solution, ls'19 
These approaches are quite accurate, rather expensive 
and generally restricted to two-dimensional geometry. 
A third approach to flux reconstruction is to modulate 
assembly flux shapes with nonseparable (polynomial) 
flux shapes whose coefficients are determined by 
forcing the nonseparable shapes to match volume- 
averaged, surface-averaged, and corner point fluxes 
obtained from nodal codes. 19-26 The interpolation of 
corner point fluxes requires the introduction of 
additional approximations, although the interpola- 
tion can be performed using information provided by 
nodal codes and basic cross section data. 19,20,23 This 
approach has been shown to be quite inexpensive and 
is comparable in accuracy to detailed pin-by-pin 
models. 19 

It is important that nodal solutions account for 
nonuniform depletion effects so that the basic nodal- 
averaged quantities, and the resulting reconstructed 
flux shapes, will be accurately predicted. Depletion 
effects have been examined, and it has been shown that 
assembly-averaged powers can be in error 10% or 
more when depletion is assumed to be uniform within 
a PWR assembly. 27'28 Consequently, most nodal 
depletions are performed with a 2 x 2 spatial mesh in 
each PWR assembly. The use of this finer spatial mesh 
is easily accomplished but costly, and it undermines 
the fact that nodal methods are capable of solving the 
diffusion equation with nonuniform cross sections 
while retaining an assembly-size mesh. Wagner 27"28 
has successfully demonstrated that nonuniform deple- 
tion effects can be accounted for by representing the 
burnup dependence of the cross section with separable 
(along each coordinate axis) quadratic polynomials. 

These recent advancements in nodal method theory 
have improved nodal reactor analysis to the point that 
accurate three-dimensional nodal depletion calcula- 
tions which allow the determination of local pin power 
peaking can be performed routinely and economically. 
These developments have advanced nodal methods to 
the point where nodal analysis is capable of replacing 
detailed pin-by-pin calculations, providing that accu- 
rate 'equivalent' homogenized reactor parameters can 
be determined. It is thus important that accurate 
methods for homogenizing reactor assemblies be 
developed and employed. The major portion of this 
paper is devoted to the discussion of advanced 
techniques for performing assembly homogenization. 
Specifically, inter-assembly transport effects and the 
impact of homogenization approximations will be 
examined. Recently developed homogenization tech- 

niques will be discussed and applied to realistic 
benchmark problems, giving special emphasis to PWR 
baffle/reflector homogenization. 

2. HOMOGENIZATION THEORY 

2.1. Homogenization theory 
One of the simplest means of demonstrating the 

difficulties associated with spatial homogenization is 
to postulate that an exact solution to the multigroup 
neutron transport equation is known for a truly 
heterogeneous reactor. That is, the solution to the 
equation 

G 

V- Jg(r) + E,g(r)Og(r)= ~ [1/keffMgg,(r) 
g = l  

where 

+ Eg¢(r)]Og,(r), (1) 

Jg(r) = ~ d ~  ~ "  (]Dg(r, l'~), 

~g(r) = ~ dl~ ~g(r, ~), 

Mgg,(r) = XgvXsg,(r), 

Eg~,(r) = ~ S d~t01~gg'(r,/ao); ~t0 = ~ "  f~', 

kef f = reactor eigenvalue, 

where Og(r, ~)  is the group g directional flux density, G 
is the number of energy groups, and the cross section 
notation is quite standard. 

The first step in defining homogenized parameters is 
to choose those heterogeneous reactor properties 
which should be reproduced when the homogenized 
problem is solved. The homogenization process itself 
makes it difficult (if not impossible) to preserve 
quantities which characterize any particular subregion 
within a homogenized region, and one generally settles 
for the preservation of the spatial integrals (over each 
homogenized region) of the quantities of interest. The 
three quantities of most importance are the node- 
averaged group reaction rates, the surface-averaged 
group currents, and the reactor eigenvalue. Writing an 
equation analogous to equation (1) for the homoge- 
nized model of the reactor as: 

G 

V" Jg(r) + ~,g(r)~g(r) = ~ [1/ke~f~rgg,(r) 
g '=l  

+ ~ag,(r)]~g,(r), (2) 

makes it clear that the homogenized parameters must 
obey the relationships 
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and 

fv, £,~(r)~(r) dr = Jr, dr, 
t • 

~Z(r) ~g(r) 

g = l , 2 . . . G  
ct = t, gg', etc. 

(3) 

fs V. Jg(r)' dS = | V. dS, (4) 
t"  

Jg(r) • 
,~ J s 

where S/k is the k th surface of homogenized region i and 
V~ is the volume of homogenized region i. If all 
homogenized parameters are assumed to be spatially 
constant within each node, the 'ideal' homogenized 
parameters can be defined rigorously by 

l~,'~g - J'v, Y-,g(r)~g(r) dr 
J'v, ~+(r) dr (5) 

Equation (5) simply states that the heterogeneous cross 
sections should be flux-volume weighted to yield the 
desired parameters. Evaluation of equation (4) 
depends on the form of the neutron transport operator 
used in the homogenized reactor model. In the usual 
case in which the diffusion approximation is used, that 
is 

Jg(r) = -/Sutr)V ~(r), 

equation (4) dictates that 

- ~ s ~  Jg(r) • dS 
/5~ = _ ~s, V &g(r) • dS" (6) 

Close examination of equations (5) and (6) reveals the 
practical difficulty in evaluating the homogenized 
parameters. The heterogeneous reactor solution must 
be known a priori, as must the solution to the 
homogenized diffusion problem which requires defini- 
tion of the homogenized parameters. Since the homo- 
genized flux is strongly coupled to the values of the 
homogenized parameters, a nonlinearity is introduced 
into the evaluation process. An additional dilemma 
exists in that the relationship expressed by equation (6) 
must be valid for all of the k surfaces of each 
homogenized node. If conventional continuity of 
scalar flux and net current are imposed on all nodal 
surfaces, equation (6) will define values of D~ which are 
different on each surface of the homogenized node. It is 
thus impossible to define spatially constant values of 
D~ which preserve all of the quantities of equations (3) 
and (4). Consequently, this situation dictates that 
either additional degrees of freedom be added to the 
homogenized parameters which allow the conditions 
of equations (3) and (4) to be met, or that some of the 
constraints be relaxed. 

2.2. Conventional homogenization methods 
The most commonly employed procedures for 

determining homogenized parameters relax some of 
the constraints mentioned in the preceding section and 
focus strictly on the preservation of reaction rates. 5.6.s 
Typically, ~g(r) is approximated by solving a 2- 
dimensional lattice physics problem for each different 
type of assembly imposing Jg. n = 0 (zero net current) 
boundary conditions. At this level, all of the heteroge- 
neous details of the assembly are either directly or 
indirectly represented, and all transport effects are 
modeled. Only the boundary conditions are approxi- 
mate. Homogenized parameters are then found by 
using the assembly heterogeneous flux, (I)Ao(r), in the 
numerator of equation (5). In addition, the denomi- 
nator of equation (5) is replaced by the corresponding 
heterogeneous integral: 

j" ~g(r) dr = ~ ~Aa(r) dr. (7) 

This relationship, although plausible, is not automati- 
cally satisfied since none of the homogenized regions in 
the heterogeneous reactor satisfies the assumed zero 
net current boundary conditions used in the assembly 
homogenization calculation. 

The last, and perhaps most inaccurate, approxima- 
tion that is frequently made is that the homogenized 
diffusion coefficient can be defined such that 

-- Sv, Og(r)~Ag(r) dr 
D~ = J'v, ~Ag(r) dr (8) 

Homogenized parameters which are determined by 
making the previous three assumptions are referred to, 
here, as assembly homogenized cross sections (AXSs). 
These constants are routinely used in the analysis of 
power reactors. In a rigorous sense, the solution to a 
global homogenized reactor problem will preserve 
none of the quantities (reaction rates) of equation (3). 
The argument that AXSs will preserve the reaction 
rates of the heterogeneous reactor is based on the fact 
that they do preserve the reaction rates of the infinite 
lattice. In a reactor having finite boundaries or 
multiple assembly types, however, reaction rates will 
not be preserved. The reactor analyst's ultimate 
decision of whether or not to use flux-weighted 
parameters should be based on a practical understand- 
ing of the error which results from their use and on an 
understanding of practical alternatives. 

Utilization of numerical benchmarks which do not 
involve homogenization approximations is a desirable 
means of evaluating the magnitude of error introduced 
by assembly homogenization methods. Many such 
problems have been developed and several realistic 
problems will be employed in this paper to evaluate the 
accuracy of different homogenization methods. These 
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benchmark problems are fully specified by geometric 
descriptions of fuel assemblies, the distribution of 
assemblies throughout the reactor, and cross sections 
of the constituent materials. Since this paper is 
emphasizing spatial homogenization (and not spectral 
collapsing approximations, cross section specification 
is given in the form of two-group macroscopic cross 
sections. Heterogeneous 'reference' solutions can 
therefore be found by solving the neutron transport 
equation with full geometric detail. Solutions to the 
analogous homogenized reactor problem can then be 
compared to the reference solutions, thus the accuracy 
of the homogenization methods can be ascertained. 
Reference solutions employed in this paper have been 
generated using the QUANTM 29 code which solves 
the two-group PN equations in x -y  geometry by using 
the analytic nodal 3°'31 (spatial) and the simplified PN 32 
(angular) approximation. It will therefore be assumed 
that homogenized pin cell cross sections are known for 
each of the heterogeneous regions (fuel pins, control 
rods, burnable poison rods, etc.). These benchmark 
problems avoid ambiguities which arise from funda- 
mental cross section data, resonance treatments, or 
pin cell homogenizations, and allow direct testing of 
assembly homogenization approximations. 

2.3. Homogenization error in the HAFAS BWR 
benchmark problem 33 

Homogenization approximations in BWRs can give 
rise to significant error. The sizable error can be 
attributed to a number of phenomena including (i) the 
presence of sizable water gaps between fuel assemblies, 
(ii) the use of enrichment zoning and burnable 
absorber pins within assemblies, (iii) the presence of 
control blades during much of the operating cycle, and 
(iv) the large variations in the water density (void 
fraction) throughout the core. The HAFAS BWR 
benchmark problem, described in Appendix 1.4, 
models control blades, narrow and wide water gaps, 
fresh and depleted fuel assemblies, void distributions, 
and provides a stringent test of homogenization 
methods. The HAFAS problem has a simplified 
assembly layout in which fuel pins are modeled using 
three different fuel enrichments. A reference solution to 
the transport version (isotropic scattering, Et,.g= 
1/3Dg) of the HAFAS problem was obtained using the 
QUANTM code with 49 nodes per assembly and the 
P3 option. Assembly calculations were performed for 
each fuel assembly type using the same spatial and 
angular approximations of QUANTM. AXSs were 
computed for each assembly type and the global 
reactor power distribution was computed using one- 
node-per-assembly spatial mesh and P1 (diffusion 

theory) angular approximation in QUANTM. This 
solution is identical to the solution obtained by the 
QUANDRY nodal diffusion code since the mathema- 
tical approximations are identical. The homogenized 
diffusion solution to the HAFAS problem is compared 
with the reference transport solution in Table 1. 

A complete map of the reference power distribution 
and the error in the homogenized diffusion solution is 
displayed in Fig. 1. Error of the magnitude demon- 
strated in Table 1 is not uncommon in nodal BWR 
analysis. Nodal diffusion models make many implicit 
assumptions and it is of interest to examine the 
contribution of each assumption to the total error. 

2.3.1. Reflector albedo error. Nodal simu- 
lators 15.34.35 frequently rely on the use of empirically- 
determined albedos to model the reflector. Such 
albedos are, at best, only approximate. In the nodal 
solutions obtained for use in this paper, however, the 
reflector is explicitly modeled. Hence, albedos are 
eliminated from consideration as a source of the error 
since the benchmark reference solution and the 
homogenized solution employ the same geometrical 
and cross section representation for the reflector. 

2.3.2. Spatial truncation error. Nodal simulators 
introduce an additional problem by providing only 
approximate solutions to the homogenized diffusion 
equation. Spatial truncation must be considered as a 
source of error in the homogenized nodal solutions. 
The magnitude of spatial truncation error depends 
strongly on the nodal method which is employed and 
on the spatial mesh that is used within each fuel 
assembly. In fact, many nodal methods (e.g. 
PRESTO, 34 SIMULATE,3S EPRI NODEP, 36 etc.) 

Table l. Results for the homogenized HAFAS BWR 
problem using AXSs 

Quantity 

Error in 
homogenized 

solution 

kerf - 0.44% 
Average error in assembly power + 5.5% 
Maximum error in assembly power + 12.8% 
Maximum error in Group 1 assembly + 7.3% 

absorption rate 
Maximum error in Group 1 assembly + 8.9% 

fission rate 
Maximum error in Group l assembly + 7.0% 

removal rate 
Maximum error in Group 2 assembly + 12.3% 

absorption rate 
Maximum error in Group 2 assembly + 13.7% 

fission rate 
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will not yield the correct solution to the diffusion 
equation for any mesh spacing. For  modem, consis- 
tently formulated nodal methods, 9 such as the Analy- 
tic Nodal Method,3°'3 t it is well known that the error 
in assembly powers obtained by using an assembly- 
sized spatial mesh in QUANTM are at most of the 
order of 1-2%. A one-eighth core, four-mesh-per- 
assembly QUANTM solution to the HAFAS problem 
was computed and is compared to the reference 
solution in Fig. 1. The largest deviation from the one- 
mesh-per-assembly solution can be seen to be only a 
few tenths of a percent. The spatial truncation error in 
the one-mesh-per assembly QUANTM solution to the 
HAFAS BWR problem is therefore negligible and not 
a major contributor to the error in the homogenized 
diffusion equation. 

2.3.3. Inter-assembly transport effects. It has been 
proposed that the homogenized transport equation, 
rather than the diffusion equation, should be solved in 
order to obtain the best estimate of the reactor power 
distribution; isolated assembly calculations which are 
used in assembly homogenization have ignored all 

inter-assembly transport effects. In order to determine 
the magnitude of these effects, a QUANTM P3 
transport solution to the homogenized transport 
equation was computed using nine meshes per assem- 
bly. The transport solution is compared to the 
reference heterogeneous and homogenized diffusion 
solution in Fig. 1. The transport solution displays a 
1.5-3.0% increase in assembly powers at the core 
periphery. Assemblies which surround the control 
rods are predicted to have approximately 1.0% lower 
powers in the transport solution. The net effect of using 
transport theory rather than diffusion theory is a 
radial power tilt of about 3.0%. This demonstrates 
that inter-assembly transport effects in the homogen- 
ized problem are small, and it is therefore not the use of 
diffusion theory which leads to the large error in the 
nodal model of the HAFAS BWR problem. 

2.3.4. Error from assembly homogenization bound- 
ary conditions. The boundary conditions used in the 
assembly transport calculations, from which homoge- 
nized cross sections are obtained, are another poten- 
tial source of homogenization error. One could argue 

Reference Heterogeneous P3 Solution 
Error in P1 AXS Solution l x l  Mesh 
Error in P1 AXS Solution 3x3 Mesh 
Error in P3 AXS Solution 3x3 Mesh 

1.478 1.204 0.996 0.513 
3.0% 4.0% 5.8% 7.7% 
3.0% 3.9% 5.6% 7.7% 
4.1% 5.0% 7.4% 9.6% 

0.995 1.277 1.370 0.978 0.641 
10.9% -1.0% 3.5% 3.3% 8,0% 
11.0% -1.2% 3.4% 3.2% 8.0% 
10.3% -0.7% 4.5% 4.4% 9,9% 

1.122 0.888 1.268 1.100 1.018 0.572 
4.4% 6 7% -4.0% -1.0% 2.2% 5,3% 
4.6% 6.7% -4.0% -1.1% 2.2% 5,2% 
3.0% 5.4% -3.6% -0.5% 3.5% 6,7% 

1.591 1.502 1.382 0.811 0.764 0.798 0.590 
-5.3% -7.6% -7.6% 4.0% 11.7% -1.7% 4,8% 
-5.2% -7.7% -7.5% 4.0% 11.9% -1.8% 4,8% 
-6.0% -8.5% -7.9% 2.9% 11.4% -1.0% 6,4% 

1.609 1.432 1.675 1.238 0.857 0.650 0.839 0.512 
-4.1% -6.2% -6.7% 8.7% 5.1% 9.9% -1.8% 2,4% 
-4.0% -6.1% -6.7% -8.8% 5.2% 9.9% -1.8% 2,4% 
-5.1% -7.2% -7.4% -9.5% 4.0% 9.0% -0.8% 3,7% 

1.371 1.197 1.265 1.051 0.943 1.024 1.050 0.807 0.569 
-3.9% -4.8% -6.9% 3.1% 7.1% -7.9% -4.0% -2.5% 2.6% 
-3.8% -4.7% -6.8% 3.2% 7.2% -8.0% -4.0% -2.4% 2.7% 
-5.2% -6.2% -8.1% 1.0% 5.5% -8.4% -3.6% -1.7% 4.2% 

Fig. 1. AXS assembly power distribution for the HAFAS BWR problem. 
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that the use of kcff or buckling searches to force 
criticality in the assembly calculations distorts the 
spatial and spectral shapes of the reaction rates. This 
argument is certainly valid since neither the use of kef f 
or buckling searches is capable of modeling assembly 
leakage which i~ a surface phenomenon. It is impor- 
tant, however, to understand the magnitude of the 
error which is introduced by such approximations. 
There exist many nonlinear iteration schemes 18 in 
which buckling values or assembly surface boundary 
conditions are obtained from conventional homoge- 
nized diffusion solutions to the reactor model. Assem- 
bly calculations can then be recomputed using the 
local boundary conditions, and homogenized cross 
sections can then be computed using the improved 
assembly flux distribution. These approaches result in 
improved homogenized parameters by nonlinear ite- 
ration between nodal reactor and assembly calcula- 
tions. Such nonlinear 'rehomogenization' strategies 

are cumbersome, and some insight must be used to 
avoid recomputation of assembly calculations for 
every different assembly. In the case of the HAFAS 
benchmark problem, such issues can be addressed by a 
much more direct approach--using the 'exact' core- 
wide reference flux distributions to spatially collapse 
cross sections for each individual assembly. Reference 
homogenized cross sections (RXSs) obtained in this 
manner are entirely equivalent to a case in which 
assembly calculations are recomputed for every assem- 
bly in the reactor with rigorous boundary conditions 
and exact leakage rates. Results for the HAFAS BWR 
problem obtained using RXSs are compared to the 
reference and AXS solutions in Fig. 2 and are summar- 
ized in Table 2. 

The results obtained using RXSs are clearly 
improved at the core periphery, though very large 
error exists throughout much of the remainder of the 
core. Comparisons of the actual values of the cross 

Reference Heterogeneous P3 Solution 
Error in P1 AXS Solution 1 x 1 Mesh 
Error in P1 AXS Solution 1 × 1 Mesh 

1.478 1.204 0,996 0.513 
3.0% 4.0% 5.8% 7.7% 
1.2% 19% 3.2% 3.1% 

0.995 1.277 1.370 0.978 0.641 
10.9% -1.0% 3.5% 3.3% 8.0% 
11.2% -1.3% 1.4% 1.5% 2.8% 

1.122 0.888 1.268 1.100 1.018 0.572 
4.4% 6.7% -4.0% -1.0% 2,2% 5.3% 
7.8% 8.4% -3,8% -1.8% 0.1% 1.2% 

1591 1.502 1.382 0.811 0.764 0.798 0,590 
-5.3% -7.6% -7.6% 4.0% 11.7% -1.7% 4.8% 
-3.5% -4.5% -5.6% 6.4% 10,9% -2.5% 0.5% 

1.609 1.432 1.675 1.238 0.887 0.650 0.839 0,512 
-4.1% -6.2% -6.7% -8.7% -6.1% 9.9% -1.8% 2.4% 
-2.1% -3.9% -4.1% -6.3% -6.9% 9.2% -3.3% 1.1% 

1.371 1.197 1.265 1.051 0.943 1.024 1.050 0,807 0.569 
-3.9% -4.8% -6.9% -3.1% 7.1% -7.9% -4.0% -2.5% 2.6% 
-2.3% -2.8% -4.8% -7.2% 8.3% -6.4% -4.6% -3.4% 1.4% 

Fig. 2. RXS assembly power distribution for the HAFAS BWR problem. 

Table 2. Results for the homogenized HAFAS BWR problem using RXSs 

Error in homogenized solution 

Quantity AXS solution RXS solution 

kctt -0.44% -0.34% 
Average error in assembly power 5.5% 4.1% 
Maximum error in assembly power + 12.8% + 11.2% 
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sections between the reference homogenized cross 
sections and the AXSs reveal that the most significant 
changes are 2.0-5.0% lower thermal absorption and 
fission cross sections in the peripheral bundle RXSs 
and a 2.0-3.0% lower thermal absorption and fission 
cross sections in the rodded bundle RXSs. Although 
these cross section differences are significant, the large 
error which exists in a nodal solution which used 
'exact' flux-weighted cross sections clearly demon- 
strates that inaccuracies in nodal solutions cannot be 
overcome by employing more accurate boundary 
conditions for the determination of assembly homoge- 
nized parameters. Moreover, any rehomogenization 
technique which relies simply on a more accurate 
determination of cross sections will not alleviate the 
large homogenization error that are common in nodal 
BWR analyses. 

The insight that has been gained from the examin- 
ation of the HAFAS BWR problem suggests that the 
following phenomena are not responsible for the large 
error present in nodal reactor analyses: 

inaccurate albedo values used to model reflector 
effects 

inaccurate nodal diffusion solution methods 

inter-assembly transport effects 

boundary conditions used in assembly homogeniza- 
tion 

inaccurate homogenized cross sections. 

3. ADVANCED HOMOGENIZATION METHODS 

3.1. Introduction 

The persistence of large error in the solution to the 
homogenized diffusion equation even when exact flux- 
weighted cross sections are used indicates that the 
inaccurate approximation of the leakage terms [equa- 
tion (4)] in the node-integrated diffusion equation are a 
major contributor to the error. The use of conventio- 
nal spatially-constant diffusion coefficients (computed 
by flux-volume weighting Y~t,((r), flux-weighting 
1/Et,(r ), or any other spatial weighting technique) does 
not directly address the issue of preservation of surface 
integrated currents and cannot be expected to preserve 
the properties of a heterogeneous reactor. Many novel 
homogenization methods 37~.2 have been developed, 
some of which attempt to preserve nodal leakage rates. 
In one-dimensional geometry, it is possible to deter- 
mine diffusion coefficients (and cross sections) which 
preserve surface currents when the preservation of 
reaction rates is relaxed so that only group-summed 
reaction rates are preserved. 1 These techniques have 

not been successfully extended to the multi-dimen- 
sional case. A number of homogenization techniques 
determine diffusion coefficients by matching certain 
components of heterogeneous response matrix 
elements. 43,44 Although such methods have better 
mathematical basis than conventional flux weighting 
techniques, they have not found widespread appli- 
cation because of the computational burden of calcu- 
lating the required response matrix elements instead of 
the standard single-assembly homogenization calcula- 
tion. The difficulty of determining the appropriate 
values for homogenized diffusion coefficients is, per- 
haps, best illustrated by considering a hypothetical 
one-dimensional reactor, for which a 1-group hetero- 
geneous flux distribution is assumed to have been 
computed. Consider two adjacent nodes extracted 
from this reactor as depicted in Fig. 3(a). 'Exact' flux- 
weighted cross sections and conventional diffusion 
coefficients can be computed, since the flux distribu- 
tion is assumed to be known. Assuming that the 
known heterogeneous surface currents are imposed on 
the two surfaces of node i, the diffusion problem is fully 
specified. This is a direct result of the fact that the 
diffusion equation is a second-order differential 
equation with known (and constant) coefficients-- 
assuming kef f is known. If one demands that the 
surface currents be preserved for both of these nodes, 
there will exist one, and only one, flux distribution 
which will satisfy the diffusion equation, as depicted in 
Fig. 3(b). 

Since the homogenized flux distribution in each 
node is directly affected by the value of the diffusion 
coefficients, and the choice of flux weighted diffusion 
coefficients is in a sense entirely arbitrary, the interface 
fluxes will in all probability be different, as depicted in 
Fig. 3(c). This results from the fact that flux weighting 
of diffusion coefficients is only one of many possible 
methods for specifying the diffusion coefficients, and 
for any particular choice of diffusion coefficients, the 
homogenized surface fluxes will take on different 
values. As a direct result of the difference between 
interface fluxes, the homogenized flux distributions in 
both node i and node i + 1 will be different than those 
of Fig. 3(c) when the two-node homogenized diffusion 
problem is solved with boundary conditions Ji-  and 

+ 
J i+l ,  and continuity of flux and current interface 
conditions. An inevitable result of the different flux 
distributions in Fig. 3(d) is that the homogenized fluxes 
at the nodal interface will not be equal to the 
heterogeneous flux, and more importantly, the homo- 
genized currents will not be equal to the heterogeneous 
interface current. From this example one can see that it 
is the interface condition, continuity of flux, and not 
the values of diffusion coefficients, which cause the 
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(a) 

(b) Ji- - 

J?~..- 

(C) Ji " 

(d) JT - 

(~ / +  I 

^ 

4,, (x) i ~': 
I 

~;-~- 1 

J+ = Ji-+ I 

~ i ÷ 1  (X) 

Fig. 3. One-dimensional nodal flux distributions. 
(a) Heterogeneous reactor flux. 
(b) Individual homogenized nodes. 
(c) Adjacent individual homogenized nodes. 
(d) Conventional diffusion solution to the two-node problem. 

J+ i+1 

• Ji+~ 

311 

homogenized currents to be different from the refer- 
ence currents. One could adjust D~ and D~+ ~ such that 

4, + =4,-+, =07, 
and imposing continuity of flux would no longer be a 
problem. However, one must also consider preserva- 
tion of current between node i and node i -  1 and in 
this case the freedom to adjiast D i would have already 
been used by preserving the current between node i 
and node i + 1. It is clear, now, that the homogenized 
diffusion equation (with continuity of flux and current 
across interfaces) lacks sufficient degrees of freedom to 
allow simultaneous preservation of reaction rates and 
currents. 

3.2. Koebke's homogenization method 

Traditionally, advanced homogenization methods 
have been developed in order to improve the 
accuracy of node-averaged reactor properties pre- 
dicted through use of conventional homogenized 
parameters. Koebke's homogenization method, Equi- 
valence Theory, 26'45~7 which represents the most 
significant advance in homogenization methods to 
date, was motivated in large part by efforts to address 
the PWR dehomogenization problem ~9'48 (i.e. pre- 
dicting pin power distributions from nodal solutions). 
Koebke observed that there exists a very close 
connection between the homogenization and dehom- 
ogenization problems, and improvements in predicted 
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pin power distributions could be achieved only by a 
redefinition of the homogenized parameters. 48 
Koebke not only recognized the difficulty in preserva- 
tion of surface currents, but was able to formulate a 
mathematical interface condition which allowed exact 
preservation of both reaction rates and net currents 
from heterogeneous reactor problems. Koebke recog- 
nized the important point that if the homogenized 
fluxes are allowed to be discontinuous the hom- 
ogenized flux distribution, such as that depicted in 
Fig. 3(c), could be preserved when the two-node 
homogenized boundary value problem is solved. 
Consider the flux distribution of Fig. 4. When the two- 
node boundary value problem is solved, the homoge- 
nized flux distributions will be identical to those of 
Fig. 4 if an interface condition is imposed such that 

~+ f i  + =~-+ ~fi+ ~, (9) 

where 

f + - @ + / ~ +  ,,-- =@7+,/~T+ ~ -  i I i ~ J i + l  1" 

This equation expresses that the heterogeneous flux is 
continuous across the interface and that there exists a 
direct relationship between the heterogeneous and 
homogenized surface fluxes. When the homogenized 
two-node problem is solved, the homogenized flux is 
made discontinuous (by a factor offi+/f~+l) and the 
homogenized flux distribution will be the same as that 
in Fig. 3(c), which results in the preservation of 
interface currents. The equivalence factors (fi + and 
fi-+i) can be considered to be additional homogeniza- 
tion parameters (as are cross sections and diffusion 
coefficients) since they can be defined directly from 
information which is known from the reference 
solution. These equivalence factors provide additional 
degrees of freedom which permit simultaneous preser- 
vation of reaction rates and surface currents. 

The arguments of the preceding section rely on the 
uniqueness of the solution to the one-dimensional 
differential neutron diffusion equation with one energy 
group. The true utility of Koebke's homogenization 
method is that it is applicable to the case of many 

energy groups and multi-dimensional geometry. The 
mathematical formulation of the two-dimensional 
multigroup boundary value problem can be derived 
from the homogenized diffusion equation for node ij 

-- V'/Sg/,jV ~g(x, y) + ~.,giO~g(x, y) 
G 

= ~ D/ko,Ktgg,,.j+£gg,,,~]~g,(x, y), (10) 
g ' = l  

where the cross sections are flux-volume weighted, and 
both cross sections and diffusion coefficients are 
spatially constant within node ij. The conditions of 
equation (4) do not require that the homogenized 
surface currents match the heterogeneous surface 
currents, but only that the face-averaged currents be 
preserved. Therefore, the differential equations which 
the homogenized fluxes must obey can be determined 
by treating the directions one at a time and integrating 
over the directions transverse to those of interest in 
order to obtain for direction 'u' and node ij 

where 

d 2 ^ 

-/5~.~ ~ %(u) + £,~,./b,(u) 

G 

- ~ [1/keff~lgg'i,j+£go',,j]~g(u) 
g ' = l  

g = l ,  2 . . . G  
u =x ,  y 
v = x , y  n o t = u  

(11) 

~g(u)=foi'÷'dv~g(u,v) 

fv v'÷' d 2 ~,.,~u) = o~,.j , dv ~ v  z (b,(u, v). 

By virtue of the fact that the heterogeneous reactor 
solution has been assumed to be known, the net 

\ ~  (x) 

Fig. 4. One-dimensional nodal flux distributions. 
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leakage distributions, Sgi,j(u), is also known. Equation 
(11) and two appropriate boundary conditions per 
group constitute a well-posed one-dimensional 
boundary value problem for the one-dimensional 
homogenized flux distributions in node i, j. Therefore, 
with the net leakage distribution assumed to be known 
from the reference solution and with J~].] and J~],] as 
boundary conditions, equation (11) can be solved to 
obtain the one-dimensional flux distributions. Equiva- 
lence factors can then be defined from equation (9). 
The boundary value problem must, necessarily, be 
solved for all groups simultaneously since the shape of 
the homogenized flux in group O will affect the shape of 
the flux in group O' when there is scattering or fission 
transfer between groups. 

The procedure for evaluating the equivalence fac- 
tors appears to be straightforward. In two or more 
dimensions, however, the values of the equivalence 
factors will be correct (i.e. preserve interface currents) if 
and only if the net leakage distribution in the 
homogenized problem is the same as the net leakage 
distribution in the heterogeneous problem. The hom- 
ogenized leakage distribution clearly cannot be 
expected to display the same fine structure as the 
heterogeneous leakage distribution. Consequently, 
the values of the equivalence factors will not preserve 
the true heterogeneous currents. 

Fortunately, Koebke recognized that it is not as 
important to have the correct heterogeneous leakage 
distribution as it is to use the same leakage distribu- 
tion, whatever it is, both when solving equation (11) for 
equivalence factors and when solving the global 
homogenized diffusion equation. 

As yet there has been no discussion concerning 
which method for solving the diffusion theory bound- 
ary value problem and obtaining equivalence factors 
should be used. A subtle but very important point to 
realize is that any approximate method can be used and 
exact equivalence factors can be determined. These 
equivalence factors will preserve all interface currents 
when the global homogenized diffusion equation is 
solved, providing that the identical approximate 
method is used for solving the global diffusion 
equation. In fact, equation (11) can be solved with the 
one-mesh-point-per-assembly finite-difference approx- 
imation and exact homogenized parameters can be 
defined. This aspect of Koebke's 'Equivalence 
Theory '45 is unique, in that one does not attempt to 
find homogenized parameters which will reproduce (in 
an integral sense) the heterogeneous reactor solution 
when the homogenized differential reactor equations 
are solved exactly, but rather, one defines homoge- 
nized parameters which reproduce the heterogeneous 
solution even though the homogenized reactor equa- 

tions are themselves solved approximately. For exam- 
ple, many nodal methods 9 employ the transverse 
integrated diffusion equation, equation (11), as their 
basic nodal coupling relationship. In these methods 
the transverse leakage distribution is typically 
expanded as a quadratic polynomial such that the 
average values of the transverse leakages are preserved 
in three neighboring nodes. For  these methods, it is 
straightforward to solve equation (11) since the 
average values of the transverse leakages are known 
from the heterogeneous solution. For methods such as 
fine-mesh finite-difference, it is difficult, if not imposs- 
ible, to know what the transverse leakage shape will be 
when the homogenized diffusion equation is solved, 
and consistency between source terms is difficult to 
satisfy precisely. 

Koebke's homogenization method makes further 
use of the fact that exact values of the equivalence 
factors can be found for any value of the diffusion 
coefficient. For an arbitrary value of the diffusion 
coefficients, the values o f f  u+ a n d f  ~- for node i,j will 
be different. Koebke's method iterates on values of the 
diffusion coefficients for node i, j such tha t f  u + and f  "- 
are the same. When this condition is met, the resulting 
diffusion coefficients and heterooeneityfactors (f~) are 
considered as additional homogenization parameters 
which, in general, will be direction dependent. This 
homogenization method is known as 'Equivalence 
Theory' (E.T.), and when these parameters are 
employed, the homogenized diffusion equation can be 
solved such that keff, all surface-averaged currents, all 
node-averaged fluxes, and all node-averaged reaction 
rates are simultaneously preserved. 

3.3. General equivalence theory 

Koebke's homogenization method provides a well- 
defined, systematic method for determining homoge- 
nized parameters which will preserve the desired 
properties of the heterogeneous reactor solution when 
used in the homogenized diffusion equation. Koebke's 
method of constraining the diffusion coefficients such 
that heterogeneity factors are, for a given direction and 
group, identical on both surfaces of a node requires 
that an iterative method be used to determine diffusion 
coefficients. Although this iteration is numerically 
straightforward, 48 there exists a simple method for 
avoiding the iterative determination of the diffusion 
coefficients. This variation of Koebke's homogeniza- 
tion method 33'49 merely takes advantage of the fact 
that exact heterogeneity factors can be defined from 
equation (9) for any value of the diffusion coefficient. 
Note that unless the diffusion coefficients are found 
iteratively the values of the heterogeneity factors on 
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opposite faces of a node will be different. These two 
factors are referred to as discontinuity factors to 
distinguish them from heterogeneity factors, and they 
are defined by the following expressions, 

_ %.~u,) 

(12) 
u 

fg~+ _ Ogij(ut + 1) 
% , , , & ,  + ~ ) 

where u~ and uz+ 1 represent the lower and upper 
u-direction boundaries of nodei, ~. Although exact 
reproduction of a reference solution is possible for any 
values of diffusion coefficients, Smith 49 chose to use 
the conventional flux-volume weighted diffusion coef- 
ficients. The reasons for this choice become clear when 
'Generalized Equivalence Theory' (G.E.T.) 33"49 is 
applied to problems in which reference solutions are 
not known. 

3.4. Implementation o f  nodal equivalence theories 

Equivalence Theory, or Generalized Equivalence 
Theory, can be incorporated directly into any nodal 
method which uses nodal surface-averaged fluxes in 
the process of evaluating nodal coupling. Koebke 45 
successfully modified the NEM code, demonstrating 
that heterogeneous reference solutions could be repro- 
duced by using heterogeneity factors. Smith, likewise, 
modified the QUANDRY code and further demon- 
strated that even the coarse-mesh finite-difference 
(CMFD) method could reproduce heterogeneous 
reference solutions using discontinuity factors. The 
expression for nodal interface current on the upper u- 
direction surface of node i, j in the CMFD approxima- 
tion can be written as 

[-J'a'd ~aid --fi + 1 ,j ~ai + 1,f] j~ , j  _ 2D<iDi + 1,j = + ^ = -  " 

hihi + 1 ~ f  ou-+ = + ' 1.j D ai.Jhi + f ai.j D ai + t,Jhi + 1] 

(13) 

where ~gi.j and i~gi÷ 1.~ are the node averaged fluxes, 
and h~ and h~+ t are the mesh spacings in node i , j  and 
node i+  l, j, respectively. There are several things 
worth noting from this relationship. First, if discon- 
tinuity factors on opposite sides of an interface are the 
same, the discontinuity factors will have no influence 
on the interface current. This is true regardless of the 
nodal method to which discontinuity factors are 
applied. Secondly, although the form of equation (13) 
is similar to that of ordinary CMFD approximations, 
there is one important difference. Even when the 
diffusion coefficients and mesh spacings are the same 
in node i , j  and node i+  1,j, the form of equation (13), 

u +  ^ u - -  

Jffi.j -- 2 O [ f  °i'J~gi'J--f i+ l'J~'i+ l'J] , ( 1 4 )  

=- +f;,,/I h[fui+ 1,j =+ 

is not the same as that of the CMFD current, 

J;=i,j 20 = -h-" [~g,,J-~0,+ x.f]. (15) 

The significant difference between equations (14) and 
(15) is that equation (14) cannot be written in the form 

jff~.j = Ci, j • [i~g,.j-~¢ + 1j]. (16) 

This is significant in that most finite-difference 
diffusion codes utilize and store the symmetric opera- 
tor C~j, whereas the current equation with disconti- 
nuity factors requires storage of two coefficients per 
interface. Nonetheless, implementation of heteroge- 
neity factors or discontinuity factors into existing 
nodal codes is straightforward. 

3.5. Difference between equivalence and generalized 
equivalence theory 

The only assumption required in order to evaluate 
homogenization parameters for either form of equiva- 
lence theory is that the heterogeneous reactor solution 
be known. The goal of spatial homogenization, 
however, is to be able to predict accurately the solution 
to the heterogeneous reactor without actually solving 
the heterogeneous problem. Therefore, any hom- 
ogenization method is of little practical value if it 
requires that the heterogeneous reactor solution be 
known in order to define homogenized parameters. 

One straightforward means of demonstrating the 
differences between Equivalence Theory and Genera- 
lized Equivalence Theory is to examine a simple 
homogenization problem. Consider the one-dimen- 
sional 2-group problem, depicted in Fig. 5, in which a 
PWR-like fuel assembly which has all of its burnable 
poison pins in one half is positioned between an 
unpoisoned and fully poisoned assembly. This situa- 
tion is similar to first-cycle cores in which burnable 
poison is preferentially loaded toward the core center 
side of some peripheral assemblies. The cross sections 
for type 'A' and 'B' assemblies were chosen to be 
identical except for the thermal absorption which is 
12% higher in the type B assembly. Zero net current 
boundary conditions are assumed on all outer boun- 

A 

Relative 
Assembly  Powers 1.371 

A B 

0.9823 

B 

0.6460 

Fig. 5. A one-dimensional homogenization problem. 
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Table 3. E.T. and G.E.T. parameters for the AB assembly 

Quantity E.T. parameters G.E.T. parameters 

Y-a2, (era- 1) 0.084219 0.084219 
f~-, f~+ 0.999 f~- = 1.036, f~+ = 0.9508 
f2,f~ 0.998 f2- = 1.0856,fz + =0.8919 
D 1, (cm) 1.101 1.320 
D 2, (cm) 0.088 0.383 
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daries. A full description of this problem is given in 
Appendix 1.1. A QUANTM diffusion theory reference 
solution to this problem was computed and used to 
generate E.T. and G.E.T. parameters for the central 
assembly (see Table 3). 

Since assemblies A and B are homogeneous, and 
since QUANTM has no spatial truncation error in 
one-dimensional problems, the A and B assembly 
discontinuity factors and heterogeneity factors are 
unity. Both sets of parameters reproduce the reference 
solution exactly. Since conventional diffusion theory 
overpredicts the leakage from assembly A to assembly 
B, equivalence theory diffusion coefficients are neces- 
sarily reduced in order to match the reference solution. 
Because of the fact that the discontinuity factors are 
almost antisymmetric from one side of the AB 
assembly to the other, the heterogeneity factors are 
almost unity. The reference discontinuity factors 
(RDFs) reproduce the reference solution, but in a very 
different manner than do the reference heterogeneity 
factors (RHFs) and equivalence theory diffusion 
coefficients. The conventional solution to this prob- 
lem, using unity discontinuity factors (UDF) and 
reference flux weighted cross sections (RXS), is com- 
pared to the reference in Table 4. 

The important question, however, is 'How well do 
the equivalence parameters work when the AB assem- 
bly is surrounded by assemblies which are different 
from those used in the reference configuration?', that 
is, when a reference solution is not used to compute 
equivalence parameters. As a test of the applicability of 
the reference equivalence parameters, assembly B was 
replaced by assembly type C (a homogeneous assem- 

bly which had the average thermal absorption cross 
section of types A and B). The solutions to this 
problem obtained with reference discontinuity factors, 
reference heterogeneity factors, and unity disconti- 
nuity factors (as defined from the original problem), 
are compared to the reference solution in Table 5. As 
in the previous problem, conventional diffusion theory 
over predicts the leakage through the AB assembly. 
The RHFs correct about one half of the diffusion 
theory error and RDFs correct almost all of the 
diffusion theory error. 

The differences between equivalence and genera- 
lized equivalence parameters can be graphically 
demonstrated when assembly B of Fig. 5 is replaced by 
assembly A, that is, a situation in which an AB 
assembly is positioned between two type A assemblies. 
The results for this problem are given in Table 6. 

These results demonstrate that the discontinuity 
factors accurately predict the power distribution on 
this problem, despite the fact that the power distribu- 
tion here is very different from the one for which they 
were generated. The use of heterogeneity factors yields 
almost the same solution as diffusion theory, because 
the heterogeneity factors are approximatel2~ unity. The 
significance of this problem is that both diffusion 
theory and Equivalence Theory view the homogenized 
problem as being symmetric about the central assem- 
b ly -wh ich  it is not. In fact, this problem demon- 
strates one case in which heterogeneity factors cannot 
reproduce a reference solution, even when the solution 
is known. 

An analogous situation can be envisioned in which 
the use of discontinuity factors might encounter 

Table 4. Comparison of solutions to the one-dimensional homogenization problem 

Assembly Assembly Assembly 
kef f A power AB power B power 

Reference solution 1.04514 1.371 0.983 0.646 
Error in 
RXS-UDF solution -0.12% - 3.1% + 0.3% + 5.9% 
Error in 
RXS-RDF solution 
RXS-RHF solution 0.0% 0.0% 0.0% 0.0% 
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Table 5. Approximate solutions to the 1-dimensional homogenization problem 

Assembly Assembly Assembly 
k©ff A power AB power C power 

Reference solution 1.05287 1.248 0.967 0.786 
Error in 
RXS-RDF solution +0.05% -0.2% +0.5% -0.3% 
Error in 
RXS-RHF solution +0.02% - 1.6% +0.1% +2.4% 
Error in 
RXS-UDF solution - 0.02% - 3.9% + 0.4% + 5.7% 

Table 6. Approximate solutions to the modified 1-dimensional problem 

keff 

Assembly Assembly Assembly 
A power AB power A power 
(error) (error) (error) 

Reference solution 1.06564 
RXS-RDF solution 1.06688 
RXS-RHF solution 1.06704 
RXS-UDF solution 1.06696 

1.080 (ref.) 0.940 (ref.) 0.980 (ref.) 
1.078 (-0.3%) 0.950 (+ 1.1%) 0.972 (-0.8%) 
1.030 (-4.7%) 0.940 (0.0%) 1.030 (+5.1%) 
1.027 (-4.9%) 0.946 (+0.6%) 1.027 (+4.9%) 

difficulties in modeling a symmetric situation. Con- 
sider the situation in which the AB assembly in the 
original one-dimensional problem is constructed with 
fuel type B (10.5 cm thick) positioned between two 
segments (5.25 cm thick) of type A fuel. In this 
homogenization problem, the central assembly which 
is symmetric, is located in an asymmetric environment. 
When reference discontinuity factors are generated for 
this situation and then used in the problem in which 
the central assembly is positioned between two type A 
assemblies, the resulting power distribution will be 
asymmetric. Heterogeneity factors, on the other hand, 
will reproduce this symmetry even though they were 
generated in an asymmetric situation, The results of 
QUANTM calculations for this symmetric situation 
are displayed in Table 7. The magnitude of the 
asymmetry in the discontinuity factor solution is 
approximately 0.3%. This asymmetry is quite small 
because the reference discontinuity factors are nearly 
symmetric, despite the fact that they were generated in 
a very asymmetric environment. 

These calculations demonstrate one of the basic 
differences between heterogeneity factors and disconti- 
nuity factors: heterogeneity factors guarantee a sym- 
metric response matrix, while discontinuity factors do 
not.*s In the case of symmetric assemblies, there is 
very little difference (in accuracy) between the two 
approaches. Although the case of asymmetric assemb- 
lies may seem contrived, this combination of assemb- 
lies does occur in many first cycle PWR cores. In such 
cases, caution should be exercised in the use of 
heterogeneity factors, although difficulties can easily 
be avoided by using reactor representations in which 
assemblies are homogenized by quadrants and four 
nodes per assembly are used in the nodal calculations. 

Although the one-dimensional homogenization 
problem may not be a very meaningful test of 
homogenization methods, the HAFAS BWR problem 
is. The reference solution to the HAFAS problem was 
used to generate reference discontinuity factors 
(RDFs) and reference cross sections (RXSs). The actual 
values of RDFs are different in every node, however, 

Table 7. Approximate solutions to the symmetric 1-dimensional problem 

k©ff 

Assembly Assembly Assembly 
A power ABA power A power 
(error) (error) (error) 

Reference solution 1.06551 1.036 (ref.) 0.929 (ref.) 1.036 (ref.) 
RXS-RDF solution 1.06537 1.039 (+0.3%) 0.928 (-0.1%) 1.033 (-0.3%) 
RXS-RHF solution 1.06537 1.036 (0.0%) 0.928 (--0.1%) 1.036 (0.0%) 
RXS-UDF solution 1.06519 1.031 (-0.4%) 0.938 (+ 1.0%) 1.031 (-0.4%) 



Assembly homogenization techniques 317 

certain patterns emerge when the discontinuity factors 
are examined as a function of assembly type. Some of 
the RDFs for the HAFAS BWR benchmark problem 
are displayed in Table 8. It can be seen from these 
results that the thermal discontinuity factors range 
from approximately 0.65 to approximately 1.70. 
Discontinuity factors for a particular assembly type 
also are quite different depending on the surface type 
(i.e. narrow or wide water gap). For  a given assembly 
type and surface type, however, the RDFs display little 
variation. Realizing that RDFs are quite insensitive to 
the location of the assembly within the reactor, 
Smith 33,4.9 proposed a simple method for determining 
accurate, though approximate, discontinuity factors 
which do not require knowledge of full heterogenous 
solutions. 

3.6. Evaluations of discontinuity factors from 
assembly calculations 

If equivalence parameters were strictly a function of 
assembly type and did not depend on assembly 
boundary conditions, they could be determined from 
heterogeneous assembly calculations. 33.49 When two- 
dimensional assembly calculations are performed for a 
given type of assembly, the resulting equivalence 
theory cross sections and diffusion coefficients are 
identical to flux-weighted constants (AXSs). General- 
ized Equivalence Theory also requires that values of 
the discontinuity factors be determined. It appears 
that an assembly calculation may not provide suffi- 
cient information to determine discontinuity factors. 
There exists, however, a homogeneous analog to the 
heterogeneous assembly calculation--a single-node 

problem with zero net current boundary conditions. In 
the analogous problem, the homogenized fluxes are 
spatially fiat. Since the assembly-averaged fluxes in the 
homogeneous and heterogeneous assembly calcula- 
tions are, by definition, equal, the discontinuity factors 
are simply ratios of the surfaced-averagedfluxes to the 
cell-averaged fuxes in the heterogeneous assembly 
calculation. It is, thus, possible to approximate all of the 
equivalence parameters by performing assembly cal- 
culations for each type of assembly. Such equivalence 
parameters are referred to as assembly discontinuity 
factors (ADFs). Although in this particular case the 
discontinuity factors are approximated by the ratio of 
surface to average flux in the heterogeneous assembly 
calculation, the ratio of surface-to-average flux does 
not define the discontinuity factor in general. In fact, 
the discontinuity factors will be very poorly approxi- 
mated by the surface-to-average flux ratio in situations 
in which there is leakage across nodal interfaces (as in a 
multi-assembly lattice calculations). The ADFs for the 
HAFAS BWR problem are compared to mean values 
of the RDFs in Table 9. 

Several conclusions can be drawn from the results of 
Table 9: (i) the ADFs are within a few percent of the 
mean values of the RDFs for all assembly types, 
surfaces, and groups, (ii) the fast group discontinuity 
factors are much closer to unity than are the thermal 
group discontinuity factors, and (iii) the wide gap 
discontinuity factors are much different than the 
narrow gap discontinuity factors. 

The good agreement between ADFs and RDFs is 
encouraging in that the discontinuity factors for a 
particular type of assembly are quite insensitive to the 
assembly position in the reactor, and ADFs can be 

Node 

(7, 1) 
(4, 2) 
(8, 2) 
(4, 3) 
(6, 4) 
(8, 4) 
(7, 5) 
(8, 6) 
(1, 1) 
(3, 1) 
(5, t) 
(6, 2) 
(7, 3) 
(4, 4) 
(5, 5) 

Table 8. RDFs for the HAFAS problem 

Thermal discontinuity factors 
Type of 

assembly Wide gap Narrow gap 

Unrodded A 1.465, 1.424 1.280, 1.271 
Unrodded A 1.466, 1.492 1.307, 1.271 
Unrodded A 1.486, 1.466 1.283, 1.288 
Unrodded A 1.431, 1.450 1.278, 1.249 
Unrodded A 1.472, 1.470 1.279, 1.275 
Unrodded A 1.476, 1.483 1.259, 1.244 
Unrodded A 1.481, 1.479 1.250, 1.266 
Unrodded A 1.481, 1.490 1.295, 1.285 
70% Void A 1.639, 1.639 1.301, 1.301 
70% Void A 1.613, 1.598 1.268, 1.298 
Rodded A 0.681, 0.630 1.684, 1.682 
Rodded A 0.645, 0.686 1.644, 1.648 
Rodded A 0.685, 0.626 1.671, 1.659 
Rodded A 0.660, 0.660 1.638, 1.638 
Rodded A 0.654, 0.654 1.655, 1.655 
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Table 9. Comparison of ADFs and RDFs from the HAFAS BWR problem 

Assembly type 

Group 1 Group 2 

Surface type ADF Mean RDF ADF Mean RDF 

Unrodded A 

Rodded A 

70% void A 

Wide gap 0.896 0.885 1.497 1.470 
Narrow gap 0.945 0.930 1.271 1.287 
Wide gap 0.774 0.795 0.626 0.658 
Narrow gap 1.034 1.010 1.750 1.657 
Wide gap 0.908 0.902 1.641 1.622 
Narrow gap 0.954 0.946 1.300 1.292 

computed directly from the information available in 
standard assembly calculations. As an example, an 
assembly calculation with zero net current boundary 
conditions was performed for the asymmetric AB 
assembly in the 1-dimensional homogenization prob- 
lem presented in the previous section, and disconti- 
nuity factors were obtained ( f~-=  1.043, f ~  =0.956, 
f ;  = 1.098, f2  + =0.901). These discontinuity factors 
are quite close to the reference values displayed in 
Table 3. In addition, when ADFs and AXSs are used in 
the calculations of the three configurations of the 
asymmetric homogenization problem, the maximum 
errors in assembly powers are - 1.1% (configuration 
A IABI n), -0.5% (configuration A laB I C), and 
- 0 . 1 %  (configuration A lAB[ A), respectively. The 
corresponding errors with conventional continuity 
conditions and flux weighted diffusion coefficients are 
5.9%, 5.8%, and 5.1%. The fact that use of ADFs 
leads to accurate predictions of assembly powers in all 
three configurations implies that the true values of the 
discontinuity factors are well predicted by the single- 
assembly calculation. The fact that ADFs can be 
computed accurately from a conventional assembly 
homogenization calculation points out one difference 
between discontinuity factors and heterogeneity fac- 
tors; in order to compute heterogeneity factors for 
asymmetric assemblies, it is necessary that there be 
leakage across assembly interfaces. Calculations of 
heterogeneity factors at KWU, in such special cases, 
have employed multi-assembly geometries in such a 
way that the diffusion coefficient iteration is possible. 

Even though the good agreement between ADFs 
and RDFs is encouraging, the true test of any 
homogenization method is whether the solution to the 
heterogeneous reactor problem can be predicted 
accurately. The results of a QUANTM diffusion 
theory calculation of the HAFAS problem which used 
AXSs, ADFs, and assembly-sized mesh, are compared 
to the reference and conventional U D F  solutions in 
Table 10. A complete comparison of the octant power 
maps is presented in Fig. 6. The use of ADFs reduced 
the homogenization error by at least a factor of three 

Table 10. Comparison of results to the HAFAS BWR 
using UDFs and ADFs 

UDFs ADFs 

Error in kou -0.44% -0.08% 
Maximum error in assembly + 12.8% +3.9% 

power 
Average error in assembly + 5.5% +0.9% 

power 

when compared with the error in conventional AXS. 
The improvement is universal in that all assembly 
types are predicted much more accurately. This 
dramatic improvement in power distribution is typical 
of BWR applications of assembly discontinuity 
factors. 

4. APPLICATIONS OF E.T. AND G.E.T. 

4.1. PWR Applications 
The use of ADFs for BWR applications is prompted 

by the high degree of asymmetry which is present in 
BWR assemblies, particularly when control rods are 
inserted. PWRs, on the other hand, tend to have 
symmetric assemblies even when control rods are 
inserted. For this reason, heterogeneity factors are 
widely Utilized for PWR analyses at KWU. In fact, a 
simplified version of Equivalence Theory called Sim- 
plified Equivalence Theory (S.E.T.) '.6 has been 
adopted at KWU. In this approximation, the direc- 
tional dependence of the diffusion coefficient and 
heterogeneity factors are suppressed in favor of using 
one diffusion coefficient and one heterogeneity factor 
per group. When only one heterogeneity factor per 
group is employed, it is possible to divide all cross 
sections and diffusion coefficients by the group hetero- 
geneity factors, obtaining equations that can be solved 
using diffusion codes which have conventional conti- 
nuity conditions on interface fluxes. This significantly 
reduces the number of homogenization parameters 
(i.e. the same as conventional homogenization meth- 
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Reference Heterogeneous ,°3 Solution 
Error in P1 AXS-UDF Solution 
Error in P1 AXS-ADF Solution 

1 478 1204 0.996 0.513 
3 0 %  4 0 %  5.8% 7.7% 

- 0 6 %  0 4 %  -1.1% -0.3% 

0.995 1277 1370 0.978 0 641 
109% - 1 0 %  3 5 %  3 3 %  8.0% 
-2.2% 1 0% -0.1% -0.1% -0.7% 

1122 0888  1 268 1 100 1.018 0572 
4.4% 6.7% -4 0% -10% 2 2 %  5 3 %  

-3  9% - 1 0 %  -0  3% 12% -1.1% 02£0 

1591 1.502 1.382 0811 0764  0798 0590 
-5 .3% -7.6% -7.6% 40£0 117% -1 7% 4.8% 
- 0 3 %  1 4 %  0.8% -3  5% -1.7% -0  0% -0.6% 

1.608 1.432 1.675 1.238 0.857 0.650 0839 0.512 
-4.1% -6,2% -6.7% -8.7% 51°o 99°0 - t 8 ° o  2.4% 

0.1% 0.9% 19% 2.1% 3.3% 0 1 %  -0 5% 0.3°° 

1.371 1.197 1.265 1,051 0.943 1.024 1050 0807 0.569 
-3.9% -4 .8% -6 .9% 3 1 %  7.1% - 7 9 %  -40 °o  25% 2.6% 

1.1% 2.2% -0 .3% -0 .2% -0.2% 1.5% 0.6°° -01°o  0 6 %  

Fig. 6. ADF and UDF power distributions for the HAFAS BWR problem. 

ods), simplifies data handling, and allows flux disconti- 
nuities to be accommodated directly into the cross 
sections. 

One of the steps in Koebke's application of simpli- 
fied equivalence theory involved comparing an explicit 
4-group, 'pin-by-pin' model of a small PWR 46 to a 
2-group homogenized nodal calculation. The 
MEDIUM-2 reference solution is the equivalent of a 

PDQ-type calculation with explicit baffle and reflec- 
tor. Koebke utilized a two-assembly/baffle/reflector 
problem for the heterogeneous multi-assembly calcula- 
tion from which approximate equivalence parameters 
(AHFs) were derived. The reference reactor and multi- 
assembly geometry are described in reference 46. The 
reference and S.E.T. power distributions are compared 
in Fig. 7. The simplified equivalence theory solution 

Reference Heterogeneous Solution 
Error in S.E.T, Solution 
Error in S.E.T, Wi thout  Fuel AHFs 
Error in UDF Solution 
Error in UDF wi th  Reflector AHFs 

1.108 1015  0.545 
0,4% 0 7 %  0.2£0 
0.3°o 0 9 %  0.0% 
3.7% 2 0 %  22.5% 
0.1°o 0.8% 1.3°o 

1.438 
-0 .1% 
-0 .1% 

8.3% 
0.7% 

1.550 1.493 
-0.1°o -0 .1% 
-0 .2% -0 .2% 
-9 .4% -8 .9% 

0 9 %  -0 .9% 

1.274 0.984 0.712 
0.1°o 0.2% 0.4°0 
0.1% 0.2% -0.3£0 

-6,4£0 -2 .3% 11.6°0 
-0.6£'0 0.0% 0.9£0 

1.322 1 0 3 3  0.755 
-0 .2% -0 .1% -1 .3% 

0.2% -0 .0% 1 2 %  
-7 .2% -3 .4% 10.6°o 
-0 .7% - 0 1 %  -0.2£o 

Fig. 7. Assembly power distributions for the KOEBKE PWR problem. 
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displayed is a QUANTM solution which employed 
Koebke's published equivalence parameters (Koebke's 
S.E.T. power distribution was not published). It can be 
seen from the results of Fig. 7 that the maximum error 
in assembly power for the S.E.T. solution is only 1.3%. 
Koebke's conventional diffusion solution, using 
UDFs, displayed a maximum error in assembly power 
of 17.2%. It is clear that the use of equivalence theory 
has greatly improved the accuracy of the homogenized 
solution. The ratio of heterogeneity factors in the type 
'A' assembly to those of the type 'B' assembly are 
1.0019/1.0051 and 0.9639/0.9658 for groups 1 and 2, 
respectively. Since the ratios of heterogeneity factors 
are almost unity, the homogenized solution should be 
insensitive to the heterogeneity factors in the core 
region. A homogenized solution to the Koebke PWR 
problem in which the fuel assembly heterogeneity 
factors were set to unity is compared to the reference 
solution in Fig. 7. It can be seen that the solution 
changes only a few tenths of a percent from the 
complete S.E.T. solution. Thus, it appears that in the 
unrodded reactor configuration the major improve- 
ment over conventional diffusion theory is due to the 
heterogeneity factor at the core/baffle interface. 

In order to test this hypothesis, a conventional 
homogenized diffusion solution has been computed 
and is also compared to the reference solution in 
Fig. 7. This diffusion solution is the result of a 
QUANTM calculation in which the flux-weighted 
diffusion coefficients were used. The 2-group diffusion 
coefficients were derived from Koebke's collapsed 
equivalence parameters and are compared to 
Koebke's diffusion coefficients 46 in Table 11. 

Koebke collapsed 2-group diffusion coefficients by 
flux weighting I/D. These diffusion coefficients are 
quite different from the S.E.T. diffusion coefficients 
which are computed directly from the multi-assembly 
calculation. A much better approximation is obtained 
by flux weighting the diffusion coefficients, which 
yields diffusion coefficients within 5% of the S.E.T. 
diffusion coefficients. 

A QUANTM homogenized reactor solution which 
employed flux-weighted diffusion coefficients (AXS- 
UDF) is compared to the reference solution in Fig. 7. 
This solution has 20.0% error in assembly power. 
When these conventional diffusion coefficients and 
cross sections are used with the homogenized baffle/ 
reflector heterogeneity factors (computed directly 
from the 3-assembly homogenization problem using 
flux weighted diffusion coefficients) the solution to the 
homogenized reactor problem has a maximum error of 
1.3% in assembly power, as shown in Fig. 7. It can be 
concluded that, for this problem, conventional cross 
sections and diffusion coefficients are adequate to 
compute accurate power distributions, providing 
heterogeneity factors are computed for the homoge- 
nized baffle/reflector nodes. 

The fact that an accurate power distribution may be 
computed without using heterogeneity factors for the 
fuel assemblies of the Koebke PWR problem does not 
imply that the heterogeneity factors do not serve an 
important role in reactor analysis. In the 'rods in' 
version of Koebke's PWR problem, the maximum 
error in assembly powers goes up to 4.0% when 
conventional diffusion coefficients, cross sections, and 
unity heterogeneity factors are used in the fuel. This 
reflects the fact that the ratios of heterogeneity factors 
between rodded and unrodded assemblies are 
1.0097/1.0019 and 1.1187/0.9639 for groups one and 
two, respectively. The thermal group discontinuity 
factors are much greater than unity when control rods 
are inserted, and consequently, heterogeneity factors 
will improve the power distributions computed using 
homogenized nodal models. A similar situation exists 
when large numbers of burnable absorber pins are 
present in PWR assemblies, and heterogeneity factors 
successfully treat such situations. In addition, hetero- 
geneity factors are quite useful in performing the 
heterogeneous flux reconstruction which is required to 
predict individual pin powers. 19'4s Koebke has also 
found that heterogeneity factors are needed to success- 
fully model group-collapse effects which are present in 

Table 11. Diffusion coefficient comparison 

Quantity S.E.T D 

Approximation 

Flux-weighted D Flux-weighted 1/D 

Type A, D 1 1.464 1.509 1.210 
Type B, D 1 1.436 1.517 1.215 
Reflector, D 1 1.264 1.193 1.076 
Type A, D 2 0.342 0.342 0.342 
Type B, D 2 0.383 0.342 0.342 
Reflector, D 2 0.578 0.248 0.248 
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situations in which rodded assemblies are adjacent to 
unrodded assemblies. 48 

4.1.1. PWR baffle/reflector homogenization. The 
PWR baffle causes a great many difficulties for the 
reactor analyst. Historically, nodal models have used 
empirical albedos to replace both the baffle and 
reflector. 15'35 Determination of albedos involves a 
lengthy trial and error procedure in which albedos are 
adjusted such that the nodal power distribution 
matches that of some higher-order solution. When 
nodal models improved to the point where hom- 
ogenized parameters for baffle/reflector nodes could 
be easily and accurately modeled, the difficulty became 
finding appropriate values of homogenized para- 
meters for baffle/reflector nodes. Since the baffle is a 
strong absorber adjacent to the outer fuel assemblies, 
the use of flux-volume weighted cross sections distri- 
butes the absorption over the entire baffle/reflector 
region, radically mispredicting the local fluxes and 
absorption rates. This misprediction leads to error in 
power distributions as large as 10-15%. 

The baffle itself is not difficult to treat with 'pin-by- 
pin' models, such as PDQ, providing appropriate 
baffle ci~oss sections can be defined. The difficulty of 
obtaining baffle cross sections arises primarily from 
the nonasymptotic nature of the neutron spectrum in 
the vicinity of the baffle and from the magnitude of the 
transport effects in the baffle and reflector. For these 
reasons, an appealing approach to generating baffle 
and reflector cross sections is to use extended- 
assembly calculations which model one or more fuel 
assemblies, the baffle, and reflector. The use of an 
assembly homogenization code (e.g. CASMO,5 DIT,4 
MULTI-MEDIUM, 7 etc.) to perform this calculation 
assures that the multigroup, nonasymptotic spectral, 
and transport effects are adequately treated. Such 
calculations have been performed, the usual practice 

being to collapse baffle cross sections into two groups 
and perhaps to use g-factors to assure that finite- 
difference diffusion calculations will 'reproduce' the 
transport results. This approach produces baffle and 
reflector cross sections which accurately predict the 
neutronic behavior of the baffle and reflector, provid- 
ing an explicit 'pin-by-pin' reactor model is used. 

If extended-assembly calculations are performed to 
treat the baffle, flux and current distributions and 
reaction rates can be used directly to define hom- 
ogenized cross sections and. heterogeneity (or dis- 
continuity) factors which accurately model the baffle 
and reflector. The inherent advantage of the hetero- 
geneity or discontinuity factors is that they are chosen 
in such a way that the nodal model will reproduce the 
net currents at the core/baffle interface and the net 
reaction rates in both the fuel assembly and the 
homogenized baffle/reflector without explicitly repre- 
senting the baffle. 

A two-dimensional model of the Zion-1 core 3° was 
used as a reference problem to test the ability of 
equivalence parameters to model the baffle and 
reflector. In this particular problem, fuel assemblies 
were treated as homogeneous (previous calculations 
indicated that the baffle/reflector equivalence para- 
meters are unaffected by fuel assembly heterogeneities) 
and the baffle and reflector were modeled explicitly, as 
depicted in the problem description of Appendix 1.2. A 
QUANTM P3 transport solution to the ZION 
problem was generated using 4 nodes per assembly, 
plus explicit baffle divisions. Transport theory rather 
than diffusion theory is required to treat correctly the 
baffle/reflector, because diffusion theory mispredicts 
neutron absorption and transmission in the baffle, 
even when the baffle is modeled explicitly. These errors 
in diffusion theory models are of the order of 4-8% in 
peripheral bundle powers. The reference solution to 
the ZION problem was used to compute homogenized 
cross sections and discontinuity factors for every 

Table 12. ZION baffle/reflector discontinuity factors and albedos 

Node 

Discontinuity factor Albedo ~ 

Group 1 Group 2 Group 1 Group 2 

(9, l) 
(9, 2) 
(9, 3) 
(9, 4) 
(8, 5) x-direction b 
(8, 5) y-direction b 
(8, 6) x-direction 
(7, 7) b 

1.200 0.199 7.26 8.88 
1.209 0.195 7.35 8.85 
1.198 0.199 7.31 8.79 
1.181 0.190 7.13 8.97 
1.184 0.216 12.59 9.78 
1.203 0.224 9.21 8.57 
1.201 0.182 7.35 9.40 
1.190 0.230 10.37 8.94 

Albedo defined here as flux/current. 
b Inside comers. 
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homogenized baffle/reflector node. They are summar- 
ized in Table 12, along with reference values of 
albedos. It can be seen that the discontinuity factors 
are quite independent of their actual location. The 
discontinuity factors at the jagged edges of the 
core/baffle interface (inside corners) do differ signifi- 
cantly from those at the flat edges. The variation is 
only about 2% in group 1 and about 10% in group 2. 
The reference values of the albedos show much larger 
variations--the inside corners being as much as 70% 
higher than the flat albedos in group 1, while the 
thermal albedos display only about 10% variation. 
These results indicate that the nodal diffusion model 
may be much less sensitive to the variation in 
discontinuity factors than to the variation in albedos. 

QUANTM one-mesh-per-assembly diffusion calcu- 
lations using discontinuity factors from the (9, 1) node 
are compared to the reference (explicit baffle/reflector) 
transport solution in Fig. 8. This calculation used 
collapsed cross sections from the (9, 1) node to 
represent all of the homogenized baffle/reflector nodes 
and, thus, did not attempt to represent the higher 
absorption cross sections of the inside corner nodes. 
The analogous QUANTM solution, employing the 
albedos from the (9, 1) node to replace all reflector 
nodes, is also displayed in Fig. 8. The QUANTM 
calculation, using one set of discontinuity factors for 

every baffle/reflector node, has a maximum error in 
assembly power of approximately 0.8%. The corres- 
ponding calculation, employing one set of albedos, has 
a maximum error of 12.4%. The large errors are due to 
the fact that the albedos are poorly approximated for 
the inside corners. A QUANTM calculation which 
used the average albedos for the inside corners (taken 
directly from the reference solution) and the (9, 1) node 
albedo for all other surfaces is also compared to the 
reference solution in Fig. 8. The maximum error has 
been reduced to about 3.2%. If the albedos were 
allowed to be different on each assembly surface, it 
would be possible to find an albedo set which could 
better predict the power distribution. However, 
matching the reference solution is only one of the 
objectives of a method for modeling the baffle/reflec- 
tor. Another desirable objective is that the power 
distribution be accurately predicted even when the 
reactor is at some state other than the reference state 
for which the albedos were determined. As an attempt 
to model such a change, the fuel compositions of the 
highly enriched outer fuel assemblies and the low 
enriched internal assemblies were interchanged in the 
ZION problem. A QUANTM P3 solution to the re- 
configured ZION problem (with explicit baffle repre- 
sentation) is compared to solutions obtained from 
QUANTM diffusion theory calculations which used 

Reference heterogeneous P3 solution 
Error using one discontinuity factor 
Error using one albedo 
Error using flat or inside corner albedo 

ke. 1.27525 1.085 0.862 0.546 
1.27519 -0.6% -0.4% -0.5% 
1.27466 -1.5% -3.2% -7.9% 
1.27523 0.5% 1.3% 3.2% 

1.232 1.217 0.897 0,735 0.332 
0.2% -0.2% 0.2% -0,4% 0.2% 
1.3% -0.1% -1.1% -2.8% -10.9% 
0.3% 0.2% 0.9% -1.5% -2.0% 

1.424 1.465 1.171 1.083 0.725 0.455 
0.3% -0.1% -0.3% 0.0% 0.2% 0.0% 
2.6% -0.3% 1.2% -0.2% -1.4% -3.3% 
0.2% -0.1% 0.3% -0.1% -0.1% -1.1% 

1.554 1.651" 1.375 1.356 1.029 0.930 0.506 
0.3% -0,1% 0.4% -0.1% 0.3% -0.4% -0.1% 
3.2% 2.5% 2.5% 2.9% 0.9% -1.0% -2.5% 
0.1% -0.3% 0.2% -0.3% -0.1% -1.3% -2.3% 

1.600 1.751 1.508 1.548 1.239 1.163 0.801 0.520 
0.4% -0.1% 0.1% -0.1% 0.3% 0.0% 0.4% 0.8% 
3.3% 2.8% 3.0% 2.1% 1.9% 0.7% 0.0% -2.0% 
0.1% 0.4% 0.0% -0.3% 0.0 -0.6% -0.6% -2.4% 

Fig. 8. Assembly power distribution comparison for the ZION PWR problem. 
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Reference heterogeneous P3 solution 
Error using one discontinuity factor 
Error using flat or inside corner albedo 

ke~ 1.29173 
1.29140 
1.29112 

1.303 
0.1% 
0.5% 

1.587 1.696 
0.3% -0.6% 
1.3% 0.2% 

1.792 2.003 1.505 
0.3% -0.5% 0.3% 
1.6% 0.6% 1.2% 

1.866 2.175 1.716 1.821 
2.1% 0.7% 16% 0.7% 
4.3% 2.0% 2.8% 1.7% 

1.131 0.824 0.405 
-1.3% -1.1% -0.9% 
-1.9% -2.8% -5.8% 

1.316 0.822 0.547 0.217 
-0.9% 0.0% -0.3% 0.3% 
-0.9% -0.7% -3.4% -9.7% 

1.196 1.069 0.576 0.295 
-0.2% -0.6% 0.3% 0.2% 

07% -0.7% -0.8% -1.9% 

1.493 0.949 0.686 0.326 
-0.5% 0.4% - 0 0 %  -0.1% 

0.1% 0.6% -1.4% -1.6% 

1277 1.148 0.633 0.335 
1.6% 0.7% 1.8°A, 1 3% 
2.4% 1.2% 1.4°A, 0.3% 

Fig. 9. Power distribution comparison for the modified ZION problem. 

the initial configuration discontinuity factors and 
albedos in Fig. 9. It can be seen from these results that 
the maximum error in peripheral assembly power is 
only 1.9% for the discontinuity factor case, and the 
corresponding albedo case has a maximum error of 
10.0%. This is significant in that the albedo set which 
produced only 3.2% error in the reference case has 
10.0% error in the re-configured case. Thus, it is clear 
that the albedo values are attempting to model more 
than just the baffle and reflector, and that their values 
depend on the neutronics of the core regions which 
they adjoin. The nodal calculation which used the 
discontinuity factors does not display the large 
increase in error, and the discontinuity factors perform 
well in both the normal and re-configured cases. 

It is important to remember that the use of albedos 
necessitates a two-dimensional reference solution in 
order to obtain normalization of the albedos. In 
contrast, one can utilize a single set of discontinuity 
factors and homogenized cross sections to represent 
the baffle/reflector nodes, and the resulting error will 
be small. Furthermore, these G.E.T. parameters can 
be taken from a one-dimensional calculation (as 
evidenced by the use of only the (9, 1) node parameters) 
or from a single extended-assembly calculation. 
Koebke has reported a more elaborate approach, s° 
than the straightforward one reported here. In 
Koebke's approach, baffle/reflector diffusion coeffi- 
cients and heterogeneity factors are adjusted to match 
the response matrices of the baffle/reflector as com- 
puted in two separate extended-assembly calculations. 
The extended-assembly calculations (in one-dimen- 

sional geometry) are performed for two different 
boundary conditions on the outer reflector surface. 
Koebke reports that the equivalence parameters are 
very insensitive to the boundary conditions. This 
implies that the equivalence parameters are applicable 
to a wide range of core conditions (e.g. power 
distributions, depletion, etc.). Homogenization of 
PWR baffle/reflector nodes represents one of the most 
significant applications of equivalence parameters in 
PWR analysis, and the necessity of performing fine- 
mesh two-dimensional quarter-core calculations to 
normalize albedos can be completely eliminated. 

4.2. Application of G.E.T. to a realistic 2-dimensional 
BWR configuration 

The results from the HAFAS BWR, KOEBKE 
PWR, and ZION PWR benchmark problems have 
demonstrated the significant improvement which 
results from the use of ADFs in homogenized reactor 
calculations. These results are sometimes discounted 
since all of these models involve significant com- 
promises of the actual reactor configurations. In an 
effort to demonstrate that the conclusions from the 
benchmark problems translate directly to realistic 
reactor configurations, a much more realistic bench- 
mark problem has been developed. The DVP BWR 
benchmark problem 51 models a fresh core at begin- 
ning of cycle. The two-dimensional model utilizes a 
control rod pattern and void distribution as computed 
by a three-dimensional reactor simulator, for a lower 
axial portion of core. This particular plane contains 
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40% voided assemblies except near the core periphery 
where assemblies are unvoided. Three control blades 
(in each quadrant) are modeled with 0% void condi- 
tions. The reference solution si to the DVP BWR 
problem is a two-group PDQ calculation which 
explicitly modeled all fuel pins, water gaps, control 
blades, and the reflector. Two-group pin-by-pin cross 
sections were obtained from full-assembly CASMO 
calculations, and g-factors were used so that single- 
assembly PDQ calculations matched the CASMO 
group-wise absorptions in control blades and burn- 
able absorber pins. Homogenized cross sections and 
assembly discontinuity factors were computed from 
single-assembly PDQ calculations in order that 
the maximum degree of consistency was maintained 
between the reference solution and subsequent homo- 
genized reactor calculations. The reactor description, 
homogenized cross sections and ADFs are given in 
Appendix 1.3. QUANTM solutions to the DVP BWR 
problem were generated using one-node-per-assembly 
mesh and the diffusion theory approximation. 

The calculated power distributions computed with 
ADFs and UDFs are compared to the PDQ reference 
solution in Fig. 10 and summarized in Table 13. The 
conventional diffusion theory solution, using unity 
discontinuity factors, displays errors up to 13.5% in 
assembly power near the core periphery. In addition, 
powers in rodded assemblies are systematically over- 
predicted, by as much as 7.5%. The QUANTM 
calculation which used ADFs is in remarkably good 
agreement with the PDQ reference solution. The 
maximum error in assembly power is only 2.4%, and 
the powers in rodded assemblies are underpredicted, 
but by a small amount. The overall accuracy of the 
homogenized diffusion solution with ADFs is excel- 
lent, and errors are at least at factor of 3 less than the 
errors of the solution which used conventional conti- 
nuity conditions. The DVP BWR problem clearly 
demonstrates that modern nodal methods in combina- 
tion with ADFs are capable of predicting BWR power 
distribution with accuracies which approach that of 
explicit pin-by-pin models. 

The fuel assemblies in the DVP BWR problem are 
all diagonally symmetric (a common fuel design). For 

Table 13. Results for the DVP BWR problem using UDFs 
and ADFs 

Solution error UDFs ADFs 

Error in kef f --0.16% -0.03% 
Maximum error in assembly 13.5% 2.4% 

power 
Average error in rodded 5.5% - 1.5% 

assembly power 

such assemblies, there are only two unique disconti- 
nuity factors per group. However, these two disconti- 
nuity factors are quite different in magnitude since one 
is for the narrow gap and the other for the wide gap. 
Since only the ratio of discontinuity factors between 
assemblies is of consequence, it might be argued that 
the use of two discontinuity factors is not needed 
because, in the reactor, wide gaps always face wide 
gaps and narrow gaps always face narrow gaps. Thus 
the discontinuity factors at gap interfaces tend to 
cancel out. If this were true, one might use only the 
narrow gap discontinuity factors and divide all cross 
sections by these discontinuity factors, allowing con- 
ventional diffusion codes to be used to solve the 
homogenized problem. A QUANTM calculation for 
the DVP BWR problem which used only narrow gap 
discontinuity factors is compared to the other DVP 
BWR solutions in Fig. 10. One difficulty with this 
approach can be seen by examining the peripheral 
assembly powers. Bundles which have wide water gaps 
at the reflector interface have the incorrect discon- 
tinuity factors, and their powers are mispredicted by as 
much as 10%. This is not unexpected since the 
conventional U D F  solution displays such errors, and 
the use of narrow gap discontinuity factors everywhere 
mistreats flux discontinuities at these interfaces. 

An additional difficulty with a one discontinuity 
factor approach occurs whenever the assemblies which 
surround a control rod have mismatched void 
conditions. The simple configuration depicted in 
Fig. 11. was calculated with homogenized cross sec- 
tions and discontinuity factors from the DVP BWR 
problem. In this void-mismatch problem, the wide gap 
discontinuity factors do not cancel out, and the use of 
only narrow gap discontinuity factors predicts a 
solution (see Fig. l l) which has a flatter power 
distribution and errors up to 3% compared to the two 
discontinuity factor solution. The DVP BWR problem 
does not model depleted fuel assemblies, however, a 
similar mismatch in wide gap discontinuity factors 
occurs when there are exposure gradients as well. 

ADFs are directly applicable in 3-dimensional 
geometry, although axial discontinuity factors should 
be unity since the axial void and exposure distributions 
are continuous within a given assembly. It should be 
recognized that Simplified Equivalence Theory has 
limitations when applied in 3-dimensional BWR 
geometry. Potential difficulties arise from the fact that 
cross sections have been divided by heterogeneity 
factors in order to introduce radial flux discontinuities. 
Consequently, axial void or exposure distributions 
will introduce axial flux discontinuities between nodes. 
This is a direct result of the fact that the discontinuity is 
necessary in the radial plane, while it is inappropriate 
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PDQ reference Solution 
Error in AXS-ADF QUANTM Solution 
Error in the Single ADF QUANTM Solution 
Error in the UDF QUANTM Solution 

0.896 1.042 0.909 0.635 keff = 1.027008 
-0.5% -0.1% 0.2% -0.4% keff = 1.026773 
-0.6% -0.4% 0.6% 10.1% keff = 1.027014 

2.7% 3.9% 5.1% 13.5% ke, = 1.025476 

1.196 1.430 1.318 1.064 0.761 0.583 0.510 
0.1% 1.1% 1.4% 1.3% -0.7% -0.5% 1.7% 

-0.1% 1.0% 1.2% 1.2% 0.8% 1.3% 1.5% 
1.9% 2.0% 1.9% 1.7% 4.2% 6.5% 5.0% 

1.362 1.624 1.534 1.152 0.964 0.830 0.807 0.585 
0.2% 0.8% 0.8% 0.4% -0.5% -1.0% 0.1% -1.4% 

-0.1% 0.6% 0.9% 1.1% 0.3% 0.2% 0.2% 6.7% 
1.0% 2.8% 3.2% 2.9% 2.6% 3.0% 3.6% 10.5% 

1.356 1.359 1.317 1.238 1.155 1.051 0.929 0.822 0.508 
0.0% 0.3% 0.3% 0.2% 0.3% 0.4% 0.3% 0.1% 1.4% 

-0.4% -0.0% 0.2% 0.2% 0.5% 0.6% 0.4% 0.5% 1.5% 
-0.7% -0.4% -0.0% 0.8% 1.6% 2.3% 2.2% 4.1% 8.2% 

1.248 1.205 1.203 1.248 1.267 1.238 1.128 1.042 0.582 
0.0% 0.7% 0.4% -0.2% -0.2% -0.2% -0.4% -0.6% -1.6% 

-0.5% -0.3% 0.1% -0.4% -0.4% -0.4% -0.7% -1.2% 0.6% 
-3.0% -3.8% -3.6% -1.7% 0.4% -0.3% 0.5% 1.8% 5.4% 

1.092 0.907 0.937 1.192 1.327 1.613 1.501 1.201 0.726 
0.7% -1.8% -2.4% 0.4% 0.2% 0.7% 0.7% 0.3% -1.5% 
0.1% -2.5% -3.0% -0.0% -0.2% 0.4% 0.4% -0.7% 0.2% 

-6.3% 6.6% 6.9% -4.5% -1.5% 1.2% 1.8% 1.3% 3.1% 

1.007 0.821 0.871 1.152 1.311 1.618 1.506 1.074 0.907 0.530 
1.3% 0.1% -1.3% 0.7% 0.3% 0.9% 0.7% -0.8% 0.7% -1.6% 
0.5% -0.6% -1.8% 0.1% -0.2% 0.5% 0.6% 0.2% 0.6% 9.4% 

-7.6% 5.8% 5.0% -5.7% -2.5% 0.3% 1.4% -1.0% 2.7% 10.8% 

1.005 0.971 1.016 1.136 1.225 1.252 1.177 1.024 0.852 0.701 0.415 
0.4% 1.2% 0.8% 0.0% 0.0% 0.0% 0.0% -0.6% -0.7% 1.0% 0.0% 

-0.5% -0.4% -0.0% -0.7% -0.6% -0.4% -0.2% 0.7% -0.5% -0.1% 0.4% 
-7.9% -8.2% -7.0% -5.3% -3.8% -2.8% -1.6% -0.4% -0.3% 2.2% 6.0% 

0.973 0.942" 0.979 1.074 1.116 1.075 1.017 0.959 0.858 0.780 0.409 
0.5% 1.3% 1.0% 0.0% -0.3% 0.3% 0.3% -0.8% -0.8% 1.1% -2.4% 

-0.4% -0.4% -0.2% -0.7% -1,0% -0.2% -0.1% -1.0% -1.1% 1.7% 0.1% 
-8.8% -9.0% -8.2% -6.4% -5,7% -5.7% -4.5% -2.6% -1.6% -0.1% 3.8% 

0.908 0.749 0.783 0.990 1.010 0.823 0.771 0.886 0.848 0.802 0.431 
1.3% -0.7% -1.7% 0.7% 0,5% -2.4% -1.4% -0.3% -0.7% -1.0% -2.1% 
0.3% -1.6% -2.8% -0.1% -0,2% -3.0% -1.8% -0.7% -1.1% -1.8% -0.7% 

-10.1% 3.0% 3.0% 8.4% -7,8% -5.6% -8.3% -3.9% -1.9% -0.5% 2.9% 

Fig. 10. Power distributions for the DVP BWR benchmark problem. 

V o i d  D i s t r i b u t i o n  
S u r r o u n d i n g  a 
C o n t r o l  B l a d e  

0 %  v o i d  

40% 
v o i d  

P o w e r  D i s t r i b u t i o n  

40% 
v o i d  

0 %  v o i d  

- W i d e  a n d  N a r r o w  G a p  
1.159 0.841 D i s c o n t i n u i t y  F a c t o r s  
1.132 0.868 -Narrow Gap 

D i s c o n t i n u i t y  F a c t o r  

0.841 1.159 
0.868 1.132 

Fig. 1. Control rod void mismatch homogenization problem. 
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in the axial direction. This problem will be most 
p ronoun~d when the axial mesh spacing is large, such 
that large burnup or void fraction differences occur 
between axial nodes. 

5. FURTHER IMPROVED HOMOGENIZATION 
METHODS 

5.1. Introduction 

The case in favor of using ADFs for reactor analysis 
is easily made. It is of interest to know what causes the 
errors which remain when ADFs are used. It has 
already been demonstrated that node-averaged reac- 
tion rates are preserved exactly when reference cross 
sections (RXSs) and reference discontinuity factors 
(RDSs) are used. For  this reason, the inaccuracies 
which do exist in the ADF solutions must be due to a 
combination of inaccuracies in homogenized cross 
sections and discontinuity factors. Some insight into 
the problem can be obtained from further examination 
of the HAFAS BWR problem, since reference equiva- 
lence parameters are known. In Fig. 12, the HAFAS 
reference and the QUANTM (AXS-ADF) solutions 

are compared to (a) a QUANTM calculation which 
used RXSs and ADFs and (b) a QUANTM calculation 
which used AXSs and RDFs. Comparisons between 
the RXS-ADF and AXS-ADF solutions show that 
using the reference cross sections rather than assembly 
cross sections actually leads to larger errors. One 
might expect that the RXS-ADF solution should be 
more accurate since the RXSs are the correct cross 
sections. Careful examination of Fig. 12 reveals that in 
virtually every assembly ADFs have led to a more 
accurate solution than either RXSs and ADFs or AXSs 
and RDFs. In fact, the use of RXSs (in place of AXSs) 
perturbs the solution in the opposite direction from 
using RDFs (in place of ADFs), and the magnitude of 
the changes are almost the same. The implication of 
these results is that errors in cross sections and 
discontinuity factors are in opposite directions and 
improving one or the other adversely affects the 
solution. This situation is not totally unexpected. 
AXSs and ADFs are a matched set of equivalence 
parameters, and their values are very much interre- 
lated. The flux distribution which produces a set of 
cross sections also dictates the values of the surface 

1.371 
1.1% 
2.4% 

-1.5% 

Reference Heterogeneous P3 Solution 
Error in P1 AXS-ADF Solution 
Error in P1 RXS-ADF Solution 
Error in P1 AXS-RDF Solution 

ken 1.043129 1,478 1.204 0.996 0.513 
1.042251 -0.5% 0.4% -1.1% -0.3% 
1.043363 -2.1% -1.4% -3.3% -4.4% 
1.042052 1.7% 1.9% 2.4% 4.4% 

0.995 1,277 1.370 0.978 0.641 
-2.2% 1.0% -0.1% -0.1 -0.7 
-2.0% 0.9% -2.0% -1.7 -5.3 
-0.3% 0.2% 2.0% 1.6 4.9 

1.122 0.888 1.268 1.100 1.018 0.572 
-3.9% -1.0% -0.3% 1.2% -1.1% 0.2% 
-1.0% 0.4% 0.6% 0.4% -3.0% -3.5% 
-3.1% -1.5% -0.2% 0.7% 2.0% 3.9% 

1.591 1.502 1.382 0.811 0.764 0.798 0.590 
-0.3% 1.4% 0.8% -3.5% -1.7% -0.0% -0.6 

1.2% 4.5% 2.6% -1.4% -2.5% -0.8% -4.5 
-1.7% -3.1% -1.9% -2.2% 0.8% 0.8% 4.2 

1.609 1.432 1.675 1.238 0.857 0.650 0.839 0.512 
0.1% 0.9% 1.9% 2.1% -3.3% 0.1% -0.5% 0.3% 
1.7% 2.9% 4.4% 4.4% -1.8% -0.6% -1.9% -3.0% 

-1,8% -2.2% -2,6% -2.4% -1.6% 0.6% 1.5% 3.5% 

1.197 1.265 1.061 0,943 1.024 1.050 0.807 0.569 
2.2% -0.3% -0.2% -0.2% 1.5% 0.6% -0.1% -0.6% 
3.8% 1.5% 1.3% 0.6% 2.9% -0.1% -1,0% -4.4% 

-1.8% -2.0% -3.6% -1.0% -1.5% 0.6% 0.9% 4.0% 

Fig. 12. Power distribution comparison for the HAFAS BWR problem. 
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currents, and consequently, the discontinuity factors. 
Any direct effort to evaluate more accurate hom- 
ogenized cross sections will have to be supplemented 
'by an effort to improve estimates of discontinuity 
factors. 

5.2. Channel homogenization 

There is one indirect method of utilizing assembly 
calculations to further improve the accuracy of 
homogenized BWR nodal models. This method makes 
use of the hypothesis that much of the error in 
homogenized cross sections arises from inaccurate 
predictions of the relative fluxes between the fueled 
region of the homogenized assembly and the water gap 
(or rodded gap) regions of the assembly. To test this 
hypothesis, a nodal model can be constructed such 
that the fuel regions of the bundle and the water 
channel/control rod regions are treated separately. In 

this nodal model the ratio of fuel bundle to water 
channel/control rod fluxes can be different than in the 
assembly calculations. 

This homogenization method is referred to, here, as 
'channel homogenization'. The method utilizes identi- 
cal assembly calculations which are to be used to get 
AXSs, but cross sections are collapsed over the regions 
shown in Fig. 13. Region '1' is the homogenized fuel 
bundle, and the regions numbered '2' are simply 
homogeneous water gaps. Regions '3' and '4' contain 
either homogeneous water (for unrodded assemblies) 
or homogenized control rods and water. In this 'nodal' 
reactor model a single channel region is used for the 
inter-assembly gaps, and the reactor model then has 
four nodes' per assembly---only one of which contains 
fuel. This nodal problem has an irregular mesh, but 
most modern nodal methods are quite capable of 
handling this situation. 9 

As a test of channel homogenization, the HAFAS 
assembly calculations were computed using the P3 
transport option in QUANTM, and the correspond- 
ing channel homogenized cross sections (CHXSs) and 
discontinuity factors (CHDFs) were computed. An 

I 

2 2 2 

1 2 

3 2 

Fig. 13. Channel homogenization problem. 

examination of the CHXSs and CHDFs reveals that 
the control blade/water cross sections are not 
influenced by the fuel type and only one set of 
equivalence parameters is required to model the 
control rods. The discontinuity factors for the control 
blade/water channel are very different from unity, 2.05 
on the outer blade end and 0.47 on the blade center 
end, in the thermal group. This is to be expected since 
this region homogenizes a very strong neutron 
absorber with nonabsorbing water. A summary of 
several CHDFs is presented in Table 14. Water 
channel discontinuity factors (which arise, since the 
region is homogeneous, from spatial truncation and 
transport effects) are nearly unity and may be assumed 
to be independent of the assembly type or rodded 
configuration. Discontinuity factors for the fuel bun- 
dles are much closer to unity than in the ADF case and, 
as one might expect, much more like discontinuity 
factors for PWR bundles. 

A QUANTM diffusion theory calculation with four 
nodes per assembly was performed using CHXSs and 
CHDFs. The resulting power distribution is compared 
to the reference solution in Fig. 14. It can be seen that 
the maximum error in assembly power is only 2.2%. 
The maximum error in rodded assembly power is 
reduced from 3.9% (ADFs) to only 1.8% in the CHXS- 
CHDF solution. Results of QUANTM calculations 
which used CHXSs and UDFs are also given in 
Fig. 14. The maximum error in assembly power is 
approximately 9.6%, demonstrating the importance 
of discontinuity factors in the channel representation. 

Table 14. Channel homogenized discontinuity factors for the HAFAS BWR 

Assembly type 
Quantity Unrodded A Unrodded B Rodded A Unrodded B 

Region 1 CHDFs = 1.063 1.059 1.022 1.015 
Region 1 CHDFs" 1.068 1.063 1.114 1.109 
Region 2 CHDFs" 0.986 0.984 0.986 0.989 
Region 2 CHDFs= 1.039 1.036 1.078 1.083 
Region 3 CHDFs a 1.022 1.025 0.491 0.473 
Region 3 CHDFs" 1.031 1.030 2.045 2.063 

= For group 2. 
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Reference Heterogeneous P3 Solution 
Error in Pl AXS-ADF Solution 
Error in P1 CHXS-CHDF Solution 
Error in Pl CHXS-UDF Solution 

k,., 1.043129 1 478 1.204 0.996 0513 
1.042251 -0.500 0.4% -1.1% -0.3% 
1.043363 -0.8% -0.3% -0.8% 1.1% 
1 042736 33°0 6 0°o 6.4£0 7.0% 

0.995 1.277 1.370 0978 0.641 
2.2% 1.0% -0.1°o -0.1% -0.7% 

-1.1°o 0.3% -0.3% -0.5% -14% 
37°0 11°o 36% 5.0% 5.0% 

1.122 0.888 1.268 1.100 1.018 0.572 
-3.9% -1.0% -0.3% 1.2% -1.1% 0 2°0 
-0.8% -0.8% 0.1% -0.2% 1.3% -0.5% 
-4.59.0 -5.7% -3.5% 0.290 14% 0.5% 

1.591 
-0.3% 

0.6% 
1 9% 

1.502 1.382 0.811 0.764 0.798 0.590 
1.4% 0.8% -3.5% -1.70o -00% -0.6% 
1.6% 0.9% -1.4% -1.5% -0.5% -1.1% 

-0.4% -4.8% -7.2% -5.4% -1.8% 0.3% 

1.675 1.238 0.857 0.650 0.839 0.512 
119% 2119o -33°o 0,1°o I 015 °~ 0 . 3 % 
1.5% 1.5% -18% 1.1°'o -1.0% -0.9% 

-0.2% -4.6°0 -9.6°0 7.9% -4.9°0 -1 4% 

1,609 1.432 
0.1% 0.9% 
1.1% 1.4% 
5.8% 3.7% 

1.371 1.197 1.265 1.051 0.943 1.024 1,050 0.807 0.569 
1.1% 2.2% -0,3% -0.2% -0.2% 1.5°o 0,6% -0.1% -06% 
1.9% 1.9% 1.4% 0.5% -0.2% 1.3£.0 0,0% -1.1% -2.0% 
8.6% 7.6% 3.9% -1.1% -7.7°o 7.3% -6.6% -4.6°0 -3.6% 

Fig. 14. Channel homogenized power distributions: HAFAS BWR problem. 

The use of channel representation for BWRs is 
straightforward, and homogenization errors appears 
to be reduced to an acceptable level. The disadvantage 
in terms of computational effort (about a factor of four) 
may be unacceptable. One immediate advantage, 
however, is that the task of reconstructing pin-wise 
powers is much simpler in the channel representation. 
In fact, the BWR bundle in the channel representation 
appears much more like a PWR bundle. Also signifi- 
cant is the fact that parameterization of cross sections 
and discontinuity factors (versus exposure, void, etc.) 
is much simpler in the channel homogenized model. 

5.3. Extended-assembly homogenization 
Inaccuracies which result from the use of assembly 

homogenized parameters arise because the flux (and 
current) distributions which exist in the reactor 
assemblies are different from those obtained from 
single-assembly calculations. Interaction effects 
between assemblies are ignored when zero net current 
boundary conditions are imposed in the assembly 
calculation. If the actual boundary conditions which 

exist on the surface of an assembly were known, a 
fixed-source assembly calculation could be performed 
to obtain the correct homogenized parameters. 
Clearly, the required boundary conditions cannot be 
known unless the actual heterogeneous reactor solu- 
tion is known. Nevertheless, the concept that accurate 
homogenization parameters can  be obtained from 
assembly calculations using correct boundary condi- 
tions is a useful one. 

The simplest means of obtaining more accurate 
estimates of boundary conditions is to use extended- 
assembly calculations. 22'25 Extended-assembly calcu- 
lations typically include multiple assembly types (such 
as highly enriched and low enriched assemblies, 
rodded and unrodded assemblies, or peripheral 
assemblies and reflectors, etc.) and impose zero net 
current (or periodicity conditions) on the outer 
surfaces of the extended-assembly geometry. The 
resulting heterogeneous extended-assembly calcula- 
tion will have non-zero currents between assemblies, 
and flux distributions will be different from those 
computed from single-assembly calculations. 
Extended-assembly calculations will produce more 
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accurate homogenized parameters, when the extended- 
assembly geometry is 'typical' of that encountered by 
the assemblies being modeled. 

As an example of extended-assembly calculations in 
BWR, consider the rodded assemblies in the HAFAS 
BWR problem. Since each controlled bundle is 
surrounded by two uncontrolled bundles on the 
narrow gap sides, and two other controlled bundles on 
the wide gap sides, a natural extended-assembly 
calculation consists of one controlled bundle and three 
uncontrolled bundles with zero net current boundary 
conditions. A QUANTM P3 transport calculation 
was performed for both the type A and B rodded 
assemblies. Equivalence parameters derived from this 
calculation are compared to AXS-ADFs and to the 
mean RXS-RDFs of the reference heterogeneous 
solution in Table 15. It can be seen that results derived 
from the extended-assembly calculations are much 
closer to the mean values of the reference cross section 
and discontinuity factors than to the assembly cross 
sections and discontinuity factors. 

Table 15. Comparison of extended-assembly 
homogenization parameters 

The situation in PWRs is considerably more simple. 
The absence of control blades and the symmetries of 
PWR assemblies makes it much easier to utilize 
extended-assembly calculations. Koebke 46'.7 has 
made extensive use of extended-assembly calculations 
for PWRs, with excellent results. Koebke has also 
reported that equivalence parameters can be repre- 
sented as functions of the net assembly leakage rate. 
This allows cross sections to be recomputed (by 
examining individual assembly leakage rates) as the 
global homogenized diffusion equations are solved. In 
such a method, equivalence parameters are tailored, to 
some extent, to the local conditions of the flux 
distributions. This approach was examined for the 
HAFAS BWR problem, but was not successful. The 
asymmetric nature of the BWR bundles, particularly 
rodded bundles, seems to affect adversely the leakage 
rate parameterization. This can be seen by simply 
examining RDFs for the (4, 1) bundle in the HAFAS 
problem, in which the wide gap thermal discontinuity 
factors are 1.710 and 1.628. Despite the diagonal 
symmetry of the bundle, the RDFs are not symmetric. 
It appears that BWR assemblies are more sensitive to 
the local flux distributions than are PWR assemblies. 

Approximation 
Assembly Extended- Mean of 
parameter ADF-AXS assembly reference 

Type A, Ea2 0 . 0 5 9 7 5  0 . 0 5 8 2 6  0.05853 
Type B, E,2 0 . 0 5 2 9 8  0 . 0 5 2 0 9  0.05240 
Type A, f2 + 1.750 1.656 1.657 
Type B, fz + 1.696 1.617 1.656 
Type A, f2- 0.625 0.654 0.658 
Type B, f 2  0.589 0.620 0.628 

When the cross sections and discontinuity factors 
obtained from the extended-assembly calculation are 
used in the global homogenized model, it is found that 
the accuracy of the solution showed no improvement 
over the ADF-AXS solution. This is somewhat 
surprising since the homogenized parameters are 
closer to the mean values of the 'exact' homogenized 
parameters. Examination of the individual values of 
the RXSs and RDFs reveals that there is considerable 
scatter among the actual reference values. For 
instance, assembly type A thermal absorption cross 
sections range from 0.5808 to 0.5905, and type B wide 
gap thermal discontinuity factors range from 1.624 to 
1.710. Thus, it would appear that the 'exact' equiva- 
lence parameters are sensitive to the actual details of 
the assembly flux distributions, and it is difficult to 
determine a 'typical' rodded environment in the 
HAFAS BWR problem. 

5.4. Local fixed-source homogenization calculations 

One method of obtaining more accurate homoge- 
nized parameters is to utilize the 'rehomogenization' 
techniques discussed in Section 2.3.4. These methods 
use a solution to a global homogenized calculation 
(AXS-UDF or AXS-ADF) to obtain approximate 
reactor flux distributions which can be used to 
approximate boundary conditions for each assembly. 
When a fixed-source assembly (or extended-assembly) 
calculation is performed for each assembly, one 
obtains approximate equivalence parameters which 
reflect many of the inter-assembly effects. The resulting 
equivalence parameters can then be used to generate 
an improved global homogenized reactor solution, 
and presumably, the latter solution will be more 
accurate than its predecessor. The local fixed source 
calculation requires that some approximation be made 
for the spatial shapes of the surface sources. Spatial 
shapes from global homogenized reactor calculation 
cannot be expected to represent accurately the actual 
shapes of the sources on the surface of a heterogeneous 
assembly. The simplest shape, of course, would be to 
assume that the surface sources are spatially fiat. 
Smith 33 demonstrated that the use of face-dependent, 
but spatially flat net current boundary conditions for 
the rehomogenization calculations lead to a reduction 
in maximum assembly error in the HAFAS problem 
(diffusion theory representation) from 5.3% to 2.1%. 
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Smith used a fine-mesh QUANDRY model to perform 
the local fixed-source calculations. Although this 
approach demonstrated that accurate homogenized 
parameters could be obtained by rehomogenization, 
the method is impractical as a tool for reactor analysis. 
The Combustion Engineering ROCS/MC 18 code 
allows cross sections to be rehomogenized (albeit with 
only cross sections and not discontinuity factors) 
during the global homogenized diffusion solution. The 
technique employed is to solve fine-mesh 2-group 
diffusion equations by imposing incoming partial 
currents which are taken from the nodal solution. The 
method works well for assemblies in the interior of the 
core but does not work well for peripheral assemblies. 
It has been found to require about ~ of the time that 
would be required to solve the fine-mesh PDQ 
diffusion equations. In fact, if local heterogeneous 
calculation must be performed for every assembly, the 
nodal approach can be viewed as an acceleration 
technique for solving the global heterogeneous 
problem. 

An alternative to performing local fixed-source 
calculations with explicit heterogeneous represen- 
tation is to employ a response matrix formulation of 
the fixed-source problems. The advantage of this 
approach is that the difficult task of computing with 
heterogeneous detail need only be performed for each 
type of assembly (as functions of exposure, void, etc.). 
Subsequent fixed-source problems can then be per- 
formed with simple response matrix calculations. A 
large number of variations in the response matrix 
approach to rehomogenization have been developed 
at MIT. 2°'25'52 These methods differ in the surface 
source (partial currents, net currents, or fluxes) and in 
the spatial shapes used in the response matrix 
calculations. The most successful of these approaches 
represents the surface flux as the product of quadratic 
polynomials and the heterogeneous flux shape 
obtained from a standard assembly calculation. This 
functional form accounts for much of the actual shape 
of the heterogeneous surface flux. Some convergence 
difficulties were encountered, and at least 3-4 iter- 
ations between global solution and response matrix 
calculations were required for convergence. This 
response matrix approach was shown to result in 
generalized equivalence parameters which reduce the 
error in assembly powers (for a very difficult BWR 
configuration in which a peripheral bundle was 
rodded) from 9.6% (using ADFs) to 1.1°,/o. 20 These 
results clearly demonstrate that homogenization 
errors can be reduced to levels at which a great many 
other approximations become suspect. The drawbacks 
involved in using response matrix formulations are 
substantial. These include (i) the necessity of perform- 

ing a great many response matrix calculations (the 
order of surface representation times number of 
surfaces times number of groups) for each state point in 
depletion, void, fuel temperature, etc., (ii) the large 
amount of data which must be handled during the 
global iteration (response matrices for each reaction 
rate, surface flux, surface current at each state point), 
and (iii) the necessity of recomputing the global 
diffusion solutions to obtain convergence. Response 
matrix methods have yet to be utilized in production 
codes, and the cumbersome nature of the response 
matrix data has deterred reactor analysts from adopt- 
ing this approach. 

6. OVERVIEW 

The firm theoretical foundation for LWR assembly 
homogenization methods has been reviewed, and 
practical benchmark problems have illustrated that 
the use of flux-weighted cross sections and diffusion 
coefficients leads to large error (10-25%) in assembly 
power distributions. The primary source of error has 
been shown to arise from the treatment of hom- 
ogenized flux continuity conditions at nodal inter- 
faces. Koebke's Equivalence Theory and Smith's 
modification, Generalized Equivalence Theory, are 
capable of entirely eliminating homogenization errors, 
providing the global heterogeneous solution is known. 
Practical methods for obtaining approximate equiva- 
lence parameters were outlined, and these methods 
were successfully applied to PWR baffle/reflector 
homogenization and BWR bundle homogenization 
problems. Assembly discontinuity factors (ADFs), the 
simplest of the approximate equivalence methods, 
were shown to reduce BWR homogenization error by 
at least a factor of three relative to error in conven- 
tional homogenization methods. The ADF approach 
is attractive since discontinuity factors are derived 
from the very assembly calculations required by 
conventional homogenization methods. The use of 
extended-assembly calculations was successfully 
applied to the PWR baffle/reflector homogenization 
problem; it was demonstrated that a single set of cross 
sections and discontinuity factors can be used for all 
reflector nodes thus eliminating the conventional 
problem of determining surface-dependent albedos. 

These homogenization techniques represent signifi- 
cant advances in homogenization theory, and their 
incorporation into nodal reactor models will result in 
considerable improvements in the predictive abilities 
of modern nodal methods. Information provided by 
advanced nodal models which utilize sophisticated 
homogenization methods can be combined with high- 
order pin power reconstruction (dehomogenization) 
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techniques to provide detailed power distr ibutions.  In 
fact, the goal of replacing detailed 'p in-by-pin '  2- 
d imensional  models with 3-dimensional  homogenized  
nodal  models  can be achieved without  loss of 
accuracy. 26,47,48.49 

Residual homogeniza t ion  errors  were demons t ra ted  
to arise from inter-assembly interact ion effects which 
canno t  be predicted by single-assembly calculations. 
Sophist icated response matr ix  rehomogeniza t ion  
techniques have been demons t ra ted  to be capable of 
reducing the homogeniza t ion  errors  well past the level 
of practical  interest (1.0%). These techniques appear  
too cumbersome for practical  applications,  and  
fur ther  efforts should be directed towards  establishing 
more  efficient rehomogeniza t ion  techniques. 

LIST OF UNCONVENTIONAL ABBREVIATIONS 

RXSs, homogenized cross sections computed using 
reference reactor flux solutions. 

AXSs, homogenized cross sections computed using 
assembly flux solutions. 

RHFs, heterogeneity factors computed using reference 
reactor flux solutions. 

RDFs, discontinuity factors computed using reference 
reactor flux solutions. 

ADFs, discontinuity factors computed using assembly 
flux solutions. 

UDFs, Unity discontinuity factors (i.e. conventional 
continuity conditions). 
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APPENDIX 1.1. SPECIFICATIONS FOR THE ONE-DIMENSIONAL PARTIALLY-POISONED-ASSEMBLY 

BENCHMARK PROBLEM 

A B 

Composition Group, g Dg Zag vY~/g Egg, 

A 1 1.32000 0.00900 0.006 0.017 
2 0.38300 0.08000 0.104 0.0 

B 1 1.32000 0.00900 0.006 0.017 
2 0.38300 0.09000 0.104 0.0 

X 1 = 1.0, X 2 =0.0. 
Assembly pitch: 21.00 cm. 
Boundary conditions: reflective: left, bottom, top, right. 

APPENDIX 1.2. SPECIFICATIONS FOR THE ZION PWR BENCHMARK 
PROBLEM 

7 12 4 2 4 4 4 

Co 3 2 3 2 3 4 

5 i z 3 Z 3 3 3 

4 5 2 5 2 3 2 4 / 

/ 3 2 3 2 3 2 3 2 

2 3 2 3 2 3 2 4 

I 2 5 2 3 2 3 2 

i 2 3 4 5 G • 8 

Composition Group, g Dg Xa0 vYTg Eg a, 

1 1 1.02130 0.00322 0.0 0.0 
2 0.33548 0.14596 0.0 0.0 

2 1 1.47160 0 . 0 0 8 5 5  0 . 0 0 5 3 6  0.01742 
2 0.37335 0 . 0 6 6 6 9  0.10433 0.0 

3 1 1.41920 0 . 0 0 8 8 2  0 . 0 0 6 0 1  0.01694 
2 0.37370 0 . 0 7 6 0 6  0.12472 0.0 

4 1 1.42650 0 . 0 0 9 0 2  0 . 0 0 6 5 3  0.01658 
2 0.3742.,4 0 . 0 8 3 5 9  0.14120 0.0 

5 1 1.45540 0.00047 0.0 0.02903 
2 0.28994 0.00949 0.0 0.0 

X1 = 1.0, )(2=0.0. 
Assembly pitch: 21.608 cm. Baffle thickness: 2.8575 cm. 
Boundary condtions: reflective: left, bottom, zero flux: top, right. 
Zt,.g = 1/3Dg for isotropic scattering, transport problem. 
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APPENDIX 1.3. SPECIFICATIONS FOR TIIE D V P  BWR BENCHMARK 

PROBLEM 

II 1 1 3  
I0 1 3 3 1  

9 1 3 3 3 1 ; 3  

8 1 3 3 1 1 1 3  

7 ] l l l l ~ l  

6 1 ] 1 1 1 1 1  

5 1 2 2 1 1 3 3  

4 1 2 2 1 1 3 3  

3 [ I [ I [ I F  

2 I I I I I P I  

l i l 2 2 1 1 2 2  

3 
3 3 
3 I 
3 I 
I 3 I 

I I 3 3 

I [ 3 I 

F I 3 I 
I 2 3 4 5 6 7 8 9 I0 H 

Composition Group, # Dg E.g vYTg Xgg, 

I 1 1.62020 0.00654 0.00415 0.01462 
2 0.48403 0.04850 0.06099 0.0 

2 1 1.40100 0.00944 0.00437 0.01798 
2 0.39056 0.06661 0.07142 0.0 

3 1 1.38370 0.00696 0.00437 0.02030 
2 0.37643 0.05106 0.06330 0.0 

4 1 1.41240 0.000038 0.0 0.04575 
2 0.24434 0.01031 0.0 0.0 

Composition ADFI wld, ADF2 wide ADF1 . . . . . .  ADF2 . . . . . .  

1 0.9288 1.6570 0.9966 1.1332 
2 0.8423 0.6809 1.0787 1.6423 
3 0.9114 1.5805 0.9989 1.1664 

X 1 = 1.0, X 2 =0.0. 
Assembly pitch: 15.313 cm. 
Boundary conditions: reflective: left, bottom, zero flux: top, right. 

A P P E N D I X  1 .4 .  S P E C I F I C A T I O N S  F O R  T H E  H A F A S  B W R  B E N C H M A R K  P R O B L E M  

Quadrant of the two-dimensional Reactor 
y (cm) 

, O g = O  

153.1 
W W W W W W W W W W 

A B A B A B A W w i w  

B I B A,:,~ A ÷ A B A B W W W 

A ~ /  8 A B A B A W 

d net A ~  B + • o B A B A B A B W Jgn=o g 

A + 8 A B" A + 8 A B A W 

B + A B A 4 B+[ A B A B W 

.&'to B ~ A4o B A B + A ÷ B A W 

B z° A 4° B 4° A B A + B + A B W 

A z° B r ° A  7c B+ I A + a A e A W 
O.O ~ x  (crn) 

o.o 153.1 j%ef = 0 

Fuel Assembly Description 

_•_0.9 
Ill II II Ill 3 , 2 6  

/ 11 I I II . 2 6  
/ 

/ II 1 I [1 3 . 2 6  
/ 

/ 3 . 2 6  / III It 11 llI 

/ • 

/ .J o.,o 
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Composition-to-Zone Assignments 

Assembly Type 
Zone A A 4° A 7° A + B B 4° B 70 B ÷ W 

I 1 5 9 1 2 6 10 2 15 
II 2 6 10 2 3 7 l l  3 15 

III 3 7 11 3 4 8 12 4 15 
IV 13 13 13 14 13 13 13 14 15 
V 13 13 13 13 13 13 13 13 15 

Cross sections 

Composit ion D 1 Eaa I VE:, EI~ 2 D 2 Ea2 VE:2 

1 1.400 0.0090 0.0065 0.0160 0.375 0.080 0.1220 
2 1.400 0.0090 0.0057 0.0170 0.375 0.070 0.1000 
3 1.400 0.0090 0.0051 0.0180 0.375 0.060 0.0800 
4 1.400 0.0090 0.0051 0.0180 0.375 0.050 0.0700 
5 1.680 0.0080 0.0063 0.0100 0.530 0.077 0.1180 
6 1.680 0.0085 0.0055 0.0105 0.530 0.067 0.0960 
7 1.680 0.0090 0.0049 0.0110 0.530 0.057 0.0780 
8 1.680 0.0090 0.0049 0.0110 0.530 0.047 0.0680 
9 2.000 0.0078 0.0061 0.0052 0.800 0.073 0.1140 

10 2.000 0.0082 0.0053 0.0053 0.800 0.063 0.0920 
11 2.000 0.0086 0.0047 0.0054 0.800 0.053 0.0720 
12 2.000 0.0086 0.0047 0.0054 0.800 0.043 0.0620 
13 1.530 0.0005 0.0 0.0310 0.295 0.009 0.0 
14 1.110 0.08375 0.0 0.00375 0.185 0.950 0.0 
15 2.000 0.0 0.0 0.0400 0.300 0.010 0.0 

;(1 = 1.0, ;t2 =0.0,  v=2.5.  
Boundary conditions: reflective: left, bottom, zero incoming flux: top, right. 
Yt,.o = 1/3Dg for isotropic scattering, transport  problem. 


